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Abstract We develop a two-stage, two-location model to investigate long-run tech-
nology choice with endogenous capacity constraints. Rational managers determine
the maximum capacities (and mobility constraints). Then, boundedly rational agents
play a coordination game with the possibility to migrate. We consider two alternative
strategy sets and two different objective functions for the managers and show that
they affect the long-run technology choice in a non-trivial way. If the managers only
care about efficiency in their respective locations, either coexistence of conventions
or global coordination on the risk-dominant equilibrium will be selected, depending
on the (effective) capacities of both locations. If they are concerned with scale and
can choose mobility constraints, global coordination on the risk-dominant equilibrium
without mobility will be selected in the long run. We then change the basic interaction
to a n × n pure coordination game where mis-coordination results in zero payoff, and
show that, regardless of the constraint choices, all the agents will coordinate on the
most efficient equilibrium.
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1 Introduction

Stochastic learning models provide a rich framework for studying the evolution of
human behavior in socioeconomic contexts and hence offer “evolutionary” founda-
tions for the selection of Nash equilibrium. In most of the studies in this field, agents
are assumed to be homogeneous and boundedly rational. With this assumption, these
studies mainly focus onmanipulating the stage game, agents’ interaction structure, the
information agents can observe, and the strategy-updating rule, in order to see their
effects on behavioral evolution in the long run. Although, in reality, agents are very
likely to be heterogeneous (e.g., people may use different behavioral rules, or have
different rationality levels), this situation is not sufficiently explored in the literature
on stochastic learning. The purpose of this paper is to model the heterogeneity of
players’ rationality levels and to show its crucial effect on strategic interactions in the
long run, within the specific framework called “location models.”

Our model consists of two stages and two locations. In stage 1, the rational man-
ager in each location chooses the maximum capacity to optimize a certain objective
function, which is related to the payoffs of the agents in his location. After that, there
is a learning dynamics in stage 2. In every period, the boundedly rational agents in
each location repeatedly play a 2×2 coordination game, in which one strategy is more
efficient, while the other is safer. Across periods, the agents adjust their choices using
a certain behavioral rule, with the opportunity to relocate.

Theprincipal feature of thismodel is that it involves playerswith different rationality
levels. The rational managers play a one-shot game first, followed by the stochastic
learning dynamics of the boundedly rational agents. Although players with different
rationality levels do not interact directly, the decisions of the managers in stage 1 will
have a non-trivial effect on the strategic choices in the coordination game in the long
run.Within this framework, wewould like to answer the following questions:What are
the capacity choices of the managers? What are the choices of the agents in different
locations in the long run?

We present two examples which are related to the model outlined briefly above.
Consider a case of two investors, and each of them plans to build an industrial park
for firms that specialize in software development. To do this, each investor has to
choose the maximum capacity of his park. Suppose that, for each firm, there are two
different development platforms available: One is more efficient, and the other is more
compatible. Suppose also that firms are so small that it is beneficial for each of them
to use only one platform once and to have joint development programs with the others
in the same industrial park. Coordination issues will then arise when two firms are
engaged in a joint program: The payoffs for both firms to use the same platform are
higher than when they use different ones. To obtain higher payoffs, firms can change
their platforms and locations across periods. Assume that the profit of the investor of
each industrial park is related to the payoffs of the firms within his park in a certain

123

378



Long-run technology choice

way (e.g., each investor charges for a fixed percentage of the payoffs of the firms
located in his park). Hence, the investors care about the coordination among the firms
and would like to affect the firms’ choices on platforms within their respective parks
by choosing the capacity constraint in the very beginning.1

A second example is the interaction between firms’ enrollment policies and employ-
ees’ choices on unobservable effort levels. Suppose that two firms are enrolling
employees in the labor market, and both of them have to decide how many employees
to hire first. The employees can choose two different effort levels (high and low), which
are unobservable. Both firms use the same joint-production technology as described
in Khan (2014). That is, the employees have to work in pairs, and the output level of
a pair is determined by the minimum effort. The wage of each employee hinges on
the output level. Adjusting employees’ wages by their effort levels, this situation can
be captured by a coordination game. Coordinating on high effort is preferred to coor-
dinating on low effort. In case of mis-coordination, the payoff of the employee with
low effort is higher than the one with high effort. To get higher payoffs, employees
can change their effort levels or firms. Assume that the profit of each firm depends on
how employees coordinate with their colleagues. Since the managers cannot observe
the employees’ effort levels, they cannot just require them to work with high effort.
Hence, to maximize the profit, the managers would like to use capacity choices to
affect the coordination among the employees.

In either case, we are interested in investigating (i) how the long-run consequences
of the learning dynamics will influence the rational players’ optimal choices, consid-
ering that they have access to all the details of the learning dynamics, and, in turn, (ii)
how the rational players’ one-shot choices finally shape the behavioral pattern of the
boundedly rational players in the long run. Doing this exercise, we study the evolution
of social behavior in a more realistic situation, where players with heterogenous ratio-
nality levels interact. We illustrate, within our framework, that the interaction among
heterogenous players indeed has a crucial effect on both the strategic choices of the
rational players and that of the boundedly rational ones.

We first consider the casewhere bothmanagers care about the average of the agents’
payoffs in their respective locations. We identify two classes of Nash equilibria (NE)
in the managers’ game. In one class, both managers choose relatively small capacities,
which leads to global coordination on the risk-dominant equilibrium in the long run. In
the other class, one location is relatively large and the other is relatively small, which
leads the agents in the small location to coordinate on the Pareto-efficient equilibrium
and those in the large one to coordinate on the risk-dominant equilibrium (coexistence
of conventions).

We then extend the basic model to the following three directions. First, we consider
the case where the managers are concerned with the total payoffs of the agents in their
respective locations. We find that, in this case, for N large enough, there is only one
possible candidate of NE. Second, we allow the managers to also restrict the mobility
of the agents in their locations. We show that, if the managers are only concerned
with efficiency, the result is similar to the case where the managers can only choose

1 Of course, it could be more convenient for each investor to require all the firms in his park to use the
same platform. However, the investors normally do not have the authority to do so.
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capacity constraints. However, if they care about scale, they would like to restrict
the mobility to forbid migration completely, which leads agents in both locations to
coordinate on the risk-dominant equilibrium. Third, we change the basic interaction
to a pure coordination game with more than two strategies. We show that, when mis-
coordination leads to zero payoffs, all the agents will coordinate on the most efficient
equilibrium in the long run. Focusing on the situation that the managers are concerned
with scale, we find that, if they can choose capacity constraints only, each of them will
set a capacity large enough to accommodate all the agents; if they can also choose
mobility constraints, no agents will be allowed to move out.

There are a series of studies in the literature on stochastic learning, which are related
to the work in this paper. In our model, the basic interactions in the learning dynamics
are coordination games. Hence, our model is related to the studies which apply evolu-
tionary models to select equilibrium in coordination games (see, for example, Kandori
et al. 1993; Ellison 1993; Robson and Vega-Redondo 1996; Alós-Ferrer and Weiden-
holzer 2007, 2008; Alós-Ferrer 2008; Alós-Ferrer and Netzer 2014). Our model is
different from those studies in that we introduce strategic interaction between rational
managers, which will have an important impact on the equilibrium selection.

