
Econ Theory (2014) 57:161–194
DOI 10.1007/s00199-014-0833-z

RESEARCH ARTICLE

Re-examining the effects of switching costs

Andrew Rhodes

Received: 11 April 2013 / Accepted: 13 July 2014 / Published online: 1 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Consumers often incur costs when switching from one product to another.
Recently, there has been renewed debate within the literature about whether these
switching costs lead to higher prices. We build a theoretical model of dynamic com-
petition and solve it analytically for a wide range of switching costs. We provide a
simple condition which determines whether switching costs raise or lower long-run
prices. We also show that even if switching costs reduce prices in the long run, they
may still increase prices in the short run. Finally, switching costs redistribute surplus
across time, and as such are shown to sometimes increase consumer welfare.

Keywords Switching costs · Dynamic competition · Markov perfect equilibrium ·
Linear-quadratic games

JEL Classification L11 · D21

1 Introduction

In many markets, consumers incur costs if they switch from the product they currently
purchase to another product sold by a different company. For example, in the US auto
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162 A. Rhodes

insurance industry, Honka (2013) estimates an average switching cost of $116, whilst
in the US pay-TV market Shcherbakov (2009) estimates switching costs of $109 for
cable and $186 for satellite. These amount to, respectively, 20, 32 and 52 % of what
a typical consumer would spend annually on these products. Evidence of significant
switching costs has also been found in several other industries, including cell phones
and bank deposits (Shy 2002) and also domestic gas (Giulietti et al. 2005).

Switching costs partially lock consumers to their initial supplier, creating the well-
known trade-off between ‘harvesting’ and ‘investing’. On the one hand, a firm might
charge a high price and harvest its existing customers, exploiting their reluctance to
switch. On the other hand, since consumers tend not to switch, there is a strong rela-
tionship between current market share and future profitability. A firm might therefore
prefer to invest in market share by charging a low price. The conventional wisdom has
been that the harvesting effect dominates, such that switching costs increase prices
(Farrell and Klemperer 2007). Such wisdom typically draws on two-period models,
in which firms offer ‘bargains’ to consumers when they are young, and ‘rip-offs’
when they become old. However, one drawback of these models is that they artifi-
cially separate out the investment and harvesting motives into the first and second
periods, respectively. In reality, firms often compete over a long time horizon and at
any moment are trying to both attract new consumers and sell to old ones. Therefore,
the subsequent literature has emphasized models with infinite horizons and has offered
some findings where small switching costs can reduce prices.

In this paper, we re-examine the effect of switching costs on prices, profits and
consumer surplus within a more general model of dynamic competition. This approach
has several distinctive features. Firstly, in contrast to other papers which typically focus
only on very small or very large switching costs, or which use numerical simulations,
it permits analytical results for a very wide range of switching costs. Secondly, it also
allows both firms and consumers to be forward-looking, whereas many other papers
make the restrictive assumption that consumers are myopic. Thirdly, it allows us to
study the impact of switching costs in both the short run and long run, whereas the
existing literature has tended to focus only on the latter. Distinguishing between the two
is important—we show that switching costs can affect prices differently, depending
upon the time horizon considered. Finally, it enables us to consider how switching costs
affect not only prices but also welfare. To this end, we provide a novel explanation for
why switching costs can be beneficial to consumers.

In more detail, the model considers two infinitely lived firms who sell to over-
lapping generations of consumers. In each period, the market is covered and product
differentiation is modelled using a linear Hotelling line. Linearity is important because
it enables us to find a closed form solution for equilibrium prices. It also allows us to
be very general in other dimensions. In particular, all agents in the model—including
consumers—are forward-looking, and we are able to state our results for very general
levels of the switching cost. We first show that the impact of switching costs on steady
state prices is almost always ambiguous and depends upon how patient consumers
are relative to firms. We then derive a necessary and sufficient condition for when
switching costs are pro-competitive, and show that it is satisfied unless consumers are
significantly more patient than firms. The intuition, which we expand upon below, is
that a firm’s incentive to ‘lock-in’ consumers far outweighs a consumer’s incentive to
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avoid being locked in. We therefore find a general presumption that in the long run,
switching costs make markets more competitive.

In the short run, the relationship between switching costs and prices is generally
more complicated and has rarely been studied within the previous literature. Additional
complexities arise because firms may start with unequal market shares, and therefore
have different pricing incentives. Compared with what happens in the long run, the
firm with larger market share charges a higher price, whilst the firm with the smaller
market share charges a lower price. This implies that the average (i.e. consumption
weighted) price can initially be quite high. However, over time firms’ market shares
become more symmetric, and the average price decreases monotonically. We provide
a condition which determines whether average price is higher with switching costs
than without. We also demonstrate that switching costs can be anti-competitive in the
short run and yet pro-competitive in the long run.

It is natural to ask whether switching costs can reduce prices by so much that they
actually benefit consumers. Young consumers gain if switching costs reduce prices.
However, old consumers always lose out—they bear the brunt of switching costs and
are never fully compensated for this by any price reductions. Therefore, switching
costs have a tendency to transfer surplus from the old to the young. When consumers
have a preference for current over future consumption, this transfer is beneficial.
Consequently for a wide range of parameters, a consumer’s lifetime expected surplus
is larger with switching costs than without.

Our modelling approach is most closely related to papers by Beggs and Klemperer
(1992), To (1996), Doganoglu (2010), Somaini and Einav (2013) and Fabra and García
(2014). They also use Hotelling-style models and, with the exception of the first
and last papers, have overlapping generations of consumers. Beggs and Klemperer
(1992) and To (1996) restrict attention to a special case where switching costs are
so high that no consumer ever actually switches. They both find that steady state
prices are higher compared to a market that has no switching cost.1 Doganoglu (2010)
restricts attention to another special case where switching costs are very low. Using
a model of experience goods, he shows that starting from zero, a small increase in
the switching cost leads to a decrease in the steady state price. Our approach in this
paper is very different, because we solve our model for a considerably wider range of
switching costs. We show that away from the two extremes which these other papers
focus on, the impact of switching costs on prices is ambiguous. We then derive and
interpret a condition on parameters which determines whether that impact is positive
or negative. Somaini and Einav (2013) solve a model which is even more general than
ours, and which allows for cost asymmetries and many (potentially multiproduct)
firms. However, they are interested in antitrust policy in dynamic markets, rather than
in determining analytically how switching costs affect prices and welfare. We also
note that by working with a simplified version of their model, we are able to derive

1 When firms sell homogeneous products, switching costs also generally lead to higher prices. Intuitively,
this is because switching costs help otherwise identical firms to differentiate themselves. Farrell and Shapiro
(1988) show this in a model of sequential price setting, whilst Padilla (1995) and Anderson et al. (2004)
demonstrate this when firms set prices simultaneously. Chen and Rosenthal (1996) analyse a related model
where consumers do not have explicit switching costs, but instead display inertia in their purchase decisions.
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all our main results analytically and are able to go beyond looking at just steady state
outcomes. Finally, Fabra and García (2014) develop a continuous-time model, in which
consumers randomly have the opportunity to switch firms. Like us the authors also
distinguish between the short run and the long run. They find that switching costs can
lead to higher prices in the short run, if firms’ market shares are sufficiently asymmetric.

Several other recent papers are also related. Cabral (2014) proves that switching
costs can lead to lower prices, and like us he shows this for a wide range of switching
costs. However, in his model firms can price discriminate. This means that, for the
most part, consumers behave myopically when deciding which product to buy. As a
result, an important effect in our model—namely consumers’ fear of becoming locked
in to a high-price firm—is absent from his model. Arie and Grieco (2014) show that
firms with low market shares are more likely to be harmed by small switching costs,
and to respond by reducing their price. Using a logit model, Pearcy (2014) derives a
closed form solution for steady state prices and shows that switching costs are more
likely to be pro-competitive in markets that have many firms. Finally, Bouckaert et
al. (2012) and Biglaiser et al. (2013) explore the consequences of heterogeneity in
switching costs. They show that an increase in the distribution of switching costs can
lead to lower industry profits.

The paper proceeds as follows. Section 2 outlines the model, whilst Sect. 3 proves
existence and uniqueness of an equilibrium in affine strategies. We then examine how
switching costs affects prices and profits (in Sect. 4) and consumer surplus (in Sect. 5).
Section 6 then checks the robustness of our results, whilst Sect. 7 concludes with some
directions for future research. All omitted proofs are provided either in the Appendix,
or in the working paper version (Rhodes 2014).

2 Model

Time is discrete and there are infinitely many periods, denoted by t = 1, 2, . . .. There
are two firms A and B that are located on a Hotelling line at positions x = 0 and x = 1,
respectively. The marginal cost of production is normalized to zero for both firms. Each
period a unit mass of new consumers is born, who then live for two periods before
exiting the market. Consequently at any moment, there are (equal-sized) overlapping
generations of ‘young’ and ‘old’ consumers in the economy. At the start of period t ,
each consumer is randomly assigned a location xt on the Hotelling line, which (for
old consumers) is independent of their location in the previous period. A consumer
with location xt values product A at V − xt and product B at V − (

1 − xt
)
. V is

sufficiently large that the market is always covered. If an ‘old’ consumer bought from
firm i when young but now wants to buy from firm j �= i , she must incur a switching
cost s ∈ (0, 7/10].2 As explained more fully below, we assume s ≤ 7/10 in order to

2 We could have written consumer valuations as V − τ xt and V − τ (
1 − xt ), and let the switching cost be

τ s ∈ (0, 7τ/10]. Since the switching cost would then move proportionally to τ , we would continue to have
an interior equilibrium in which (i) equilibrium prices would be scaled up by τ , but (ii) demands and the
amount of switching would be invariant to τ , and hence, (iii) none of our analysis would differ qualitatively
from the case τ = 1. Therefore, our results apply even in markets with little product differentiation,
provided that the switching cost is of the same order of magnitude (that is, it does not exceed 7τ/10). On
the other hand, if we fix a switching cost but reduce product differentiation, at some point the switching
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ensure that in the equilibrium which we solve for, each firm always loses some of its
past customers due to switching. Finally, consumers and firms are both risk-neutral
and have discount factors δc and δ f , respectively, which lie in (0, 1).

The share of young consumers who buy product A in period t is denoted by x̃ t

(Hence, x̃ t also denotes the mass of old consumers who are ‘locked’ into firm A
at the start of period t + 1, and who must pay a switching cost in order to buy the
other product.). We assume that in the first period x̃0 ∈ [0, 1] old consumers are
locked to firm A, whilst the remaining 1 − x̃0 are locked to firm B. The timing of
the model is as follows. In each period t = 1, 2, . . ., the two firms simultaneously
and non-cooperatively choose prices pt

A and pt
B , in order to maximize their respective

discounted sum of current and future profits. Firms cannot commit to any future
prices. Consumers then observe pt

A and pt
B as well as their own personal location xt .

Young consumers buy whichever product maximizes their expected lifetime utility.
Old consumers either stay with their initial supplier or pay the switching cost and buy
from the competitor.

