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Abstract This paper provides assumptions for a limit Folk theorem in stochastic
games with finite horizon. In addition to the asymptotic assumptions à la Dutta (J
Econ Theory 66:1–32, 1995) I present an additional assumption under which the Folk
theorem holds in stochastic games when the horizon is long but finite. This assumption
says that the limit set of SPE payoffs contains a state invariant payoff vector w and, for
each player i , another payoff vector that gives less than w to i . I present two alternative
assumptions, one on a finite truncation of the stochastic game and the other on stage
games and on the transition function, that imply this assumption.

Keywords Folk theorem · Stochastic games · Cooperation

JEL Classification C72 · C73

1 Introduction

The Folk theorem is a central result in repeated game theory according to which the
set of equilibrium payoffs coincides with the set of payoffs that Pareto dominates the
minimax point. There is not one Folk theorem but many: They vary along the class of
games or the equilibrium notion taken into account. The aim of this paper is to provide
conditions under which a Folk theorem holds in stochastic games with finite horizon.

The author is grateful to P. Dutta, P. Fleckinger, O. Gossner, J. Hörner, L. Ménager, J.F. Mertens, A.
Salomon, L. Samuelson, J. Sobel, J.M. Tallon and N. Vieille for comments that led to numerous
improvements. I especially grateful to two anonymous referees and a coeditor for their helpful suggestions.
I also thank Yale University and the Cowles Foundation for Research in Economics for hospitality.

C. Marlats (B)
LEMMA, University Panthéon-Assas (Paris 2), 4 rue Blaise Desgoffes, 75006 Paris, France
e-mail: chantal.marlats@u-paris2.fr

123



486 C. Marlats

Stochastic games model situations in which the one-period reward depends on the
realization of a state. The distribution over states is determined by the realized state and
the actions played at the previous period. Stochastic games are thus a generalization of
nonstochastic games (here called repeated games) where players may not always face
the same payoff matrix at each date. Public good games with gradual investments, or
with an investment stock that depreciates over time, belong to the class of stochastic
games. In this case the state variable is given by the amount of investments. Other
economic situations such as duopoly games (Rosenthal 1982) or games of extracting
resources (Levhari and Mirman 1980) can be modeled by stochastic games1.

Stochastic games introduce an additional complication in comparison with repeated
games: Not only may players want to deviate in order to improve their current gains
but they may also want to influence the probability distribution over states. Under
some conditions, Dutta (1995), for games with perfect observation, and then Hörner
et al. (2011) and Fundenberg and Yamatoko (2011), for games with imperfect public
monitoring, prove that any individually rational payoff vector can be approximated
by a Subgame Perfect Equilibrium (SPE) if players are sufficiently patient and if the
horizon is infinite.

Yet in many economic situations, agents are involved in relationships with a finite
horizon. For instance, joint ventures generally have a limited shelf life. Also, the
relationship between an employee and an employer is a finite time relationship since
he will retire after a time. Yet, for significant classes of repeated games, the Folk
theorem holds when the horizon is infinite but does not when it is finite. A typical
example is the prisoner’s dilemma, in which cooperation is an equilibrium when the
horizon is infinite, but is not with a finite, even very long, horizon.

Some authors (Friedman 1985; Benoit and Krishna 1985; Smith 1995; Gossner
1995; Hörner and Renault 2011) 2 provided sufficient conditions for the Folk theorem
to hold in finitely repeated games, but all these papers are about nonstochastic games.
The reasoning of these papers is the following. Some outcomes can be supported as
equilibria because the underlying strategy profile provides an appropriate and credible
punishment in any case of deviation, if the number of remaining periods is sufficiently
large—say if it is greater than some integer R. If the horizon is finite, there is a date
at which the remaining time is not sufficient for these punishments to be credible
or effective. In a game with horizon F , a deviation at t ∈ {F − R + 1, . . . , F} is
called late deviation in contrast with an early deviation that occurs at t < F − R. An
additional round of stage games, that will be called endgame in the rest of the paper, is
played when the first F periods are over. The strategy played in this endgame depends
on whether or not a late deviation occurs and, in the latter case, on the identity of
the deviator. When no deviation occurs then a reward SPE strategy profile is played.
Otherwise a punishment SPE strategy profile is triggered. The difference between the

1 In the first case, the state variable is the market share, and in the second case, it is the amount of resources
available. For a survey about economic applications of stochastic games see Amir (2003).
2 Friedman (1985), Benoit and Krishna (1985) and Smith (1995) assume that mixed strategies are observ-
able, while Gossner provides techniques based on the Blackwell approachability theorem to prove a Folk
theorem with unobservable mixed actions. Hörner and Renault (2011) study games with imperfect public
monitoring.

123



Folk theorem for stochastic games 487

reward payoffs and the punishment payoffs accumulated during the endgame is such
that the late deviations are not profitable. The condition under which such equilibria
can be constructed is due to Benoit and Krishna (1985) and has been generalized by
Smith (1995). The one in Benoit and Krishna (1985) says that there are distinct Nash
payoffs for each player in the stage game. To obtain the Folk theorem, it suffices to
take F large enough, so that the payoffs accumulated during the endgame can be made
relatively small. Then it is possible to find an SPE strategy profile whose payoff vector
approximates a target payoff profile.

To the best of my knowledge this paper is the first to study the Folk theorem
in stochastic games with a finite horizon. In stochastic games, contrary to repeated
games, repeatedly playing a static Nash equilibrium may not be SPE. The reason is
that a player may want to lose money today in order to reach states in which payoffs
are greater, even if he is punished. This fact has two consequences. First, constructing
the reward and the punishment strategies in the endgame is more difficult. Second,
players may have an incentive to deviate early on, in order to modify the state in which
the endgame starts. Thus, preventing from late deviations may enter in conflict with
deterring early deviations. In Sect. 2, I show via two examples that the Benoit and
Krishna’s condition applied in each stage game is neither sufficient nor necessary for
the Folk theorem to hold in stochastic games with finite horizon. In the first example,
I construct a stochastic game in which each stage game is a prisoner’s dilemma. The
cooperative outcome, which is not a Nash equilibrium in the static game, can be
sustained as a SPE if the horizon is long enough. This means that the condition of
Benoit and Krishna is not necessary. In the second example, I construct a game in
which the condition of Benoit and Krishna (1985) is satisfied by the payoff matrix
of each state. In other words, in all states, each player has at least two distinct Nash
payoffs. This game also satisfies the Dutta assumptions. I show that the Folk theorem
fails in this game. This fact suggests that the condition of Benoit and Krishna and the
conditions of Dutta are not sufficient.

In this paper, I provide a condition that, in addition to Dutta’s assumptions, guaran-
tees that any individually rational payoff vector of a stochastic game can be sustained
as an SPE if the horizon is sufficiently long. It says that the set of the limit of SPE
payoffs as horizon goes to infinity (called limit set of SPE in the rest of the paper)
contains a vector payoff w that is invariant to the initial state. It also contains for each
player i another payoff vector w[i] that gives smaller payoffs than w to i . The richness
part of assumption allows to construct reward and punishment strategy profiles that
deter late deviations. The invariance assumption will permit to deter deviations aiming
at modifying where the endgame starts.

If the set of states is a singleton, then this assumption is equivalent to the assumption
of Smith (1995). The main drawback of this assumption is that it holds on the set
of limit SPE payoffs in the dynamic game. Conditions on the stage games and the
transition function would have been preferable. It is indeed difficult to accommodate
the generality of stochastic games and the tractability of the conditions on the stage
game. For this reason, I discuss two stronger alternative assumptions. The first one says
that there is an integer T such that the set of SPE payoffs of the T -period stochastic
game is sufficiently rich. The second one holds on the stage games and on the transition.
This one turns out to be sufficient in special class of games that contain games like
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those in which all stage games are prisoner’s dilemmas, and for public good games,
for instance.

The rest of the paper is organized as follows. In Sect. 2, I present examples that
illustrate some major differences between the Folk theorem in repeated games and in
stochastic ones. Section 3 introduces the basic setting of the model. Assumptions and
the main result are presented in Sect. 4. In Sect. 5, I discuss the richness assumption.

2 Examples

In this section two examples of stochastic games that satisfy the conditions of Dutta
(1995) 3 are presented.

The first one shows that the condition of Benoit and Krishna (1985) applied in each
state is not necessary. The second one shows that this condition is not sufficient, even
if the conditions of Dutta (1995) are satisfied.