Our model involves two different locations, and boundedly rational agents are
allowed to change their locations. Hence, it encompasses the multiple location models
of Ely (2002) andAnwar (2002).2 InEly (2002), it is assumed that each location is large
enough to accommodate all the agents, and there is no mobility constraint. He shows
that, in this case, all the agents will agglomerate in one location and coordinate on the
Pareto-efficient equilibrium. Anwar (2002) considers the case where both locations
have the same restrictive capacity andmobility constraints.Hefinds that, if the effective
capacity of both locations is small, the risk-dominant equilibriumwill prevail globally;
if the effective capacity of both locations is large, agents in different locations will
coordinate on different equilibria. Instead of taking capacity and mobility constraints
as exogenous parameters, we allow the managers of both locations to choose these
constraints. We find that the optimal choices of the managers do not include the policy
arrangements in Ely (2002) and Anwar (2002). This paper is also related to Ania and
Wagener (2009). Both of the models share the common feature that there are multiple
locations, and each of them has a manager. Further, agents will react to the policies
and choose locations if possible. However, the major difference is that, in their study,
the managers are not rational. Instead of making a one-shot decision, they use an
imitate-the-best rule to change their policies every period.

In this paper, players with different rationality levels interact, and hence, it is related
to several studies involving heterogeneous players. Alós-Ferrer et al. (2010) develop a
two-stage model where rational platform designers attempt to maximize the profits of
their respective platforms, and the boundedly rational traders choose among the plat-
forms by imitating the most successful behavior in the previous period. Similar to our
model, rational players make a one-shot decision first, and boundedly rational players
are involved in a learning dynamics afterward. Unlike our model, though, the basic
interaction in the learning dynamics is Cournot competition rather than a coordination

2 Other location models include Dieckmann (1999), Blume and Temzelides (2003), and Bhaskar and Vega-
Redondo (2004); see Weidenholzer (2010) for a review.
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game. Juang (2002) considers the case where players use different behavioral rules
to update their strategies in an evolutionary model of coordination games. Geber and
Bettzüge (2007) investigate the evolutionary choice of asset markets when boundedly
rational traders have idiosyncratic preferences for the markets. Alós-Ferrer and Shi
(2012) explore the effect of asymmetric memory length in the population on the long-
run consequences of stochastic learning. Although we all have heterogenous players,
our model is different from these three studies in that different types of players in our
setup have to play sequentially.

Remainder of the paper is organized as follows. Section 2 develops a simple two-
stage model. Using this model, we analyze the long-run outcome of the learning
dynamics and investigate the strategic capacity choices of the managers. Section 3
discusses three extensions. In the first one, we suppose managers are concerned with
the scales of their respective locations. In the second one, we allow managers to
also choose mobility constraints. In the last one, we consider a general n × n pure
coordination game with more than two strategies. Section 4 briefly concludes. All the
proofs are relegated to the Appendix.

2 The two-stage model

In this section, we develop a simple two-stage model, where rational managers choose
capacity constraints and boundedly rational agents are involved in a learning dynamics
of coordination games. Then, we use this model to analyze the long-run behavior of
the agents and the strategic choices of the managers.

2.1 The setting

2.1.1 Locations

A total of 2N agents are distributed in two different locations k ∈ {1, 2}, initially with
N agents in each location. That is, the two locations are identical in the very beginning.
Each location k has a rational manager, referred to as manager k.

2.1.2 Managers

The model involves two stages. Stage 1 consists of a static game between the two
rational managers. The managers can neither relocate nor interact with the agents.
Instead, to optimize a certain objective function, manager k can choose a capacity
constraint ck ∈ [1, 2] such that �ck N� determines the maximum capacity of location
k.3 Since the two locations compose the whole world in this model, we assume that
each location can accommodate at least N agents (ck ≥ 1 for both k = 1, 2) to avoid
the situation where there is no place for some agents to stay (i.e., c1 + c2 < 2). Hence,

3 We denote by �x� the maximum integer that is weakly smaller than x , and by �x� the minimum integer
that is weakly larger than x . For instance, if ck = 1.25, N = 50, the firm can hire at most �62.5� = 62
agents.
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Table 1 The basic coordination
game

P R

P e, e g, h

R h, g r, r

the capacity of location k can be represented by Mk ≡ �ck N�, and the minimum
number of players in location k is mk ≡ 2N − M�, for k, � ∈ {1, 2}, k 	= �.

2.1.3 Learning dynamics of agents

Stage 2 of the model consists of a discrete-time learning dynamics, given the capacity
constraints determined by the managers in both locations. It is related to Anwar (2002)
and includes Ely (2002) as a particular case.

Basic coordination game Time is discrete, i.e., t = 1, 2, . . .. In each period t , agents
within each location play a pure coordination game (Table 1) with each other (i.e.,
round-robin tournament), where e, r, g, h > 0, e > r > h, r > g, and h+r > e+g.4

Hence, (P, P) is the Pareto-efficient equilibrium and (R, R) is the risk-dominant
equilibrium. We focus on pure coordination games to capture the fact that if two
agents use different technologies, the incompatibility leads their respective payoffs
to be lower than what they could obtain by both using the less efficient technology.5

Let Π : S × S → R
+ be the payoff function of the game, where S = {P, R} is the

strategy set of each player. Π(si , s j ) denotes the payoff of playing si against s j . We
denote by q∗ the probability of playing P in the mixed-strategy Nash equilibrium,
i.e., q∗ = (r − g)/(e − g − h + r). Since (R, R) is risk-dominant, q∗ is strictly
larger than 1/2. To facilitate the discussion later, we also define q̂ through the equality
Π(P, (q̂, 1−q̂)) = r , which yields q̂ = (r−g)/(e−g). That is, q̂ is the probability of
playing P in a mixed-strategy such that playing P against it gives the same payoff as
in the risk-dominant equilibrium. Since every agent repeatedly plays the coordination
game with all the others in one period, we assume that each agent’s payoff in one
period is the average payoff of all his interactions.

Behavioral rule In every period, agents can adjust their strategies in the coordination
game. Further, they can relocatewith an independent and identical positive probability.
We assume that agents update their behavior based on myopic best reply to the state.
That is, each agent will choose a strategy and a location (if possible) that is a best
reply to the strategy profile in the last period.

Formally, let qtk be the proportion of P-players in location k ∈ {1, 2} in period t .
We assume that, in each period t + 1, every player observes qtk for both k = 1, 2, and
anticipates the payoff of playing s ∈ {P, R} in location k, Π̄ t+1(s, k), based on the

4 In Anwar (2002), e, g, h and r are not required to be larger than zero. We add this assumption here to
avoid negative payoffs in the manager’s game. It has no effect on the LRE of the learning dynamics.
5 Our results do not rely on the nature of pure coordination games. The results are similar if we use stag
hunt games.
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strategy distribution of players in location k in period t ; that is,

Π̄ t+1(s, k) ≡ Π(s, (qtk, 1 − qtk)) = qtkΠ(s, P) + (1 − qtk)Π(s, R). (1)

Then, each player will choose a strategy and a location (when such an opportunity
arises) that maximizes Π̄ t+1(s, k), given the capacity constraints. Specifically, an
immobile agent will choose a strategy st+1

i ∈ {P, R} in period t + 1 given his current
location, such that

st+1
i ∈ argmax

s′i
Π̄ t+1(s′

i , k
t
i ), (2)

where kti denotes agent i’s location in period t . A mobile agent will choose a strategy
st+1
i and a location kt+1

i , such that

(st+1
i , kt+1

i ) ∈ arg max
(s′i ,k′

i )
Π̄ t+1(s′

i , k
′
i ). (3)

If several choices give a player the maximum payoff, she will play each of them with
a positive probability. Relocation is restricted by the capacity constraints of the two
locations. If the number of agents who attempt to move to location k is more than the
number of vacancies, agents will be randomly chosen from the set of candidates to
fill all the vacancies. Those who are not allowed to move out will behave as immobile
agents and play the myopic best reply to the state given their current locations.