We focus on equilibria in Markov strategies, in which the past influences current
prices only via its effect on a pay-off-relevant state variable. In our problem, the natural
state variable for period t is x̃ t−1. The solution concept used will be Markov perfect
equilibrium (MPE). In more detail, we will conjecture (and then verify) existence of a
MPE in which firms’ equilibrium prices are stationary, symmetric and linear functions
of the state variable. Note that this is a restriction on equilibrium and not on strategy
spaces. In particular when we verify subgame perfection of the proposed equilibrium
strategies, we allow a firm to make an arbitrary (one-shot) deviation in its price. A
couple of remarks are in order. Firstly, the Markovian restriction means that we rule
out more collusive equilibria, in which firms may earn higher profits by conditioning
their prices on the entire history of the game. Secondly, as is standard, our analysis
does not rule out the possibility that there could exist other, nonlinear MPE as well.3

Footnote 2 continued
cost will exceed 7τ/10. At this point, our analysis is no longer necessarily valid. With further reductions in
product differentiation, equilibrium prices would probably resemble more closely those from models with
homogeneous products, such as Farrell and Shapiro (1988).
3 However, we believe that it is natural to focus on symmetric linear equilibria. In particular, consider a
finite-horizon version of our model, in which there are only T periods (Thus, the young consumers born
in period T know that they live for only one period). Let ht denote the history of play up to and including

period t , and let V t
i

(
ht−1

)
denote firm i’s anticipated discounted sum of profits earned between period t

and period T . Suppose we place no restrictions on either strategy spaces or equilibrium, except for subgame
perfection. A simple inductive argument shows that if V t+1

A

(
ht ) and V t+1

B

(
ht ) are symmetric and quadratic

functions of x̃ t , then (i) in period t there is a unique Nash equilibrium, where firms’ prices pt
A

(
ht−1

)
and

pt
B

(
ht−1

)
are symmetric linear functions of x̃ t−1, and (ii) V t

A

(
ht−1

)
and V t

B

(
ht−1

)
are also symmetric

quadratic functions of x̃ t−1. Moreover, it is also straightforward to show that in the T th period, (i) there is a

unique Nash equilibrium where pT
A

(
hT −1

)
and pT

B

(
hT −1

)
are symmetric linear functions of x̃ T −1, and

(ii) V T
A

(
hT −1

)
and V T

B

(
hT −1

)
are symmetric quadratic functions of x̃ T −1. Therefore, by backwards

induction, the finite-horizon version of our model has a unique subgame perfect equilibrium, where (just
as we assume for the infinite-horizon case) firms’ pricing strategies are linear symmetric functions of only
their market shares in the previous period.

123



166 A. Rhodes

This is a simplified version of the set-up in Somaini and Einav (2013), which also
allows for arbitrarily many firms whose marginal costs may differ. Their paper is
primarily concerned with antitrust policy in markets with switching costs and does
not analytically determine how these switching costs affect equilibrium prices and
welfare. One advantage of our simpler set-up is that we are able to derive all our main
results analytically. Our set-up is also isomorphic to Doganoglu (2010) when in our
model δc = δ f , and when in his model Δ = 2 (Δ is a parameter in his model which
captures heterogeneity in consumers’ product valuations.). However, in his model
firms sell experience goods, and therefore, consumers only learn their match with
a product after consuming it. As such, the foundations of our two models are very
different. In addition, Doganoglu focuses on comparative statics of the steady state
price around the point s = 0. Since our model does not have experience goods, we
have one less parameter (namely Δ); this allows us to study prices both in and out of
steady state, as well as consumer surplus, and we do this for all s ∈ (0, 7/10].

3 Solving the model

As explained above, we look for MPE in which firms’ equilibrium prices are stationary,
symmetric and linear functions of the state variable. In particular, we hypothesize that
firms’ equilibrium prices are, respectively,

pt
A

(
x̃ t−1

)
= J + K

(
x̃ t−1 − 1/2

)
(1)

pt
B

(
x̃ t−1

)
= J − K

(
x̃ t−1 − 1/2

)
(2)

and that their equilibrium value functions can be expressed as

V t
A

(
x̃ t−1

)
= M + N

(
x̃ t−1 − 1/2

)
+ R

(
x̃ t−1 − 1/2

)2
(3)

V t
B

(
x̃ t−1

)
= M − N

(
x̃ t−1 − 1/2

)
+ R

(
x̃ t−1 − 1/2

)2
(4)

These equations can be interpreted as follows. When x̃ t−1 = 1/2, each firm sold to
half of the young consumers born in period t −1. From period t onwards, the two firms
are symmetric, each charging the same price J and earning the same discounted profits
M . When instead x̃ t−1 > 1/2, firm A sold to more than half of young consumers in
period t − 1. We prove later on that K and N are both positive. Therefore, whenever
x̃ t−1 > 1/2, firm A charges a higher price in period t than firm B and also enjoys
higher discounted profits.

Consider an arbitrary period t , and fix the state variable x̃ t−1. To begin with, let us
suppose that in period t , the two firms charge (potentially off-path prices) pA and pB ,
respectively. Let us also suppose that both firms are expected to play the equilibrium
pricing strategies (1) and (2) from period t + 1 onwards. Given these assumptions, we
now solve for each firm’s demand in period t .
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Behaviour of old consumers Suppose an old consumer bought product A when she
was young. When old, she can again buy A and enjoy a surplus V − xt − pA, or
she can switch to product B and get V − (

1 − xt
) − pB − s. Therefore, buying A

again is optimal if and only if xt ≤ ẋ t = (1 + pB − pA + s) /2. Similarly, an old
consumer who bought B when she was young optimally switches to A if and only if
xt ≤ ẍ t = (1 + pB − pA − s) /2. We will show that since the switching cost is not
too large, in equilibrium ẋ t , ẍ t ∈ (0, 1), i.e. generically each firm has some consumers
switching away from it and others switching towards it.

Behaviour of young consumers Consumers born in period t form expectations about the
prices they will face in the following period. For now, let us simply denote these price
expectations by Ept+1

A and Ept+1
B . If a young consumer buys A, she gets an immediate

pay-off V − xt − pA; when old, she will stay with A and get V − xt+1 − Ept+1
A if xt+1

is sufficiently low, otherwise she will switch to B and get V − (
1 − xt+1

) − Ept+1
B −

s. Taking an expectation over all possible values of xt+1, the young consumer can
calculate her expected lifetime pay-off from buying product A. She can similarly
calculate the expected utility from product B and buys whichever product is best.

Lemma 1 In any period t, there exists a threshold x̃ t such that young consumers with
location xt ≤ x̃ t buy product A, and young consumers with location xt > x̃ t buy
product B. The threshold is

x̃ t = 1

2
+

pB − pA + δcs
(

Ept+1
B − Ept+1

A

)

2
(5)

Young consumers located at x̃ t expect to get the same lifetime utility from both prod-
ucts and are therefore indifferent between them. People located to the left (respectively,
the right) of x̃ t have a stronger initial preference for product A (respectively, product
B ) and therefore buy it.

It only remains to specify how consumers form price expectations. Recall from
above that by assumption, even if consumers observe prices in period t which are off
the equilibrium path, these consumers still believe that firms will use the equilibrium
pricing strategies (1) and (2) from period t +1 onwards. In other words, we assume that
regardless of pA and pB , consumers expect to pay Ept+1

A = J + K
(
x̃ t − 1/2

)
and

Ept+1
B = J − K

(
x̃ t − 1/2

)
in the following period. Substituting this into Eq. (5) and

rearranging, we find that firm A’s market share amongst young consumers in period t
is equal to

x̃ t (pA, pB) = 1

2
+ pB − pA

2 (1 + K δcs)
(6)

Behaviour of firms We know from above that in period t , product A is bought by x̃ t

young consumers and by x̃ t−1 ẋ t + (
1 − x̃ t−1

)
ẍ t old consumers. We can therefore

write the demand for product A in period t as

Dt
A

(
pA, pB, x̃ t−1

)
= 1 + (pB − pA)

2 + K δcs

2 (1 + K δcs)
+ s

(
x̃ t−1 − 1/2

)
(7)
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In order for the strategies in (1) and (2) to constitute a MPE, they must be subgame
perfect (see Fudenberg and Tirole 1991). In particular suppose that in period t , firm
B plays the equilibrium strategy given by Eq. (2), i.e. pB = pt

B

(
x̃ t−1

)
. Subgame

perfection requires that for any history, and hence for any state variable z,

pt
A (z) = arg max

pA
pA Dt

A

(
pA, pt

B (z) , z
) + δ f V t+1

A

(
x̃ t (

pA, pt
B (z)

))
(8)

Differentiating the right-hand side with respect to pA and imposing pA = pt
A (z) gives

a first order condition. Equations (1), (2), (3) and (6) can then be used to substitute
out for pt

A (z), pt
B (z) and V t+1

A

(
x̃ t

)
. This leaves a single equation which is a function

only of z and underlying parameters. Since this one equation must hold for all values
of z, we can use the method of undetermined coefficients to get two conditions on
underlying parameters. In addition it should be the case that

V t
A (z) = pt

A (z)× Dt
A

(
pt

A (z) , pt
B (z) , z

) + δ f V t+1
A

(
x̃ t (

pt
A (z) , pt

B (z)
))

(9)

Again after making appropriate substitutions, Eq. (9) can be expressed only in terms
of z and underlying parameters. Since this one equation must hold for all values of
z, we can use the method of undetermined coefficients to get three more conditions
on underlying parameters. Full details of these manipulations are available in the
Appendix.

A symmetric linear Markovian strategy is characterized by the parameters
J, K ,M, N and R. We can obtain (implicit) expressions for these parameters by
solving the five conditions mentioned above. This then allows us to state the following
result.4

Proposition 1 For any s ∈ (0, 7/10], there is a unique MPE in linear strategies as
given by Eqs. (1) and (2). The behavioural parameter J satisfies

J = 2 + 2K δcs + δ f K

2 + K δcs + δ f s
(10)

whilst K lies in [s/3, 3s/8) and satisfies the following equation

δ f K 3 (2 + K δcs)− 3K (2 + K δcs) (1 + K δcs)2 + 2s (1 + K δcs)3 = 0 (11)

Proposition 1 imposes the restriction s ≤ 7/10. This is because when setting up
demand in Eq. (7), we assumed that generically each firm has both some consumers
switching to it and others switching from it. However, switching in both directions

4 In fact, we can obtain an even stronger result. Equations (1) and (2) impose symmetry, but we could relax

this by conjecturing that firm i’s (i = A, B) equilibrium price is pt
i

(
x̃ t−1

)
= Ji + Ki

(
x̃ t−1

)
and its

value function is V t
i

(
x̃ t−1

)
= Mi + Ni

(
x̃ t−1 − 1/2

)
+ Ri

(
x̃ t−1 − 1/2

)2
. The working paper Rhodes

(2014) considers such equilibria, under the assumption that generically each firm has both some consumers
switching towards it and others switching away from it. It turns out that this more general set-up still has a
unique equilibrium, namely the symmetric one given by Proposition 1.
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can only happen in equilibrium if the difference in prices
∣
∣pt

B

(
x̃ t−1

) − pt
A

(
x̃ t−1

)∣∣ =
K

∣∣2x̃ t−1 − 1
∣∣ is not too large. Since K is related to s, this means that s cannot be

too large either. We show in the Appendix that it is sufficient to restrict attention
to switching costs that are less than 7/10.5 To put this into perspective, we show
in the next section that although a wide range of prices may be charged by the two
firms, in equilibrium no firm will ever charge more than about 1.2. Consequently,
the equilibrium in Proposition 1 is (at a bare minimum) valid for any switching cost
between about 0 and 60 % of market prices. Most real-world estimates of switching
costs, some of which were summarized in the introduction, comfortably lie in this
interval.

