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Abstract Many economic problems can be formulated as dynamic games in which
strategically interacting agents choose actions that determine the current and future
levels of a single capital stock. We study necessary as well as sufficient conditions
that allow us to characterise Markov perfect Nash equilibria for these games. These
conditions can be translated into an auxiliary system of ordinary differential equations
that helps us to explore stability, continuity and differentiability of these equilibria.
The techniques are used to derive detailed properties of Markov perfect Nash equilibria
for several games including voluntary investment in a public capital stock, the inter-
temporal consumption of a reproductive asset and the pollution of a shallow lake.

Keywords Capital accumulation games · Markov equilibria · Resource games ·
Differential games
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1 Introduction

Many economic problems can be formulated as dynamic games in which strategically
interacting agents choose actions based on an inter-temporal objective that determine
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the current and future levels of a single capital stock. When formulated in continuous
time, these games are differential games with a single state variable.1

In this paper, we formulate a class of differential games in which n players either
exploit or accumulate a single capital stock by choosing Markov strategies, where they
select their current actions by fixing a policy function that relates the current state of
the system (the single capital stock) to current actions. State-dependent Markov (or
feedback) strategies can be contrasted to strategies that are set as simple time paths
at the beginning of the game with the need for every player to pre-commitment to the
announced time profile throughout the entire duration of the game. From an economics
modelling point of view, pre-commitment is a very strong assumption for a dynamic
game and largely unattractive.2 On the contrary, Markov equilibrium strategies exhibit
several desirable properties such as subgame perfectness, in case they are derived using
backward induction, and no commitment, allowing rival players to immediately react
to unexpected changes in the state of the system.

Finding subgame Markov perfect Nash equilibrium strategies of a differential game,
even if the game is of the linear–quadratic type, is a formidable analytical problem. For
instance, to find a Markov perfect Nash equilibrium in the general case of n players
and m state variables requires to solve a system of n coupled nonlinear implicit m-
dimensional partial differential equations (PDE). In case the underlying economic
system can be described by a single state variable (a single capital stock), the system
of PDEs collapses to a system of ordinary differential equations in the value functions
that is much easier to deal with. Because of this tractability, the paper focuses on the
least complex situation m = 1.

This system of ordinary differential equations in the value functions can be solved
explicitly, and the Markov perfect Nash equilibrium (MPNE) can be derived analyt-
ically only for a restricted class of specific functional forms of the primitives of the
model. Starting with the pioneering work of Case (1979), differential game theorists
have modified this approach. Instead of working with the ordinary differential equa-
tions in the value functions, they derive a system of differential equations in shadow
prices, that is, in the first derivatives of the value functions. Structurally, this system
is much simpler to work with, in particular when symmetric equilibrium strategies
are analysed. The shadow price system reduces then to a single quasi-linear3 differen-
tial equation, explicitly dependent on the state variable, which for specific functional
forms of the state equation and the objective functionals can be solved explicitly.

Using the shadow price system approach, Tsutsui and Mino (1990) derived non-
linear Markov equilibria for a linear quadratic differential game. The same approach
was used by Dockner and Long (1994) in a model of transboundary pollution control
and by Wirl (1996) in a public goods investment problem.

1 For a general introduction to the theory of differential games, we refer the reader to Dockner et al. (2000).
2 Pre-commitment strategies that are set as time functions only are also referred to as open-loop strategies
and the corresponding dynamic game as an open-loop game.
3 A differential equation is called quasi-linear if it is linear in the highest derivatives of the unknown
function.
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For a differential game with m state variables and n players, Rincón-Zapatero et al.
(1998)4 show that the approach introduced by Case (1979) can be made systematic
when two assumptions are satisfied. The game must have an equal number of state and
control variables and equilibria must be restricted to interior MPNE. Rincón-Zapatero
et al. (1998) differentiate the Bellman equations to arrive at a system of quasi-linear
partial differential equations in the shadow prices. Using the maximum condition, they
are able to eliminate shadow prices and arrive at what can be referred to as a generalised
Euler equation system (GEES) that is a system of partial differential equations in the
state and control variables. By solving an example, they already point out that if the
game is characterised by a single state variable, the GEES reduces to a linear system
of ordinary differential equations.5

The shadow price system and the GEES can be seen as two approaches to char-
acterise MPNE, which are often mathematically equivalent. In this paper, we extend
these two approaches substantially for n-player differential games with a single state
variable and an infinite horizon. The n-dimensional system of ordinary quasi-linear
non-autonomous differential equations in shadow prices is used to derive an auxil-
iary (n +1)-dimensional system of ordinary autonomous differential equations whose
solution trajectories trace out graphs of the equilibrium strategies. Our method is based
on a well-known procedure used to analyse implicit ordinary differential equations. In
the one-player situation, the auxiliary system reduces to the characteristic equations
of the Hamilton–Jacobi equation; for the general non-symmetric n-player game, the
system seems not to have been derived before.

The auxiliary system opens up the opportunity to geometrically analyse and study
Markov perfect Nash equilibria for games with general functional forms. We introduce
the terms of local and global Markov equilibria and point out how the auxiliary system
can be used to identify these two types of equilibria. In addition, the auxiliary system
can be used to gain important insights into the continuity and differentiability proper-
ties of MPNE. Points where the Markov strategies are continuous but not differentiable
can conveniently be described by singularities of the auxiliary system. Moreover, using
the auxiliary system, we are also able to find non-continuous Markov perfect Nash
strategy equilibria. The derivation of the auxiliary system and its use to characterise
non-continuous and non-differentiable Markov perfect Nash equilibria for differential
games with a single state variable and general functional forms comprise, together
with the analysis of several economic examples, the main contributions of this paper.

Dynamic games with a single capital stock can be applied in resource economics
where n agents exploit a single renewable or exhaustible resource so as to maximise
the present value of future consumption, see for example Levhari and Mirman (1980),
Sundaram (1989), Benhabib and Radner (1992), Clemhout and Wan (1994), Dutta
and Sundaram (1993), Dockner and Sorger (1996), Sorger (1998), Rincón-Zapatero
et al. (1998), Marx and Matthews (2000), Benchekroun (2003), Akao (2008); see also
Sorger (2008), Dutta and Radner (2012), Karp and Zhang (2012), Becker et al. (2013).

4 See also the paper by Rincón-Zapatero (2004) for differential games and Josa-Fombellida and Rincón-
Zapatero (2007) for stochastic control problems.
5 Kossioris et al. (2008) apply the shadow price system approach to an environmental economics problem.
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A game with n agents investing in a single public stock of capital also fits the class
of differential games analysed in this paper, see Fershtman and Nitzan (1991), Wirl
(1996) and Rowat (2007). Dynamic public bads games arise in case of transboundary
pollution where the emissions of countries accumulate a single stock of pollution
that incurs costs for each player. For more details on these kinds of game problems
see Ploeg and Zeeuw (1992), Dockner and Long (1994) and Dockner et al. (1996).
Finally, environmental economists have recently started to explore equilibria in the
shallow lake problem. This problem is structurally similar to the exploitation of a
single renewable resource stock but with a non-concave production function. Recent
papers dealing with the shallow lake problem include Brock and Starrett (2003), Mäler
et al. (2003), Wagener (2003), Kossioris et al. (2008), Kiseleva and Wagener (2010),
Kossioris et al. (2011).

The article is organised as follows. Section 2 presents the general theory to derive
MPNE for the class of differential games with a single state variable and includes
a linear quadratic example. Section 3 makes use of the auxiliary system to study
non-continuity and non-differentiability of MPNE. Section 4 applies the approach
presented to two distinct examples from resource and environmental economics and
Sect. 5 concludes.

2 General theory

In this section, we derive the auxiliary system for general feedback Nash equilibria in
a dynamic game with a single state variable. In this game, n players choose Markov
strategies, ui (x), to maximise an inter-temporal objective function. The strategies
determine the level of a single capital stock, x , that is governed by the state dynam-
ics. For this game, we characterise Markov perfect Nash equilibria that are either
differentiable, or continuous, or have at most a finite number of jump points.

2.1 Definitions

We consider a game where n players can, at every point t ≥ 0 in time, choose actions
from a given action set. These actions determine the evolution of an underlying state
variable x(t) that takes values in a state space X ; we shall call x(t) the ‘state of the
game at time t’. The initial value of the state will be denoted by x0:

x(0) = x0 ∈ X.

We restrict attention to the case that X is a closed interval of the real line R. For every
x ∈ X , the set U (x) of actions u available to one of the players is the closure of a
convex open subset of R

q , for some q > 0. We do not require the sets U (x) to be
bounded. The union

U =
⋃

x∈X

{x} × U (x) ⊂ X × R
q

is the action space of the player. We shall also assume that the action space is the
closure of an open set.
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Markov perfect Nash equilibria in models with a single capital stock 589

Each player formulates his action choices in terms of a strategy, which specifies
for each point in time which action to take. A Markov strategy is characterised by the
requirement that the actions at each point in time are conditioned only on the state
of the system. That is, a Markov strategy is a function u : X ′ → R

q , where X ′ is a
subinterval of X with x0 ∈ X ′, such that if x(t) ∈ X ′, the agent takes at time t the
action u(x(t)). Necessarily, we have that

u(x) ∈ U (x)

for all x ∈ X ′; or, equivalently, the graph of u should be contained in the action space
U . If X ′ = X , we call the Markov strategy globally defined or just global; if X ′ ⊂ X ,
it is said to be locally defined or local.

Let i be an index, running from 1 to n, which denotes the different players; player
i’s strategy is then a real-valued function ui defined on the interval X ′

i . Let

X ′ =
n⋂

i=1

X ′
i

be the common domain of definition of all the strategies and introduce the strategy
vector u : X ′ → (Rq)n , given as

u(x) = (u1(x), . . . , un(x)) .