Remark 1 When computing the best response to the state in the other location, this
approach is equivalent to the standard myopic best reply; that is, a player will choose
a strategy to maximize his payoff, given the strategies played by all the remaining
players in the last period. However, when computing the best response to the state in
the current location, this approach differs from the standard myopic best reply, in that
the player counts himself in the last period as an opponent. For a large population,
this corresponds to Oechssler’s (1997) best response for a large population. That is, if
the population is large enough, it is innocuous for an agent to include himself in the
strategy profile of the opponents when he computes his payoff, since the strategy of
one player almost has no effect on the strategy distribution of a large population. For
a small population, though, this kind of behavior can differ from the standard myopic
best reply, as the agent ignores the fact that changing his strategy also changes the
population proportions at his location. Particularly, when there is only one player in a
location, he will behave as if he could play with himself (i.e., self-matching).6

6 We use myopic best reply to the state rather than the standard myopic best reply to simplify the analysis.
With this behavioral updating rule, all the mobile players have the same best reply, and all the immobile
players within the same location have the same best reply, regardless of the strategies they have adopted in
the previous period.
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2.2 The long-run behavior of agents

This subsection analyzes the learning dynamics in stage 2.We first identify the absorb-
ing sets of the unperturbed learning dynamics. From these candidates, we single out
the long-run equilibria (LRE) given the capacity constraints in stage 1.

2.2.1 The absorbing sets

Let ω = (v1, v2, n1) represent a state of the dynamics described above, where vk
denotes the number of P-players in location k, and nk denotes the total number of
players in location k for k = 1, 2. The state space is given by

Ω ={(v1, v2, n1)|v1 ∈ {0, 1, . . . , n1}, v2 ∈ {0, 1, . . . , 2N − n1}, n1 ∈ {m1, . . . , M1}}.

Denote

q1(ω) =
{ v1

n1
, if n1 > 0

0, otherwise
and q2(ω) =

{ v2
2N−n1

, if n1 < 2N
0, otherwise

(4)

We can equivalently rewrite a state as ω = (q1, q2, n1). The stochastic dynam-
ics above gives rise to a Markov process, whose transition matrix is given by
P = [P(ω, ω′)]ω,ω′∈Ω . An absorbing set is a minimal subset of states such that,
once the process reaches it, it never leaves.

Lemma 1 The absorbing sets of the unperturbed process above depend on ck for
k = 1, 2 as follows.

(a) If ck < 2 for both k = 1, 2, there are four absorbing sets: Ω(PR), Ω(RP),
Ω(RR) and Ω(PP).

(b) If c1 = 2 and c2 < 2, there are three absorbing sets: Ω(RO), Ω(PO), and
Ω(RP). Similarly, if c2 = 2 and c1 < 2, the absorbing sets are: Ω(OR),
Ω(OP) and Ω(PR).

(c) If c1 = c2 = 2, there are four absorbing sets: Ω(RO), Ω(OR), Ω(PO) and
Ω(OP).

where Ω(PR) = {(1, 0, M1)}, Ω(RP) = {(0, 1,m1)}, Ω(RR) = {(0, 0, n1)| n1 ∈
{m1, . . . , M1}}, Ω(PP) = {(1, 1, n1)|n1 ∈ {m1, . . . , M1}}, Ω(RO) = {(0, 0, 2N )},
Ω(PO) = {(1, 0, 2N )}, Ω(OR) = {(0, 0, 0)}, and Ω(OP) = {(0, 1, 0)}.

2.2.2 The equilibrium concept

Following the standard approach in the literature on stochastic learning in games, we
introduce mutations in this Markov dynamics. We assume that, in each period, with
an independent and identical probability ε, each agent randomly chooses a strategy
and a location if possible. The perturbed Markov dynamics is ergodic, i.e., there is
a unique invariant distribution μ(ε). We want to consider small perturbations. It is a
well-established result that μ∗ = limε→0 μ(ε) exists and is an invariant distribution
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of the unperturbed process P . It describes the time average spent in each state when
the original dynamics is slightly perturbed and time goes to infinity. The states in its
support, {ω|μ∗(ω) > 0}, are called stochastically stable states or long-run equilibria.

For small population size, the analysis of LRE in our model runs into integer
problems, which arise because both the number of agents in each location and the
number of mutants involved in any considered transition need to be integers. For this
reason, the boundaries of the sets in the (c1, c2)-space in which different LRE are
selected are highly irregular. In the limit, these boundaries become clear-cut, but, for
a fixed population size, there is always a small area where long-run outcomes are not
clear. However, for large population size, these boundary areas effectively vanish. In
order to tackle this difficulty, we introduce the following definition.

Definition 1 Ω̃ is the LRE set for large N uniformly for the set of conditions
{Jz(c1, c2) > 0}Zz=1 if, for any η > 0, there exists an integer Nη such that for all

N > Nη, Ω̃ is the set of LRE for all (c1, c2) ∈ [1, 2]2 such that {Jz(c1, c2) > η}Zz=1.

In words, an LRE set for large population size is such that, given “ideal” boundaries
described by certain inequalities (which will be specified in each of our result below),
for every point arbitrarily close to the boundaries, there exists aminimal population size
such that the LRE corresponds to the given set. Further, the definition incorporates
a uniform convergence requirement, in the sense that the minimal population size
depends only on the distance to the ideal boundaries and not on the individual point.
This uniform convergence property is important in order for us to be able to analyze
the managers’ game in stage 1.

2.2.3 The LRE in stage 2

Following the standard approach developed by Freidlin and Wentzell (1988), we con-
struct the minimum-cost tree for each absorbing set given in Lemma 1 and then use
them to identify the LRE. We summarize the results in Theorem 1 and illustrate them
in Fig. 1. Denote q̄ ≡ 1/q∗ − 2 + 2q∗ and let

Φ(ck) =
{
2 − 1−q∗

q∗ ck, if q̂ ≤ q̄

2 − 1−q̂
2q∗−1ck, if q̂ > q̄.

Theorem 1 The LRE of the learning dynamics in stage 2 depends on c1 and c2.

(a) Ω(RR) is the LRE set for large N uniformly for c1 < Φ(c2) and c2 < Φ(c1);
(b) Ω(RP) is the LRE set for large N uniformly for c1 > Φ(c2) and c1 > c2; and
(c) Ω(PR) is the LRE set for large N uniformly for c2 > Φ(c1) and c1 < c2.

Theorem 1 says that, for N large enough, in the main area of the (c1, c2)-space,
only the elements in these three absorbing sets (Ω(RR), Ω(RP) and Ω(PR)) can be
possibly selected as stochastically stable. If the maximum capacities of both locations
are relatively small, the risk-dominant equilibriumwill prevail globally (statement (a)).
To see the intuition, one can consider the transitions between Ω(PR) and Ω(RR),
which play a key role in the selection of Ω(RR). To complete the transition from
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Ω(PR) to Ω(RR), it is necessary to change the convention from (P, P) to (R, R) in
location 1. The transition in the opposite direction requires the reverse change. The
absorbing set Ω(RR) will be selected if the number of the mutants required for the
former transition is smaller than that for the latter one. For it to hold, the maximum
capacity in location 1 (determined by c1) has to be small enough, and the minimum
number of agents in location 1 (determined by 2− c2) has to be large enough. Hence,
both c1 and c2 are required to be small enough for the selection of Ω(RR).