Proposition 2 For any initial x̃0, the market converges to a steady state in which firms
split demand equally and charge a price J . In period t, the location of the marginal
young consumer satisfies

x̃ t − 1/2 = − K

1 + K δcs

(
x̃ t−1 − 1/2

)
(12)

Proof To derive Eq. (12), simply substitute (1) and (2) into (6). Proposition 1 says that
K ∈ [s/3, 3s/8) and therefore K < 1 + K δcs. This implies that limt→∞ x̃ t = 1/2
and, using Eqs. 1 and 2, also implies that limt→∞ pt

A = limt→∞ pt
B = J . ��

If at the beginning of the game x̃0 = 1/2, the market is always in steady state,
with firms charging J in every period and splitting the market equally. If instead at
the beginning x̃0 �= 1/2, over time the market converges to the aforementioned steady
state. During this convergence process, the position of the marginal young consumer
x̃ t oscillates around 1/2. Consequently, the prices set by the two firms also oscillate
around J . This oscillatory behaviour arises because in each period, the firm which
previously sold to more than half of young consumers exploits this fact by charging
a higher price than its rival. As a result, it then sells to fewer than half of the current
young consumers.

4 The effect of switching costs on prices

4.1 Steady state

Remark 1 When s = 0, the steady state price is equal to 1. The steady state price is
also decreasing in s at s = 0.

5 For example when δc = δ f = 0, Eq. (11) has a unique solution K = s/3, and switching occurs in
both directions if and only if s < 3/4. More generally the relevant solution to Eq. (11) lies in (s/3, 3s/8),
and therefore, the critical switching cost will be closer to 7/10. Once this critical threshold is crossed,

for some
{

pt
A

(
x̃ t−1

)
, pt

B

(
x̃ t−1

)
, x̃ t−1

}
switching occurs in both directions, whilst for others, it only

occurs in one direction. Consequently, the two firms’ demand elasticities are discontinuous in x̃ t−1, and
this significantly complicates the analysis.
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Fig. 1 A plot showing the
infimum and supremum over(
δc, δ f

) ∈ (0, 1)2 of the steady
state price, for each value of the
switching cost

Proof Using Eqs. (10) to (11), it is straightforward to show that J = 1 and K = 0
when s = 0. Totally differentiate Eq. (11) with respect to s; after substituting in
s = K = 0, this simplifies to ∂K/∂s|s=0 = 1/3. Totally differentiate Eq. (10) with
respect to s; after again substituting in s = K = 0, this simplifies to ∂ J/∂s|s=0 =(
δ f /2

) (−1 + ∂K/∂s|s=0
) = −δ f /3 < 0. ��

Several recent papers have shown that starting from s = 0, steady state price is
decreasing in the switching cost. The same is also true in our model. Other papers then
use numerical simulations to show that the steady state price is lower for somewhat
larger switching costs as well. However, as Fig. 1 makes clear, away from s = 0 the
effect of switching costs on steady state price is ambiguous and depends upon the
specific parameter values that we choose. To interpret Fig. 1, note that the discount
factors δc and δ f both affect the (unique) steady state price and can both take values
anywhere on (0, 1). Therefore, for any given value of the switching cost, we can
compute the infimum and supremum over

(
δc, δ f

) ∈ (0, 1)2 of the steady state price.
Figure 1 then plots the infimum and supremum for each switching cost in [0, 7/10].
Notice that even when the switching cost is close to zero, steady state price can be
either above or below 1, depending upon the values assigned to δc and δ f . Moreover
as the switching cost grows, so does the gap between the highest and lowest steady
state prices that we could observe. For example depending upon the specific values
attached to δc and δ f , when s = 7/10 steady state price can be as much as 8 % higher
or 17 % lower than it is when s = 0. Therefore, comparative statics around s = 0 are
rather special.

It is convenient to split up the impact of switching costs on price, into the following
four effects, all of which are mentioned in various parts of the literature. These are the
harvesting, poaching, investment and consumer price effects.6 The first two reflect
pricing incentives on old customers. According to the harvesting effect, firms should
charge a high price and exploit their old customers’ reluctance to switch away. How-
ever, according to the poaching effect, firms should charge a low price and poach some
of their rival’s customers (using the low price to overcome their reluctance to switch).
It turns out that since each firm has exactly half of the old customers, in steady state

6 Different papers use slightly different terminology. Within the context of two-period models, Fudenberg
and Tirole (2000) discuss poaching, whilst Klemperer (1987) describes the other three effects.
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the harvesting and poaching effects cancel out.7 Two assumptions are crucial in this
respect. First, we assumed that s is small enough to guarantee that switching actually
occurs. By contrast in Beggs and Klemperer (1992) and To (1996), the switching cost
is so large that nobody ever switches. Poaching is therefore impossible, and both firms
just harvest. Second, we assumed that preferences change independently over time. In
Sect. 6, we show that if preferences are positively correlated, harvesting can dominate
poaching.

Since the harvesting and poaching effects cancel, the steady state price is driven
only by pricing incentives on young consumers. It is simple to show that V t+1

A

(
x̃ t

)

and V t+1
B

(
x̃ t

)
are, respectively, increasing and decreasing in x̃ t , i.e. market share in

one period is valuable in the next. Therefore, according to the investment effect, firms
should charge lower prices, as they try to win market share and thereby improve their
future profitability. On the other hand, if a firm cuts its price, consumers understand
that it is only temporary and will be followed by a price increase in the next period
(c.f. Eqs. 1 and 2). Young consumers therefore have relatively inelastic demands, and
according to the consumer effect, firms should respond by charging higher prices.

Lemma 2 The steady state price strictly decreases in δ f and strictly increases in δc.

Discount factors affect the steady state price as one would expect.8 A higher δ f

means that firms care more about future profits, and therefore, both cut their prices
in an attempt to increase their market shares. A higher δc means that consumers put
less weight on temporary price cuts, such that firms face less elastic demand curves
and therefore charge a higher price. The real question—which the next proposition
addresses—is which of the investment and consumer effects dominates.

Proposition 3 For any δc and s ∈ (0, 7/10], there exists a δ̃ f ∈ (δcs/2, 3δcs/5) such
that the steady state price is less than 1 if and only if δ f > δ̃ f .

Proposition 3 confirms analytically that price can be either higher or lower depend-
ing upon parameters. However, we expect that in practice, firms are more patient than
consumers, and therefore that δ f ≥ δc > δ̃ f . The model would then predict that steady
state price is lower with switching costs than without. Equivalently, the investment
effect outweighs the consumer effect. The interpretation is that firms cut their price as
a defensive measure, to prevent their rival from stealing valuable market share.

To understand why the investment effect dominates, recall from Sect. 3 that old
consumers definitely buy product A if xt+1 ≤ (1 − s) /2 and definitely buy product
B if xt+1 ≥ (1 + s) /2. We also know that if old consumers are in the ‘lock-in region’
xt+1 ∈ [(1 − s) /2, (1 + s) /2], they stay with their initial supplier. Consider the
investment effect. If firm i captures a few extra young consumers, they are valuable
in the next period (i) if they buy product i when old and (ii) if, but for buying i when
young, they would buy j �= i when old. Equivalently, these extra young consumers are

7 This intuition is similar to that given by Arie and Grieco (2014). They argue that a switching cost is like
a subsidy to a firm’s existing customers but a tax to everybody else. Since duopolists have exactly half the
market in steady state, the tax and subsidy effects cancel.
8 Somaini and Einav (2013) show the same numerically, for particular parameter values of their model.
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valuable if and only if they lie in the lock-in region in the next period. The probability
of actually being in the lock-in region is s. Moreover, the value created for the firm by
these additional young consumers is J since this is what they will contribute to future
revenue. Therefore, if a firm acquires a few extra young consumers, the direct effect
on future profits is Jδ f s.9

Now consider the consumer effect. According to Eq. (6), the marginal young con-
sumer has location

x̃ t (pA, pB) = 1

2
+ pB − pA

2 + 2K δcs
(13)

where the term 2K δcs in the denominator measures the consumer effect. Intuitively,
if firm i slightly reduces its price, it will increase its market share. Using Eqs. (1) and
(2), young consumers can infer that in the following period, i’s price will be higher
and j (�= i)’s price will be lower. In particular, pt+1

i − pt+1
j increases in proportion to

2K . However, a young consumer who buys product i only incurs an expected future
loss of 2K δcs. Intuitively only when a consumer finds herself in the lock-in region,
does her initial decision to choose i over j actually cause her to pay the extra 2K .10

Since the probability of ending up in the lock-in region is only s, the consumer effect
is only on the order of 2K δcs.

Comparing the investment and consumer effects is just like comparing a level with a
difference. Notice that everybody cares about what happens when a consumer becomes
‘locked in’. However, whilst the benefit of lock-in to a firm is a level (namely the price
paid to it by the consumer), the cost to the consumer is only a difference (namely
the extra amount she must pay). Intuitively if the switching cost is not too large, the
level effect must swamp the difference effect. This is because for small s, the link
between current market share and future prices is small, i.e. the additional amount that
a locked-in consumer pays is also small. Put slightly differently, since we expect firms
to be more patient than consumers, a firm’s incentive to lock people in will outweigh
a consumer’s incentive to avoid being locked in. Consequently, switching costs are
pro-competitive in steady state.

Two other points are worth briefly making. First, recall that around s = 0 switching
costs are pro-competitive irrespective of how large δ f is relative to δc. The reason is
that whilst the investment effect Jδ f s is first order in s, the consumer effect 2K δcs
is only second order because K is of the same order as s. Hence around s = 0, the
investment effect must dominate. Secondly, note that whilst the investment effect is
roughly linear in s, the consumer effect is more-than-linear in s. This suggests that
the investment effect will dominate initially, but then later the consumer effect will

9 In fact, δ f × (dVA/dx) = −K δ f + Jδ f s because the rival firm will become more aggressive in the next
period and reduce its price in proportion to K . However, this additional (indirect, negative) effect on firm
value does not qualitatively affect the intuition.
10 For example suppose hypothetically that the young consumer knows that when she becomes old, her
location will satisfy xt+1 �∈ [(1 − s) /2, (1 + s) /2]. She therefore knows that her initial purchase decision
will have no effect on her subsequent one, and moreover that she is equally likely to buy either of the two
products. Hence, her future pay-off from locking in to i or j is the same (Of course an infinitesimally small
increase in the relative future price of good i is bad news if the consumer turns out to really like product i
in the following period, and is good news if she ends up really liking product j , but this is immaterial ex
ante.).
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become more powerful. Therefore, by solving the model analytically, we are able to
shed some light on why Doganoglu (2010) and Somaini and Einav (2013) both find
(numerically) that steady state price is U shaped in the switching cost.