The elements of the strategy vector are the individual strategies. Also introduce the
vector

u−i (x) = (u1(x), . . . , ui−1(x), ui+1(x), . . . , un(x))

of strategies other than the strategy of player i . Given a strategy vector u, the state
variable will evolve according to a state equation of the form

dx

dt
= f (x, u(x)), x(0) = x0. (1)

On the right-hand side of Eq. (1), the time argument of the function x is suppressed
for readability; this will be done throughout the article.

It will be assumed that the vector field f satisfies the consistency requirement that
for all available actions, it is ‘inward pointing’ on the boundary ∂ X of the state space
X . In the present context, this means the following. For x ∈ ∂ X let ν(x) be an outward
pointing unit ‘vector’: that is, ν(x) = 1 if x is the upper endpoint of X , and ν(x) = −1
if x is the lower endpoint. Let

U(x) = U1(x) × · · · × Un(x) ⊂ (
R

q)n

be the set of available actions at x , and let U = ∪x {x} × U(x). Then, f is inward
pointing (with respect to U), if for x ∈ ∂ X the inequality
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f (x, u) · ν(x) ≤ 0

holds for all u ∈ U(x).
The pay-off of the players will depend on their strategies as well as on the state

dynamics. In this article, we assume that the pay-off of the strategy choice ui of player
i , given that the other players play u−i , is of the general form

Ji (ui , u−i ) =
∞∫

0

Li (x, u(x))e−ρt dt.

We shall assume the functions f and Li to be smooth, which is meant to be ‘infinitely
often differentiable’, but which could be read as ‘as often differentiable as is necessary’.
But even with smooth data, the set of strategies that are available to the players has
to be restricted in order for the dynamics and the pay-offs to be at least well defined.
The specification of the available strategy set is an integral part of the specification of
the game in question.

Attention will be restricted to Markov strategies that are piecewise continuously
differentiable and bounded. That is, we assume that for every strategy ui , there are
finitely many non-overlapping intervals that cover X ′

i and which are such that ui

is continuously differentiable on the interior of each interval. The strategies are not
required to be continuous.

The right-hand side of (1) is not necessarily Lipschitz continuous, and the theorem
of existence and uniqueness of solutions to differential equations does not apply at
those points where Lipschitz continuity fails to hold. By assumption, these points are
a subset of the endpoints of the non-overlapping intervals covering X ′

i ; in particular,
there are only finitely many of them. We need to specify in what sense we interpret (1)
at those points; this is done in Appendix 1.

We say that, given the strategies u−i of the other players, a strategy ui is admissible
or available to player i, if it is a bounded piecewise continuously differentiable function
on X ′ such that its graph is contained in Ui , and such that it satisfies the following
consistency condition. Let F(x) = f (x, ui (x); u−i (x)), fix a point x̂ and denote by
FL and FR , respectively, the left and right limit of F(x) as x tends to x̂ . The condition
requires that if FL > 0 > FR , then the value of ui (x̂) satisfies

F(x̂) = f (x̂, ui (x̂); u−i (x̂)) = 0. (2)

Such a value always exists as a consequence of the intermediate value theorem and
the convexity of Ui (x̂). This mathematical condition may be interpreted as follows:
by choosing the strategy ui such that FL > 0 and FR < 0, player i intends to stabilise
the system at x = x̂ . To be consistent with this, at the point x̂ the action ui (x̂) should
be such that ẋ = f (x̂, ui (x̂); u−i (x̂)) = 0.

The space of strategies available to player i , given X and Ui , is denoted by Ai .
The spaces X and U, together with the dynamics f and the instantaneous pay-offs Li

and the space of available strategies Ai , for i = 1, . . . , n, define a differential game
G .
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We recall the definition of a Markov perfect Nash equilibrium strategy of a game.

Definition 1 The strategy vector u∗ is a (global) Markov perfect Nash equilibrium of
G , if

Ji (u
∗
i , u∗−i ) ≥ max

ui ∈Ai

Ji (ui , u∗−i )

for each i ; that is, if for each player his strategy is a best response to the strategies of
the other players.

When investigating Markov equilibrium strategies for a differential game, the phe-
nomenon is encountered that the Hamilton–Jacobi equation, which characterises these
strategies, has many solutions that are not defined on the whole state space (see for
instance Wirl 1996; Kossioris et al. 2008). In the context of the original game, these
solutions are not admissible, as they do not specify the action of the players if the state
leaves the domain of definition of one of the strategies. To address this, we introduce
the concept of a local Markov perfect Nash equilibrium as follows.

Spaces X ′, U ′
i and A ′

i define a restriction G ′ of the game G , if X ′ ⊂ X , U ′
i ⊂ Ui ,

if f is inward pointing on ∂ X ′ with respect to U′, and if A ′
i is the set of strategies

available to player i , given X ′ and U ′
i .

Definition 2 The strategy vector u∗ is a local Markov perfect Nash equilibrium of G ,
if it is a global Markov perfect Nash equilibrium for a suitable restriction G ′ of G .

In economic terms, a local Markov perfect Nash equilibrium might arise if the
players can commit cooperatively on restricting their action spaces and then proceed
to play non-cooperatively with the restricted action spaces. See Rowat (2007) for a
discussion of this ‘endogenising’ of the state space. Alternatively, the restriction of
the action spaces could be imposed by a regulating agency. We shall see that in several
examples, local Markov perfect Nash equilibria may improve on the global equilibria.

As a consequence, we obtain the notion of a state that can be stabilised, or is
stabilisable, by a local Markov perfect Nash strategy.

Definition 3 A state x∗ ∈ X can be stabilised by a local Markov perfect Nash equi-
librium strategy u∗, if there is a restriction G ′ of the differential game such that

1. u∗ is a Markov perfect Nash equilibrium for G ′;
2. X ′ contains x∗ in its interior;
3. x∗ is a stable steady state for the stock evolution dynamics

ẋ = f (x, u∗(x)).

Stabilisable steady states are those long-term steady states which can be obtained
in a non-cooperative differential game if the players play a (local) Nash equilibrium.
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2.2 The vector Hamilton–Jacobi equation

Given an n-person differential game G , the present value Pontryagin function6 of
player i reads as

Pi (x, pi , ui ; u−i ) = Li (x, u) + pi f (x, u);
here, pi is the present value co-state of player i associated with the state x . If this
function is maximised, with respect to ui , at

ui = vi (x, pi ; u−i ), (3)

the Hamilton function is defined as

Hi (x, pi ; u−i ) = Pi (x, pi , vi (x, pi ; u−i ); u−i ) .

The Hamilton–Jacobi equation for the value function of player i reads then as

ρVi (x) = Hi (x, V ′
i (x); u−i (x)).

Introduce the vector-valued function v as

v(x, p, u) = (v1(x, p1; u−1), . . . , vn(x, pn; u−n))

and the derivative of v with respect to the actions u− of the other players as

∂v
∂u−

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∂v1
∂u2

∂v1
∂un

∂v2
∂u1

0
. . .

. . .
. . .

. . .

. . . 0 ∂vn−1
∂un

∂vn
∂u1

∂vn
∂un−1

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to eliminate the functions ui (x) from the problem, the system of equations

Fi (x, u) = ui − vi (x, pi ; u−i ) = 0, i = 1, . . . , n (4)

has to be solved for the ui ; in vector notation, this system reads as

F(x, u) = u − v(x, p, u) = 0.

We assume that this system is solvable for u and that the solution

u = û(x, p) (5)

6 Also called Hamilton, pre-Hamilton or unmaximised Hamilton function.
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is a continuously differentiable function of x and p. For instance, a sufficient condition
for the solvability of the system is that the matrix

∂F
∂u

= I − ∂v
∂u−

is invertible everywhere.
Consequently, it may be assumed that the game Hamilton functions Gi , i =

1, · · · , n of the players can be written as

Gi = Gi (x, V ′
1, . . . , V ′

n) = Hi (x, V ′
i ; û−i (x, V′(x))),

and that the value functions solve the following vector Hamilton–Jacobi equation

ρV(x) = G(x, V′(x)), (6)

where G = (G1, . . . , Gn). Taking derivatives with respect to x and substituting

p(x) = V′(x)

yields

ρp(x) = ∂G
∂x

+ ∂G
∂p

p′(x). (7)

Note that ∂G/∂x is an n-dimensional vector, whereas ∂G/∂p is an n × n matrix. We
obtain finally the equation

∂G
∂p

p′(x) = ρp − ∂G
∂x

. (8)

Equation (8) is referred to as the shadow price system. Due to the special structure
of our class of games, the shadow price system is a system of quasi-linear ordinary
differential equations in p(x). The differentiability assumptions on û introduced during
the above derivation imply that we restrict to interior strategies, that is, strategies where
control constraints are not binding. This restriction is less serious than may appear
at first glance, for our methods are local, tailored to dealing with the possible non-
invertibility of ∂G

∂p , and they can be supplemented by other methods at points where
the control constraints start to be binding.

As already pointed out, the shadow price system approach traces back to the analysis
of Case (1979) who studied nonlinear Markov equilibria for the sticky price model,
which was also analysed in detail by Tsutsui and Mino (1990). The shadow price
system approach has subsequently been applied by Dockner and Long (1994) and by
Wirl (1996) to derive nonlinear symmetric Markov perfect Nash equilibria.

If the relation (5) can be solved for p, which is possible if u is in the interior of
the action space U, then we can rewrite Eq. (8) in terms of the actions u, which is
more convenient in applications; we do this regularly in the examples given further
below. Actually Rincón-Zapatero et al. (1998) analyse a version of Eq. (8) expressed in
controls rather than co-states for state spaces of general dimension and demonstrate its
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applicability by considering specific examples. However, in problems where control
constraints become active, or more generally when the relation between controls and
co-states is not one-to-one, the analysis has to be done in terms of the shadow price
vector p.