However, if the capacity of one location is larger than that of the other, the agents
in the larger location will coordinate on the risk-dominant equilibrium, while those in
the smaller location on the Pareto-efficient one (statements (b) and (c), respectively).
The intuition can be understood by considering the transitions between Ω(PR) and
Ω(RP), which play a decisive role in the selection of coexistence of conventions.
The minimum-cost transition in either direction will be achieved indirectly through
Ω(PP). That is, the convention of one location will be changed from (R, R) to
(P, P), then, that of the other location will be changed from (P, P) to (R, R). Since
the population share of the mutants required for the first-step transition is q∗, larger
than that for the second-step transition 1 − q∗, the former transition has a dominant
effect. Hence, we can focus only on the transition in the first step. In the transition from
Ω(PR) to Ω(PP), the number of mutants is determined by the minimum number of
agents in location 2 (determined by 2−c1). Similarly, for the transition in the opposite
direction, the number of mutants is determined by the minimum number of agents in
location 1 (determined by 2 − c2). To select Ω(RP) in the long run, the number of
mutants required for the transition from Ω(PR) to Ω(PP) has to be less than that for
the transition in the reverse direction, which holds for c1 > c2.

Further, the parameter regions of the different LRE depend on the values of q̂ and
q̄ . If q̂ ≤ q̄ , the payoff for the risk-dominant equilibrium is relatively low. In this case,
Ω(RR) will be selected in a relatively small parameter region. By contrast, if q̂ > q̄ ,
the payoff of the risk-dominant equilibrium is relatively high. In this case,Ω(RR)will
be selected in a larger parameter region. This is reflected by the fact that, for q̂ > q̄ ,
2 − 1−q̂

2q∗−1ck > 2 − 1−q∗
q∗ ck for ck ∈ [1, 2], k = 1, 2. The reason is that, when the

payoff of the risk-dominant equilibrium is larger, the basin of attraction of (R, R) is
larger, and the transition toward Ω(RR) requires less mutants.

The LRE in the vanishing areas are not clear-cut; multiple LRE may coexist. This
result is summarized in Proposition 1. To facilitate the discussion, we define several
subareas in the (c1, c2)-space and illustrate them also in Fig. 1. For any η > 0, denote
the area on the border of the three main regions by V (η) = [1, 2]2 \ ({Φ(c2) − c1 >

η and Φ(c1) − c2 > η} ∪ {c1 − Φ(c2) > η and c1 − c2 > η} ∪ {c2 − Φ(d1) >

η and c2 − c1 > η}), and the subareas of V (η), respectively, by

Va(η) = V (η) ∩ {(c1, c2)|c1 − c2 > η,Φ(c1) − c2 > η};
Vb(η) = V (η) ∩ {(c1, c2)|c2 − c1 > η,Φ(c2) − c1 > η};
Vc(η) = {(c1, c2)|2 − c1 ≥ η, 2 − c2 ≥ η};
Vd(η) = V (η) ∩ {(c1, c2)|c1 − Φ(c2) > η, c2 − Φ(c1) > η}\Vc(η);
Ve(η) = V (η)\(Va(η) ∪ Vb(η) ∪ Vc ∪ Vd(η)).
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Fig. 1 An illustration of the
LRE set in the main area and the
subregions of the vanishing area

c1

c2(1, 1)

2

2

Va(η)

Vb(η)

Vc(η)

Vd(η)

Ve(η)

Ω(RR)

Ω(RP )

Ω(PR)

Note that V (η) is vanishing as η decreases: V (η) will shrink to the lower-dimensional
set {(c1, c2)|c1 = Φ(c2) for c2 ∈ [1, 2q∗]}∪{(c1, c2)|c2 = Φ(c1) for c1 ∈ [1, 2q∗]}∪
{(c1, c2)|c1 = c2 for c2 ∈ [2q∗, 2]} as η → 0.

Proposition 1 For any η > 0, there exists an integer N̄ , such that for all N > N̄ , for
(c1, c2) ∈ V (η), the LRE form a subset of

(a) Ω(RP) ∪ Ω(RR) if (c1, c2) ∈ Va(η);
(b) Ω(PR) ∪ Ω(RR) if (c1, c2) ∈ Vb(η);
(c) Ω(PR) ∪ Ω(RP) ∪ Ω(OP) ∪ Ω(PO) ∪ Ω(PP) if (c1, c2) ∈ Vc(η)\{(2, 2)};
(d) Ω(PR) ∪ Ω(RP) if (c1, c2) ∈ Vd(η); and
(e) Ω(PR) ∪ Ω(RP) ∪ Ω(RR) if (c1, c2) ∈ Ve(η).
(f) Further, the LRE are the elements in Ω(PP) for c1 = c2 = 2.

2.3 The equilibrium policies

This section analyzes the optimal choices of the two managers on the capacity con-
straints. The managers in both locations are assumed to be rational. They have perfect
information about the learning dynamics and can accurately anticipate the long-run
consequences of the capacity choices in both locations. Hence, given this knowledge,
each manager makes a one-shot decision on the capacity constraint ck ∈ [1, 2] of his
own location to achieve the particular objective that he is pursuing.

In this section, we consider the case where the objective function of each manager
is associated with the average of the payoffs of the agents in his location in the long
run (we explore the case where the managers care about scale in Sect. 3). It captures
the situation where only the efficiency of the coordination matters. For example, in
a research group, the success of a long-run project is usually determined by how
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efficiently the group members can coordinate with each other and has little to do with
the scale of the group.

Let xk(ω) be the number of agents in location k in state ω and yk(ω) be the number
of P-players in location k in state ω. Hence, for any state ω = (v1, v2, n1), we have
xk(ω) = nk and yk(ω) = vk . Given a state ω, denote the payoffs of P-players and
R-players in location k, respectively, by

π P
k (ω) = yk(ω) − 1

xk(ω) − 1
Π(P, P) + xk(ω) − yk(ω)

xk(ω) − 1
Π(P, R)

π R
k (ω) = yk(ω)

xk(ω) − 1
Π(R, P) + xk(ω) − yk(ω) − 1

xk(ω) − 1
Π(R, R)

for xk(ω) > 1. Note that π P
k (ω) for yk(ω) = 0 and π R

k (ω) for yk(ω) = nk are not
defined for any nk . If there is only one player in a location, then the player cannot find
a partner to play the game, and we assume that the payoff of this player is zero.7

Hence, the average of the payoffs of the agents in location k in state ω is

π̄k(ω) = yk(ω)

xk(ω)
π P
k (ω) + xk(ω) − yk(ω)

xk(ω)
π R
k (ω) (5)

for xk(ω) > 0 (k = 1, 2). It is natural to assume that, if a location k is empty, then its
payoff is zero; that is, if xk(ω) = 0, then π̄k(ω) = 0.

The limit invariant distribution μ∗ is a function of the capacity constraints. Hence,
we have μ∗(c1, c2) ∈ Δ(Ω), where Δ(Ω) is the set of probability distributions over
Ω . The payoff function of manager k is defined by the average of payoffs at location
k = 1, 2 in the long run:

uk(c1, c2) =
∑
ω∈Ω

μ∗(c1, c2)(ω)π̄k(ω), (6)

where μ∗(c1, c2)(ω) is the probability of ω in the limit invariant distribution given
c1 and c2. We introduce an auxiliary quantity c∗ = 2q∗ if q̂ ≤ q̄ and c∗ = 2(2q∗−1)

2q∗−q̂
if q̂ > q̄ . The NE of the one-shot game between the two managers are provided in
Theorem 2.