Finally, our intuition can also shed light on the broader question of why switching
costs can be pro-competitive when they are relatively small, but (as shown by Beggs
and Klemperer 1992 and To 1996) not when they are very large.11 As discussed earlier,
one reason is that when switching costs are very large, firms are unable to poach from
their rival. Consequently, they focus more on harvesting, which is a force for higher
prices. A second related reason is that when switching costs are very large, the link
between a firm’s market share and its price will become stronger. Equivalently, the
consumer effect will be stronger than in our model, and eventually probably dominates
the investment effect. This again explains why very large switching costs lead to a
higher steady state price. It is worth noting again, however, that all our results are
valid (at a minimum) for any switching cost between about 0 and 60 % of the steady
state price. Therefore, a very large switching cost is required to overturn our results.

4.2 Outside of steady state

Suppose that at the beginning of the game, the state variable is x̃0 �= 1/2. Proposi-
tion 2 guarantees that the market will converge to a steady state where firms split the
market equally. Nevertheless, it is important to understand how switching costs affect
competition during this convergence process. Since in each period firms will generally
face different demand schedules, they will not charge the same price. At any point
in time, the firm with the larger market share focuses more on harvesting and less
on poaching, and consequently charges more than its smaller rival. In fact, a simple
calculation reveals that depending upon parameters, one firm might charge as much
as 33 % more than its rival.

One natural measure of market competition is the average (transaction) price. In
period t , the average price paid by consumers is

J +
(

x̃ t−1 − 1/2
)2

K

(
s − K

2 + K δcs

1 + K δcs

)
(14)

which (weakly) exceeds the average price J which consumers pay in the long-run
steady state outcome. This is because even though pt

A

(
x̃ t−1

) + pt
B

(
x̃ t−1

) = 2J in
every time period, in the short run one firm is able to both charge a higher price and sell
to more than half of the market. However,

(
x̃ t−1 − 1/2

)2
decreases monotonically over

11 Empirical evidence supports this distinction between small and (very) large switching costs. Dubé et al.
(2009) look at psychological costs of switching between brands of orange juice and margarine, and estimate
that they reduce the market prices of these products by 3–6 %. However, Viard (2007) finds that number
portability (i.e. a reduction in switching costs) led to a 14 % reduction in prices charged to firms that had
toll-free phone numbers. The difference may be that the market for toll-free calls has much larger switching
costs and is therefore closer to the Beggs and Klemperer (1992) model; switching costs are likely to be
substantial because a change in telephone number must be advertised to all potential customers. However,
in many other markets, switching costs are significant yet much smaller (see the estimates provided in the
introduction), so our results are more applicable.
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time (recall Proposition 2), so it is clear from Eq. (14) that the average price decreases
over time.

We showed earlier in Proposition 3 that the long-run price is below 1 if and only if
δ f exceeds a threshold δ̃ f . The corresponding result for the short run is as follows:

Proposition 4 For any δc, any x̃ t−1 �= 1/2, and any s ∈ (0, 7/10], there exists a

threshold δ̂ f
(∣∣x̃ t−1 − 1/2

∣∣) ∈
(
δ̃ f , 1

)
such that the average price in period t is

below 1 if and only if δ f > δ̂ f
(∣∣x̃ t−1 − 1/2

∣∣). The threshold strictly increases in∣
∣x̃ t−1 − 1/2

∣
∣ and tends to δ̃ f as x̃ t−1 → 1/2.

Thus, the short-run impact of switching costs is also ambiguous, and again depends
upon a comparison of firm and consumer discount factors. Compared to the case of no
switching cost, average price is higher in all periods if δ f < δ̃ f but lower in all periods

if δ f > δ̂ f
(∣∣x̃0 − 1/2

∣∣). More interestingly when δ f ∈
(
δ̃ f , δ̂ f

(∣∣x̃0 − 1/2
∣∣)

)
, the

average price starts out above 1, but then falls as the market matures and at some
point drops below 1. Consequently under these circumstances, switching costs are
anti-competitive in the short run and yet pro-competitive in the long run.

The intuition for why switching costs can have different short- and long-run effects
is as follows. In the long run, all that matters is the relative strengths of the investment
and consumer effects. Therefore, switching costs are pro-competitive whenever δ f /δc

is sufficiently large, even if in absolute terms δc and δ f are both small. However, in the
short run, the larger firm’s emphasis on harvesting provides an additional upward boost
to prices. In order to counteract this, the investment effect has to be big in absolute terms
as well. Therefore, a large δ f /δc is no longer sufficient to guarantee that switching
costs are pro-competitive—δ f has to be sufficiently large in absolute terms as well.
To illustrate this point, suppose x̃0 = 1, s = 7/10 and δc = 0, i.e. consumers are
myopic. Consider two cases, one where δ f = 1/20 and another where δ f = 1/10. In
the long run, switching costs are pro-competitive (prices are, respectively, 0.989 and
0.977) because δ f is larger than δc. However, in the short run, switching costs are anti-
competitive in the first case (average price initially exceeds 1.002) yet pro-competitive
in the second case (average price does not exceed 0.992).

In light of Proposition 4, it is natural to ask whether a switching cost could cause
both firms to charge a lower price.

Remark 2 Start with s = 0 and introduce a small switching cost. Provided δ f > 1/2
both firms charge a strictly lower price in every period. This is true for any δc and any
initial condition x̃0.

Proof Recalling the proof of Remark 1, ∂K/∂s|s=0 = 1/3 and ∂ J/∂s|s=0 = −δ f /3.
Note that ∂pt

i

(
x̃ t−1

)
/∂s

∣∣
s=0 ≤ ∂ J/∂s|s=0 + ∂K/∂s|s=0 /2 which is strictly negative

whenever δ f > 1/2. ��
One interesting benchmark is when x̃0 = 1, i.e. at the start of the game, all old con-

sumers are locked to firm A. This could happen if firm A were previously a monopolist,
and V was sufficiently high to induce it to sell to all young consumers.12 Using Eq. (1)

12 Recall that V − 1 denotes the valuation of the consumer who is located farthest away from that firm.
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Fig. 2 A plot showing the
infimum and supremum over(
δc, δ f

) ∈ (0, 1)2 of an
incumbent monopolist’s price,
for each value of the switching
cost

firm A would charge J + K/2 in the first period. It is also clear from Eqs. (1) and (2)
that in all other time periods and for all other initial conditions x̃0, both firms would
charge strictly less than J + K/2. This is intuitive because out of everybody, a (recent)
monopolist has the strongest incentive to harvest its customer base via a high price.
Surprisingly however, Remark 2 shows that even an incumbent monopolist (which
faces a brand new entrant) may respond to a small switching cost by reducing its
price. This is because if the incumbent cares enough about the future, it will follow the
entrant and cut its price as a defensive measure to avoid losing too much market share.
Of course one would expect that as the switching cost grows, the incumbent’s power
over its old customers grows and therefore the harvesting effect should strengthen.
This is shown graphically in Fig. 2. In particular for a given value of the switching
cost, we can compute the infimum and supremum over

(
δc, δ f

) ∈ (0, 1)2 of the price
charged by an incumbent monopolist. Figure 2 plots the infimum and supremum, for
each switching cost in [0, 7/10]. As s increases, there is a trend towards higher prices.
However, even for very high switching costs, there are combinations of δc and δ f such
that the incumbent’s price is below the frictionless benchmark 1. Therefore, even very
large switching costs may cause both firms in the market to charge a lower price in
every period.

To summarize, we have shown that the average price paid by consumers is higher in
the short run when the market is outside steady state. We then derived a condition which
determines whether this average price is higher or lower compared to a market where
consumers do not incur switching costs. Finally, we demonstrated that under certain
conditions, even a firm with a very large customer base may respond to switching
costs by lowering its price.

4.3 Profits

Since there is a close connection between prices and profits, the previous two sub-
sections suggest that firms are probably made worse off by switching costs. Firstly in
steady state, each firm charges a price J and sells to one unit of consumers in every
period. Therefore, switching costs reduce long-run profits if and only if they reduce
long-run price. Proposition 3 then implies that switching costs are bad for firms except
when consumers are especially patient. Secondly outside of steady state, total industry
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profit in any individual period t is equal to pt
A

(
x̃ t−1

)× Dt
A (.)+ pt

B

(
x̃ t−1

)× Dt
B (.).

The latter is proportional to the average price charged in period t , which we defined
earlier in Eq. (14). Therefore, Proposition 4 says that unless firms are sufficiently
impatient, industry profit will be lower in every period. Of course if firms start off
with unequal market shares, the larger firm may still benefit from switching costs.
However, analogous to Remark 2, we can show that provided δ f > 1/2, a small
switching cost reduces every firm’s (discounted sum of) profits. In particular, even a
recent monopolist can be harmed by the introduction of a small switching cost.

5 The effect of switching costs on consumer welfare

It is natural to ask whether switching costs could reduce prices so much, that they
actually benefit consumers. To answer this question, we will focus on steady state
consumer welfare.

In steady state, both firms charge the same price, so Eq. (6) shows that young
consumers buy from A if xt ≤ 1/2 and buy from B if xt > 1/2. However, these
are exactly the same choices that they would make in a market without switching
costs. Therefore, when consumers are young, they benefit from switching costs if and
only if the equilibrium price is lower. This is obviously not true for old consumers,
because some of them incur the switching cost (a direct loss), whilst others of them
keep buying an inferior product to avoid paying the switching cost (an indirect loss).
In principle, old consumers could still benefit from switching costs, if the steady state
price falls enough to compensate them for these other losses. However, the following
lemma shows that this never happens:

Lemma 3 In steady state, switching costs make old consumers worse off.

Therefore, in most relevant cases, switching costs have three effects. (1) They
benefit all consumers through a lower market price, (2) they harm old consumers who
either have to incur these costs or avoid them by sticking with an inferior product, and
(3) they transfer utility from the old to the young. The net effect will depend largely on
how we weight the pay-offs of young and old consumers. We now discuss two natural
alternatives.

One natural way to measure consumer surplus is to simply add the pay-offs of
young and old consumers, i.e. look at consumer welfare at a specific point in time. In
this case, only the first two effects identified above are relevant. For example starting
from s = 0, a small switching cost reduces the market price by δ f /3 but forces half
of old consumers to incur the cost when switching suppliers. Consequently, consumer
surplus changes by 2

(
δ f /3

) − 1/2, which is positive provided δ f > 3/4. As another
example when moving from s = 0 to s = 1/4, consumers are better off in aggregate
provided that

(
δ f , δc

)
lie in the shaded area in Fig. 3. Figure 4 performs the same

exercise when moving from s = 0 to s = 1/2.13 We note in passing that Somaini and

13 The boundary of the shaded area pivots as s increases, so it is a priori unclear whether consumers are
better or worse off when they face a larger switching cost. This is because although the losses associated
with switching costs are higher when s is larger, so are the gains from paying a lower price.
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Fig. 3 Increasing the switching
cost from 0 to 1/4 raises
(unweighted) consumer surplus
if and only if

(
δ f , δc

)
lie in the

shaded region

Fig. 4 Increasing the switching
cost from 0 to 1/2 raises
(unweighted) consumer surplus
if and only if

(
δ f , δc

)
lie in the

shaded region

Einav (2013) solve their related model numerically for δ f = 1/2 and δc = 7/10, and
find that switching costs reduce consumer surplus. Our analysis shows that this result
can be overturned if firms are more patient than consumers.