In the important symmetric special case that all players are equal and play the same
strategies, the vector G of game Hamilton functions is invariant under permutations
of the pi ,

Gi (x, p1, . . . , pn) = Gσ(i)(x, pσ(1), . . . , pσ(n)),

where σ is any permutation of n elements. If this is the case, the game is called
symmetric.

Symmetric Markov perfect Nash equilibria then correspond to value functions

V(x) = (V (x), . . . , V (x)),

which are sought as solutions of the scalar Hamilton–Jacobi equation

ρV (x) = G(x, V ′(x)), (9)

which is the scalar analogon of the vector Eq. (6), where

G(x, p) = 1

n!
∑

Gσ(i)(x, pσ(i), . . . , pσ(n)), (10)

with the sum taken over all permutations of n elements. Of course, the sum is just
equal to G1(x, p, . . . , p).

2.3 Sufficiency

In the following, we shall be interested, amongst other things, in finding geometric
criteria that characterise possible jump points of Nash equilibrium strategies. As these
are usually connected to points of non-differentiability of the value function, the ques-
tion arises in what sense the Hamilton–Jacobi equation is satisfied in such points.
Crandall and Lions (1983) have shown that the value function of an optimal control
problem is usually the only viscosity solution of the Hamilton–Jacobi equation. Since
then it has been widely accepted that this is the ‘right’ solution concept.

We recall the notion of viscosity solutions of scalar Hamilton–Jacobi equations of
the form

ρV − H(x, V ′(x)) = 0. (11)

For this, we give some preliminary definitions.

Definition 4 A vector p is a subdifferential of a function V at a point x̂ , if there
is a differentiable function v(x) such that x̂ is a local minimiser of the difference
V (x) − v(x); then p = v′(x).

The set of all subdifferentials of V at x̂ is indicated as D_ V (x̂).
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Superdifferentials are defined analogously.
The following definition of viscosity solutions, though not the most general, suffices

for our purposes. It is adapted from chapter II of Fleming and Soner (2006).

Definition 5 Let V be a continuous function on X .

1. The function V is a viscosity supersolution of (11), if for all subdifferentials
p ∈ D−V (x) we have

H(x, p) − ρV (x) ≤ 0. (12)

2. The function V is a viscosity subsolution of (11), if for all superdifferentials p ∈
D+V (x), we have

H(x, p) − ρV (x) ≥ 0. (13)

3. Finally, V is a viscosity solution of (11), if it is both a viscosity subsolution and a
viscosity supersolution.

If V is differentiable at x , then D+V (x) = D−V (x) = {V ′(x)}, and equation (11)
holds in the classical sense.

The following theorem states that solving equation (6) indeed gives us a Markov
perfect Nash equilibrium.

Theorem 1 Let V : X → R
n and u∗ : X → R

n be vector-valued functions satisfying
the following conditions.

1. The function V = (V1, . . . , Vn) is continuous and piecewise continuously differ-
entiable.

2. The strategy vector u∗ is admissible.
3. For every i = 1, . . . , n, the i’th component Vi of V is a viscosity solution of

ρVi (x) = Hi (x, V ′
i (x); u∗−i (x)). (14)

4. For every admissible trajectory x, we have that

lim
t→∞ V(x(t))e−ρt = 0. (15)

5. If V′ is differentiable at x, then

u∗(x) = û(x, V′(x)).

6. If V′ is not differentiable at x, then either

u∗(x̂) = lim
x↑x̂

û(x, V′(x))

or
u∗(x̂) = lim

x↓x̂
û(x, V′(x)).

Then, u∗ is a Markov perfect Nash equilibrium of the differential game.
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For instance, condition (15) is satisfied if all admissible trajectories are bounded.
The proof of theorem 1 is given in Appendix 2.

We shall call V a viscosity solution of the equation

ρV = G(x, V′),

if for each i the function Vi is a viscosity solution of the associated Eq. (14).

2.4 Auxiliary system

Recall the definition of the adjoint matrix A∗ of a given matrix A: it is the matrix
whose (i, j)’th element is the cofactor of A that is obtained by deleting the j’th row
and i’th column of A and taking the determinant of the remaining matrix. We have
that AA∗ = (det A)I , where I is the identity matrix; hence, A−1 = (det A)−1 A∗ if
det A 
= 0. Multiplying an equation of the form

Ax = b

from the left with A∗ yields
(det A)x = A∗b.

Multiplying the shadow price system (8) from the left with the cofactor matrix

(∂G/∂p)∗

yields therefore

(
det

∂G
∂p

(x, p)

)
dp
dx

(x) =
(

∂G
∂p

(x, p)

)∗ (
ρp(x) − ∂G

∂x
(x, p)

)
.

The auxiliary system to Eq. (6) is now defined as

⎧
⎪⎪⎨

⎪⎪⎩

dp
ds

=
(

∂G
∂p

(x, p)

)∗ (
ρp − ∂G

∂x
(x, p)

)
,

dx

ds
= det

∂G
∂p

(x, p),

(16)

where s ∈ R is some real parameter that has no immediate economic significance. In
fact, we have the following result.

Theorem 2 Let the function V(x) be continuous and piecewise continuously differ-
entiable, and let it be a viscosity solution of

ρV(x) = G(x, V′(x)). (17)
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Set p(x) = V′(x) whenever the derivative is defined. Assume that x0 and p0 are such
that p is defined and continuous at x0, such that p0 = p(x0), and such that

det
∂G
∂p

(x0, p0) 
= 0.

Then, p is continuously differentiable in a neighbourhood of x0, and its graph is traced
out by the curve

s �→ (x(s), p(s))

that satisfies (16) with initial conditions (x(0), p(0)) = (x0, p0).

This theorem characterises solutions of the vector Hamilton–Jacobi Eq. (17) when-
ever they are differentiable, by relating the graph x �→ (x, V′(x)) to solution curves of
the auxiliary system (16). This relation is general, and, in particular, it can be applied
to find non-symmetric Markov perfect Nash equilibrium strategies.

When attention is restricted to symmetric Nash equilibria, the auxiliary system
simplifies to ⎧

⎪⎪⎨

⎪⎪⎩

d p

ds
= ρp − ∂G

∂x
(x, p),

dx

ds
= ∂G

∂p
(x, p).

(18)

These equations are the characteristic equations of the Hamilton–Jacobi Eq. (6). How-
ever, in crucial contrast to the ‘one-player’ optimal control situation, the parameter s
is different from the time parameter t .

2.5 A linear–quadratic example

This subsection illustrates the theory by applying it to a standard economic problem,
the analysis of private investment in a public capital stock.

This game was introduced by Fershtman and Nitzan (1991). They assumed that
each agent derives quadratic utility from the consumption of the public capital stock.
Investment in the stock is costly and results in quadratic adjustment costs. Fershtman
and Nitzan solved both the open-loop game and the game with Markov strategies
and found that the dynamic free rider problem is more severe when agents use linear
Markov strategies. Wirl (1996) challenged these results and studied the identical linear
quadratic game but solved it for nonlinear Markov equilibria. He found that if the
discount rate is small enough nonlinear Markov strategies can support equilibrium
outcomes that are close to the efficient provision of the public capital. Finally, Rowat
(2007) derived explicit analytic expressions for the nonlinear Markov equilibria.

There are n players; player i voluntarily invests in the nonnegative public capital
stock x at a rate ui ≥ 0. The single public capital stock evolves according to

ẋ =
n∑

j=1

u j − δx; (19)
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here δ > 0 is the constant depreciation rate. Following Fershtman and Nitzan, we
assume that player i’s utility functional is given by

Ji =
∞∫

0

(
ax − b

2
x2 − 1

2
u2

i

)
e−ρt dt, (20)

where a, b > 0 are positive parameters. Note that compared to the formulation of
Wirl (1996), one parameter has been scaled away. We see from this formulation that
both X and Ui (x), for all i and all x ∈ X , are equal to the interval [0,∞).

The corresponding present value Pontryagin function becomes

Pi (x, pi , ui ; u−i ) = ax − b

2
x2 − 1

2
u2

i + pi

⎛

⎝
n∑

j=1

u j − δx

⎞

⎠ .

The function ui �→ Pi (x, pi , ui ; u−i ) is maximised at

ui = vi (pi ) =
{

pi pi ≥ 0,

0 pi < 0.

The present value Hamilton function Hi of player i reads as

Hi (x, pi ; u−i ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ax − b

2
x2 + 1

2
p2

i + pi

⎛

⎝
∑

j 
=i

u j − δx

⎞

⎠ , if pi ≥ 0,

ax − b

2
x2 + pi

⎛

⎝
∑

j 
=i

u j − δx

⎞

⎠ , otherwise.

We now restrict our attention to the symmetric case, for which all players use the same
strategy. The symmetric version of Eq. (6) reads as

ρV = G(x, V ′) =

⎧
⎪⎨

⎪⎩

ax − b

2
x2 + 2n − 1

2
(V ′)2 − δxV ′, if V ′ ≥ 0,

ax − b

2
x2 − δxV ′, otherwise.

(21)

Fershtman and Nitzan (1991) obtained a solution to this equation by the well-known
method of substituting V (x) = c0 + c1x + c2x2 and comparing coefficients of x .
Wirl (1996) pointed out that due to the fact that the Hamilton–Jacobi Eq. (21) has no
initial conditions, there may be actually more solutions to this equation. He derived
his conclusions from the shadow price system (8), which takes the form

{(
(2n − 1)p − δx

)
p′ = (ρ + δ)p − a + bx if p ≥ 0,

−δxp′ = (ρ + δ)p − a + bx otherwise.
(22)
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Note that while Eq. (21) was an implicit nonlinear first-order ordinary differential
equation in V , Eq. (22) is easily rewritten as an explicit equation in p with non-
constant coefficients. Rowat (2007) derives an explicit solution for this equation by
carefully considering the singularity locus (2n − 1)p − δx = 0. We do not repeat his
approach here but refer to his paper instead.