Theorem 2 Let the payoff function of each manager k be given by (6), and c∗ and
Φ(ck) be as defined above.

(a) for any (c1, c2) such that c1 > Φ(c2) and c2 < c∗, or c2 > Φ(c1) and c1 < c∗, or
c1 < c∗ and c2 < c∗, there exists an integer N̄ such that for all N > N̄ , (c1, c2)
is a NE;

7 Alternatively, as in Ely (2002), we can assume that the loner will obtain some positive payoff that is
smaller than the payoff at the risk-dominant equilibrium. We can also assume that if the loner plays P , his
payoff is Π(P, P), and if he plays R, his payoff is Π(R, R). None of these assumptions will change the
results in the following theorem and propositions.

123

388



Long-run technology choice

Fig. 2 The NE of stage 1 and
their corresponding LRE for
large population

c1

c2(1, 1)

2

2

No NE

NE

Ω(RR)

NE

Ω(RP )

NE

Ω(PR)

No NE

No NE

(b) for any (c1, c2) such that c1 < Φ(c2) and c2 > c∗, or c2 < Φ(c1) and c1 > c∗,
or c1 > c∗ and c2 > c∗, there is no NE corresponding to (c1, c2).

Theorem 2 says that, for N large enough, if the objective function of both managers
is the average of the payoffs of the agents at their respective locations in the long
run, there are two different classes of NE. In one class, both managers will choose
relatively small capacities (c1 < c∗ and c2 < c∗), which leads to the selection of
global coordination on the risk-dominant equilibrium. In the other class, one manager
will choose a large capacity and the other a small one (ck > Φ(c�) and c� < c∗,
k, � = 1, 2, k 	= �), which leads to coexistence of conventions in the long run. Further,
the strategy profiles in which both managers choose large capacities are not NE.
Figure 2 illustrates these results.

Using Fig. 2, we explain the intuition for the result that the strategy profiles stated in
(a) are NE. Consider the parameter regions which support coexistence of conventions.
The manager of the location coordinating on the Pareto-efficient equilibrium cannot
be better off, hence having no incentive to deviate. Given the capacity choice of this
manager, the manager in the other location will not deviate either. The reason is that,
whatever his choice is, agents in his location will always coordinate on the risk-
dominant equilibrium. Similarly, in the area where global coordination on the risk-
dominant equilibrium is selected, no manager can increase his payoff by changing the
capacity of his location.

Now we explain the reason for the fact that choosing large capacities for both
locations (c1 > c∗ and c2 > c∗) is not stable. If such a situation were to occur, the
LRE would be either coexistence of conventions or global coordination on the Pareto-
efficient equilibrium. However, the manager in the location with weakly lower payoff
would always have an incentive to decrease the capacity of his location, in order to
have all the players in his location coordinating on the Pareto-efficient equilibrium.
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3 Extensions

This section discusses several extensions of the basic model. The first extension ana-
lyzes the capacity choices of the managers when their payoffs are associated with
the total payoffs of the agents at their respective locations in the long run. Hence, in
this case, the managers have to consider both the efficiency of the coordination and
the scales of their locations. In the second extension, the managers are allowed to
have a second choice, mobility constraint. As a result, each manager can choose both
the number of immobile agents and the capacity constraint at his location. The last
extension considers the case where the agents have more than two strategies in pure
coordination games.

3.1 When scale matters

In this subsection, we consider the case where the managers are concerned with the
total payoff of the players at their locations. For instance, in some evaluation systems
for economics departments, the total number of academic publications is regarded as
an important factor. Hence, if the dean of a department really cares about the evaluation
(or his performance is measured by the evaluation), he may want to both improve the
efficiency of the coordination on research among the faculty members and increase
the number of researchers in the department.

The total payoff of location k at state ω is given by xk(ω)π̄k(ω). We define the
payoff function of both managers who care about the total payoffs of the agents at
their respective locations by

uk(c1, c2) =
∑
ω∈Ω

μ∗(c1, c2)(ω)xk(ω)π̄k(ω). (7)

Proposition 2 Let the payoff function of each manager k be given by (7). For any
(c1, c2) ∈ [1, 2]2 \ {(c∗, c∗)}, there exists an integer N̄ such that for all N > N̄ , there
is no NE corresponding to (c1, c2).

Proposition 2 says that if the managers care about the total payoffs of the agents in
their locations in the long run, for N large enough, the only candidate of the NE of
the managers’ game is (c∗, c∗). The reason that the other strategy profiles cannot be
NE is the following. In the region where coexistence of conventions is selected, the
manager of the location in which agents coordinate on the risk-dominant equilibrium
has an incentive to decrease ck to the extent that both locations will coordinate on the
risk-dominant equilibrium, because it will increase the expected population size in his
location. In the region where agents in both locations coordinate on the risk-dominant
equilibrium, each manager has an incentive to increase ck , which may either increase
the expected population size or lead his location to coordinate on the Pareto-efficient
equilibrium.

The only exception is the point (c∗, c∗). For N → ∞, (c∗, c∗) is a NE if the
payoff of the Pareto-efficient equilibrium is high enough. The reason is that, given
this strategy profile, in each location, both the Pareto-efficient and the risk-dominant
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equilibria can be selected in the long run. However, any unilateral deviation of the
manager will lead his location to coordinate only on the risk-dominant equilibrium.
For any fixed N , whether or not this point is a NE crucially depends on the parameter
of the model, and we cannot provide a general result.

3.2 Mobility constraints

In this subsection, we consider the optimal policies of the managers when there is an
additional choice, mobility constraint. In reality, mobility constraint can be specified
in the working contract. For instance, in airline companies, pilots are usually required
by contract to work in the same company for a relatively long time (e.g., two decades),
and leaving before the stated time always causes a large penalty.

Denote by pk , the mobility constraint of location k such that �pk N� specifies the
number of immobile players in each period.8 Since each location has N agents in the
beginning, we assume that each manager can restrict the mobility of at most N players
(i.e., pk ≤ 1). It is natural that manager k cannot restrict the mobility of the agents
not in location k when making the decision. Then, a strategy of manager k is a pair
(ck, pk) ∈ [1, 2] × [0, 1].

Given the capacity and mobility constraints, the effective capacity of location k can
be represented by Mk ≡ �dk N�with dk = min{ck, 2− p�}, and the minimum number
of players in location k is mk ≡ 2N − M�, for k, � ∈ {1, 2}, k 	= �. That is, a location
has the maximum number of agents either by reaching its capacity constraints, or by
having all agents, apart from the immobile ones, in this location.

Since dk ∈ [1, 2], when replacing ck with dk (k = 1, 2) in Lemma 1, the absorbing
sets of the unperturbed dynamics stated in this lemma remain true. Further, with the
same replacement, the LRE are the same as in Theorem 1 and Proposition 1.

Now we explore the policy choice of each manager. We first consider the case
where the payoff function of each manager k is the average of the agents’ payoffs in
his location in the long run.

Proposition 3 Let the payoff function of each manager k be given by (6), Φ(dk) be
as defined above, and d∗ = 2q∗ if q̂ ≤ q̄ and d∗ = 2(2q∗−1)

2q∗−q̂ if q̂ > q̄ .

(a) for any (d1, d2) such that d1 < d∗ or d2 < d∗ there exists an integer N̄ such that
for all N > N̄ , (d1, d2) corresponds to at least one NE, provided that d1 	= Φ(d2)
and d2 	= Φ(d1);

(b) for any (d1, d2) such that d1 > d∗ and d2 > d∗ there exists an integer N̄ such
that for all N > N̄ , there is no NE corresponding to (d1, d2).