Another natural measure of consumer surplus is the ex ante lifetime expected utility
of a young consumer who is about to enter the market (i.e. weights of 1 and δc on
young and old consumption, respectively). With this alternative measure, all three
effects identified above are relevant.

Proposition 5 For any δ f and s, there exists a threshold δ̃c > 0 such that in steady
state, switching costs raise discounted lifetime consumer surplus if and only if δc < δ̃c.

Proposition 5 is intuitive. When δc is very low, a consumer’s lifetime utility is
mainly affected by how well off she is when young. Moreover, Proposition 3 says that
for sufficiently small δc, the steady state price must be lower with switching costs,
and therefore that consumers are better off when young. Two things change as δc

increases. Firstly, the steady state price increases and so consumers become worse
off in both periods of their life. Secondly, consumers care more about utility in their
second period. This implies that the intertemporal benefit of switching costs (namely
transferring utility from the future to the present, when consumers value it most)
becomes less important.

Example 1 Starting from s = 0, a small switching cost increases discounted lifetime
consumer surplus if and only if δc < δ̃c = 2δ f /

[
3 − 2δ f

]
.
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Fig. 5 Increasing the switching
cost from 0 to 1/4 raises lifetime
discounted consumer surplus if
and only if

(
δ f , δc

)
lie in the

shaded region

Fig. 6 Increasing the switching
cost from 0 to 1/2 raises lifetime
discounted consumer surplus if
and only if

(
δ f , δc

)
lie in the

shaded region

Note that the condition δc < 2δ f /
[
3 − 2δ f

]
is definitely satisfied if either δ f >

3/4, or if δ f ∈ [1/2, 3/4] and firms are more patient than consumers. Therefore,
as expected, a small switching cost increases consumer surplus for a wider range
of parameters under this alternative measure. To further illustrate this point, Figs. 5
and 6 plot the critical threshold δ̃c for the cases where s = 1/4 and s = 1/2. In both
diagrams, the respective switching cost benefits consumers whenever

(
δ f , δc

)
lies in

the shaded area. It turns out (although this is a little difficult to see from the diagrams)
that when δ f is low the critical discount factors satisfy δ̃c

∣∣
s=1/2 > δ̃c

∣∣
s=1/4, whereas

when δ f is higher they satisfy δ̃c
∣
∣
s=1/2 < δ̃c

∣
∣
s=1/4. In either case provided consumers

discount the future a little more than firms, they are definitely better off.
In summary, switching costs benefit the young but harm the old. For a fairly wide

range of parameters, the net effect on consumers is positive. Cabral (2014) also shows
that a small switching cost can benefit consumers, if firms are sufficiently patient.
However, in his model, consumers are infinitely lived, so he considers only per-period
welfare. We have overlapping generations of consumers, and we consider two different
ways to measure their surplus. This allows us to identify an additional channel through
which switching costs can benefit consumers (namely the intertemporal transfer of
surplus), which is not present in Cabral’s analysis.
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6 Discussion

6.1 Relaxing independence

We now relax the assumption that consumer preferences evolve independently over
time. There is lot of evidence that a consumer’s valuation for any given product is
often serially correlated across time. Moreover, Dubé et al. (2010) have shown that
after controlling for switching costs, this persistence in preferences offers an additional
explanation for why consumers exhibit inertia in their brand choices.

In order to be as general as possible, we model correlation in the following way. We
continue to assume that when young consumers are born, their position on the Hotelling
line is drawn randomly. However, when a young consumer with location xt becomes
old, she is assigned a new location xt+1 which is now drawn using a conditional density
f
(

xt+1
∣∣ xt

)
. The joint density f

(
xt , xt+1

)
is continuous, atomless, strictly positive

and satisfies the following two restrictions. Firstly, we assume that f (y, z) = f (z, y).
This ensures that in each period, the population of old consumers is uncondition-
ally uniformly distributed along the Hotelling line.14 This facilitates comparison with
the base model, in which old consumers were also assumed to be uniformly distrib-
uted along the line. Secondly, we assume that f (y, z) = f (1 − y, 1 − z) for all
y, z ∈ [0, 1], which is sometimes called radial symmetry. To motivate this assump-
tion, consider two symmetrically located young consumers, one a distance d from
firm A and the other the same distance d away from firm B. It seems natural that
when these consumers become old, their preferences will also be symmetric. When
the first consumer becomes old, her distance from A is dt+1

A which has conditional

density f
(

dt+1
A

∣∣∣ d
)

. Similarly when the second consumer becomes old, her distance

from B is dt+1
B which has conditional density f

(
1 − dt+1

B

∣∣
∣ 1 − d

)
. Radial symmetry

ensures that these conditional densities are equal, and therefore that ‘future’ prefer-
ences are symmetric. To gain some insights into how these two restrictions interact,
consider a plot of the joint density function. Take any two points in [0, 1]2 which lie
on a ray through (1/2, 1/2), and which are also located equidistantly from (1/2, 1/2).
Then, reflect both these points in the line xt = xt+1. This leaves us with four points,
each of which represents the vertex of a rectangle. The above restrictions imply that
f
(
xt , xt+1

)
is the same when evaluated at each of these four points.15 Note that

although this places a certain amount of structure on the joint density, it allows for xt

and xt+1 to be positively correlated.
A firm’s demand is no longer a linear function of its past market share, and con-

sequently, there does not exist an equilibrium in linear strategies. The difficulty of

14 Of course consumers who buy from firm A when young will generally not be uniformly distributed
along the line when they become old. However, the unconditional marginal density of old consumers is

fxt+1

(
xt+1 = w

)
= ∫ 1

0 f
(

xt = z, xt+1 = w
)

dz = ∫ 1
0 f

(
xt = w, xt+1 = z

)
dz = fxt

(
xt = w

) =
1 because young consumers are by assumption uniformly distributed along the line.
15 If locations were instead drawn (from the same support) using a discrete distribution, our restrictions
imply that the matrix summarizing the joint distribution would be bisymmetric. I would like to thank the
Co-Editor for suggesting this interpretation.
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formally proving existence of a Markovian equilibrium in this more general setting is
well known (see Dutta and Sundaram 1998 for a comprehensive discussion). For this
reason, we take the following approach. When s = 0, there are no pay-off-relevant
state variables, so a MPE does trivially exist, and it involves the two firms playing the
(static) Hotelling equilibrium in each period. Assuming that a (continuous) MPE also
exists in the neighbourhood of s = 0, we can derive first order conditions and use
them to study comparative statics in this neighbourhood.

Proposition 6 Starting from s = 0, a small switching cost reduces steady state price
if and only if

1

2

∂ Pr (X ≥ 1/2|Y = 1/2)

∂Y
+ δc

2

∂ Pr (X ≥ 1/2|Y = 1/2)

∂Y
− δ f

f (1/2|1/2)
3

< 0

(15)

To interpret Proposition 6, Pr (X ≥ 1/2|Y ) = 1/2 when preferences are inde-
pendent, and so the inequality (15) definitely holds. When instead preferences are
positively correlated, we expect that a consumer who is more attached to product B
in one period is also more likely to prefer B over A in another period. Equivalently,
we expect that ∂ Pr (X ≥ 1/2|Y ) /∂Y ≥ 0, in which case (15) might not be satisfied.
Before commenting further on this, we provide some brief intuition behind expression
(15).

The first term in (15) is a combination of the harvesting and poaching effects, whilst
the second term is the consumer effect, and the third term is the investment effect. The
harvesting and poaching effects are therefore now (weakly) positive, and the intuition
is as follows. As explained earlier, firms can exploit their own old consumers with a
high price, or poach some of their rival’s customers with a low price. With independent
preferences, half of old consumers are locked in to the ‘wrong’ firm, and the incentives
to exploit and poach cancel. When instead preferences are positively correlated, fewer
marginal consumers are locked in to the ‘wrong’ firm. This makes it more profitable
to harvest and less profitable to poach, so the former effect now dominates.

The second term of (15) is the consumer effect and it too is now positive. As
reported earlier, the standard explanation is that young consumers are less responsive
to price cuts, because they expect a price rise to follow in the next period. Starting from
s = 0, we showed that this effect is only second order when consumer tastes evolve
independently over time; for similar reasons, it is also second order even when tastes
are correlated across time. Instead, the positive consumer effect in (15) is caused by a
quite different mechanism which, to our knowledge, has not previously been mentioned
in the literature. It arises due to expected changes in future preferences. For example,
suppose that firm A reduces pt

A and tries to attract some young consumers located
slightly to the right of xt = 1/2. Since preferences are positively correlated, these
young consumers expect to prefer product B in the next period. This makes them
more reluctant to buy A now, which causes demand to become less elastic.

The final term of (15) is the investment effect. As in the base model, firms compete
for the marginal young consumer who is located at xt = 1/2. As argued previously,
this marginal consumer is valuable in future if she turns out to be located in the
lock-in region. Starting from s = 0, a small increase in the switching cost changes
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her probability of being in the lock-in region by f (1/2|1/2). Since preferences are
correlated, we expect that f (1/2|1/2) > 1, i.e. the investment effect is stronger than
in our earlier model.

To summarize when consumer preferences are correlated over time, the first two
terms of inequality (15) are positive, and therefore even very small switching costs are
not necessarily pro-competitive. Note, however, that only the behaviour of f

(
xt+1

∣∣ xt
)

around the point xt = 1/2 is relevant for whether (15) holds. Correlation on the other
hand is a global concept, which summarizes the behaviour of f

(
xt+1

∣∣ xt
)

for all
xt . This immediately implies that the amount of correlation has no direct bearing on
whether switching costs are pro- or anti-competitive.16 What matters instead is whether
∂ Pr (X ≥ 1/2|Y = 1/2) /∂Y is large or small. As an example, suppose that if a young
consumer is almost indifferent about which product to buy, she is also equally likely to
prefer A or B when she becomes old. Then, ∂ Pr (X ≥ 1/2|Y = 1/2) /∂Y is zero and
switching costs are definitely pro-competitive, even if in the wider population there
is a strong positive correlation between xt and xt+1. Therefore, although our earlier
assumption of independence is not innocuous, it can be substantially relaxed without
changing the conclusion that small switching costs are pro-competitive. Furthermore,
whenever consumer tastes are correlated, fewer old consumers need to actually incur
the switching cost because they are already locked into the ‘correct’ firm. This means
that conditional on switching costs being pro-competitive, there is again a good chance
that they improve consumer welfare.

6.2 Relaxing the overlapping generations set-up

We have assumed throughout the paper that consumers live for just two periods.
We now briefly consider what happens when a single generation of infinitely lived
consumers enters the market in the first period. As in the main model, we assume that
their preferences evolve independently over time. Generally there no longer exists
an equilibrium in linear strategies, so we follow the same approach that we did with
correlation.

In the working paper version (Rhodes 2014), we prove that starting from s = 0,
a small switching cost reduces steady state price by 2δ f /3. Small switching costs
are therefore more pro-competitive than in the overlapping generations model, where
price fell by only δ f /3. The intuition for this stronger price response is as follows.
As before, in each period there is a ‘lock-in region’, such that a consumer who finds
herself located within it, stays with her previous supplier. The difference is that now a
consumer could become locked in for any number T = 1, 2, . . . consecutive periods.