The auxiliary system associated with (22) takes for p ≥ 0 the form

d p

ds
= (ρ + δ)p − a + bx,

dx

ds
= (2n − 1)p − δx, (23)

while for p < 0, it reads as

d p

ds
= (ρ + δ)p − a + bx,

dx

ds
= −δx . (24)

Note that the derivatives are taken with respect to a parameter s, which has no a
priori economic interpretation; the point of the auxiliary system is that its solution
trajectories

s �→ (x(s), p(s))

trace out graphs of solutions p = p(x) of Eq. (22). In the region p ≥ 0, this follows
from the chain rule, which states that

d p

dx
(x(s)) =

d p

ds
(s)

dx

ds
(s)

= (ρ + δ)p − a + bx

(2n − 1)p − δx
. (25)

This is the same expression as in Eq. (22). Some trajectories of the auxiliary system
are shown in Fig. 1. There, solutions of the auxiliary system are represented by drawn
curves. They can, locally and for p > 0, be interpreted as the graphs of possible
symmetric feedback strategies u(x) = p(x).

This system has a single steady state

P : (xP , pP ) =
(

(2n − 1)a

(2n − 1)b + δ2 + δρ
,

aδ

(2n − 1)b + δ2 + δρ

)

In Fig. 1, five generic strategies u1, . . . , u5 are highlighted. We shall show that none
of these can correspond to Markov perfect Nash equilibrium strategies.

First consider u1 and u2. Both have the unstable eigenspace of the equilibrium P
as its asymptotic limit as x → ∞. It is straightforward to show that the unstable
eigenvector, corresponding to the unstable eigenvalue λu , is of the form (1, v) with

v = δ + λu

2n − 1
> 0
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Fig. 1 Solutions of the auxiliary system (23) in the region p ≥ 0, where u = p, (drawn curves) as well as
the line l1 of dynamic equilibria dx/dt = 0 (thickly dashed line) and the isocline l2 of the auxiliary system
(thinly dashed line), where dx/ds = 0. The arrows indicate the direction of time evolution. Parameters:
a = 0.1, b = 0.1, δ = 0.2, ρ = 0.1

and λu > δ for all ρ ≥ 0. It follows that v > δ/n. Consequently, for each strategy, like
u1 and u5, that tends asymptotically towards the unstable eigenspace of P , there is a
state x̄ > 0 such that dx/dt > 0 for all x > x̄ . But such a strategy cannot correspond to
a Markov perfect Nash equilibrium, since for x sufficiently large the integrand of (20)
is negative, and a strategy for which u(x) = 0 whenever x > x̄ is a deviation with a
better pay-off.

Next we note that there is no interval X ′ ⊂ X such that f (x, u3(x)) is inward
pointing into X ′; therefore, u3 cannot be even a local Markov perfect Nash equilibrium
strategy.

Finally, we consider u4 and u5. Note that both are in the region that ẋ = nu−δx < 0,
and both satisfy u j (x) = 0 if x is sufficiently small. Hence, x(t) tends to 0 as t → ∞.
Since

dx

dt
= −δx = dx

ds

if u j (x) = 0, it follows that in this particular case s = t . Moreover, from the auxiliary
system, it follows that

p(t) = Ce(ρ+δ)t + o(e(ρ+δ)t ),

with C < 0, where the term o( f ) denotes a function that goes faster to zero as f if
t → −∞. Consequently, the transversality condition

lim
t→∞ p(t)e−ρt ≥ 0 (26)

is not satisfied for these strategies.
Having removed all strategies that cannot correspond to Markov Nash equilibria, we

retain a single global Markov perfect Nash equilibrium and a family of local Markov
perfect Nash equilibrium strategies; these are illustrated in Fig. 2.
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Fig. 2 Local (thin curves) and global (thick curve) Markov perfect Nash equilibrium strategies, together
with the lines l1 and l2. Also indicated is the supremum x∗∗ of the state values that can be stabilised by a
local Markov perfect Nash equilibrium strategy. Parameters as in Fig. 1

Properties of equilibria The feedback strategy that is formed by the upper two invari-
ant manifolds of the steady state P of the auxiliary system is of the ‘kink’ type to
be discussed below in Sect. 3.1. Also the globally defined strategy, thickly drawn in
Fig. 2, has a kink: it is located at the point where the invariant manifold of P intersects
the horizontal axis. This kink is however of a different kind, as it represents a control
constraint that becomes active.

Consider the line l1 = {(x, p) : f (x, p) = 0} of equilibria of the state dynamics
(the broken thickly drawn line in the figure): the quantity dx

dt is positive above l1, and
negative below. From the figure, it is readily apparent that points on l1 close to the
origin (lower left-hand corner) are stable, while points on l1 in the upper right-hand
corner are unstable. Hence, there is a point on l1 where equilibria change from stable
to unstable; it is the unique point (x∗∗, p∗∗) where a solution curve of the auxiliary
system touches the line l1.

Let p(x) determine a local Markov perfect Nash equilibrium strategy. The stock
then evolves according to

dx

dt
= f (x, p(x)) = np(x) − δx . (27)

Let x∗ be a steady-state equilibrium of this equation; then p∗ = p(x∗) = (δ/n)x∗ and
(x∗, p∗) ∈ l1. This equilibrium is stable if

d

dx
f (x, p(x))

∣∣∣
x=x∗

= n
d p

dx
(x∗) − δ < 0.

This stability condition holds, using (25), when

d p

dx
(x∗) = (ρ + δ)p∗ − a + bx∗

(2n − 1)p∗ − δx∗
= (ρ + δ) δ

n x∗ − a + bx∗
(2n − 1) δ

n x∗ − δx∗
<

δ

n
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is satisfied. This condition can be simplified to read as

x∗ <
a

b + δρ
n + δ2

n2

= x∗∗.

In other words, the value x∗∗ is the supremum of the stock values that can be stabilised
by a local Markov perfect Nash equilibrium strategy. In the present situation, we have
that for every x∗ < x∗∗, there is an equilibrium strategy determined by p such that x∗
is a stable steady state under the dynamics (27).

The maximal stream of utility derived from consuming the public good, that is,
the maximum of ax − 1

2 bx2, is obtained at xm = a/b. Note that as the number n of
players tends to infinity, the value x∗∗, and with it the region of stock values that can
be stabilised, increases towards xm . This is to be expected: as the adjustment costs are
convex, it is better that average costs per player are distributed over more players.

From Fig. 1, we can also draw conclusions about which strategies maximise the
pay-off for the players, if the initial state x0 = x(0) of the system is given; we obtain
from Eq. (21) that

ρV = ax − b

2
x2 + 2n − 1

2
p2 − δxp = G(x, p). (28)

For fixed x the value of G, and hence of V , increases for increasing p if p>δx/(2n−1).
Consider first the case that x0 = 0. Then

ρV (0) = G(0, p) = 2n − 1

2
p2,

and we see that the highest pay-off is attained if p is chosen as large as possible; from
Fig. 2, we infer that this corresponds to the strategy that ends at the semi-stable steady
state x = x∗∗.

In general, for fixed x , the function p �→ G(x, p) is convex, taking its minimum
at p = δx/(2n − 1). It follows that to maximise pay-offs for all players, the initial
value of p has to be taken as large as is feasible for x ≤ xP . Beyond that point, the
solutions with maximal p have to be compared with the globally defined strategy. For
x sufficiently large, there is only a single candidate, which is necessarily optimal.

3 Structure of MPNE

In the preceding section, we derived the auxiliary system from the shadow price
system and documented its use to derive qualitative insights into (symmetric) Markov
perfect Nash equilibria for infinite horizon games. In this section, we will make use
of the auxiliary system to gain insights into the general structure of Markov perfect
Nash equilibria. In particular, we demonstrate that non-differentiability of equilibrium
strategies corresponds to singularities of the auxiliary system and the number and
values of discontinuities of Markov perfect Nash equilibrium strategies are related to
solutions of the game Hamilton–Jacobi equation ρV(x) = G(x, V ′(x)).
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3.1 Kinks

Let p : X → R
n be a given function. The graph of p is said to have a kink point or

kink at (x0, p(x0)), if there is a neighbourhood U of x0 such that p is continuous on
U , differentiable on U\{x0}, and such that the left and right limits of p′ at x0 exist and
satisfy

lim
x↑x0

p′(x) 
= lim
x↓x0

p′(x).

Theorem 2 already answers the question of when a continuous equilibrium Markov
shadow price vector p(x) may fail to be differentiable at certain (isolated) points x0:
it is necessary that

det
∂G
∂p

(x0, p(x0)) = 0

at such points. This is therefore a necessary criterion for the occurrence of kinks in
Markov perfect Nash equilibrium strategies. More generally, we have

Theorem 3 Let the same assumptions about V as in Theorem 2 hold. Assume that
p = V′ has a kink at (x0, p(x0)). Then necessarily the following equations hold:

0 = det
∂G
∂p

(x0, p(x0)), (29)

0 =
(

∂G
∂p

(x0, p(x0))

)∗ (
ρp(x0) − ∂G

∂x
(x0, p(x0))

)
. (30)

The proof of this result is immediate. For the symmetric case, we have the following
corollary.

Corollary 1 Let the same assumptions as in Theorem 2 hold with respect to the
function V. Assume moreover that the game is symmetric and that V has the form

V(x) = (V (x), . . . , V (x)).

If p(x) = V ′(x) has a kink at (x0, p(x0)), then this point is a steady state of the
auxiliary system (18).

Summing up: if p is continuous, we have the following two implications. If p has a
kink at (x0, p(x0)), then condition (29) is satisfied; if (29) is not satisfied at the point
(x0, p(x0)), then p is differentiable at x0.

3.2 Jump points

The function p : X → R
n is said to have an isolated jump point at x0, or simply to

jump at x0, if there is a neighbourhood U of x0 such that p is continuous on U\{x0},
and such that the left and right limits of p at x0 exist and satisfy
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lim
x↑x0

p(x) 
= lim
x↓x0

p(x).

