
Econ Theory (2014) 56:627–664
DOI 10.1007/s00199-014-0800-8

RESEARCH ARTICLE

Why uncertainty matters: discounting under
intertemporal risk aversion and ambiguity

Christian P. Traeger

Received: 4 May 2012 / Accepted: 3 August 2013 / Published online: 28 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Uncertainty has an almost negligible impact on project value in the standard
economic model. I show that a comprehensive evaluation of uncertainty and uncer-
tainty attitude changes this picture fundamentally. The illustration of this result relies
on the discount rate, which is the crucial determinant in balancing immediate costs
against future benefits, and the single most important determinant of optimal mitiga-
tion policies in the integrated assessment of climate change. First, the paper removes
an implicit assumption of (intertemporal or intrinsic) risk neutrality from the stan-
dard economic model. Second, the paper introduces aversion to non-risk uncertainty
(ambiguity). I show a close formal similarity between the model of intertemporal risk
aversion, which is a reformulation of the widespread Epstein–Zin–Weil model, and a
recent model of smooth ambiguity aversion. I merge the models, achieving a three-
fold disentanglement between risk aversion, ambiguity aversion, and the propensity
to smooth consumption over time.
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628 C. P. Traeger

1 Introduction

1.1 Overview

The paper makes three contributions to theory and shows how these contributions
affect policy analysis. First, I show a close formal similarity between a model dis-
entangling risk aversion from a decision maker’s propensity to smooth consumption
over time, and a model disentangling risk attitude from ambiguity attitude. Second,
I merge the two models into a framework that achieves a threefold disentanglement
of Arrow–Pratt risk aversion, intertemporal substitutability, and smooth ambiguity
aversion. Third, in an analytically tractable setting, I derive the resulting consumption
discount rates. I show that the formal similarity between the models translates into
two fully symmetric effects on the discount rate. The applied contribution of the paper
illustrates the importance of a comprehensive uncertainty attitude in long-term eval-
uation. In the standard discounted expected utility model, uncertainty has an almost
negligible impact on project value. I show how a model of comprehensive risk and
uncertainty attitude changes this result. I contribute to the social discounting debate
and provide simple analytic discounting formulas that pay particular attention to the
correlation between growth uncertainty and project payoff.

I disentangle intertemporal consumption smoothing and risk attitude in a reformu-
lated version of the Epstein–Zin–Weil model (Epstein and Zin 1989; Weil 1990). The
reformulation builds on Traeger’s (2010a, 2012) measure of intertemporal risk attitude.
Risk aversion has two effects on evaluation. First, stochasticity generates wiggles in the
consumption path. Agents with a propensity to smooth consumption over time dislike
these wiggles. Second, agents intrinsically dislike risk because it creates uncertainty
over the future. Intertemporal risk aversion measures this second effect. In comparison,
Arrow–Pratt risk aversion in the Epstein–Zin–Weil model measures both risk effects
jointly. Expressing the Epstein–Zin–Weil model in terms of intertemporal risk aversion
reveals its formal similarity to the smooth ambiguity model by Klibanoff et al. (2005).
Ambiguity models capture the distinction between uncertainty that is characterized by
a unique probability distribution (risk), and more general uncertainty, usually referred
to as ambiguity, hard uncertainty, deep uncertainty, or Knightian uncertainty. The sim-
ilarity between the reformulated Epstein–Zin model and the smooth ambiguity model
translates into equivalent terms in the consumption discount rate. These terms are pro-
portional to intertemporal risk aversion in the Epstein–Zin setting, and proportional
to ambiguity aversion in the smooth ambiguity model.