16 Cabral (2014) looks at the case in which buyer preferences follow a random walk and finds that switching
costs are anti-competitive. The intuition is that since consumers are infinitely lived, eventually most will
have a very strong preference for one firm or the other. Since firms can price discriminate, they exploit
consumers who like their product. Our approach is very different. In our model, correlation does not lead
to very extreme preferences—old consumers continue to be uniformly distributed along the Hotelling line.
Hence, prices in our model are driven by the preferences of marginal young consumers, rather than by
consumers with extreme preferences. Finally by modelling the evolution of buyer preferences in a more
general way, we show that correlation itself is not the main driver of whether switching costs are pro- or
anti-competitive.
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Nevertheless, the probability of actually being locked in for any T ≥ 2 consecutive
periods is very small when s is close to zero. Therefore, firms and consumers still
only care about lock-in during the following period. Using similar arguments as in
the base model, the consumer effect is second order whilst the investment effect is
first order. Now consider the investment effect in more detail. Suppose firm i reduces
pt

i slightly and acquires some extra consumers. When these consumers are infinitely
lived, all of them survive to the next period and have a chance of becoming locked
in; when these consumers live for two periods, only half survive to the next period
and have a chance of becoming locked in. Therefore, the investment motive is twice
as strong as in the base model, and small switching costs are doubly pro-competitive.
Although the model cannot be solved for larger switching costs, our intuition is that
the investment effect will dominate the consumer elasticity effect even more than in
the base model.17

We also find that starting from s = 0, a small switching cost increases per-period
consumer surplus whenever δ f > 3/4. This is exactly the same condition that we found
in the overlapping generations framework. However, when consumers are infinitely
lived, switching costs no longer induce an intertemporal transfer of surplus. This is
because once a market already exists, consumers are ‘old’ in every period, and therefore
always face the threat of having to incur switching costs.

In some sense, the base model represents a market in which the population of
consumers changes frequently or a market in which technology changes a lot (such
that products quickly become obsolete, so consumers often need to start afresh with
new products); the extension with infinitely lived consumers represents a market with
the opposite characteristics. We therefore cautiously suggest that switching costs are
more likely to be pro-competitive in markets which are ‘stable’ in terms of technology
or the identities of buyers.

7 Conclusion

We have presented a tractable model of dynamic competition and solved it for a very
wide and empirically relevant set of switching costs. In general, the long-run impact
of switching costs is ambiguous and depends upon how patient are firms and their con-
sumers. We provided a condition which determines whether in the long run switching
costs are pro- or anti-competitive. Given that we would expect firms to be more patient
than consumers, we found a presumption that in steady state switching costs lead to

17 When the switching cost is larger, agents also account for lock-in several periods into the future. Suppose
that some consumers buy product i in period t , and then find themselves in the lock-in region during the next
T periods. In this case, their decision to buy product i in period t causes them to repeat purchase for T further
periods. Consider the investment effect: the value to the firm from selling to those consumers in period t is
the present discounted value of receiving the steady state price for T periods. Consider the consumer effect:
the cost to those consumers from buying product i in period t is the present discounted value of the extra
amount that firm i will charge in the following T periods compared to firm −i . If firm i reduces pt

i and
acquires extra consumers, we do expect it to charge more than −i in the following periods. However, we
also expect that over time the two firms’ prices will converge. Hence, the consumer elasticity effect grows
more slowly with T than the investment effect does. Our intuition is therefore that with infinitely lived
consumers, switching costs will be more pro-competitive than in the overlapping generations framework.
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lower prices. This is because a firm’s incentive to lock-in consumers strongly out-
weighs any single consumer’s incentive to avoid being locked in. We then used the
model to address some other issues which have been largely neglected by the previous
literature. We showed that short-run prices can be extremely heterogeneous, and that
focusing on steady state may lead to biased conclusions about the pro-competitiveness
of switching costs. We also examined the wider effects of switching costs, on for
example consumer welfare. Switching costs often act as a way of transferring surplus
from old to young consumers. When consumers are relatively impatient, this trade-off
is favourable and consumer welfare is increased. Finally, we investigated how our
conclusions might change when consumer tastes are correlated over time and when
consumers are long-lived.

Throughout the paper, we have assumed that the switching cost is exogenously
given. However, in practice, retailers can make it more or less easy for their customers
to cancel subscriptions or move to another provider. Therefore, an interesting way
to extend the current model would be to allow each firm to influence how easily its
customers can switch to its rival. Our existing results show that for a wide range of
parameters, profits are maximized when consumers are able to switch costlessly. How-
ever, we conjecture that firms may end up playing a Prisoner’s dilemma. In particular,
each firm might benefit from making it slightly more difficult for its existing customers
to switch. However, once both firms do this, price competition is intensified and they
both earn less profit. We hope to think more about this in future work.

8 Appendix

8.1 Main Proofs

Proof of Lemma 1 Suppose that firms charge prices pA and pB , respectively, in period
t . Then, a young consumer’s expected lifetime pay-off from buying product A in period
t is:

V −xt − pA +δc

[

V −
∫ ẋ t+1

0

(
y + Ept+1

A

)
dy −

∫ 1

ẋ t+1

(
(1 − y)+ Ept+1

B + s
)

dy

]

(16)

where ẋ t+1 =
(

1 + Ept+1
B − Ept+1

A + s
)
/2. (16) can be rewritten as

V −xt − pA +δc

[
V − 1

2
− Ept+1

A +
∫ 1

ẋ t+1

[
− (1 − 2y)+ Ept+1

A − Ept+1
B − s

]
dy

]

(17)
Similarly, the expected lifetime pay-off from buying product B in period t is

V − (
1 − xt) − pB + δc

[

V − 1

2
− Ept+1

B +
∫ ẍ t+1

0

[
(1 − 2y)+Δt+1

e − s
]

dy

]

(18)
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where Δt+1
e = Ept+1

B − Ept+1
A and ẍ t+1 = (

1 +Δt+1
e − s

)
/2. The difference

between (17) and (18) is clearly decreasing in xt . Therefore, provided |pB − pA|
is not too large, there exists an x̃ t ∈ (0, 1) such that (17) and (18) are equal when
evaluated at xt = x̃ t (This also means that (17) exceeds (18) when xt < x̃ t , whilst the
opposite is true when xt > x̃ t .). To get Eq. (5), equate (17) and (18), then substitute
in xt = x̃ t and simplify. ��
Proof of Proposition 1 Lemma 4 below derives expressions for J,M, N , R as a func-
tion of K , which must hold in any equilibrium. Lemma 5 then shows there is a unique
K consistent with our problem, and shows that it lies on [s/3, 3s/8). ��
Lemma 4 Equations (8) and (9) jointly imply that in any linear symmetric MPE, J
satisfies Eq. (10), K satisfies Eq. (11), and

M = J

1 − δ f
(19)

N = 2s (1 + K δcs)− K (2 + K δcs)

2 + K δcs + δ f s
(20)

R = K 2

2

(
2 + K δcs

1 + K δcs

)
(21)

Proof First consider Eq. (8), and set z = x̃ t−1. Use Eqs. (3) and (6) to substitute out
for V t+1

A

(
x̃ t

)
, and then differentiate the right-hand side with respect to pA. This gives

the following first order condition18

Dt
A (.)− pA

2

2 + K δcs

1 + K δcs
− δ f N

2 (1 + K δcs)
− δ f R

(
pt

B

(
x̃ t−1

) − pA
)

2 (1 + K δcs)2
= 0 (22)

Impose pA = pt
A

(
x̃ t−1

)
, then use Eqs. (1) and (2) to substitute out for pt

A

(
x̃ t−1

)

and pt
B

(
x̃ t−1

)
. After collecting terms, this yields one equation of the form α1 +

α2
(
x̃ t−1 − 1

2

) = 0. Setting α1 = α2 = 0 gives the following conditions

1 − J

2

2 + K δcs

1 + K δcs
− δ f N

2 (1 + K δcs)
= 0 (23)

s − 3K

2

2 + K δcs

1 + K δcs
+ δ f RK

(1 + K δcs)2
= 0 (24)

Secondly consider Eq. (9), and set z = x̃ t−1. Again use Eqs. (3) and (6) to substitute
out for V t+1

A

(
x̃ t

)
. Then, use Eqs. (1) and (2) to eliminate pt

A

(
x̃ t−1

)
and pt

B

(
x̃ t−1

)
.

18 We can also prove that pA Dt
A

(
pA, pt

B

(
x̃ t−1

)
, x̃ t−1

)
+δ f V t+1

A

(
x̃ t

(
pA, pt

B

(
x̃ t−1

)) )
is globally

quasiconcave in pA . Note that firm A may sell to three different groups of consumers (young, old locked
to A, old locked to B), each of which has a different demand elasticity. Following a non-infinitesimal price
deviation, a firm may for example stop selling to one or more of these groups, and thus, its demand elasticity
will jump. Full details of the quasiconcavity proof are provided in the working paper (Rhodes 2014).
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After collecting terms, A’s period-t valuation can be expressed in the form α3 +
α4

(
x̃ t−1 − 1

2

) + α5
(
x̃ t−1 − 1

2

)2
. Since we assumed in Eq. (3) that this value equals

M+N
(
x̃ t−1 − 1

2

)+R
(
x̃ t−1 − 1

2

)2
, we can equate coefficients and get three equations

α3 = J + δ f M = M (25)

α4 = Js − J K
2 + K δcs

1 + K δcs
+ K − δ f K N

1 + K δcs
= N (26)

α5 = K s − K 2 2 + K δcs

1 + K δcs
+ δ f RK 2

(1 + K δcs)2
= R (27)

Since s > 0 Eq. (24) implies that K �= 0. Therefore, rewrite Eq. (24) as

R = 3 (2 + K δcs) (1 + K δcs)

2δ f
− s (1 + K δcs)2

δ f K
(28)

and then substitute this into Eq. (27) and rearrange to find φ (K ) = 0 where

φ (K ) = δ f K 3 (2 + K δcs)− 3K (2 + K δcs) (1 + K δcs)2 + 2s (1 + K δcs)3 (29)

Setting φ (K ) = 0 gives Eq. (11) in the text. Substituting Eq. (28) into the left-hand
side of (27) gives the expression for R in Eq. (21). To get the expressions for J and
N in (10) and (20), jointly solve Eqs. (23) and (26). ��

Lemma 5 The maximization problem in Eq. (8) assumes that in every period and for
every possible history, each firm sells to some young consumers, and each firm loses
some but not all of its old customers due to switching. Equation (11) has a unique
solution consistent with this, and it lies in [s/3, 3s/8).

Proof The maximization problem (8) uses the demand expression (7). This demand
expression (7) is valid if and only if |K | ≤ 1 − s. To see this, note firstly that (7)
is only well defined if 1 + K δcs �= 0, which is satisfied provided |K | ≤ 1 − s.
Secondly, (7) assumes that each firm sells to a positive mass of young consumers.
This requires that x̃ t ∈ (0, 1) which, using Eq. (6), is equivalent to |K | < 1 + K δcs.
This is again satisfied provided |K | ≤ 1 − s. Thirdly, (7) assumes that generically
(i.e. whenever x̃ t−1 �∈ {0, 1}) each firm has old consumers both switching to and
away from it. Using Sect. 3, this requires ẍ > 0 and ẋ < 1. ẍ > 0 is equivalent to
1 − s > 2K

(
x̃ t−1 − 1/2

)
: A necessary and sufficient condition for this to hold for
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any x̃ t−1 ∈ (0, 1) is that |K | ≤ 1 − s. ẋ < 1 is also shown to hold under the same
condition.