Example 1 Suppose that at each date t = 1, . . . , T players are either in state s, s′
or s′′ and must choose an action—H or B for player 1 and G or D for player 2.
Players perfectly observe the actions played by their opponent and the current state.
The transition function is:

– Players go from s to s′ with probability 1 if they play (H, G).
– Players go from s to s′′ with probability 1 if they play (B, G) or (H, D).
– Players go from s′ to s with probability 1 if they play (H, G).
– Players go from s′′ to s with probability 1 if they play (H, G).
– Players go from s′′ to s′ with probability 1 if they play (B, G), (B, D) or (H, D),.
– Otherwise players stay in the current state with probability 1.

The following table gives the payoffs and the transition between states. The notation
s′ : 1 in the top left of the first matrix means that the game moves from s to s′ if players
play (H, G).

State s

G D

H 4, 4s′:1 0, 5s′′:1
B 5, 0s′′:1 2, 2

State s′
G D

H 4, 4s:1 0, 5
B 5, 0 1, 1

State s′′
G D

H 4, 4s:1 −3, 5s′:1
B 5,−3s′:1 −2,−2s′:1

Note that the payoff matrix of each state is a prisoner’s dilemma. So the Benoit and
Krishna condition does not hold in any state. If there were no possibility of transition
between states, then the unique equilibrium payoff of a game of length T would be
the static Nash equilibrium of the initial state (which is (B, D) in all states).

3 See Sect. 4 for more details.
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I show that the socially optimal payoff (4, 4) can be maintained as an SPE, if the
horizon is sufficiently long. Let F and L be such that T = F + L . Suppose that F > 1
and L > 2. Consider the following strategy profile:

– Normal path (i.e. if there is no deviation):
– At t ∈ {1, . . . , F} play (H, G) in each state.
– At t = F + 1 play (B, D) in s and (H, G) in s′ and s′′.
– At t ∈ {F + 2, . . . , T } play (B, D) in each state

– Punishment path (i.e. if a deviation occurs):
– At t ∈ {1, . . . , T − 1}: (B, D) in s′ and s′′ and (H, G) in s.
– At t = T play (B, D) in each state.

Let me show that this strategy profile is an equilibrium.

No deviation from the punishment path for all t ∈ {1, . . . , T }.
If t = T then players play a static Nash equilibrium. As it is the last period of the

game, there is no profitable deviation. Now suppose that t ≤ T −1. If the current state
is s, then the payoff generated on the punishment path is: 4+T −t

T −t+1 . If a player deviates,

then the game goes to s′′ and then to state s′. Therefore the payoff is: 5−2+T −t−1
T −t+1 ,

which is smaller than 4+T −t
T −t+1 , for all t ≤ T − 1. Now suppose that the state is s′ or

s′′. If a player deviates then he loses 1 instantaneously. Also he does not improve his
continuation payoff since a deviation does not modify the transition function.

No deviation from the normal path at t ≥ F + 2.
At t = T there is no deviation since a Nash equilibrium is played. Observe that

at F + 1 the state is either s or s′ (Recall F > 2). If it is s then at F + 2 the game
stays in s since (B, D) is played at F + 1. If it is s′ then the game goes to s since
(H, G) is played in s′ at F + 1. So the state at t ≥ F + 2 must be s. I need to check
that there is no profitable deviation in s. No deviation gives 2(T −t+1)

T −t+1 , and a deviation

gives −2+T −t−1
T −t+1 , which is smaller.

No deviation from the normal path at t = F + 1.
The state at F +1 must be either s or s′ on the normal path. Recall that L = T − F .

I need to check that there is no profitable deviation in s and s′. If the state is s then
a deviation gives −2+L−2

T −t+1 , which is smaller than the payoff without deviation, 2L
T −t+1

as L > 2. If the state is s′ then a deviation is not profitable since the deviator would
have 5+L−1

T −t+1 instead of 4+2(L−1)
T −t+1 .

No deviation from the normal path at t ≤ F .
Without deviation a player receives at least 4(F−t+1)+2L

T −t+1 . After a deviation, he

receives at most 5+F−t+L
T −t+1 . The difference between the former and the later gives a

nonnegative payoff. So there is no profitable deviation.

Conclusion
I have shown that the strategy profile described at the beginning of the example is

an equilibrium after any history if F > 2 and L > 2. Also the associated payoff is
4F+2L

T and then converges to 4 as F increases once L has been fixed.

Example 2 In the following example each stage game satisfies the Benoit and Krishna
condition: Action profiles (H, G) and (M, K ) are Nash equilibria in both stage games
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and give distinct payoffs to each player. This game also satisfies the Dutta conditions
for obtaining the Folk Theorem when the horizon is infinite and players are patient
enough. I show that the Folk theorem does not hold if the horizon is finite.

State s State s′

G K

H −5, −5s′:1 −20, −20s′:1
M −20, −20s′:1 −10, −10s′:1

G K D
H 3, 2 3, 1 6, 0
M 0, 1 4, 2.5s:1 0, 0
B 0, 3 0, 0 4, 2.5

In the game repeated indefinitely many times the minimax payoff of player row is not
greater than 3 when the discount factor tends to one. The minimax payoff of player
column is smaller than 1 whatever the initial state and the horizon of the game. Then
(4, 2.5) satisfies the definition of an individually rational payoff vector. In addition,
it is feasible, since players can play (B, D) at t ≥ 2. In order to prove that the Folk
theorem does not hold in this game, it suffices to show that this payoffs vector cannot
be sustained as an equilibrium, even approximately.

Note that the stage game given by s′ has two pure Nash equilibria: (H, G) and
(M, K ). B and D are dominated strategies and then must receive a 0 weight in any
equilibrium. So there is only one strictly mixed Nash equilibrium. In this equilibrium
player row puts a 0.6 weight on H and player column puts a 0.25 weight on G. So the
three Nash equilibrium payoff vectors are: {(3, 2); (3, 1.6); (4, 2.5)} where (3, 1.6) is
the payoff vector generated by the mixed strategy profile. The stochastic game starting
in s′ and with an horizon T = 1 has only three equilibrium payoff vectors.

Let �T (s′) denote the stochastic game starting in state s′ and finishing at date T > 1
and PT the associated set of SPE strategy profiles. In the following lines, I show by

induction that the set of SPE in�T (s′) is
{
(3, 2);

(
(T −1)3+3

T ,
(T −1)2+1.6

T

)
;
(

(T −1)3+4
T ,

(T −1)2+2.5
T

)}
for all T . Note that this is satisfied when T = 1.

Suppose that the set of equilibrium payoffs of �T −1(s′) is

{
(3, 2);

(
(T − 2)3 + 3

T − 1
,
(T − 2)2 + 1.6

T − 1

)
;
(

(T − 2)3 + 4

T − 1
,
(T − 2)2 + 2.5

T − 1

)}
(∗)

Let σ be any strategy profile in PT . Let me show that under σ the action profile
(H, G) is played at the first date. I consider the case in which player column plays
G. Player row receives at least 3+(T −2)3+3

T if he plays H and at most 0+(T −2)3+4
T

otherwise. So H is the unique best reply against G. Suppose that player column plays
K . Again, if player row plays H , he receives 3+(T −2)3+3

T and at most 0+(T −2)3+4
T

otherwise. So H is the unique best reply against K . Suppose that player column
plays D. Then, if player row plays H , then receives at least 6+(T −2)3+3

T and at most
4+(T −2)3+4

T otherwise. So H is the unique best reply against G, K and D. This
proves that player row plays H at the first period in all equilibria. Consequently,
player column plays G in the first period: Playing G gives him at least 2+(T −2)2+1.6

T ,

and not playing G gives him at most 1+(T −2)2+2.5
T . So at t = 1 in all equilib-
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rium, the action profile played in s′ is (H, G). So the equilibrium payoff �T (s′)
is

{
(3, 2);

(
(T −1)3+3

T ,
(T −1)2+1.6

T

)
;
(

(T −1)3+4
T ,

(T −1)2+2.5
T

)}
.

The induction argument allows saying that the set of SPE is (∗) for all T . It follows
that for all T , the individually rational payoff (4, 2.5) cannot be sustained as SPE in
�T (s′).