If the managers can choose both the capacity and the mobility constraints, and
care about the average of the agents’ payoff in their locations in the long run, the
parameter regions in the (d1, d2)-space that correspond to NE are similar to the ones
whenmanagers can choose capacity constraints only. The difference is that the strategy

8 Denote by �x� the minimum integer that is weakly larger than x . For instance, if pk = 0.25 and N = 10,
the number of immobile players is �2.5� = 3.
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profiles projected on the two areas d∗ < d1 < Φ(d2) and d∗ < d2 < Φ(d1) are now
NE. Consider an arbitrary point in the first area. Manager 1 cannot be better off from
deviation, because agents in location 1 coordinate on the Pareto-efficient equilibrium.
In order to lead his location to coordinate on the Pareto-efficient equilibrium, manager
2 would like to increase d2 by choosing a higher c2. However, his effort may not be
effective, for d2 is determined bymin{c2, 2− p1}. If d2 = 2− p1, increasing c2 cannot
change d2 at all. A similar argument holds for any point in the second area.

Nowwe explore the situation where the managers are concerned with the total pay-
offs of the agents in their respective locations in the long run. Proposition 4 summarizes
the result.

Proposition 4 Let the payoff function of each manager k be given by (7), and d∗ and
Φ(dk) be as defined above.

(a) d1 = d2 = 1 corresponds to at least one NE;
(b) for any (d1, d2) ∈ [1, 2]2 \ ({(1, 1)} ∪ {(d∗, d∗)}), there exists an integer N̄ such

that for all N > N̄ , there is no NE corresponding to (d1, d2).

The only difference between this result and Proposition 2 is that now d1 = d2 = 1
corresponds to at least one NE. If managers can only choose capacity constraint,
c1 = c2 = 1 is not a NE, because both managers have an incentive to increase their
respective capacities, in order to have a larger expected population size.However, since
the managers now can also choose mobility constraint, if they care about the number
of agents in their locations, both managers have an incentive to increase the mobility
constraint to prevent the agents from moving out. As a result, both managers will set
pk = 1 so that no agents can change locations. This result confirms the argument in
Anwar (2002, footnote 7).

When the managers can choose both capacity and mobility constraints, Anwar’s
(2002) result corresponds to the LRE on the diagonal of the (d1, d2)-space (the seg-
ment connecting (1, 1) and (2, 2) but not including (2, 2))9, and Ely’s (2002) result
corresponds to the LRE at (2, 2). Hence, Propositions 3 and 4 show that the assump-
tions on capacity and mobility constraints in Ely (2002) and Anwar (2002) are not the
optimal choices of the managers.

3.3 Pure coordination game with more than two strategies

This subsection considers the case where the basic pure coordination game has more
than two strategies. Consider the game G = [

I, {Si }i∈I , {π i }i∈I
]
, where I = {1, 2},

Si = {s1, s2, . . . , sn}, and π i (si , s j ) = τ if si = s j = sτ , and π i (si , s j ) = 0
otherwise. Hence, G is a n × n pure coordination game, where the payoff for mis-
coordination is zero. Straightforwardly, any (sτ , sτ ) for τ ∈ {1, 2, . . . , n} is a strict
NE of this game. The model setup remains the same.

Hence, for d1 = d2 < 2, the unperturbed learning dynamics has n2 absorbing sets,
in which agents in each location coordinate on a strict NE. For d1 = d2 = 2, there are

9 Anwar’s (2002) analysis fails to realize the effect of the values of q̂ and q̄ on the selection of the LRE,
and does not cover the case q̂ > q̄. See Shi (2013) for a correction.
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2n absorbing sets, in which one location is empty and the other location has all the
agents coordinating on a strict NE. For dk = 2 and d� < 2, the unperturbed dynamics
has n + n(n − 1)/2 absorbing sets: There are n absorbing sets where all the agents in
location k coordinate on a strict NE, and there are n(n − 1)/2 absorbing sets where
agents in location k coordinate on a less efficient equilibrium than that in location
�. We single out the LRE by comparing the minimum transition costs toward these
absorbing sets and summarize the result in Proposition 5.

Proposition 5 If the basic interaction among agents is the n × n coordinate game G
defined above, the LRE of the learning dynamics in stage 2 of the model are as follows.

(a) For d1 < 2 and d2 < 2, the LRE are the states in Ω(sn, sn).
(b) For d1 = 2 and d2 < 2, the LRE is the state in Ω(sn, 0). Similarly, for d1 < 2

and d2 = 2, the LRE is the state in Ω(0, sn).
(c) For d1 = 2 and d2 = 2, the LRE are the states in Ω(sn, 0) and Ω(0, sn),

where Ω(sn, sn) is the absorbing set where agents in both locations play sn, and
Ω(sn, 0) (Ω(0, sn)) is the absorbing set where all the agents agglomerate in location
1 (2) and play sn.

Proposition 5 says that only the strict NE (sn, sn) will be selected in the long run.
The reason is that (sn, sn) is both Pareto-efficient and risk-dominant and hence has a
larger basin of attraction comparing with any other strict NE. That is, given a location,
the transition from any other strict NE to (sn, sn) always requires less mutants than
the one in the opposite direction.

Then, we consider the managers’ game in stage 1. We focus on the case where the
managers are concerned with the total payoffs of their respective locations in the long
run,10 and explore two alternative strategy sets for managers.

Proposition 6 Let the payoff function of each manager k be given by (7). The NE of
the managers’ game in stage 1 are as follows:

(a) If both managers can only choose capacity constraint, c1 = c2 = 2 corresponds
to the unique NE.

(b) If both managers can choose the capacity and the mobility constraints, d1 = d2 =
1 corresponds to at least one NE.

The intuition is that, if the managers can choose capacity constraints only, they
always have an incentive to increase the capacities of their respective locations. As
a result, each location becomes large enough to accommodate all the agents. If the
managers can also choose mobility constraint, they have an incentive to increase the
capacity and to restrict the mobility. However, since the effective capacity of location
k is determined by min{ck, 2 − p�}, the effect of restricting mobility will dominate
that of increasing capacity. In the end, managers will completely forbid migration.
Regardless of the choices available to the managers, given the basic interaction G,
agents will always coordinate on the Pareto-efficient NE (sn, sn).

10 The NE for the case where managers only care about the average location payoff in the long run is trivial.
If managers can only choose capacity constraints, any point in the (d1, d2)-space corresponds to at least
one NE. If managers can choose capacity and mobility constraints, any point in the (d1, d2)-space except
the ones in the set d1 = 2 or d2 = 2 corresponds to at least one NE.
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4 Conclusion

In this paper, we develop a simple model to study long-run technology choice with
endogenous local capacity constraints. We introduce a manager for each location and
allow them to choose capacity constraints (and mobility constraints). Given these
constraints, the agents are involved in a learning dynamics of a coordination game.
We assume that the managers are rational, while the agents are boundedly rational,
which gives rise to a model of “asymmetric rationality.” The managers make deci-
sions first, with perfect knowledge of the effect of different policies on the long-run
consequences, and the agents take the constraints as given and choose strategies of a
coordination game repeatedly. To our knowledge, this is one of the few studies that
explore the sequential interaction among agents with different rationality levels within
the framework of stochastic learning in games.