Aim show that Eq. (11) has a unique solution on [− (1 − s) , 1 − s], and that it lies in
[s/3, 3s/8). Note then that K ≤ 1 − s holds, because by assumption s ≤ 7/10.

Step 1 Show that Eq. (11) has exactly one solution on the interval [0, 1 − s].

Step 1a Using Eq. (29), we find that 1
2
∂φ(K )
∂K equals:

K 2δ f (3 + 2K δcs)+ 3 (1 + K δcs)
[
−1 − 4K δcs − 2 (K δcs)2 + δcs2 + K δ2

c s3
]

(30)

Since we are considering K ≥ 0, 3 + 2K δcs ≤ 3 (1 + K δcs) and therefore

1

2

∂φ (K )

∂K
≤ 3 (1 + K δcs)

[
K 2δ f − 1 − 4K δcs − 2 (K δcs)2 + δcs2 + K δ2

c s3
]

(31)

Notice that −4K δcs + K δ2
c s3 < 0 since δcs2 < 4, and that K 2δ f − 1 + δcs2 ≤

(1 − s)2 − 1 + s2 = 2s (s − 1) < 1. Therefore, ∂φ(K )
∂K < 0 for all K ∈ [0, 1 − s].

Step 1b Note that φ (0) = 2s > 0. Now prove that φ (1 − s) < 0. Substituting
K = 1 − s into φ (K ) and then simplifying, we find that φ (1 − s) equals

δ f (1−s)3 [2+δcs (1−s)]−[1+δcs (1−s)]2
(

6 − 8s+3δcs−8δcs2+5δcs3
)

(32)

Clearly [2 + δcs (1 − s)] / [1 + δcs (1 − s)]2 ≤ 2 because [2 + X ] / [1 + X ]2

decreases in X for any X ≥ 0. Therefore, to show that φ (1 − s) < 0, it is suffi-
cient to prove that

2 (1 − s)3 < 6 − 8s + 3δcs − 8δcs2 + 5δcs3 (33)

First, if s ∈ [0, 3/5] then the right-hand side of (33) increases in δc. Therefore, if (33)
holds for δc = 0 it will also hold for any δc ∈ [0, 1]. When δc = 0 (33) becomes
2 (1 − s)3 < 6 − 8s, which is easily shown to hold for any s ∈ [0, 3/5]. Second, if
instead s ∈ [3/5, 7/10] then the right-hand side of (33) decreases in δc. Therefore, if
(33) holds for δc = 1, it will also hold for any δc ∈ [0, 1]. When δc = 1 (33) becomes
0 < 4+s −14s2 +7s3 which is easily seen to hold for any s ∈ [3/5, 7/10]. Therefore,
φ (1 − s) < 0 for any s ∈ [0, 7/10].

Step 1c Combining steps 1a and 1b, there is a unique K ∈ [0, 1 − s] that solves
φ (K ) = 0.

Step 2 Show that the solution on [0, 1 − s] to φ (K ) = 0, actually lies on [s/3, 3s/8).

Step 2a Show that φ (s/3) > 0. The terms −3K (2 + K δcs) (1 + K δcs)2 +
2s (1 + K δcs)3 become (1 + K δcs)2 K δcs2

∣
∣
K=s/3 > 0. Also δ f K 3 (2 + K δcs) > 0

since K > 0.
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Step 2b Show that φ (3s/8) < 0. Letting Y = 3δcs2/8, φ
( 3s

8

)
equals

(
27

512

)
δ f s3 (2 + Y )− 13s

500
(2 + Y ) (1 + Y )2 − 1099s

1000
(2 + Y )

(1 + Y )2 + 2s (1 + Y )3

The first two terms are negative provided that 27s2/512 < 13/500, and this holds
because s < 7/10. The final two terms are negative if and only if Y < 198/901 ≈ 0.21,
and this holds because Y ≤ (3/8) (7/10)2 = 0.18375. Therefore, φ (3s/8) < 0.

Step 2c Sinceφ (K ) strictly decreases on [0, 1 − s], andφ (s/3) > 0 butφ (3s/8) < 0,
the solution to φ (K ) = 0 must lie on [s/3, 3s/8).

Step 3 Now show there is no solution to φ (K ) = 0 for K ∈ [− (1 − s) , 0].

Step 3a Using Step 1a, we can write that 1
6
∂2φ(K )
∂K 2 equals:

2K δ f (1 + K δcs)+ δcs
(
−5 − 12K δcs − 6 (K δcs)2 + 2δcs2 + 2K δ2

c s3
)

(34)

Since K ∈ [− (1 − s) , 0], the first term 2K δ f (1 + K δcs) is negative. To show the
remainder is also negative, it is sufficient to show that −5−12K δcs +2δcs2 < 0. The
latter is toughest to satisfy when K is very negative and δc is large, so substitute in
K = − (1 − s) and δc = 1. It is then sufficient to prove that −5+12s (1 − s)+2s2 <

0: This is easily shown to hold for any s ∈ [0, 7/10]. Therefore, ∂2φ (K ) /∂K 2 < 0
(φ (K ) is concave) for all K ∈ [− (1 − s) , 0].

Step 3b Using substitution, we find that φ (− (1 − s)) > 0 equals:

(1 − s) (2 − δcs (1 − s))
[
3 (1 − δcs (1 − s))2 − δ2

f (1 − s)2
]

+ 2s (1 − δcs (1 − s))

which by inspection in positive. We also showed in Step 1b that φ (0) > 0. Therefore,
since φ (K ) is concave on [− (1 − s) , 0] and positive at the boundaries of that set, it
must be true that φ (K ) > 0∀K ∈ [− (1 − s) , 0]; hence there is no root to φ (K ) on
that interval. ��
The Proof of Lemma 2 is available in the working paper (Rhodes 2014). ��
Proof of Proposition 3 From Eq. (10), steady state price is 1 when s = 0. First, using
Eq. (10) J < 1 if and only if

K δcs − δ f (s − K ) < 0 (35)

which is harder to satisfy as K increases. We also know from Proposition 1 that
K < 3s/8. Therefore, if inequality (35) holds when evaluated at K = 3s/8, it always
holds. Substituting K = 3s/8 into (35), we get a condition δ f > (3δcs)/5. Second,
J > 1 if and only if

K δcs − δ f (s − K ) > 0 (36)
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which is easier to satisfy as K increases. We again know from Proposition 1 that K ≥
s/3. Therefore, if inequality (36) holds when evaluated at K = s/3, it always holds.
Substituting K = s/3 into (36), we get a condition δ f < (δcs)/2. Therefore, steady
state price is definitely lower if δ f > (3δcs)/5 and definitely higher if δ f < (δcs)/2.
Lemma 2 says that the steady state price strictly decreases in δ f . Therefore, there exists
a unique threshold between (δcs)/2 and (3δcs)/5 such that J = 1 when δ f = δ̃ f . ��
Proof of Proposition 4 Step 1 Show that the average price strictly decreases in δ f .
Totally differentiate (14) with respect to δ f :

dJ

dδ f
+

(
x̃ t−1 − 1/2

)2
[

s − 2K − K
2 + K δcs

(1 + K δcs)2

]
∂K

∂δ f
(37)

We know that dJ/dδ f < 0 from Lemma 2, and we can also prove that ∂K/∂δ f > 0.
Therefore, it is sufficient to show that the square-bracketed term is negative, which is
easily done.

Step 2 It is simple (though tedious) to show that for any δc, and x̃ t−1 �= 1/2 and
any s ∈ (0, 7/10]: (a) average price exceeds 1 as δ f → δ̃ f and (b) average price
is below 1 as δ f → 1. Since average price strictly decreases in δ f , the threshold
δ̂ f

(∣∣x̃ t−1 − 1/2
∣∣) exists and is unique.

Step 3 Since the average price strictly increases in
∣
∣x̃ t−1 − 1/2

∣
∣ and strictly decreases

in δ f , the threshold δ̂ f
(∣∣x̃ t−1 − 1/2

∣∣) strictly increases in
∣∣x̃ t−1 − 1/2

∣∣. ��
The Proof of Lemma 3 is available in the working paper (Rhodes 2014). ��
Proof of Proposition 5 The proof follows from arguments in the text, and Lemma 2
which says that J increases in δc. ��

8.2 Proof of Proposition 6

The solution concept will again be Markov perfect equilibrium. We conjecture that
firms’ equilibrium prices pt

A

(
x̃ t−1

)
and pt

B

(
x̃ t−1

)
are symmetric, i.e. pt

A (y) =
pt

B (1 − y). We also conjecture that their value functions V t
A

(
x̃ t−1

)
and V t

B

(
x̃ t−1

)

are symmetric, i.e. V t
A (y) = V t

B (1 − y). As before, we consider pricing in some arbi-
trary period t , where firms use (potentially off-path) prices pA and pB , respectively,
but are expected to use equilibrium pricing strategies from period t + 1 onwards. To
simplify notation, we use the shorthand Δ = pB − pA and Δt+1

e = Ept+1
B − Ept+1

A .
We start with some preliminary lemmas.

Lemma 6 suppose that in period t −1 all young consumers with xt−1 ≤ x̃ t−1 bought
from A and all others bought from B. Then, demand for the product A in period t,
denoted by Dt

A

(
pA, pB, x̃ t−1

)
, is:

∫ x̃ t−1

0
F

(
1 +Δ+ s

2

∣∣∣∣ z

)
dz +

∫ 1

x̃ t−1
F

(
1 +Δ− s

2

∣∣∣∣ z

)
dz + x̃ t (38)
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where x̃ t is implicitly defined by the equation

1 − 2x̃ t +Δ+ δcψ1 − δcψ2 = 0 (39)

with ψ1 and ψ2 defined as follows

ψ1 = s +
∫ 1

ẋ t+1
f
(
z|x̃ t)

(
2z − 1 −Δt+1

e − s
)

dz

ψ2 =
∫ 1

ẍ t+1
f
(
z|x̃ t)

(
2z − 1 −Δt+1

e + s
)

dz

and where ẋ t+1 and ẍ t+1 are as defined earlier, namely ẋ t+1 = (
1 +Δt+1

e + s
)
/2

and ẍ t+1 = (
1 +Δt+1

e − s
)
/2.

Proof The first two terms of (38) are demand from old consumers. In the previous
period, A sold to all young consumers with xt−1 ≤ x̃ t−1; as shown earlier, they will
buy A in period t if and only if xt ≤ (1 + pB − pA + s) /2. In the previous period,
B sold to all young consumers with xt−1 ≥ x̃ t−1; as shown earlier, they will switch
to A in period t if and only if xt ≤ (1 + pB − pA − s) /2. The last term of (38) is
demand from young consumers. Let us define W t+1

A = V − E
(

xt+1
∣∣ xt

) − Ept+1
A .