3 Settings

A stochastic game is given by a finite set of players I , a finite set of states S, a finite
set of actions Ai for each player i ,4 and a transition function q : A × S → �(S),
where �(S) is the set of probability distributions over S and A = ∏

i∈I Ai .
The one-period reward is ui : A × S → R.
Let �T be the stochastic game ending at date T . A t-history is a vector ht =

(s1, a1, . . . , st−1, at−1, st ) where at is the action profile played at t and st is the state
realized at t (h1 is the initial state). Let Ht be the set of all t−histories. A behavioral
strategy in �T is given by σ i

T = {σ i
(t)}T

t=1 where σ i
(t) : Ht → �(Ai ). Let σ i

T (ai |ht )

be the weight i puts on ai ∈ Ai given hT . Given a strategy profile σT = {σ i
T }i∈I ,

let σ−i
T be the strategy profile played by player i’s opponents. For any initial state

s and strategy profile σ in �T , the undiscounted average payoff over T periods (or
T −period payoff) is:

Ui
T (σ, s) = 1

T
E

[
T∑

t=1

ui (at , st )|σ, s

]

Let Ui
t→T (σ (ht ), s(ht )) be the continuation payoffs associated with ht , where σ(ht )

is the continuation strategy and s(ht ) is the state at t given by ht . Formally:

Ui
t→T (σ (ht ), s(ht )) = 1

T − t + 1
E

[
T∑

t ′=t

ui (at ′ , st ′)|σ(ht ), s(ht )

]

A strategy profile is a SPE if for all t ≤ T , all i ∈ I , all σ̂ i , a strategy in �T and all
ht ∈ Ht :

Ui
t→T (σ (ht ), s(ht )) ≥ Ui

t→T (σ̂ i (ht ), σ
−i (ht ), s(ht ))

Let PT be the set of perfect equilibria of �T .
A strategy profile “repeats” σT , a strategy in �T , if it plays σT over T periods, then

forget the past and play σT over the next T periods, and so on…
A stationary strategy profile x is a strategy profile in which each decision depends

only on the current state s. Let x(s) be the action profile played in s. A set of states R
is recurrent given x if for all s, s′ ∈ R the probability of reaching s from s′ in finite
time, without leaving R, is 1. The set of recurrent sets given x is denoted by Rx .

Like Dutta (1995), I assume that there exists a public randomization device.

4 The set of actions is assumed to be the same at all states. This is without loss of generality.
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In stochastic games, the set of feasible payoffs and the minimax may vary across
states and game horizon. Let F(s) be the set of feasible asymptotic average payoffs
in the game starting in s ∈ S:

F(s) = {v ∈ R
n : ∃{σTk }k, Tk+1 > Tk s.t. lim

k→∞ Ui
Tk

(σTk , s) = vi ,∀i ∈ I }

The convex hull of F(s) is denoted by coF(s). As Dutta mentioned, this set can
be understood as the set of payoffs that can be achieved when players use a public
randomization device.5

The T −period minimax payoff is defined as: mi
T (s)= inf

σ−i
T

supσ i
T

U i
T (σ i

T , σ−i
T , s).

I assume that mi
T (s) is given by a pure strategy profile for all T . By Bewley and

Kolhberg (1976), limT →∞
mi

T (s)
T = limδ→1 mi

δ(s) := mi (s) for all s and i , where
mi

δ(s) is the value of the infinitely repeated stochastic game with δ-discounted payoffs.
Finally, the set of individually rational payoffs is: F∗(s) = {v ∈ coF(s) : vi >

mi (s),∀i ∈ I }.

4 Main result

4.1 Assumptions

In this section I present the assumptions for the Folk theorem. The first three assump-
tions are borrowed from Dutta (1995). Hörner et al. (2011) use similar assumptions.6

Assumption 1 (A1) For all s, s′ ∈ S, coF(s) = coF(s′) =: coF .

This first assumption says that the convex hull of asymptotic average payoffs is state
invariant. Communicative games7 satisfy this assumption. The game in the second
example is a communicative game since any action profile in s leads to s′ and (H, M)

in s′ leads to s.

Assumption 2 (A2) For all s, s′ ∈ S and i ∈ I, mi (s) = mi (s′) = mi .

According to this assumption the asymptotic minimax does not depend on s. The
game in the second example satisfies this assumption. The payoffs in s are all dom-
inated by those in s′. Also for all action profiles played in s, the state s′ is reached
with probability one the next period. Thus, if a player is minimaxed, he prevents the
game from reaching s. So mi (s) = mi (s′) = 1. These first two assumptions imply
that F∗(s) = F∗(s′) for all s and s′.

Assumption 3 (A3) The set coF has dimension |I |.

5 This set contains the lim inf, lim sup and the Banach limit of any strategy profile σ . For more details, c.f.
Appendix 6.1.
6 For more details about these assumptions, the interested reader is referred to the discussion in Dutta
(1995).
7 Communicative games are games in which for all s, s′ ∈ S, there exists a strategy profile so that s is
reachable in finite time from s′.
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This assumption adapts the full dimensionality condition (Fudenberg and Maskin
1986) to stochastic games settings. Let me show that it is satisfied in the second
example. Vectors (6, 0) and (0, 3) are linearly independent. Furthermore, they span
a subset, say V , of F(s′) and so of F(s). So dim(F(s)) ≥ dim(V ) = 2. Also since
F(s) is a subset of R

2, dim(F(s)) = 2.
The stochastic game in the second example satisfies the assumptions under which

Dutta (1995) proves the Folk theorem when the horizon is infinite and discounting is
low.8 However, when the horizon is finite, the Folk Theorem does not hold in example
2. It fails because it is impossible to provide a punishment that deters player row from
playing H at t < T . A deviation from (B, D) at the late stages is therefore unavoidable.
A similar phenomenon arises in repeated games in the case in which the stage game is
a prisoner’s dilemma. In order to obtain the Folk theorem in finitely repeated games,
Benoit and Krishna (1985), Friedman (1985), Gossner (1995) and Smith (1995) con-
struct an endgame in which the strategies that are played deter deviations in the last
periods of the main game. Benoit and Krishna (1985) assume that each player has at
least two distinct Nash payoffs in the stage game. The reward strategy profile in the
endgame, namely the strategy profile played if there is no deviation in the last periods
of the main game, consists in successively playing these static Nash equilibria of the
game, for instance. The punishment strategy consists in repeatedly playing the Nash
equilibrium that gives the worst payoff to the deviator.

As Example 2 shows, A1, A2 and A3 do not preclude late deviations. Such a system
of rewards and punishments is thus needed. Two difficulties arise when one wants to
construct an endgame in stochastic games. The first one is that for any σT ∈ PT

and σT ′ ∈ PT ′ , the strategy profile in the game of horizon T + T ′ that plays σT ,
and then forgets the past and plays σT ′ is not necessarily a SPE, contrary to repeated
games (see Proposition 1 in Benoit and Krishna 1985). Then having distinct Nash
equilibrium payoffs, as assumed in Benoit and Krishna (1985), does not prevent from
deviations in the endgame. The second difficulty is that players may have incentives to
deviate during the main game in order to modify the state in which the endgame starts.
Since in stochastic games there is no stage game per se, a natural generalization of
Benoit and Krishna (1985)’s condition to stochastic games, in line with Dutta (1995),
may consist in making a richness assumption on the limit set of SPE payoffs. More
precisely, consider the set of payoff vectors w(s) such that there exists a sequence of
SPE that converges toward w(s):

�(s) =
{
w(s) ∈ R

|I | : ∃ {σT }T ∈N s.t. σT ∈ PT

and lim
T →∞ Ui

T (σT , s) = wi (s),∀i ∈ I

}

8 The stochastic game in example 1 also satisfies these assumptions. Clearly it is a communicative game.
The asymptotic minimax payoff is 1, irrespective of the initial state. To see this, note that a player can not
hold an asymptotic payoff smaller than 1 if he plays a best response (he always has a strategy that leads
to s′, whatever his opponent’s strategy. Once in s′, he gets payoffs no smaller than 1). Also he can not
obtain more than 1 asymptotically, if he is minimized because for any action in the stage game that could
give a payoff greater than 1, the opponent has a strategy that gives him 1 in the long run, whatever his
response. The dimensionality assumption is also satisfied because (4, 4) and (0, 5) are independent linearly
independent and span a subset of F .
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Let w[i], j (s) be the j th element of w[i](s).