Analogously to Theorem 3, the following result gives a necessary condition for the
co-state function of an equilibrium strategy to have an isolated jump point.

Theorem 4 Let the function V(x) be continuous, piecewise continuously differen-
tiable, and let it solve the vector Hamilton–Jacobi Eq. (6). If p(x) = V′(x) has an
isolated jump discontinuity at x = x0, then necessarily

lim
x↑x0

G(x, p(x)) = lim
x↓x0

G(x, p(x)).

Proof This is a direct consequence of the vector Hamilton–Jacobi equation (6) together
with the continuity of V.

We make a couple of remarks concerning this theorem. First, we note that it is
possible to give a priory conditions that ensure the continuity of V. The relevant
condition is that the system dynamics are locally controllable for every player at every
point x : that is, the set f (x, Ui (x); u−i (x)) of possible state changes should contain
0 in its interior.

The theorem implies that starting from a point (x0, p0), the value of p can jump
only to the solutions of the system of equations

G(x0, p) = G(x0, p0).

For the symmetric situation, we have the following result.

Theorem 5 Let the game be symmetric, and let the function

V(x) = (V (x), . . . , V (x))

be continuous, piecewise continuously differentiable, and let it be a viscosity solution
of the vector Hamilton–Jacobi equation (6), or, equivalently, let V (x) be a viscosity
solution of the scalar Hamilton–Jacobi equation

ρV = G(x, V ′(x)).

Assume that G(x, p) is strictly convex in p and that p(x) = V ′(x) has a jump
discontinuity at x = x̂ ; that is, assume that the left and right limits pL and pR of p(x)

exist as x → x̂ .
Then

G(x, pL) = G(x, pR) and pL ≤ pR .

The equality follows from the left and right continuity of G(x, V ′(x)) at x = x̂ .
The inequality is a consequence of Theorem 9 in the appendix.
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4 Applications

The class of differential games introduced in the preceding sections is fairly general
and allows us to study Markov equilibria for a variety of different examples. Here, we
apply the techniques of the auxiliary system to two alternative models that have been
dealt with in the literature: (i) the exploitation of a reproductive asset (Benhabib and
Radner 1992; Dockner and Sorger 1996) and (ii) the shallow lake problem (Mäler et
al. 2003; Brock and Starrett 2003; Wagener 2003; Kossioris et al. 2008; Kiseleva and
Wagener 2010).

4.1 Exploitation of reproductive assets

Consider the problem where n agents strategically exploit a single reproductive asset,
such as fish or other species (Dockner and Sorger 1996). The reproduction of the stock
x occurs at rate h(x), whereas player i extracts the stock at rate ui . Hence, the state
dynamics are given by

ẋ = h(x) −
n∑

i=1

ui . (31)

The instantaneous utility that agent i derives from the consumption of the stock is
assumed to be of the constant elasticity type

Li (ui ) = u1−σ
i

1 − σ

with 0 < σ < 1, so that the utility functional of player i is

Ji =
∞∫

0

u1−σ
i

1 − σ
e−ρt dt.

The function Pi becomes

Pi = u1−σ
i

1 − σ
+ pi

⎛

⎝h(x) −
n∑

j=1

u j

⎞

⎠ .

From ∂ Pi/∂ui , we obtain pi = u−σ
i and ui = p−1/σ

i , and the game Hamilton functions
read as

Gi = 1

1 − σ
p(σ−1)/σ

i + pi

⎛

⎝h(x) −
n∑

j=1

p−1/σ
j

⎞

⎠ .
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In the symmetric case p1 = · · · = pn = p, this simplifies to

G = 1 − n + nσ

1 − σ
p(σ−1)/σ + ph(x),

and we obtain the auxiliary system

⎧
⎪⎪⎨

⎪⎪⎩

dx

ds
= n − 1 − nσ

σ
p−1/σ + h(x),

d p

ds
= (ρ − h′(x))p.

Using the relation u = p−1/σ , we find the form of the auxiliary system in state–control
variables:

⎧
⎪⎪⎨

⎪⎪⎩

dx

ds
= n − 1 − nσ

σ
u + h(x),

du

ds
= h′(x) − ρ

σ
u.

(32)

The situation σ = (1 − 1/n) is special, as then the factor (n − 1 − nσ)/σ vanishes
and the system can be integrated, yielding

u(x) = Ch(x)n/(n−1) exp

⎛

⎝− nρ

n − 1

x∫

x0

h(ξ)−1dξ

⎞

⎠ .

Compare equation (4) of Dockner and Sorger (1996).

Stability of steady states As in the linear–quadratic example given in Sect. 2.5, for
a given symmetric Nash equilibrium strategy u(x), the state dynamics are given as
f (x) = h(x) − nu(x). A state–control pair (x, u), with u = u(x), corresponds to a
steady state for these dynamics if f (x) = h(x) − nu = 0, that is, if u = h(x)/n. The
state is locally attracting if f ′(x) < 0. We compute, using the relation u = h(x)/n:

f ′(x) = h′(x) − nu′(x) = h′(x) − n
du
ds
dx
ds

= h′(x) − n
h′(x)−ρ

σ
u

n−1−nσ
σ

u + h(x)
= nρ − h′(x)

n − 1
.

It follows that (x, u) corresponds to an attracting steady state if

ρ <
h′(x)

n
,
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and to an unstable state if the inequality sign is reversed. In particular, if h′(x) < 0,
then (x, h(x)/n) always corresponds to an unstable equilibrium for the state dynamics.
Moreover, since the derivative h′(x) is bounded from above, if

ρ > max
h′(x)

n
,

then the state dynamics does not have stable equilibria in the interior of the state space.
Let us finally consider the “semi-stable” state x̄ that satisfies

ρ = h′(x̄)

n
;

this point is in the boundary of the set of all stabilisable states. Compare it to the
optimal long-term steady state xcollusive of the collusive outcome, for which

ρ = h′(xcollusive)

holds, the so-called golden rule. The strategic behaviour in the semi-stable state x̄ can
be described as if each player ignores strategic interactions and acts as if he has a
private stock that is reproduced at rate h(x̄)/n.

Analysis of the auxiliary system We shall assume that ρ ≤ h′(0). Then, there is a
unique xρ ∈ [0, 1) such that h′(xρ) = ρ. The auxiliary system has then fixed points

(x, u) ∈
{
(0, 0), (1, 0),

(
xρ,

σ

1 − n(1 − σ)
h(xρ)

)}
.

Note that the third equilibrium satisfies u > 0 only if n < 1/(1 − σ).

Theorem 6 Assume that x1 is such that h is strictly decreasing for x > x1. Then,
every n-player symmetric Markov perfect Nash equilibrium x �→ u(x) satisfies

u(x) ≥ h(x)

n

for all x ≥ x1.

Proof Let ū be an n-player symmetric Markov perfect Nash equilibrium and assume
that for x0 > x1, the inequality is violated, that is

ū(x0) <
h(x)

n
. (33)

If x(0) = x0, this implies that x(t) > x0 for all t > 0, and therefore, since all solutions
of

ẋ = h(x) − nū(x)
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are increasing, and since h is strictly decreasing for x > x1, that

ū(x(t)) ≤ h(x(t))

n
<

h(x0)

n

for all t > 0. Consequently,

J (ū, . . . , ū) < J̄0
def= ρ−1 (h(x0)/n)1−σ

1 − σ
.

Now assume that player 1 deviates by playing the constant strategy

u1(x) = h(x0) − (n − 1)ū(x0).

The system dynamics

ẋ = h(x) −
n∑

i=1

ui (x) = h(x) − u1(x) − (n − 1)ū(x)

has then x = x0 as steady state. From Eq. (33), it follows that

u1(x0) > h(x0) − (n − 1)
h(x0)

n
= h(x0)

n
= ū(x0);

hence
J1(u1, ū, . . . , ū) > J̄0 > J1(ū, . . . , ū).

We finally obtain that ū cannot be a Nash equilibrium strategy.

Using the theorem, we have plotted the symmetric Markov perfect Nash equilibria
in Figs. 3 and 4. A characteristic feature of these strategy equilibria is that if the initial
fish stock is higher than the semi-stable threshold value x̄ introduced above, it cannot
be stabilised. Moreover, for these non-stabilisable initial stocks, we see that as the
initial stock is larger, the eventually reached steady-state stock grows smaller.

4.2 Shallow lake

Consider the following environmental problem. There are n players (countries, com-
munes, farmers) sharing the use of a lake. Each player has revenues from farming, for
which artificial fertiliser is used. The use of fertiliser has two opposing effects: more
fertiliser means better harvests and hence higher revenues from farming. On the other
hand, fertiliser is washed from the fields by rainfall and eventually accumulates a stock
of phosphorus in the shallow lake. The higher the level of phosphorus the higher are
the costs (for fresh water, decreased income from tourism) to the player. Since the
level of the stock of phosphorus is the result of activities of all players sharing the
lake, the resulting problem can best be described by a differential game. The shallow
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Fig. 3 Local (thin) and global (thick) Markov perfect Nash equilibria, obtained from the auxiliary sys-
tem (32), together with the isocline ẋ = h(x) − nu = 0 (dashed) in the symmetric two-player case of the
fishery model with production function h(x) = x(1 − x) and parameters ρ = 0.2 and σ = 0.8
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Fig. 4 Local Markov perfect Nash equilibria in the symmetric two-player case of the fishery model with
production function h(x) = x(1 − x) and parameters ρ = 0.2 and σ = 0.4

lake system has been investigated by Brock and Dechert (2008), Mäler et al. (2003),
Wagener (2003), Kossioris et al. (2008), Kiseleva and Wagener (2010); we refer to
these papers for background information. Particularly, Kossioris et al. (2008) found
local Markov perfect Nash equilbria of the two-player game by analysing the shadow
price equation expressed in controls numerically, but they failed to find the global
equilibrium.