The consumption discount rate determines the optimal trade-off between current
investment costs and future investment payoffs. In the context of public projects, this
consumption discount rate is known as the social discount rate. The UK and France
have explicitly adapted their discounting schemes for the evaluation of legislation
and long-term projects to recognize uncertainty. The US Environmental Protection
Agency is currently preparing a similar proposal to the Office of Management and
Budget. The economic insights underlying these political reforms are based on the
standard economic model. However, it is well known that this standard model gives
rise to a variety of puzzles in asset pricing under uncertainty, including the equity
premium and the risk-free rate puzzles. These puzzles are easily explained using
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Why uncertainty matters 629

more comprehensive uncertainty models (Bansal and Yaron 2004). In particular, the
finance literature shows and exploits the fact that agents are more Arrow–Pratt risk
averse than they are averse to consumption substitution in the time dimension: they are
intertemporal risk averse. I illustrate the importance of modeling general uncertainty
attitude when incorporating uncertainty into public evaluation.

My derivation and discussion of the discount rate pays special attention to the
correlation between growth uncertainty and project payoffs. This contribution has
important implications for long-term evaluation. Examples of large-scale projects (or
legislation) with uncertain payoffs include investments into basic research, national
defense, development of new energy technologies, or climate change adaptation and
mitigation. I focus on the climate policy example, where the social discount rate is
currently hotly debated (Stern 2007; Nordhaus 2007; Weitzman 2007, 2009; Dasgupta
2009; Heal 2009). The social discount rate is the single most important explanatory
variable, when comparing the policy recommendations resulting from different inte-
grated assessments of climate change (Nordhaus 2007). For example, a social discount
rate of 1.4 %, as chosen in the Stern (2007) review, implies an optimal present day
carbon tax that is 10 times higher than using a rate of 5.5 %, as chosen by Nordhaus
(2008).1 First, I illustrate that thin-tailed growth risk easily results in adjustments of
the social discount rate in the same order of magnitude as the difference between the
rates chosen by Nordhaus and Stern. This finding contributes to a recent discussion on
the importance of uncertainty in climate change evaluation (Weitzman 2009; Pindyck
2009; Nordhaus 2012). Second, in the climate context, there is support for positive,
for negative, and for no correlation between mitigation payoffs and economic growth.
I illustrate the major relevance of this correlation for climate policy evaluation. Thus,
the paper calls for a more careful analysis of the correlation channels in the climate–
economy interaction.

1.2 Related Literature

The disentanglement of risk aversion from the propensity to smooth consumption
over time goes back to Selden (1978), Kreps and Porteus (1978), Epstein and Zin
(1989), and Weil (1990). Traeger (2010a, 2012) extends the Epstein–Zin–Weil disen-
tanglement to a multi-commodity setting. For this purpose, he introduces the concept
of intertemporal risk aversion. Intertemporal risk aversion directly measures intrinsic
aversion to risk, which is not captured in the standard model. Thus, discounting con-
tributions proportional to intertemporal risk aversion measure the deviations from the
discount rate in the standard model. As I point out in this paper, smooth ambiguity
aversion by Klibanoff et al. (2005, 2009) similarly captures a form of intrinsic aversion
to ambiguity. I show that the measure of smooth ambiguity aversion is an analogue to
the measure of intertemporal risk aversion, applied to ambiguous settings.

Gollier (2002) discusses the socially optimal discount rate for public investment
projects in a model that disentangles risk aversion from intertemporal consumption

1 Almost all large- scale integrated assessment models deriving optimal policies are based on a represen-
tative agent employing the standard economic model. In regional models, like the Nordhaus (2011) RICE
model, each regions is represented by such a representative agent.
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630 C. P. Traeger

smoothing. He identifies a sufficient condition for discount rates to be lower under
uncertainty than under certainty: the disentangled Arrow–Pratt measure of absolute
risk aversion has to decrease in consumption. This finding closely relates to Leland’s
(1968) finding in the standard model: savings increase under uncertainty if entangled
Arrow–Pratt risk aversion decreases in consumption. This condition is widely believed
to hold and, in particular, it is satisfied in case of isoelastic preferences employed in
the current paper’s application. Apart from adding ambiguity, the present paper com-
plements and extends Gollier’s (2002) analysis in several ways. First, I derive an exact
formula that differs from Gollier’s approximate formula for the social discount rate
under isoelastic preferences. Second, I use quantitative estimates from the asset pricing
literature to discuss the magnitude of the various contributions to the social discount
rate. Third, my formulation extracts the difference in discounting between the general
and the standard economic model into a single simple-to-interpret adjustment of the
discount rate, proportional to intertemporal risk aversion. Fourth, this reformulation in
terms of intertemporal risk aversion shows that Epstein–Zin preferences and smooth
ambiguity aversion imply largely equivalent adjustments of the discount rate. Fifth,
I extend the setting to account for the important correlation between project payoffs
and baseline uncertainty.