Using the same arguments as when proving Lemma 1, a young consumer in period t
with location xt has expected pay-offs from buying A and B given by:

V − xt − pA + δc

[
W t+1

A +
∫ 1

ẋ t+1
f
(
z|xt)

(
2z − 1 −Δt+1

e − s
)

dz

]
(40)

V − (
1 − xt) − pB + δc

[
W t+1

A − s +
∫ 1

ẍ t+1
f
(
z|xt)

(
2z − 1 −Δt+1

e + s
)

dz

]

(41)

Now (40) minus (41) is strictly decreasing in xt when s = 0 (and therefore by
continuity, when s is sufficiently close to zero). Hence, there exists an x̃ t such that all
consumers in period t with location xt ≤ x̃ t buy A, and all others buy B. Substituting
xt = x̃ t into (40) and (41) and then equating them gives Eq. (39) in the lemma. ��
Lemma 7 Recall the definition of the marginal young consumer x̃ t in Lemma 6. In
steady state (i) when s = 0, dx̃ t/d pA = −1/2, and (ii) the following holds:

∂
(
dx̃ t/d pA

)

∂s

∣∣∣∣∣
s=0

= δc

2

∂ Pr
(
z ≥ 1/2|xt = 1/2

)

∂xt
(42)

Proof Totally differentiate (39) with respect to pA. Then, impose pA = pt
A (1/2),

pB = pt
B (1/2) and x̃ t = 1/2. This gives:

dx̃ t

d pA
= − 1

γ̄
(43)
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where

γ̄ = 2 + δcψ3 + δcψ4

−δc
dΔt+1

e

(
xt = 1/2

)

dxt

∫ 1+s
2

1−s
2

f
(
z|xt = 1/2

)
dz (44)

and where

ψ3 = −
∫ 1

1+s
2

∂ f
(
z|xt = 1/2

)

∂xt (2z − 1 − s) dz

ψ4 =
∫ 1

1−s
2

∂ f
(
z|xt = 1/2

)

∂xt (2z − 1 + s) dz

For part (i) note that γ̄ = 2 when s = 0. For part (ii) note that when s = 0 there
is a MPE in which Δt+1

e = 0 for all xt . Therefore, dΔt+1
e

(
xt = 1/2

)
/dxt is zero

when s = 0. Also note that the integral in the final term of (44) is zero when s = 0.
Therefore, the derivative of the final term in (44) with respect to s around s = 0, is
zero. Consequently:

1

δc

∂γ̄

∂s

∣∣∣
∣
s=0

= 2
∫ 1

1/2

∂ f
(
z|xt = 1/2

)

∂xt
dz = 2

∂ Pr
(
z ≥ 1/2|xt = 1/2

)

∂xt

∂
(
dx̃ t/d pA

)

∂s

∣∣∣
∣∣
s=0

= 1
(
γ̄ |s=0

)2

∂γ̄

∂s

∣∣
∣∣
s=0

= δc

2

∂ Pr
(
z ≥ 1/2|xt = 1/2

)

∂xt

��
Lemma 8 In steady state (i) when s = 0, dDt

A/d pA = −1 and (ii) the following
holds

∂
(
dDt

A/d pA
)

∂s

∣∣∣∣∣
s=0

= 1 + δc

2

∂ Pr
(
z ≥ 1/2|xt = 1/2

)

∂xt
(45)

Proof Differentiate the demand expression in Eq. (38) with respect to pA. Then,
impose pA = pt

A (1/2), pB = pt
B (1/2), x̃ t−1 = x̃ t = 1/2. Using γ̄ defined in

Lemma 7 this gives:

dDt
A

d pA
= − 1

γ̄
− 1

2

∫ 1/2

0
f

(
1 + s

2

∣∣
∣∣ z

)
dz − 1

2

∫ 1

1/2
f

(
1 − s

2

∣∣
∣∣ z

)
dz (46)

To prove part (i) note that given our assumptions on f
(
xt , xt+1

)
, we have that

∫ 1
0 f

(
xt+1 = 1/2|xt = z

)
dz = 1. To prove part (ii) note that again given our assump-

tions on f
(
xt , xt+1

)
, we can write

∫ 1/2

0
f

(
1 + s

2

∣
∣∣∣ z

)
dz +

∫ 1

1/2
f

(
1 − s

2

∣
∣∣∣ z

)
dz = 2 Pr

(
z ≥ 1/2

∣
∣∣∣x

t = 1 − s

2

)
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Therefore, differentiating Eq. (46) with respect to s around s = 0, gives

∂
(
dDt

A/d pA
)

∂s

∣∣
∣∣∣
s=0

= δc

2

∂ Pr
(
xt+1 ≥ 1/2|xt = 1/2

)

∂xt
+∂ Pr

(
xt+1 ≥ 1/2|xt = 1/2

)

∂xt

(47)
��

Lemma 9 In steady state:

∂Dt
A/∂ x̃ t−1

∂s

∣
∣∣∣∣
s=0

= f

(
1

2

∣
∣∣∣

1

2

)
(48)

Proof Differentiate the demand expression (38) with respect to x̃ t−1:

∂Dt
A

∂ x̃ t−1 = F

(
1 +Δ+ s

2

∣∣∣∣ x̃ t−1
)

− F

(
1 +Δ− s

2

∣∣∣∣ x̃ t−1
)

(49)

Substitute in x̃ t−1 = 1/2 and Δ = pt
B (1/2) − pt

A (1/2) = 0, then differentiate the
resulting expression with respect to s. ��

Lemma 10 In steady state, the derivative of
∂(dDt

A/d pA)
∂ x̃ t−1 with respect to s is zero at

s = 0.

Proof Differentiate Eq. (49) with respect to pA to get

∂
(
dDt

A/d pA
)

∂ x̃ t−1 = 1

2

[
− f

(
1 +Δ+ s

2

∣∣∣∣ x̃ t−1
)

+ f

(
1 +Δ− s

2

∣∣∣∣ x̃ t−1
)]

(50)

Then, substitute in x̃ t−1 = 1/2 andΔ = pt
B (1/2)− pt

A (1/2) = 0. Now differentiate
with respect to s, and note that radial symmetry implies f ′ (1/2|1/2) = 0. ��
Now for the main proof.

Proof of Proposition 6 In this problem, the pay-off-relevant state variable in period
t is x̃ t−1. As stated earlier, we hypothesize a symmetric MPE which is continuous
around s = 0, and where the steady state has x̃ t = 1/2 and both firms charging the
same price in every period t .

In period t , firm A chooses pA to maximize pA Dt
A

(
pA, pB, x̃ t−1

)+ δ f V t+1
A

(
x̃ t

)
,

which gives a first order condition

Dt
A

(
pA, pB, x̃ t−1

)
+ pA

dDt
A

d pA
+ δ f

dV t+1
A

(
x̃ t

)

dx̃ t

dx̃ t

d pA
= 0 (51)

Firstly, impose pA = pt
A (1/2), pB = pt

B (1/2) and x̃ t−1 = x̃ t = 1/2. Then,
differentiate the resulting expression with respect to s around s = 0. In doing this, note
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(i) that in steady state Dt
A (.) = 1, (ii) the properties of dDt

A/d pA given in Lemma 8,
(iii) that when s = 0 firm A charges a price of 1 and has value V t+1

A = 1/
(
1 − δ f

)

which is not a function of x̃ t , and (iv) that dx̃ t/d pA = −1/2 when s = 0 (Lemma 7).
Letting p̄ be the steady state price, we find that:

∂ p̄

∂s

∣∣
∣∣
s=0

= 1 + δc

2

∂ Pr
(
xt+1 ≥ 1/2|xt = 1/2

)

∂xt
− δ f

2

⎡

⎣
∂

(
dV t+1

A (1/2) /dx̃ t
)

∂s

∣∣∣
∣∣∣
s=0

⎤

⎦

(52)

Secondly, substitute pA = pt
A

(
x̃ t−1

)
and pB = pt

B

(
x̃ t−1

)
into Eq. (51) and call the

left-hand side F.O.C. Then, differentiate the expression with respect to x̃ t−1 to get:

d (F.O.C.)

d pt
A

d pt
A

dx̃ t−1 + d (F.O.C.)

d pt
B

d pt
B

dx̃ t−1 +
[
∂Dt

A

∂ x̃ t−1 + pt
A

∂
(
dDt

A/d pt
A

)

∂ x̃ t−1

]

= 0

(53)
The aim now is to differentiate this equation with respect to s around s = 0. To
do this note that when s = 0, (i) F.O.C. = 1 + pt

B − 2pt
A, (ii) pt

A and pt
B both

equal 1 and so are not a function of x̃ t−1, and (iii) that according to Lemma 10, both
∂

(
dDt

A/d pA
)
/∂ x̃ t−1and its derivative with respect to s, are zero. Also use Lemma 9

which gives an expression for the derivative of ∂Dt
A/∂ x̃ t−1 with respect to s. Then,

− 2
∂

(
d pt

A/dx̃ t−1
)

∂s

∣∣∣∣
∣
s=0

+ ∂
(
d pt

B/dx̃ t−1
)

∂s

∣∣∣∣
∣
s=0

+ f

(
1

2

∣∣∣∣
1

2

)
= 0 (54)

We look for a symmetric equilibrium in which pt
A (y) = pt

B (1 − y) therefore
d pt

A/dx̃ t−1
( 1

2

) = −d pt
B/dx̃ t−1

( 1
2

)
. So differentiating the above equation with

respect to s at s = 0, gives:

∂
(
d pt

A

( 1
2

)
/dx̃ t−1

)

∂s

∣∣
∣∣∣
s=0

= f
( 1

2

∣∣ 1
2

)

3
(55)

Thirdly, consistency of the value functions requires that

V t
A (z) = pt

A (z)× Dt
A

(
pt

A (z) , pt
B (z) , z

) + δ f V t+1
A

(
x̃ t (

pt
A (z) , pt

B (z)
))

(56)

Totally differentiating with respect to z, using the envelope theorem and then substi-
tuting z = x̃ t−1, gives:

dV t
A

dx̃ t−1 =
[

pt
A

dDt
A

d pt
B

+ δ f
dV t+1

A

dx̃ t

dx̃ t

d pt
B

]
d pt

B

dx̃ t−1 + pt
A
∂Dt

A

∂ x̃ t−1 (57)
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Since Dt
A (·) and x̃ t only depend upon current prices through Δ, dDt

A/d pt
B =

−dDt
A/d pt

A and dx̃ t/d pt
B = −dx̃ t/d pt

A. Therefore, we can make use of Eq. (51)
(evaluated at pA = pt

A

(
x̃ t−1

)
and pB = pt

B

(
x̃ t−1

)
) to rewrite the above as:

dV t
A

dx̃ t−1 = Dt
A

d pt
B

dx̃ t−1 + pt
A
∂Dt

A

∂ x̃ t−1 (58)

Next consider steady state and substitute d pt
B/dx̃ t−1

( 1
2

) = −d pt
A/dx̃ t−1

( 1
2

)
into

Eq. (58). Then, differentiate the resulting expression with respect to s at s = 0. Finally,
combine this last equation with Eqs. (55) and (52), to get the required expression for
∂ p̄/∂s|s=0. ��
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