Let the stock variable x represent the amount of phosphorus in a shallow lake, and
let ui be the amount of fertiliser used by farmer i . Assuming a concave technology
to produce farming output and quadratic costs coming from the stock x , player i
maximises intertemporal utility
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Ji =
∞∫

0

(log ui − cx2)e−ρt dt.

The level of phosphorus is assumed to evolve according to the following state equation:

ẋ = f (x, u) =
n∑

i=1

ui − bx + x2

x2 + 1
.

Here, b is the constant rate of self-purification (sedimentation, outflow), and the non-
linear term x2/(x2 + 1) is the result of biological effects in the lake.

For this differential game, the function Pi is given by

Pi = log ui − cx2 + pi

⎛

⎝
n∑

j=1

u j − bx + x2

x2 + 1

⎞

⎠ .

Maximising over ui yields that ui = −1/pi . Restricting again our attention to sym-
metric strategies, we find by setting p j = p for all j = 1, . . . , n that

G(x, p) = − log(−p) − cx2 − n + p

(
−bx + x2

x2 + 1

)
.

The auxiliary system now reads as

⎧
⎪⎪⎨

⎪⎪⎩

dx

ds
= ∂G

∂p
= − 1

p
− bx + x2

x2 + 1
,

d p

ds
= ρp − ∂G

∂x
= (ρ + b)p + 2cx − 2px

(x2 + 1)2 ,

or, in terms of controls, as

⎧
⎪⎪⎨

⎪⎪⎩

dx

ds
= u − bx + x2

x2 + 1
,

du

ds
= −(ρ + b)u + 2cu2x + 2ux

(x2 + 1)2 .

Solutions to the auxiliary system are presented in Fig. 5. The most important feature of
the solution set is that there is a globally defined non-continuous Markov perfect Nash
equilibrium strategy, indicated by a thick line in the figure. Indeed, it has been known
for some time that the Hamilton–Jacobi equation of some economic optimal control
problems may have jumps in the policy function, see Skiba (1978), and for the shallow
lake model Mäler et al. (2003) and Wagener (2003). Since the game Hamilton–Jacobi
equation for the case of two or more players is identical to that of the one player case,
the same jump occurs. Note that the Nash strategies that are parametrised by parts of
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0 1 2
0

0.1

0.2

x

u

x
i

Fig. 5 Local (thin) and global (thick) Markov perfect Nash equilibrium strategies in the symmetric two-
player case of the lake game, for parameter values (b, c, ρ) = (0.65, 0.5, 0.03). The global Nash equilibrium
strategy is discontinuous at xi

the stable and unstable manifolds of one of the saddle points of the auxiliary system
are continuous, but not continuously differentiable everywhere.

Finally, notice that the auxiliary system does not depend on the number of agents
and therefore coincides with the state–control system of the shallow lake optimal
control problem. In practical terms, this means that Fig. 5 can be used to analyse the
situation for any number of players. The only difference exists in the symmetric time
dynamics

ẋ = nu − bx + x2

1 + x2 .

Increasing the number of players n leads to a decrease in the isocline ẋ = 0. In partic-
ular, though this will not be demonstrated here, for large values of n, no states in the
low-pollution region can be stabilised by a locally defined feedback Nash equilibrium
strategy.

4.3 Strategies in near-symmetric games

We return to the linear–quadratic example of Sect. 2.5, but we drop the assumption that
the players are fully symmetric. Instead, we assume that player i’s utility functional
is given by

Ji =
∞∫

0

(
ai x − bi

2
x2 − 1

2
u2

i

)
e−ρt dt. (34)

By rescaling time and the unit of measurement of Ji , it can be achieved that a1 =
a2 = δ = 1. The present value Pontryagin functions then read as
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Pi (x, pi , ui ; u−i ) = x − bi

2
x2 − 1

2
u2

i + pi (u1 + u2 − x) . (35)

The controls depend on the co-states as

ui = piχ(pi ), (36)

where χ(p) = χ[0,∞)(p) equals 1 if p ≥ 0 and 0 if p < 0. Consequently, the game
Hamilton functions take the form

Gi (x, p1, p2) = x − bi

2
x2 + 1

2
p2

i χ(pi ) + pi p−iχ(p−i ) − pi x .

We find that

∂G
∂x

=
(

1 − b1x − p1
1 − b2x − p2

)
,

∂G
∂p

=
(

p1χ(p1) + p2χ(p2) − x p1χ(p2)

p2χ(p1) p1χ(p1) + p2χ(p2) − x

)
,

and

det
∂G
∂p

= p2
1χ(p1) + p2

2χ(p1) + p1 p2χ(p1)χ(p2)

− 2(p1χ(p1) + p2χ(p2))x + x2,

with the understanding that the derivative ∂G/∂p exists only for p1 
= 0 and p2 
= 0.
The auxiliary system (16) then takes the form

dx

ds
= p2

1χ(p1) + p2
2χ(p1) + p1 p2χ(p1)χ(p2) − 2(p1χ(p1) + p2χ(p2))x + x2,

dp
ds

=
(

p1χ(p1) + p2χ(p2) − x −p1χ(p2)

−p2χ(p1) p1χ(p1) + p2χ(p2) − x

) (
1 − b1x − p1
1 − b2x − p2

)
.

First, we concentrate on the region p1 ≥ 0, p2 ≥ 0. There the auxiliary system takes
the form

dx

ds
= p2

1 + p2
2 + p1 p2 − 2(p1 + p2)x + x2,

d p1

ds
= (p1 + p2 − x)(b1x + 2p1 − 1) − p1(b2x + 2p2 − 1),

d p2

ds
= (p1 + p2 − x)(b2x + 2p2 − 1) − p2(b1x + 2p1 − 1).

As we are interested in near-symmetrical Nash equilibrium feedback strategies, it is
more convenient to work in coordinates v = p1 + p2 and w = p2 − p1; the graph of
a symmetric feedback strategy will be contained in the plane w = 0.
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Also, we introduce new parameters by setting b1 = b − 1
2ε and b2 = b + 1

2ε: that
is, if ε = 0, the fully symmetrical situation is retrieved. As we want to illustrate a
principle, we choose particular values b = 1 and ρ = 1 for the remaining parameters.

After rearranging of terms, this results in

dx

ds
= 1

4
(v − 2x)(3v − 2x) + w2

4
,

dv

ds
= (v − 2x) (x + v − 1) + w2 + ε

2
xw,

dw

ds
= w(1 + 2v − 3x) + ε

2
x(3v − 2x).

We shall show that the piecewise linear feedback strategy found in the symmetric
analysis survives if a nearby non-symmetric configuration is considered; that is, we
shall demonstrate the following result.

Theorem 7 For |ε| > 0 sufficiently small, there is a family uε(x) of feedback Nash
equilibrium strategies of the near-symmetric game, depending continuously on ε, such
that for ε = 0, the fully symmetric strategy is obtained as u0(x).

Proof We shall show that there are two one-parameter families of equilibria of the
symmetric auxiliary system, that is, the system with ε = 0. Moreover, their associated
invariant manifolds are normally hyperbolic, intersect transversally and contain the
equilibrium strategy in their intersection. Invoking the persistence of normally hyper-
bolic invariant manifolds under small perturbations (Hirsch et al. 1977), it follows
that the perturbed invariant manifolds still intersect transversally. The intersection is
finally shown to be a graph of a Nash feedback equilibrium of the perturbed game.

Our argument rests on the analysis of the three-dimensional auxiliary system of the
symmetric situation, that is, for ε = 0. That system reads as

dx

ds
= 1

4
(v − 2x)(3v − 2x) + w2

4
,

dv

ds
= (v − 2x) (x + v − 1) + w2,

dw

ds
= w(1 + 2v − 3x).

The plane w = 0, that is the plane p1 = p2, is invariant; this is of course a consequence
of symmetry.

Equilibria The equilibria of the auxiliary system are given as

E1 : (x, v, w) =
(v

2
, v, 0

)
,
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Fig. 6 Equilibria and invariant
plane of the symmetric auxiliary
system (ε = 0)

and

E±
2 : (x, v, w) =

(
1

3
(1 + 2v), v,±1

3

√
(5v − 2)(v + 2)

)
.

Their position, as well as the position of the plane w = 0, is illustrated in Fig. 6. We
turn to the eigenvalues of the linearisation of the auxiliary system at the equilibria,
which are located on the graph of the symmetric feedback Nash equilibrium strategy.
At each equilibrium, one of the eigenvalues is necessarily zero, as the equilibria are
not isolated. Moreover, for equilibria in the plane w = 0, by invariance of the plane,
two eigenvectors are contained in the plane, whereas the third is perpendicular to it.
We denote these by, respectively, λ

‖
1,2 and λ⊥.

For the equilibria in E1, which are all contained in {w = 0}, the eigenvalues are
given as

λ
‖
1 = 0, λ

‖
2 = 1 + 1

2
v, λ⊥ = −1 + 1

2
v;

for the single equilbrium e2 ∈ E2 ∩ {w = 0}, which is obtained for v = 2/5, they
read as

λ
‖
1 = −1

5
−

√
21

5
, λ

‖
2 = −1

5
+

√
21

5
, λ⊥ = 0. (37)

Globally defined feedback solution In the symmetric case ε = 0, a symmetric linear
feedback strategy is contained in the plane w = 0. Its graph is an invariant line of the
form

v = c0 + c1x, w = 0. (38)

To find values for the coefficients c0 and c1, we take the derivative with respect to the
parameter s to obtain the condition

dv

ds
− c0 − c1

dx

ds
= 0,
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substitute the derivatives from the auxiliary system and use (38) to eliminate v. The
left-hand side of the last expression is a quadratic polynomial in x , all of whose
coefficients should be zero. Solving these three equations yields three invariant lines
in the half-plane w = 0, v ≥ 0:

L1 : v = 2x,

Lu : v =
(√

7

3
+ 1

)
x − 1

5

(√
21 + 1

)
,

Ls : v = −
(√

7

3
− 1

)
x + 1

5

(√
21 − 1

)
.