Clearly, the strategy set and the objective function of the managers have significant
effects on the equilibrium selection of coordination games in the long run. Within
our framework, we consider two alternative strategy sets and investigate two different
objective functions. If the managers care about efficiency, a set of NE exist, leading to
either the coexistence of conventions or the global coordination of the risk-dominant
equilibrium. If the managers also care about the scale, they may end up with a medium
capacity, when they can choose capacity constraint only, and they may completely for-
bid migration of the agents, when they are also allowed to choose mobility constraint.
In either case, a set of symmetric policy arrangements exogenously given in Ely (2002)
and Anwar (2002) are not stable. Hence, our work tests the validity of the assump-
tions of policy constraints that have been considered in the related literature and also
demonstrates how policy adjustments may change the long-run outcomes.

There are many situations in social and economic activities where agents with
different rationality levels interact with each other. Hence, in our opinion, further
research should focus on developingmore realisticmodels to analyze such interactions
in different contexts. A deeper understanding of these issues will allow us to obtain
better insights into the consequences of the interactions among heterogenous agents.
This paper takes a step forward by illustrating how the choices of capacity constraints
interact with the long-run technology convention in a non-trivial way; hence, it is
necessary to explicitly treat policy parameters and their optimality as important factors
for the establishment of social conventions in an organized society.

5 Appendix: Proofs

Proof of Lemma 1 We show that all the sets listed in Lemma 1 are absorbing, i.e.,
once they are there, the dynamics will remain there forever, and all the other states are
transient, i.e., there is a positive probability that the dynamics will never move back to
them. Suppose, in period t , the dynamics reaches an arbitrary state ω. Let (k̃, s∗) be
a myopic best reply to ω for the agents who can relocate. Hence, a myopic best reply
for the agents who are currently located in k̃ and cannot relocate is s∗. Denote by s′ a
myopic best reply to ω for those who are not in location k̃ and cannot relocate. Then,
with a positive probability, the agents in location �̃ 	= k̃ who can relocate will move to
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location k̃ and play s∗, while those staying in location �̃ and cannot relocate will play
s′. The players in location k̃ will remain there and play s∗. Hence, in t + 1, agents in
location k̃ will coordinate on s∗, while those in location �̃ will coordinate on s′.

Case 1 dk < 2 for all k ∈ {1, 2}. If s∗ = s′, in t + 2, all the players will play
the same strategy and randomly choose their locations if such an opportunity arises.
This corresponds to the sets Ω(RR) or Ω(PP). They are absorbing, because (R, R)

and (P, P) are strict NE. Once the dynamics reaches any one of the states in the set
Ω(RR)(Ω(PP)), a myopic best reply to the previous state will always lead players
to play R (P) and randomize their location choices given the capacity constraints.

If s∗ 	= s′, players in one location k ∈ {1, 2} must coordinate on P . Then, all the
players in location � who have an opportunity to relocate will move to location k and
play P until the population in location k reaches Mk . Once there, myopic best replying
will lead all the P-players to stay in the current location and play P . The R-players
would have an incentive to move to the other location and play P , but are not allowed
to do so due to the constraints. Hence, they will play R in their current location. This
corresponds to Ω(PR) or Ω(RP) for k = 1, 2, respectively.

Case 2 dk = 2 and d� < 2. If s∗ = s′, with a positive probability, all the players will
move to location k and play s∗. Once there, the dynamics will remain there forever.
This corresponds toΩ(PO) orΩ(RO) for k = 1, or toΩ(OP) orΩ(OR) for k = 2.
If s∗ 	= s′, agents will coordinate on P in one location, and on R in the other location.
If the agents in location k coordinate on P , while those in location � coordinate on R,
all the players in location � will move to k and play P . If the reverse case occurs, all
the mobile players in location k will move to location � until it reaches its effective
maximum capacity. Therefore, the absorbing sets in this case are Ω(PO), Ω(RO),
and Ω(RP) for k = 1, and Ω(OP), Ω(OR), and Ω(PR) for k = 2.

Case 3 dk = 2 for both k = 1, 2. Similarly to Case 2, if s∗ = s′, all the players will
move to one location and coordinate on s∗. If s∗ 	= s′, all the players will move to the
location with P-players and play P . Once there, the dynamics will stay there forever.
Hence, the absorbing sets in this case are Ω(RO), Ω(PO), Ω(OR), and Ω(OP). ��

Proof of Theorem 1 and Proposition 1 The standard approach to identifying the LRE
in the literature on learning in games relies on the graph-theoretical techniques devel-
oped by Freidlin and Wentzell (1988). In general, we construct minimum-cost transi-
tion trees for all the absorbing sets in each of the three cases in Lemma 1, and then, we
identify the absorbing set whose transition tree has the lowest cost. As an illustration,
we show how to identify the LRE at the point d1 = d2 = 2 in the following.

By Lemma 1, for d1 = d2 = 2, there are four absorbing sets, Ω(RO), Ω(PO),
Ω(OR) and Ω(OP). The transitions between Ω(PO) and Ω(OP) (in both direc-
tions) only need one mutant, who moves to the empty location and does not change
her strategy, just as in the transitions between Ω(RO) and Ω(OR). The transition
from Ω(OR)(Ω(RO)) to Ω(PO)(Ω(OP)) only requires one mutant to move to the
empty location and change her strategy. Consider the following Ω(PO)-tree.

Ω(RO) → Ω(OR) → Ω(PO) ← Ω(OP)
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It is easy to see that the minimum cost of this tree is 3. For a tree with four absorbing
sets, it must be the minimum cost. Hence, the element in Ω(PO) is a LRE. Since the
transition from Ω(PO) to Ω(OP) needs only one mutant, one can build an Ω(OP)-
tree simply by reversing the direction of the arrow between Ω(OP) and Ω(PO) in
the Ω(PO)-tree above. Therefore, the minimum cost of this Ω(OP)-tree is also 3.
Hence, the element in Ω(OP) is a LRE as well.

We skip the details for identifying the LRE in the remaining cases, since they use
the same techniques and involve cumbersome computations. ��
Proof of Theorem 2 The proof can be better understood with Fig. 2. We first show
that the set of points in the (c1, c2)-space given in (a) of the theorem are NE. Let N be
large enough. Consider first an arbitrary point in the set c1 > Φ(c2) and c2 < c∗. By
Theorem 1, any point (c1, c2) in this set corresponds to the LRE set Ω(RP). Since
bothmanagers are concerned with the average of the agents’ payoffs in their respective
locations in the long run, manager 2 has no incentive to deviate. The reason is that
the agents in location 2 have coordinated on the Pareto-efficient equilibrium (P, P).
Manager 1 has no incentive to deviate either, because given c2 in this case, for any
c1 ∈ [1, 2], the agents in location 1 will always coordinate on (R, R) in the long run.
Using a similar analysis, one can show that any point in c2 > Φ(c1) and c1 < c∗ is a
NE. Then, we consider an arbitrary point in the set c1 < c∗ and c2 < c∗. In this region,
the LRE set is Ω(RR). No managers have an incentive to deviate, because, given the
capacity choice of one manager, agents in the other location will always coordinate
on (R, R), whatever is the capacity choice of the manager.