Assumption 4 (A4) There exist w(s), w[1](s), . . . , w[|I |](s) ∈ �(s) such that
(i) w[i],i (s) < wi (s′) for all i and s, s′ and (i i) w(s) = w(s′) for all s, s′.

A4 says that the limit set of SPE payoffs contains a state invariant vector payoff
w. This condition allows deterring early deviations aiming at modifying where the
endgame starts. Also, for all i , there is a limit payoff w[i](s) that gives less to player
i than w(s) for any s. A4 is the analog of Benoit and Krishna (1985)’s condition: it
allows constructing punishments that deter late deviations. Let me show that A4 holds
in example 1: w(s) is generated by the strategy profile that plays (B, D) in s and
(H, G) in s′ and s′′ at t = 1, and then plays (B, D) in each state. Also w[1] and w[2]
are generated by the strategy profile that plays (B, D) in s′ and s′′ and (H, G) in s in
all but the last date at which it plays (B, D) in all states.

A drawback of this assumption is that it holds on the limit set of SPE payoffs. It
may be difficult to check whether a stochastic game satisfies it or not. In Sect. 5, I
present two alternative conditions to A4 that are less general but directly hold on the
set of SPE of some T̄ periods for the first one and on the stage games and the transition
for the second one.

It is interesting to know how strong this assumption is if the set of states is a single-
ton. According to the next lemma, A4 is equivalent to the assumption of recursively
distinct Nash payoffs in Smith (1995) in the case where there is only one state.

Lemma 1 Suppose that |S| = 1 and that A3 holds. Then A4 is a necessary and
sufficient condition for the Folk theorem.

Proof In Sect. 5, I introduce a new assumption, A5, which is equivalent to A4 if the
set of states is a singleton (Lemma 2). Then in Lemma 3 (Sect. 5) I show that A5 is
necessary and sufficient for the Folk theorem, if A3 holds and |S| = 1. ��

4.2 Folk theorem

Now, I present a Folk theorem for stochastic games with a finite horizon.

Theorem 1 Assume A1, A2, A3 and A4 hold. ∀ε > 0, ∀v ∈ F∗ there is a T ∗ < ∞
such that if T ≥ T ∗ then for all s ∈ S, there exists a Subgame Perfect Equilibrium σ̄

in �T (s) whose payoff vector UT (σ̄ , s) is within ε of v, that is |UT (σ̄ , s) − v| < ε.

Proof c.f. Appendix 6.3. ��
Let me give an idea of the proof. Let F and L be the length of the main game and

the one of the endgame, respectively, so that the total length of the game is equal to
F + L =: T . Given ε and v, I exhibit a candidate for the SPE strategy profile indexed
by time. First, I show that this strategy is an SPE, if the horizon is long enough. Second,
I check that the payoff vector generated by this strategy profile is close to v, if the
horizon is long enough.

Let me describe the candidate strategy profile briefly. From date 0 to F , on the nor-
mal path, players play a strategy profile that generates payoffs close to v. From F +1 to
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T they play σT −(F+1) in the sequence of SPE {σt }t whose limit payoff is w. If a player
deviates early, that is, before some date F − R, where R is proportional to x(1 + a)

and a, x are yet to be determined, then the opponents trigger a punishment strategy. R
is interpreted as the minimal length of the punishment phase of the main game. In the
main game the punishment is divided into two phases: In the first phase, the deviator is
minimaxed, and in the second phase, players play a “personalized punishment” strat-
egy profile that gives more to player i if he is a punisher than if is punished. The second
phase is about a times larger than the first phase, where a is yet to be determined. After
date F players play a SPE of a sequence with limit payoff w. If player i deviates late,
that is, at some date t between F − R + 1 and F , then players play σ

[i]
T −(F+1) in the

sequence of SPE {σ [i]
t }t whose limit payoff is w[i]. Clearly, there is no profitable devi-

ation in the endgame because an SPE is played in any case. Then I choose the length of
each punishment phase in order to deter deviations in the main game. I prove this point
backward. First I show that there is no late deviation. Take L equals to m times R. Since
w gives more than w[i] to player i , it is possible to find a lower bound on m independent
of R, so that there is no profitable late deviation. Second I show there is no early devi-
ation. I start to show that there is no profitable deviation that would modify the state
where the endgame starts. To do so I assume that, whatever the number of remaining
periods of the main game, a deviator loses at least a given amount μ > 0 on average. By
increasing L , the benefit of deviating at t in order to influence where the endgame starts
vanishes (point (ii) of A4). But I have to be careful while increasing L: It makes the
number of punishment periods of the main game relatively small and the average devia-
tion loss may decrease at a higher rate than the benefit of modifying where the endgame
starts. Using the fact that a deviator loses μ on average from t to F and because I set
L = m R, I can fix a lower bound over R, independent of a, such that no deviation
occurs in order to influence the state at which the endgame starts. Then I show that if a
player deviates early, then loses at least μ on average from t to F . In this step I use the
fact that the personalized punishment phase is about a times larger than the minimax
phase. First I determine a lower bound over x , independent of a and then a a such that a
punisher loses payoffs if he deviates, for any value of x greater than the threshold I have
just determined. Second I check that for such values a player has no profitable deviation
from the normal path nor from his own punishment. The rest of the proof is standard:
It suffices to take F large in order to get a good approximation of the target payoff.

5 Discussion

In this section I present two alternative assumptions of A4. The first one can be seen
as an intermediary condition between A5 and the one in Benoit and Krishna (1985).
It requires that in some finite truncation of the game, the set of SPE is rich enough.
The second holds on the stage games and the transition.

5.1 An intermediary assumption

The following assumption says that there is a T̄ such that the stochastic game admits
a strategy profile y in a particular subset of PT̄ , which I define in the next para-
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graph, whose asymptotic payoff, Ui (y, s), is state invariant. Also, for all i , there is
another strategy profile y[i] in this subset of PT̄ whose asymptotic payoff, denoted by
Ui (y[i], s), gives more than Ui (y, s′) for all s and s′.

Let me first introduce some notations. I say that a strategy profile σ ′
T “plays the

same normal path as” σT if σ ′
T coincide with σT after any history of the normal path,

but not necessarily after a deviation. Let PT be the set of strategy profiles σT ∈ PT

such that, for all n ∈ N, there is a σ ′ ∈ PnT that plays the same normal path as σnT ,
where σnT is the strategy that repeats σT n times.

In nonstochastic games, PT and PT coincide (Proposition 1 in Benoit and Krishna
1985). This may not be the case in stochastic games as example 2 suggests: Playing
(H, G) in s and (M, K ) in s′, which are both static Nash equilibrium, is not an SPE
in games of horizon greater than 2. Finally, given σ , a strategy profile in �T and
σnT , a strategy profile that repeats n times σ , let Ui (σ, s) denote the limit over n of
Ui

nT (σnT , s).9 The alternative assumption is the following:

Assumption 5 (A5) There exist an integer T̄ and strategy profiles y, y[1], . . . , y[|I |]
in PT̄ such that ∀i ∈ I,∀s, s′ ∈ S: (i) Ui (y, s) > Ui (y[i], s′), and (ii) Ui (y, s) =
Ui (y, s′).

The next theorem says that A5 is stronger than A4 and is equivalent to A4, if the
set of states is a singleton.

Lemma 2 A5 implies A4. If |S| = 1 then the reverse is true: A4 implies A5.

Proof I show that A5 implies A4. By A5 there exist T̄ and y, y[i] ∈ PT̄ for all i such
that Ui (y, s) = Ui (y, s′) and Ui (y, s) > Ui (y[i]

T̄
, s′), for all s, s′ ∈ S. I want to show

that there exist sequences of SPE, {σ ∗
T }T and {σ ∗[i]

T }T,i , that converge toward U (y, s)
and {U (y[i], s)}i∈I , respectively, for all s. Fix T > T̄ and let α ≥ 1 and β < T be
the integers such that T = αT̄ + β. Let σ̂αT̄ be a SPE that plays the same normal
path as σαT̄ , where σαT̄ is a strategy profile that repeats y α times. I know that such
a strategy profile exists since y ∈ PT̄ . For all s, let âβ(s) ∈ A be a Nash equilibrium
of the static game with payoffs ui (a, s) + (T − β)

∑
s′∈S q(s′|a, s)Ui

T −β(σαT̄ , s′),
for all i and a. I define σ̂T −β+1 as the strategy profile that plays âβ =: (âβ(s))s∈S

at the first period, forgets everything and then plays σαT̄ . For all t < β and s ∈ S,
let ât (s) be a Nash equilibrium of the static game with payoffs ui (a, s) + (T −
t)

∑
s′∈S q(s′|a, s)Ui

T −t (σ̂T −t , s′) for all i and a, where σ̂T −t is the strategy profile
that plays ât , . . . , âβ and then σαT̄ . Let the strategy profile σ ∗

T be the one that plays ât

at t ≤ β and then σαT̄ . By construction, it is an SPE. Replicating this process for any
T > T ∗, I obtain a sequence of SPE that converges toward Ui (y, s) for all s. By using
the same reasoning I can construct for all i a sequences of SPE {σ ∗[i]

T }T that converge
toward the desired payoffs.