Line L1 corresponds to the family of equilibria E1, Lu to the unstable invariant mani-
fold of the equilibrium e2, and Ls to the stable invariant manifold of e2, which is also
the graph of the feedback Nash equilibrium strategy found in Sect. 2.5.

Invariant manifolds We proceed by defining two invariant manifolds M0
1 and M0

2 that
contain Ls in their intersection.

To define M0
1 , we introduce the intersection e1 of Ls and E1, given as

e1 : (x, v, w) =
(

1

5

(
6 − √

21
)

,
2

5

(
6 − √

21
)

, 0

)
.

The eigenvalues of the equilibrium e1 are

λ
‖
1 = 0, λ

‖
2 = 1

5

(
11 − √

21
)

, λ⊥ = 1

5

(
1 − √

21
)

.

In particular, λ
‖
2 > 0 and λ⊥ < 0. By continuity, there is a neighbourhood N1 of

P1 on E1 such that all equilibria on N1 having their three eigenvalues λi satisfy
λ1 < 0 = λ2 < λ3.

Define M0
1 as the union of the unstable manifolds of the equilibria in N1; that is,

let M0
1 be the set of points z0 = (x0, v0, w0) such that the trajectory

z(t) = (x(t), v(t), w(t)),

which passes for t = 0 through z0, tends towards an equilibrium in N1 as t → −∞.
Likewise, let e2 be the intersection of Ls with E2, given as

e2 : (x, v, w) =
(

3

5
,

2

5
, 0

)
.

The eigenspaces of e2 are L0 = {x = 3/5, v = 2/5} and Ls and Lu given above; the
corresponding eigenvalues have been given in (37). Let N2 be a neighbourhood of e2
in E2, such that the eigenvalues λi of the equilibria in N2 satisfy λ1 < 0 = λ2 < λ3.
Define M0

2 as the union of the stable manifolds of the equilibria in N2.
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The manifolds M0
1 and M0

2 are smooth, that is, infinitely differentiable. Moreover,
they are invariant under the flow of the auxiliary system, as they are both unions
of invariant manifolds. As Ls passes through both e1 and e2, it is contained in the
intersection of these manifolds. Moreover, as M0

1 is contained in w = 0, and M0
2 is

transversal to w = 0, the intersection of M0
1 and M0

2 is transversal.

Normal hyperbolicity The next step consists in demonstrating that the manifolds M0
1

and M0
2 , as well as their intersection, persist if the parameter ε is changed slightly

from ε = 0.
For this, we note that these manifolds are normally hyperbolic. Rather than fully

defining this notion, we note that the requested property is a direct consequence of
the theorem in Sect. 2.1 of Takens and Vanderbauwhede (2010), which shows that
M0

1 is infinitely normally attracting and M0
2 is infinitely normally expanding. We then

invoke Theorem 4.1 from Hirsch et al. (1977), which shows that there is a compact
neighbourhood C of Ls and a constant ε0 > 0 such that for every ε ∈ (−ε0, ε0), there
are normally hyperbolic smooth manifolds Mε

1 and Mε
2 whose restrictions to C are

close to M0
1 and M2

1 in the C∞ topology.
In particular, the perturbed manifolds also intersect transversally in a curve Lε

which is C∞-close to Ls .

Existence of globally defined strategies It remains to prove that Lε can be parametrised
as a function of x for all x . By the persistence of Ls under small perturbations, this is
already guaranteed for a compact neighbourhood C of Ls , which may be assumed to
be large. As Ls intersects the plane x = 0 transversally at

x1 =
3
(√

21 − 1
)

5
(√

21 − 3
) ≈ 1.36,

the curve Lε will do the same at a value of x close to x1. Likewise, as Ls restricted to
the sufficiently large compact set C enters the region v,w < 0, corresponding to the
region {p1 < 0, p2 < 0}, Lε will do the same.

In that region, the auxiliary system reads as

dx

ds
= x2,

d p1

ds
= x (p1 − b1x − 1) ,

d p2

ds
= x (p2 − b2x − 1) .

Since d pi/ds < 0 if pi = 0, the region {p1 < 0, p2 < 0} is invariant; hence, once
the curve Lε has entered this region, it cannot escape again. Moreover, as dx/ds > 0
for all x > 0, it follows that the trajectory will trace out the graph of a differentiable
function of x also for large values of x .
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Concluding the proof We have demonstrated that there is a continuous function
x �→ pε(x) = (pε

1(x), pε
2(x)) that solves equation (7); this yields a continuously

differentiable solution Vε(x) = ρ−1G(x, p(x)) of the game Hamilton–Jacobi equa-
tion, and continuous policy functions uε

i = pε
i χ(pε

i ) for i = 1, 2 by (36). Moreover,
we have demonstrated that pε

i (x) < 0 for both i = 1 and i = 2 for large values of
x ; but then the associated strategies satisfy uε(x) = (uε

1(x), uε
2(x)) = 0 if x is suffi-

ciently large, and all trajectories x(t) remain bounded. It then follows from Theorem 1
that for all |ε| < ε0, the strategies uε constitutes a Markov perfect Nash equilibrium
of the asymmetric game. ��

5 Conclusions

In this article, a framework has been elaborated to find sufficient conditions as well
as necessary conditions for Markov perfect Nash equilibrium strategies in differential
games with a single state variable. The Nash equilibria have been characterised as
solutions of a system of explicit first-order ordinary differential equations, usually
nonlinear.

By analysing a series of classical examples, we have shown that this characterisation
can be used to find both direct analytic information, by integration of the equations,
and indirect qualitative information, by a geometric analysis of the solution curves of
an auxiliary system in the phase space. Additionally, we have addressed the issues of
continuity and differentiability of Markov strategies in this class of differential games.

In particular, in the shallow lake model, we have shown the existence of a global
non-continuous Markov perfect Nash equilibrium. Our simple approach is capa-
ble enough to deliver interesting insights into a large class of capital accumulation
games.
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Appendix 1: Evolution near non-Lipschitz points

For continuous one-dimensional vector fields F : X → R, where X is a closed interval
of R, Peano’s theorem (Peano 1890) guarantees the existence of a positive constant
T > 0, possibly infinite, and a differentiable function x : [0, T ] → R satisfying

ẋ = F(x) (39)

for all t ∈ [0, T ], and such that x(T ) ∈ ∂ X .
At points x̂ where the right-hand side F of an ordinary differential equation has an

isolated discontinuity, Peano’s theorem does not apply. For our purposes, it is sufficient
to have the existence of continuous functions x(t) that satisfy (39) for all t ∈ [0,∞)\N ,
where N is a discrete set, that is, a set without limit points. For the purpose of this
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appendix, we shall call these piecewise solutions in analogy to piecewise differentiable
functions. Piecewise solutions are a special case of Carathéodory solutions, which are
absolutely continuous functions x(t), satisfying (39) almost everywhere on [0,∞)

(cf. Hájek 1979).
The theorem of this section gives a condition for one-dimensional vector fields with

isolated jump discontinuities to have piecewise solutions.

Theorem 8 Let U ⊂ R be an open interval including x̂, and let F restricted to U\{x̂}
be continuous, non-zero and such that the right and left limits FR and FL of F(x)

exist as x tends to x̂ from the right and from the left, respectively. Assume that

if FL ≥ 0 ≥ FR, then F(x̂) = 0.

Then for all x0 ∈ U, there exists a piecewise solution of (39) that satisfies x(0) = x0
and that is defined for all t such that x(t) ∈ U.

Proof In the proof, ‘trajectory’ will indicate a solution x of the differential equation,
whose existence is guaranteed by Peano’s theorem, that is, as long as x(t) 
= x̂ . A
statement about a trajectory x that holds ‘for all t’ will always mean ‘for all t such
that x(t) ∈ U ’.

There are a number of different situations. Firstly, if FL = FR , then F is continuous
on U , and Peano’s theorem yields the existence of a solution to the differential equation
for all t .

Secondly, FL and FR may be both nonnegative or both non-positive. Assume for
definiteness that both are nonnegative. Then, a trajectory starting at x0 > x̂ does not
decrease, never reaches x̂ and yields a piecewise solution for all t , while a trajectory
x1 starting at x0 ≤ x̂ reaches x̂ at some time T ≥ 0; if T = ∞, then x1 is already a
piecewise solution. Assume therefore that T is finite. Introduce

G(x) =
{

F(x) x > x̂,

FR x ≤ x̂ .
(40)

Let then x2 be a solution of ẋ = G(x) with initial condition x2(T ) = x̂ , which exists
as G is continuous. The trajectory that is equal to x1(t) for 0 ≤ t < T and x2(t) for
t ≥ T is a piecewise solution.

Thirdly, there is the possibility that FL > 0 > FR . By assumption, we then have
F(x̂) = 0. A trajectory x1 starting at x0 < x̂ will satisfy limt↑T x1(T ) = x̂ for some
finite time T . Concatenation with the constant trajectory x2(t) = x̂ for t ≥ T again
yields a piecewise solution. The case x0 > x̂ is handled in the same manner.

Lastly, there is the situation that FL < 0 < FR . As above, a trajectory with initial
value x0 > x̂ is increasing, hence defined for all t and yields a piecewise solution;
likewise, trajectories starting at x0 < x̂ are decreasing and are also defined for all
t ≥ 0. If finally x0 = x̂ , let G be defined as in (40), and let x be a solution of
ẋ = G(x) with x(0) = x0. As G(x) > 0 for all x , x(t) is increasing in t and satisfies
therefore G(x(t)) = F(x(t)) for all t > 0. Hence, it is a piecewise solution as well. ��
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Appendix 2: Proof of the sufficiency theorem

In this section, the Proof of theorem 1 is given. Before starting, we make a general
remark on superdifferentials of viscosity solutions V : X → R to the Hamilton–Jacobi
equation

ρV = G(x, V ′),
where G : X × R → R.