Now we show that the set of points in the (c1, c2)-space given in item (b) of the
theorem are not NE. We still consider large enough N . We first show that the points
in the set c1 > c∗ and c2 > c∗ are not NE. For an arbitrary point in this set, the LRE
set is Ω(RP) or Ω(PR), or both. The manager of the location in which the agents
coordinate on (P, P)with probability one (say, location 1) has no incentive to deviate.
The other manager (in location 2), however, always has an incentive to decrease the
capacity so that c2 < c1, because doing so will lead the agents in his location to
coordinate on (P, P) with probability one. We then show that the points in the set
c1 > c∗ and c1 < Φ(c2) are not NE. For any point (c1, c2) in this set, the LRE set
is Ω(RR). Manager 2 always has an incentive to increase the capacity c2 such that
c1 > Φ(c2) and c2 < c1, because then the agents in location 2 will coordinate on
(P, P). Analogously, we can show that the points in the set c2 > c∗ and c2 < Φ(c1)
are not NE. ��
Proof of Proposition 2 We show that if the managers care about the total payoffs in
the long run, the only possible candidate for the NE in the managers’ game is (c∗, c∗).
It is easy to show that, for N large enough, the points in the areas stated in (b) of
Theorem 2 are not NE. As shown in the proof of Theorem 2, in these areas, it is
always possible to change the capacity constraint of one location, so that agents in this
location coordinate on (P, P) with probability one. It not only improves the average
payoff, but also increases the number of the agents (by attracting agents from the other
location) in this location, hence increasing the total payoff of this location.

For any point in the remaining area, except (c∗, c∗), the manager of the location
in which agents coordinate on (R, R) in the long run always has an incentive to set a
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larger capacity, because it will increase the expected population size in his location,
without decreasing the average payoff. Consequently, it increases the (expected) total
payoff.

The only point left is (c∗, c∗). Whether or not it is a NE depends on the population
N and the payoff parameters in the basic coordination game, and we cannot provide
a general result. ��
Proof of Proposition 3 When managers can also choose mobility constraint and care
about the average of the location payoff, the points in the areas stated in (a)
of Theorem 2 still correspond to NE for large N . As explained in the proof of
Theorem 2, no managers would deviate, either because the location has coordinated
on (P, P), or because changing the effective capacity cannot improve efficiency. As
in Theorem 2, the points in the area c1 > c∗ and c2 > c∗ do not correspond to NE
for large N . The reason is that the manager of the location in which agents do not
coordinate on (P, P) always has an incentive to decrease the effective capacity (by
setting a lower ck). As explained in the proof of Theorem 2, this could change his
location to coordinate on (P, P), hence raising the average of the location payoff.

The only difference between this result and that in Theorem 2 is that the points in
the two areas c1 ≥ c∗, c1 < Φ(c2) and c2 ≥ c∗, c2 < Φ(c1) correspond to NE now.
Consider an arbitrary point in the area c1 ≥ c∗, c1 < Φ(c2). Ifmanagers cannot choose
mobility constraints, manager 2 has an incentive to increase c2 so that c1 > Φ(c2) and
the agents in location 2 coordinate on (P, P) in the long run. Now, since managers
can also choose mobility constraints, increasing c2 may not increase d2. The reason is
that the effective capacity of location 2 is now determined by the capacity constraint
of location 2 (c2) and the mobility constraint of location 1 (p1): d2 = min{c2, 2− p1}.
If d2 is equal to 2 − p1 then, increasing c1 cannot change d2, hence, manager 2 has
no incentive to deviate. Similarly, one can show that, with mobility constraints, the
points in the area c2 ≥ c∗, c2 < Φ(c1) correspond to NE as well. ��
Proof of Proposition 4 Given any point in the set (d1, d2) ∈ [1, 2]2 \({(1, 1)} ∪
{(d∗, d∗)}), each manager k who cares about the total payoff of his location has an
incentive to increase pk in order to decrease the effective capacity of the other location
d�, because it will either increase the expected population of location k or lead the
agents in location k to coordinate on (P, P) (which will also increase the expected
population size). The incentive will disappear when the managers choose pk = 1 for
both k = 1, 2, which correspond to (1, 1) in the (d1, d2)-space. Again, whether or
not the point (d∗, d∗) corresponds to a NE is very sensitive to the parameters of this
model, and a general result is not available. ��
Proof of Proposition 5 Consider the n×n pure coordinate gameG defined in Sect. 3.3.
We first identify the LRE for d1 < 2 and d2 < 2. In this case, there are n2 absorbing
sets, in which each location coordinates on a strict NE. Then, we have the follow
observations: (i) Given a location, the population share of the mutants required for
the transition toward a more efficient equilibrium is smaller than 1/2 and that for the
transition toward a less efficient equilibrium is larger than 1/2. (ii) For a < b < τ ,
given that a location coordinates on some equilibrium (sτ , sτ ), it requiresmoremutants
to achieve (sa, sa) than to achieve (sb, sb), and it requires less mutants to achieve
(sτ , sτ ) from (sa, sa) than from (sb, sb).
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We prove that Ω(sn, sn) is the LRE by contradiction. Suppose that Ω(sτ , sτ ′) with
τ 	= n or τ ′ 	= n is a LRE. That is, there exists an Ω(sτ , sτ ′)-tree that has the
smallest cost among all the other absorbing sets. Without loss of generality, suppose
τ 	= n. Then, by (ii), there must be a direct link fromΩ(sτ+1, sτ ′) to Ω(sτ , sτ ′) in this
tree. Changing the direction of the link between Ω(sτ+1, sτ ′) and Ω(sτ , sτ ′), we can
obtain a Ω(sτ+1, sτ ′)-tree. By (i), it has a lower transition cost than Ω(sτ , sτ ′)-tree, a
contradiction. Hence, the LRE is Ω(sn, sn).

For dk = 2 and d� < 2 (k, � = 1, 2, k 	= �), the unperturbed learning dynamics has
n + n(n − 1)/2 absorbing sets. There are n absorbing states, in which 2N agents in
location k coordinate on a strict NE, and location � 	= k is empty. There are n(n−1)/2
absorbing states, in which location k coordinates on a less efficient equilibrium than
location �. Hence, by the same analysis as above, one can prove that the unique LRE
is the state in Ω(sn, 0) for k = 1, or the state in Ω(0, sn) for k = 2.

For d1 = d2 = 2, there are 2n absorbing sets, in which one location has 2N agents
coordinating on a strict NE, and the other location is empty. Again, by (i) and (ii) and
a similar analysis, it is straightforward to show that the states inΩ(sn, 0) andΩ(0, sn)
are the LRE. ��

Proof of Proposition 6 Consider the (d1, d2)-space when the basic interaction is G.
For any point (d1, d2), all the agents coordinate on (sn, sn). Themanagers are supposed
to be concerned with the total payoffs of their respective locations. Hence, if the
managers can only choose the capacity constraint, they will always have an incentive
to increase ck in order to accommodate more agents. As a result, they will choose
c1 = c2 = 2. Given this strategy profile, the expected total payoff of each location is
larger than 0. If manager 1 deviates from this profile to a lower c1, then the LRE will
become Ω(0, sn), hence the total payoff in location 1 becomes 0. Similarly, manager
2 has no incentive to deviate either. Hence, c1 = c2 = 2 is the unique NE in this case.

If both managers can also choose the mobility constraints, each of them has an
incentive to increase both themobility and the capacity constraints, in order to increase
the lower and the upper bounds of the population size in his location. Since dk =
min{ck, 2 − p�}, what really determines the effective capacity dk of location k is the
capacity constraint of the other location p�. In the end, both managers will choose
p1 = p2 = 1. We show that pk = 1 and ck ∈ [1, 2] for both k = 1, 2 are NE. First,
manager k has no incentive to change ck , because no agents in the other location can
move to location k. Second, manager k has no incentive to increase pk either, because,
if so, the agents in his location may move out, and hence decrease the (expected)
population size in location k. ��
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