Now suppose that |S| = 1. By A4 there exist T , ε, yT and y[i]
T for all i

in PT such that Ui
T (yT , s) − Ui

T (y[i]
T , s) > ε. As S is a singleton PT = PT .

Also limn→∞ Ui
nT (ynT , s) = Ui

T (yT , s) =: Ui (y, s) and limn→∞ Ui
nT (y[i]

nT , s) =

9 This limit exists. See lemma 4 appendix 6.2.
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Ui
T (y[i]

T , s) =: Ui (y[i], s). So point (i) in A5 is satisfied. Point (i i) is satisfied since
S is a singleton. ��

A direct corollary of this lemma is that the Folk theorem holds under A5.

Corollary 1 Assume A1, A2, A3 and A5 hold. ∀ε > 0, ∀v ∈ F∗ there is a T ∗ < ∞
such that if T ≥ T ∗, then for all s ∈ S there exists an SPE σ̄ in �T (s) whose payoff
vector UT (σ̄ , s) is within ε of v, that is, |UT (σ̄ , s) − v| < ε.

The next lemma implies that A5 is equivalent to the assumption of recursively
distinct Nash payoffs in Smith (1995) if there is a unique state and if A3 holds. As
A5 is equivalent to A4, this implies that A4 is equivalent to recursively distinct Nash
payoff too.

Lemma 3 Suppose that |S| = 1, for all i ∈ I and that A3 holds. Then A 5 is necessary
and sufficient.

Proof According to the previous corollary it is sufficient. Let me show that it is
necessary. Suppose that Theorem 1 holds. Let ŵ, {ŵ[i]}i∈I be vectors of payoffs
in F∗ such that ŵi > ŵi,[i] for all i (I omit the dependence to s because S is
a singleton). By Theorem 1, for all ε, there are T (ε) and SPE strategy profiles
ŷT (ε), {ŷ[i]

T (ε)}i∈I such that |UT (ε)(ŷT (ε), s)−ŵ| < ε and |UT (ε)(ŷ[i]
T (ε), s)−ŵ[i]| < ε.

So there is an ε that is small enough so that Ui
T (ε)(ŷT (ε), s) > Ui

T (ε)(ŷ[i]
T (ε), s) for

all i . As PT = PT for all T and limn→∞ Ui
nT (ε)(ŷnT (ε), s) = Ui

T (ε)(ŷT (ε), s) =:
Ui (ŷT (ε), s), limn→∞ Ui

nT (ε)(ŷ[i]
nT (ε), s) = Ui

T (ε)(ŷ[i]
T (ε), s) =: Ui (ŷ[i]

T (ε), s) point (i)
in A5 holds. Point (ii) holds since S is a singleton. ��

5.2 A sufficient and a necessary conditions on the stage games and the transition

What should I learn from Examples 1 and 2? Recall that in example 1, each stage game
is a prisoner’s dilemma: There was a unique Nash equilibrium payoff vector in each
payoff matrix. I have been able to construct punishments because each player’s Nash
payoff was different from one state to the other. Actually it is a necessary condition:
The Folk theorem does not hold if each stage game contains a same unique static Nash
equilibrium.10 Furthermore, Example 2 shows that having distinct Nash payoffs does
not guarantee that the Folk theorem holds. It suggests that the transition function plays
an important role. The objective of this section is, first, to provide a necessary condition
and then a sufficient condition for the Folk theorem that refers to the transition function
and the stage games. To do so, I focus on a special class of games, that embeds some
games with prisoner’s dilemmas in each stage game and public good games. Before

10 Clearly, all players receive their static Nash payoff at the last date. Suppose that at date t there is only
one equilibrium continuation payoff vector. I claim that players must play the static Nash equilibrium at
t . Suppose on the contrary that they play another action profile. As it is not a Nash equilibrium at least
one player can improve his instantaneous payoff by deviating. Then, for this action profile to be played in
equilibrium, players must be able to provide differentiated equilibrium payoffs in case of deviation. It is
impossible since there is only one continuation equilibrium.
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formally presenting this class of games, let me give an informal description of it. I
consider deterministic games11 with a stationary strategy profile, denoted by x̌ , that
plays a pure Nash equilibrium in each state. (i) It gives the same static payoff in all
states that belong to a recurrent set. (ii) The loss due to a deviation from x̌ cannot
be compensated by improving the transition in the next |S| + 1 periods. Under such
conditions x̌ is in P1 (c.f. Lemma 5 in the proof of Proposition 1, Appendix 6.4).
Moreover there is another pure stationary strategy profile such that (iii) the average
one shot payoff is the same in any recurrent state and (iv) Pareto dominates that of x̌ .

Let me explain the relationship between this class and public good games. Assume
that players must choose to invest or not in a public good. The players’ utilities depend
on a cost that is proportional to the investment effort and to the level of the public good
determined by past and current investments. Investing alone is so costly in terms of
opportunity cost that shirking is a static Nash equilibrium for any level of the public
good. Let x̌ be the strategy profile in which everybody shirks. As no investment is
made under x̌ , the level of the public good depreciates and ends up reaching a lower
bound ǔ (point (i)). If a player invests alone then the level of the public good increases,
but not enough to offset the investment cost over the next |S|+ 1 periods if everybody
continues to shirk (point (ii)). Now let me consider the case in which players invest.
If a sufficient amount of investment is maintained over time, then of the public good
value reaches a level ûi for each i (point (iii)). Even if investing may not be a static
Nash equilibrium, the payoffs Pareto dominate is the shirking payoffs if the level is
high (point (iv)).12

Now I present this class of game formally. Let V i
n (a, s) [x] be the n-period payoff

that is generated by a strategy profile that plays a in the first period and then follows
the stationary strategy profile x . I consider the following class of deterministic games:

– There is a pure stationary strategy profile x̌ that plays a static Nash equilibrium in
each state such that:

– (i) ui (x̌(s), s) = ui (x̌(s′), s′)) := ǔi , ∀s, s′ ∈ Rx̌ , i ∈ I .
– (ii) For all s ∈ S, i ∈ I, d ∈ Ai , V i

n (x̌(s), s)
[
x̌
] ≥ V i

n (x̌−i (s), d, s)
[
x̌
]
,

∀n ≤ |S| + 1
– There is another pure stationary strategy profile x̂ such that:

– (iii) For all R ∈ Rx̂ , i ∈ I ,
∑

s∈R ui (x̂(s),s)
|R| := ûi .

– (iv) mins′∈R,R∈Rx̂
ui (x̂(s′), s′) − ui (x̌(s), s) ≥ 0 for all s ∈ S and strict if

s ∈ Rx̌ .

Now I present a necessary and a sufficient conditions for û to be an equilibrium
payoff. More precisely, the first point of the next proposition gives a condition under
which the anti-Folk theorem holds.13 According to it, there is a unique Nash equi-
librium in each state (x̌(s) for all s). Furthermore, for any other action profile, one
player has profitable deviation in the static game that is not offset by a degradation of
the transition in a near future. The second point says that the gain due to a deviation

11 Deterministic games are stochastic games with a deterministic transition function.
12 For readers interested in the literature on gradual contribution to a public good, see Marx and Matthews
(2000), Lockwood and Thomas (2002), Battaglini et al. (2014), among others.
13 The anti-Folk theorem refers to a situation in which, in all SPE, only static Nash equilibria are played.
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from x̂ is offset the next period by a deterioration of the transition. This condition
actually implies A414. Let me rephrase these conditions in the public good game. The
necessary condition says that, during any of the next |S|+1 periods, there is one player
whose current deviation gain is greater than the deterioration of public good’s value.
The sufficient condition says that if any player deviates from “everybody invests,” then
the deterioration of the public good’s value is greater than the current deviation gain.