Theorem 9 Let G = G(x, p) be a continuous function that is strictly convex in p, let
x̂ be a point in X, let U be an open neighbourhood of x̂ in X, and let V be a viscosity
solution of the Hamilton–Jacobi equation (11) that is continuously differentiable on
U\{x̂}. Then necessarily

lim
x↑x̂

V ′(x) ≤ lim
x↓x̂

V ′(x)

and
lim
x↑x̂

G p(x, V ′(x)) ≤ lim
x↓x̂

G p(x, V ′(x)).

Corollary 2 Let G and V be as in Theorem 9. Consider the state evolution equation

ẋ = F(x) = G p(x, V ′(x)), (41)

defined for all x where V ′ is differentiable in x. If at a point x̂ the left and right limits
FL and FR of F exist, then FL ≤ FR.

Remark 1 It follows from theorem 8 that under the conditions of Theorem 9, the state
evolution Eq. (41) has a piecewise solution.

Remark 2 Theorem 9 applies for instance to the global Markov perfect Nash equilib-
rium of the shallow lake model, discussed in Sect. 4.2.

Proof (Of theorem 9). Let

pL = lim
x↑x̂

V ′(x), pR = lim
x↓x̂

V ′(x),

and assume by contradiction that
pL > pR .

Note that since V is C1 on U\{x̂}, we have

ρV (x̂) = G(x̂, pL) = G(x̂, pR).

Moreover, since pL > pR

[pR, pL ] ⊂ D+V (x̂).

Since G(x̂, p) is strictly convex in p, it follows that for p̄ ∈ (pR, pL), we have

G(x̂, p̄) < ρV (x̂)
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On the other hand, since V is a viscosity solution and p̄ ∈ D+V (x̂), it follows that

G(x̂, p̄) ≥ ρV (x̂).

This is impossible, hence pL ≤ pR . ��
We now give the Proof of theorem 1.

Proof We have to show the following. If the strategy vector of the players other than
player i equals u∗−i , then u∗

i is a best response of player i ; in other words, ui (x) = u∗
i (x)

solves the optimisation problem of player i .
The proof consists of two parts, and it rests on the verification that Vi (x) is the

value function of the optimisation problem of player i . Let ui (x) be any admissible
strategy, set

ū(x) = (ui (x), u∗−i (x)),

and let x̄ be any piecewise solution of

˙̄x = f (x̄, ū(x̄)), x̄(0) = x0, (42)

whose existence is guaranteed by Theorem 8. The first part of the proof shows that
then ∞∫

0

Li (x̄, ū(x))e−ρt dt ≤ Vi (x0); (43)

that is, Vi (x0) is an upper bound for the pay-off of player i .
Then, for ui = u∗

i (x), and x = x∗ being any piecewise solution of

ẋ = f (x, u∗(x)), x(0) = x0, (44)

the second part of the proof demonstrates the opposite inequality

∞∫

0

Li (x∗, u∗(x∗))e−ρt dt ≥ Vi (x0). (45)

Together, these inequalities show that u∗
i is a best response of player i .

Part one. As ū is piecewise differentiable, the set C of points where f (x, ū(x))

fails to be differentiable is a set of isolated points.
Let D be the set of states at which V fails to be differentiable. By assumption this is

a set of isolated points as well. Take ε ∈ (0, 1) arbitrarily. Because of condition (15),
there is a constant T > 1/ε > 0 such that

∣∣∣Vi (x̄(T ))e−ρT
∣∣∣ < ε. (46)

Let � ⊂ [0, T ] be such that
x̄(t) ∈ C ∪ D
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if and only if t ∈ �. As x̄ is a piecewise solution, there are time points

0 ≤ t1 < t2 < · · · < tk ≤ T,

such that the set � is the union of the finite set �1 = {t1, . . . , tk−1} and the interval
�2 = [tk, T ], where it is understood that �1 may be empty and �2 may have zero
length. Note that

f (x̄(t), ū(x̄(t))) = 0

if t ∈ �2.
Also set

x j = x̄(t j ), j = 1, . . . , k.

From (46) it follows that

−Vi (x0) ≤ ε + Vi (x̄(T ))e−ρT − Vi (x0)

= ε +
k∑

j=1

t j∫

t j−1

d

dt

(
Vi (x̄)e−ρt) dt +

T∫

tk

d

dt

(
Vi (xk)e

−ρt) dt. (47)

As Vi (x) is differentiable in the open intervals (x j−1, x j ) as a function of x and x̄
is differentiable in (t j−1, t j ) as a function of t , the differentiations can be performed
to yield

− Vi (x0) ≤ ε +
k∑

j=1

t j∫

t j−1

(
V ′

i (x̄) f
(
x̄, ū(x̄)

) − ρVi (x̄)
)

e−ρt dt (48)

+
T∫

tk

(
pi f

(
xk, ū(xk)

) − ρVi (xk)
)

e−ρt dt. (49)

Here, the constant pi ∈ D−Vi (xk) is an arbitrary subderivative of Vi at xk ; as xk is a
steady state, we have that the inserted term

pi f (xk, ū(xk)) = 0.

We compute

T∫

0

Li (x̄, ū)e−ρt dt − Vi (x0)

≤ ε +
k∑

j=1

t j∫

t j−1

Li (x̄, ū(x̄)) + V ′
i (x̄) f (x̄, ū) − ρVi (x̄)e−ρt dt
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+
T∫

tk

Li (xk, ū(xk)) + pi f (xk, ū(xk)) − ρVi (xk)e
−ρt dt

= ε +
k∑

j=1

t j∫

t j−1

Pi
(
x̄, V ′

i (x̄), ui (x̄); u∗−i (x̄)
) − ρVi (x̄)e−ρt dt

+
T∫

tk

Pi (xk, pi , ui (xk); u∗−i (xk)) − ρVi (xk)e
−ρt dt

≤ ε +
k∑

j=1

t j∫

t j−1

Hi
(
x̄, V ′

i (x̄); u∗−i (x̄)
) − ρVi (x̄)e−ρt dt

+
T∫

tk

Hi (xk, pi ; u∗−i (xk)) − ρVi (xk)e
−ρt dt

≤ ε +
k∑

j=1

t j∫

t j−1

Gi
(
x̄, V′(x̄)

) − ρVi (x̄)e−ρt dt = ε.

Note that for the second inequality, we used that Hi (x, pi ) = maxui Pi (x, pi , ui ). In
the last inequality, we used that Vi is a viscosity supersolution of the Hamilton–Jacobi
Eq. (14). Letting ε → 0 now yields inequality (43).

Part two. It remains to show the opposite inequality (45) if ui (x) = u∗
i (x) for all

x , and x = x∗ solving (44). Let C denote the isolated set of states where f (x, u∗(x))

fails to be differentiable, and let the set D be defined as above. Repeat the construction
of T , the ti , and the sets �1 and �2, but now with x̄ replaced by x∗.

With an analogous reasoning as used to derive (48), we can show that

− Vi (x0) ≥ −ε +
k∑

j=1

t j∫

t j−1

(
V ′

i (x∗) f
(
x∗, u∗(x∗)

) − ρVi (x∗)
)

e−ρt dt

+
T∫

tk

(
pi f

(
xk, u∗(xk)

) − ρVi (xk)
)

e−ρt dt, (50)

where pi ∈ D−Vi (xk) is any subderivative of Vi at xk .
Again, if the interval �2 is nontrivial, the point xk is a steady state of equation (42),

with ū replaced by u∗. Introduce

F(x) = f (x, u∗(x)).
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By assumption, the strategy vector u∗, and consequently the function F , is either left
or right continuous at xk – say it is left continuous, the other case being similar. Setting

pi L = lim
x↑xk

V ′
i (x),

it follows by continuity that

Pi (x∗, V ′
i (x∗), ui ; u∗−i (x∗)) → Pi (x∗, pi L , ui ; u∗−i (x∗)) as x ↑ xk,

and hence that
u∗

i (xk) = arg maxui
Pi (xk, pi L , ui ; u∗−i (xk)). (51)

Inequality (50) implies that

T∫

0

Li (x∗, u∗(x∗))e−ρt dt − Vi (x0)

≥ −ε +
k∑

j=1

t j∫

t j−1

(
Li (x∗, u∗(x∗)) + V ′

i (x∗) f
(
x∗, u∗(x∗)

) − ρVi (x∗)
)

e−ρt dt

+
T∫

tk

(
Li (xk, u∗(xk)) + pi L f

(
xk, u∗(xk)

) − ρVi (xk)
)

e−ρt dt

= −ε +
k∑

j=1

t j∫

t j−1

(
Pi (x∗, V ′

i (x∗), u∗
i (x∗); u∗−i (x∗)) − ρVi (x∗)

)
e−ρt dt

+
T∫

tk

(
Pi (xk, pi L , u∗

i (x∗); u∗−i (xk)) − ρVi (xk)
)

e−ρt dt,

by definition of Pi , and

= −ε +
k∑

j=1

t j∫

t j−1

(
Hi (x∗, V ′

i (x∗); u∗−i (x∗)) − ρVi (x∗)
)

e−ρt dt

+
T∫

tk

(
Hi (xk, pi L ; u∗−i (xk)) − ρVi (xk)

)
e−ρt dt,

by equation (51).
All the terms of the sum vanish, since

Hi (x, V ′
i (x); u∗−i (x)) = Gi (x, V′(x)) = ρVi (x)
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whenever x ∈ (x j−1, x j ). The final integral vanishes as well, as by continuity

ρVi (x) = Gi (x, V′(x)) → Hi (xk, pi L ; u∗−i (xk)) as x ↑ xk .

Continuity of Vi then implies that

ρVi (xk) = Hi (xk, pi L ; u∗−i (xk)).

Taking the limit ε → 0 demonstrates inequality (45). ��
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