Proposition 1 Consider the class of games described above. Then:

– If x̌ is the unique Nash in all states and ∀s ∈ S, 2 ≤ n ≤ |S| + 1, a = x̌, ∃i ∈
I, d ∈ Ai such that V i

n (a, s)
[
x̌
]

< V i
n (a−i , d, s)

[
x̌
]
, then the anti-Folk theorem

holds.
– If ∀s, s′ ∈ R, R ∈ Rx̂ , ∀i , ∀ai ∈ Ai , V i

2 (x̂(s), s)
[
x̌
] ≥ V i

2 (ai , x̂(s′)−i , s′)
[
x̌
]

then A 4 is satisfied.

Proof See the Appendix 6.4. ��
Note that in the games in which x̌(s) is the unique static Nash in all states s, the

conditions of the anti-Folk theorem and the Folk theorem are related. The first one
says: for any state s and 2 ≤ n ≤ |S|, there is one player who has a profitable deviation
from an action profile, which is different from x̌ , in the next n periods. The contrary
would be: There are a state s, a n and an action profile that is different from x̌(s),
so that no player can benefit from a deviation. The second condition says something
similar, but not equivalent to the negation of the first condition: the action profile, the
state and n are not arbitrary.

6 Appendix

6.1 Note about the set of feasible payoffs

Consider a sequence {xt }. Let lim sup{xt } = x+ and lim inf{xt } = x−. It is well
known that x+ is the greater cluster point of {xt }. Also there is a subsequence of {xt }
whose limit is the cluster point. So there is a subsequence whose limit is x+. A similar
reasoning holds for x−. Let 
({xt }) be a Banach limit of {xt }. By definition there is
a λ ∈ [0, 1] such that 
({xt }) = λx− + (1 − λ)x+. So there is a subsequence that
converges to the Banach limit. As coF(s) is a convex set all Banach limits are in this
set.

6.2 Proof of footnote 14

Lemma 4 Let σ be a strategy profile in �T and Ui
T n(σ, s) be the i’s payoff generated

by the strategy profile that repeats σ n times. Then limn→∞ Ui
T n(σ, s) exists.

Proof Let σ̂ be the strategy profile that repeats σ an infinite number of times. This
means that under σ̂ players play σ over T periods, forget everything at T and then

14 See Appendix 6.4.
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start again σ over T periods, then forget everything and so on…Let a(ht ) be the action
profile that is played at t − 1 according to ht , where ht = s1, a1, . . . , at−1, st . Recall
that s(ht ) is the state at t under ht and let a(ht ), ŝ(ht ) be the action and state at t − 1
under ht . The strategy profile σ̂ generates a Markov chain over the set the following
set: H2 ∪ · · · ∪ HT =: H. Let me explain the transition before presenting it formally.
Given an history of length t < T , say ht , players play an action profile at t , say a,
with a probability weight σ(a|ht ). A new state, say s, is reached with probability
q(s|a, s(ht )). This gives a new history of length t + 1 such that st+1 = s, at = a, the
t − 1 first actions and the t first states coincide with ht . If the history ht has a length
T then I are in the special case in which players forget the past and resume playing σ .
Note that, when players resume playing the strategy profile, then they only care about
the current state. The latter is the T th state of the history hT . Given this state, denoted
by s(hT ), players choose an action profile, say a, and a new state is reached, say s.
Then the new history is an element of H2. Formally the transition is:

q̂(h′
t ′ |ht ) =

⎧⎨
⎩

σ(a(h′
t ′)|ht ) × q(s(h′

t ′)|a(h′
t ′), s(ht )) if t < T, t ′=t + 1, h′

t=ht

σ(a(h′
t ′)|s(ht )) × q(s(h′

t ′)|a(h′
t ′), s(ht )) if t=T, t ′=2, s(ht )=ŝ(h′

t ′)
0 otherwise

If s is such that for all (s, a′, s′) ∈ H that occurs with a positive probability,
(s, a′, s′) is in a recurrent set R, then there exists a unique invariant distribution μ

over H. Let
∑

h∈H μ(h)u(a(h), ŝ(h)) =: U (σ̂ , R). The weight μ(h) is interpreted as
the asymptotic average frequency of stay in h. Let μn(h, s) be the average frequency of
stay in h from date 1 to n given that s is the initial state. Since the H is finite, μn(h, s)

converges toward μ(h). Note that Ui
T n(σ, s) = E

[∑T n
t=1 ui (at , st )|σnT , s

]
/T n =∑

h∈H μT n(h, s)u(a(h), ŝ(h)). Then Ui
T n(σ, s) converges to U (σ̂ , R). Suppose that

s is such that for some (s, a′, s′) that occurs with a positive probability, (s, a′, s′) is not
in a recurrent set. For any history h in the infinitely repeated game, only one recurrent
state is reached in finite time. Let H(R) be the set of histories in which a recurrent
set R is reached. Then for any recurrent set R, P(R is reached in finite time|σ̂ , s) =∑

h∈H(R) P(h|σ̂ , s) =: αR ∈ [0, 1]. As a recurrent set is reached in finite time with
probability one and since, once reached, the game stays in it forever, the limit U (σ̂ , s)
exists and is equal to

∑
R∈R αRU (σ̂ , R). ��

6.3 Proof of Theorem 1

Fix ε > 0 and v ∈ ∪s F∗(s). First I present some consequences of Dutta (1995) that
will help us to prove the theorem. From Lemma 11 in Dutta, there exist Ẑ and a family
of publicly randomized pure strategy profiles in �Ẑ ,

{
z[i]

}
i∈I , that generates payoff

vectors denoted by, with an abuse of notation, UẐ (z[ j], s) for all j ∈ I and s ∈ S.
These payoffs are such that for all i = j for all s, s′; Ui

Ẑ
(z[ j], s) > Ui

Ẑ
(z[i], s′) and

Ui
Ẑ
(z[i], s) = Ui

Ẑ
(z[i], s′). Still by Dutta (1995), Ui

Ẑ
(z[i], s′) > mi for all s′ and i .

There is a η∗ such that for all η < η∗ there is Z , a multiple of Ẑ , such that all
Z ′, Z ′′ ≥ Z , s, s′ ∈ S, i = j :
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∃ σ s.t. |Ui
Z ′(σ, s) − vi | ≤ ε/2, ∀i ∈ I

min{min
s∈S

Ui
Z ′(σ, s), min

s∈S
Ui

Z ′(z[ j], s)} − Ui
Z ′′(z[i], s′) ≥ η

Ui
Z ′(z[i], s) − mi

Z ′′(s′) ≥ η

The first point is a consequence of Lemma 6 in Dutta. Fix such a η and Z . Let the
sequence of payoff vectors {wT (s)}T be a sequence that converges toward w. Also
let {w[i]

T (s)}T be a sequence that converges toward w[i](s). The strategy profile that

generates wT is denoted by yT , and the one that generates w
[i]
T by y[i]

T . There is a

N∗ such that for all N ≥ N∗, for all i , mins wi
N (s) > maxs w

[i],i
N (s). Recall that

w(s) = w(s′) for all s, s′ ∈ S. So for all i there are weights {β i
N (s)}s∈S,N≥N∗ ,

with 1 ≥ β i
N (s) ≥ 0 and β i

N (s) → 1 as N → ∞, such that β i
N (s)wi

N (s) + (1 −
β i

N (s))w[i],i
N (s) = β i

N (s′)wi
N (s′)+(1−β i

N (s′))w[i],i
N (s′) =: w̃

[i],i
N for all s, s′. Let ỹ[i]

N

be the publicly randomized strategy profile that generates w̃
[i]
N . More precisely it is the

strategy profile that plays yN with probability β i
N (s) and y[i],i

N , otherwise, if the state at

which it is triggered is s. Note that wi
N (s)−w̃

[i],i
N (s′) and w̃

[ j],i
N (s)−w̃

[i],i
N (s′) converge

toward 0 as N → ∞, for all s, s′. Also there exist T ∗ and η̂ > 0 such that for all T, T ′ ≥
T ∗ and i ∈ I , min{min j∈I,s∈S w̃

[ j],i
T ′ (s), mins∈S wi

T ′(s)} − maxs∈S w
[i],i
T (s′) > η̂.

The rest of the proof consists in showing that for any horizon T large enough, for
all s ∈ S, there exists an SPE in �T (s) whose payoff vector is within ε of v. Let me
first build the candidate strategy profile for the SPE in �T . I partition the horizon of
the game in the following way: 1, . . . , F − R, . . . , F, . . . , F + L = T , where R is
to be determined. The game given by the first F periods is called the main game and
the one that is played during the L last periods is called the endgame. Let me define a
collection of strategy profiles (indexed by x, a and m) as follows. Let R = (1+a)x Z ,
where x, a ∈ N

∗ and L = m R.
On the normal path, for all t ∈ {1, . . . , F}, σ is played, and for all t ∈ {F +

1, . . . , F + L}, the strategy profile yL is played. The punishment strategy proceeds as
follows. Suppose that player i is the last player who deviates at t ≤ F − R. Suppose
also that this deviation occurs on the normal path. There are integers n and τ < Z such
that F − t = nZ + τ . The integer n can be rewritten as x(1 + a)+ y where y ≤ a and
a is to be determined. The punishment strategy of the main game is divided into two
phases. In the first phase of the punishment, player i will be minimaxed over x Z + τ

periods. In a second phase players repeatedly play the Ẑ−period strategy profile z[i]

over (ax + y)Z periods. Then from F + 1 to F + L players play the strategy profile
ỹ[i]

L . Suppose now that i deviates during the first phase of his own punishment. In
this case, players go on playing the punishment strategy until F and, from F + 1 to
F + L , they play ỹ[i]

L . Let me call this type of early deviation “ type 1 deviation.” Any
other early deviation is called “type 2 deviation.” If i deviates during the second phase
then players restart the punishment strategy immediately. From F + 1 to F + L , the
strategy profile ỹ[i]

L is played. Suppose now that j = i deviates from the punishment
directed against i at t ′ and F − t ′ ≥ R. In this case players start a new punishment
directed against j . From F + 1 to F + L the strategy profile ỹ[ j]

L is played. If player
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i is the first player to deviate at t = F − R + 1, . . . , F , then players play the strategy
profile y[i]

T −t . If j is the nth player to deviate, with n ≥ 2, then players go on playing

according to y[i]
T −t . If a deviation occurs at t > F players continue to play the strategy

they used to play.
In the following lines, I check that there are a, x and m, such that the strategy profile

defined above is an SPE in the game of length T ≥ R + L , with R = Z(1 + a)x and
L = m R. I proceed backward. There is no profitable deviation at t ≥ F because an
SPE is played. Now I show that there is no deviation if t = F − R, . . . , F . Clearly
there is no deviation from the strategy profile y[i]

T −t (where i is the first player to
deviate late). Let me show that there is no other late deviation. On one hand, if i
does not deviate late, he receives at least min j∈I,s∈S w̃

[ j],i
L (s) if a deviation occurred

during the main game and mins∈S wi
L(s), otherwise. On the other hand, if he deviates

late, then he receives at most maxs w
[i],i
T −t (s). Recall that for N and N ′ large enough,

min{min j∈I,s∈S w̃
[ j],i
N ′ (s), mins∈S wi

N ′(s)} − maxs∈S w
[i],i
N (s) > η̂ for all i ∈ I . So if

L is large enough player i gets at most −η̂ during the last L periods. Then an upper
bound over the net gain of late deviation is: R(b−w)−Lη̂

F+L−t+1 . The nominator is negative if:
(b − w) − mη̂ < 0 since L = m R. So for all a and x , there is a m∗ such that there is
no profitable deviation at t ∈ {F − R, . . . , F + L} for all L = m R, m ≥ m∗.

In the following lines I show that no player has an interest to deviate at t =
1, . . . , F − R − 1. Suppose that i deviates at t = 1, . . . , F − R − 1 and that he
loses on average at least μ > 0 from t to F . Recall that w̃

[i],i
L (s) = w̃

[i],i
L (s′) = w̃

[i],i
L

for all s, s′. An upper bound over the net gain to deviate early is

(1)︷ ︸︸ ︷
−μ(F − t + 1) +

(2)︷ ︸︸ ︷
L[w̃[i],i

L − min{min
s∈S

wi
L(s), min

j∈I,s∈S
w̃

[ j],i
L (s)}]

F + L − t + 1

(1) upper bound over the gain from a deviation at t < F − R.
(2) upper bound over net gain from a modification of the transition function

Since L = m R, it suffices to show that

−μ + m

[
w̃

[i],i
L − min{min

s∈S
wi

L(s), min
j∈I,s∈S

w̃
[ j],i
L (s)}

]
< 0.

Recall that, w̃
[i],i
L − min{mins∈S wi

L(s), min j∈I,s∈S w̃
[ j],i
L (s)} → 0 when L → ∞,

for all i . Since L = x(1+a)Zm, for all μ, there is a x1(μ) such that for all x ≥ x1(μ)

and a ∈ N
∗, the nominator is actually negative for all i .

In the following lines I show that any deviation of type 2 induces a loss of μ > 0 on
average from the deviation date to F . Combined with the previous paragraph, I will
conclude that there is no profitable deviation of type 2. Suppose that player i deviates
early at t (type 2 deviation). Then the length of the first phase of player i’s punishment
is Z x + τ and the one of the second phase is (ax + y)Z . Let t ′ < t so that F − t ′ ≥ R
and let me analyze the benefit for j = i to deviate at t ′ when i deviated at t . Without
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deviation, player j would have from t ′ to F at least:

(1)︷ ︸︸ ︷
(x Z + τ − (t ′ − t))w +

(2)︷ ︸︸ ︷
(ax + y)Z min

s∈S
inf

T ≥Z
U j

T (z[i], s)

F − t ′ + 1

where:

(1) lower bound over the j ′s payoff when he minimaxes i over x Z + τ − (t ′ − t)
periods

(2) lower bound over j ′s payoffs when he is rewarded for having punished i .

If player j deviates at t ′ then F − t ′ is subdivided into a first phase of x̂ Z + τ̂ and
a second phase (x̂a + ŷ)Z such that (x̂(1 + a) + ŷ)Z + τ̂ = F − t ′. In this case his
payoff would be at most:

(1)︷ ︸︸ ︷
(x̂ Z + τ̂ )b +

(2)︷ ︸︸ ︷
Z(x̂a + ŷ)U j

T (z[ j])

F − t ′ + 1

(1) upper bound over the j ′s payoff when he does not minimax i over x̂ Z + τ̂ periods
(2) upper bound over j ′s payoffs during the second phase of a punishment directed

against him.

Note that x̂ ≤ x . So ax̂ + ŷ − (ax + y) ≤ a. Then an upper bound over the net
benefit to deviate is:

Z(1 + x + a)(b − w) + Za(x − 1)(U j
Z (z[ j]) − mins∈S infT ≥Z U j

T (z[i], s))

F − t ′ + 1

≤ Z(1 + x + 2a)(b − w) − ax Zη

F − t ′ + 1
= aZ(2(b − w) − ηx) + Z(1 + x)(b − w)

F − t ′ + 1

≤
2(b − w) + a

(
2(b−w)

x − η
)

(a + 1) + y
x + τ−(t ′−t)

Z x

Let x2 be such that 2(b−w)
x2

− η < 0. Then there is a a∗ large enough, such that the
nominator is negative. Then if x ≥ x2, the net gain to deviate is lower than, for all
x ≥ x :

2(b − w) + a∗
(

2(b−w)
x2

− η
)

(a∗ + 1) + y
x + τ−t ′+t

Z x

≤
2(b − w) + a∗

(
2(b−w)

x2
− η

)

2a∗ + 2
=: μ1 < 0

Then player j loses on average μ1 from t to F if he deviates.
Now I show that i does not deviate early from the second phase of his punishment

(a fortiori there is no profitable deviation from the normal path). Recall that the first
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punishment phase lasts x Z + τ periods and the second one lasts Z(a∗x + y) periods.
After a deviation player i gets at most:

(1)︷︸︸︷
b +

(2)︷ ︸︸ ︷
(x Z + τ) max

s∈S
sup
T ≥Z

mi
T (s) +

(3)︷ ︸︸ ︷
Z(a∗x + y)Ui

Z (z[i])

F − t + 1

where:

(1) is an upper bound on the current gain to deviate,
(2) is an upper bound on the payoffs accumulated during the first phase,
(3) is an upper bound on the payoffs accumulated during the second phase.

If he does not deviate then he gets at least:

(1)︷ ︸︸ ︷
(τ + 1)w +

(2)︷ ︸︸ ︷
Z((1 + a∗)x + y)Ui

Z (z[i])

F − t + 1

where:

(1) is a lower bound on the payoffs accumulated during a finishing cycle of Z periods,
(2) is a lower bound on the payoffs accumulated during the remaining periods of the

second phase of the punishment.

An upper bound over the net gain of deviation is for all x :

Z(b − w) + x Z(maxs∈S supT ≥Z mi
T (s) − Ui

Z (z[i]))

F − t + 1
≤

2(b−w)
x2

− η

F−t+1
x Z

Note that the nominator is negative. Then the net gain to deviate is lower than:

2(b−w)
x2

− η

2a∗ + 2
= μ2 < 0

Let μ∗ = max {μ1, μ2}. Note that μ∗ is a lower bound on the loss due to a deviation
of type 2 before F − R if x > x2, which does not depend on the number of remaining
periods. Then if x ≥ max{x1(μ

∗), x2} there is no type 2 deviation.
It is easy to check that there is no type 1 deviation. Actually since player i is

in best reply during the minimax phase, he cannot expect any payoff improvement
during this phase. Also, he cannot influence the transition in a profitable way since
the personalized punishment payoffs do not depend on the initial state as well as the
payoffs he receives during the endgame. So I can conclude that there is no profitable
deviation from t = 1 to t = F . To sum up I have fixed x , a and m, such that the
strategy profile indexed by x , a and m described above is an SPE in any game of
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length greater than R + L , where R = Z(1 + a)x and L = m R. I denote this strategy
profile by σ̄ .

Now we exhibit a candidate for T ∗, given ε and v. Notice that R(= Z(1 + a)x)

and L(= m Z(1 + a)x) does not depend on F . By the choice of Z , for all F ≥ Z ,
|Ui

F (σ, s) − vi | ≤ ε/2. Also, as R and L are independent of F , there is F̂ > R such
that for all F ≥ F̂ , |Ui

F+L(σ̄ , s) − Ui
F (σ, s)| ≤ ε/2 ∀i ∈ I , where σ̄ is the SPE

strategy profile exhibited above. Let T ≥ F̂ + L =: T ∗. I check that it generates SPE
payoffs in an ε−neighborhood of v. Let for all s ∈ S:

|Ui
T (σ̄ , s) − vi | ≤ |Ui

T (σ̄ , s) − Ui
F (σ, s)| + |vi − Ui

F (σ, s)| ≤ ε/2 + ε/2 = ε

As σ̄ is a SPE strategy profile the game of length T I obtain the desired result.

6.4 Proof of Proposition 1

Lemma 5 The stationary strategy profile x̌ is a SPE for all horizon T and the asymp-
totic payoff vector is (ǔi )i .

Proof At t = T players play a Nash equilibrium. So there is no profitable deviation.
Recall that for all s ∈ R, R ∈ Rx̌ , ui (x̌, s) = ǔi , for all i . Also, after |S| periods the
game must be in š, under x̌ . The payoff without deviation is greater than:

1T −t≤|S|+1(T − t + 1)V i
T −t (x̌, s)

[
x̌
] + 1T −t>|S|+1{(|S| + 1)V i|S|+1(x̌, s)

[
x̌
] + (T − t − |S|)ǔi }

T − t + 1

Consider a deviation at t < T . Then the payoff is at most:

1T −t≤|S|+1(T − t + 1)V i
T −t (x̌−i , ai , s)

[
x̌
] + 1T −t>|S|+1{(|S| + 1)V i

|S|+1(x̌−i , ai , s)
[
x̌
] + (T − t − |S|)ǔi }

T − t + 1

Then the difference is:

1T −t≤|S|+1

{
V i

T −t (x̌−i , ai , s)
[
x̌
] − V i

T −t (x̌, s)
[
x̌
]}

+1T −t>|S|+1

{
V i

|S|+1(x̌−i , ai , s)
[
x̌
] − V i

|S|+1(x̌, s)
[
x̌
]} |S| + 1

T − t + 1

By the third point of the description of the game, the difference is negative. So x̌
is an SPE in any game of length T . Note that it is true for all T and then x̌ must be in
PT for all T . Also the asymptotic payoff vector is (ǔi )i =: ǔ since x̌ is a stationary
strategy and for all s ∈ R, R ∈ Rx̌ , ui (x̌, s) = ǔi , for all i . ��

6.4.1 Proof of the first point of Proposition 1

I show that x̌ is the unique strategy that is played at the equilibrium, whatever the
horizon length T . At the last period players must be playing x̌(s) since in all s, x̌(s) is
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the unique Nash. Now suppose that there is only one continuation strategy profile, x̌ ,
at t . Let me show that in all s, x̌(s) must be played at the equilibrium. Suppose on the
contrary that players play another action profile a. If there is no deviation then player
i gets at most:

1T −t≤|S|+1(T − t + 1)V i
T −t (a, s)

[
x̌
] + 1T −t>|S|+1{(|S| + 1)V i

|S|+1(a, s)
[
x̌
] + (T − t − |S|)ǔi }

T − t + 1

Playing d = ai gives at least:

1T −t≤|S|+1(T − t + 1)V i
T −t (a

−i , d, s)
[
x̌
] + 1T −t>|S|+1{(|S| + 1)V i

|S|+1(a
−i , d, s)

[
x̌
] + (T − t − |S|)ǔi }

T − t + 1

The difference is:

1T −t≤|S|+1

{
V i

T −t (a
−i , d, s)

[
x̌
] − V i

T −t (a, s)
[
x̌
]}

+1T −t>|S|+1

{
V i

|S|+1(a
−i , d, s)

[
x̌
] − V i

|S|+1(a, s)
[
x̌
]} |S| + 1

T − t + 1

According to the condition of the proposition, there is a i and a d such that the above
line is strictly positive. So there is a profitable deviation and then a contradiction. By
using an induction argument this shows that there is a unique SPE that plays x̌ for all
T .

6.4.2 Proof of the second point of Proposition 1

According to lemma 5 the strategy profile x̌ is an equilibrium for all T and U (x̌, s) = ǔ
for all s. I construct the SPE strategy profile y that generates asymptotic payoff û > ǔ
for any initial state. This profile plays as follows:

– Normal path: if t < T play x̂ and if t = T play x̌ .
– Punishment path: play x̌ in all states.

I show that y is an SPE if T large enough. I know that there is no deviation on the
punishment path. Let me check that there is no deviation on the normal path, for T
large enough. Clearly that there is no profitable deviation at t = T . Consider a date
t < T . As mins′∈R,R∈Rx̂

ui (x̂, s′) > ǔi , there is a T ∗ > |S| such that for all T ≥ T ∗,
for all s and all i :

ui (x̂, s) + |S| mins∈S ui (x̂, s) + (T − t − |S| − 1) mins′∈R,R∈Rx̂
ui (x̂, s′) + mins∈S ui (x̌, s)

T − t + 1
>

maxai ui (x̂−i , ai , s) + |S| maxs∈S ui (x̌, s) + (T − t − |S|)ǔi

T − t + 1

The first line is a lower bound over the payoff generated by y if it remains more than
|S|+2 periods. Also the second line is an upper bound on a deviation from y. Suppose
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that the horizon is greater than 2T ∗. If t ≤ T ∗ this means that there remains at least T ∗
periods and then, according to the above inequality, there is no profitable deviation. If
t > T ∗ (and so t > |S|) then st ∈ R, R ∈ Rx̂ . The net gain to deviate is at most:

2 maxs,s′∈R
R∈Rx̂

{V2(x̂−i , ai , s)[x̌] − V2(x̂, s′)[x̌]} + (T − t − 1)(maxs∈S ui (x̌, s) − mins′∈R,R∈Rx̂
ui (x̂(s′), s′))

T − t + 1

By assumption I have: maxs,s′∈R
R∈Rx̂

{V2(x̂−i , ai , s)[x̌] − V2(x̂, s′)[x̌]} ≤ 0 for all i and

maxs∈S ui (x̌, s) − mins′∈R,R∈Rx̂
ui (x̂(s′), s′)) ≤ 0 for all i . Then a deviation is not

profitable. So y is a SPE in �T for all T ≥ 2T ∗.
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