Paralleling the current research, Gierlinger and Gollier (2008) analyze the social
discount rate in Klibanoff et al.’s (2005) smooth ambiguity framework. Whereas I
focus on the analytic extension of the Ramsey formula and discuss the magnitude
and relevance of individual terms, Gierlinger and Gollier (2008) focus on general
ambiguity attitude and qualitative characterizations of the impact of uncertainty and
ambiguity aversion. In comparison with their paper, first, I sacrifice generality of
functional forms for the sake of analytic tractability. Second, the present paper adds
stochasticity of the investment projects and shows how general uncertainty attitude
amplifies the importance of the correlation between economic baseline growth and the
stochastic payoffs of the project. Third, Klibanoff et al. (2005) and, thus, Gierlinger
and Gollier (2008) conflate the disentanglement between the propensity to smooth
consumption over time versus risk states with aversion to ambiguity.2 In contrast, I
provide a clear threefold disentanglement of all three preference dimensions. Finally,
a minor difference is that my derivation of the social discount rate does not rely on
the assumption of a rational and efficient equilibrium. An efficient Lucas (1987) tree
equilibrium as described in Gierlinger and Gollier (2008) is highly interesting from
the intellectual viewpoint, however, in the climate change context, mitigation efforts
are far from efficient and complete future markets do not even come close to the time
horizons necessary for evaluating these long-run public investments.

Weitzman (2007, 2009) argues that uncertainty gives rise to a low social discount
rate in climate change assessment. Weitzman reaches this conclusion by following a

2 In the original smooth ambiguity model, aversion to standard or objective risk is set equal to the propen-
sity to smooth consumption over time. Only aversion to subjective risk, or second-order uncertainty, is
disentangled from this intertemporal smoothing preference. Thus, the original smooth ambiguity model
conflates ambiguity aversion with well-known risk characteristics: objective risk aversion is usually larger
than the propensity to smooth consumption intertemporally. Introducing a disentanglement from intertem-
poral smoothing only for subjective uncertainty results in an unfair comparison between the effects of risk
and ambiguity aversion.
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Bayesian approach to modeling structural uncertainty. His analysis delivers a fat-tailed
posterior over damages that translates into a high willingness to pay for a (certain)
transfer into the future. Instead of following Weitzman’s path of augmenting uncer-
tainty to a questionable level,3 I follow the decision theoretic developments that treat
uncertainty attitude more comprehensively. Finally, following the original working
paper version of this paper, Ju and Miao (2012) calibrated a version of the threefold
disentangling model I present here.4 A motivation of general risk and uncertainty
attitude on the basis of observed behavior can raise a concern regarding the applica-
bility of the current analysis to public decision making.5 In response to this criticism,
Traeger (2010b) provides a normative axiomatic foundation to decision making under
intertemporal risk aversion and under smooth ambiguity version. Moreover, Traeger
(2011) shows that the basic isoelastic discounting formulas derived here carry over to
the multi-period setting.

In its relevance for climate change policy and environmental cost-benefit analysis,
the paper closely relates to the special issue of this journal on “Economic theory and
the global environment” edited by Chichilnisky (2012). The present paper shows how
risk and uncertainty affect the discount rate and discusses implications for climate
change evaluation. A set of papers in the special issue develop axiomatic, normative
approaches for evaluating the future with discussion of the climate change context
(Lauwers 2012; Figuiéres and Tidball 2012; Asheim et al. 2012). Climate change is
caused by greenhouse gas emissions, which are a global negative externality. Karp
and Zhang (2012) discuss the advantages and disadvantages of a taxes versus a cap
and trade system to regulate such externalities. Their endogenization of abatement
costs extends earlier work on taxes versus quantities for stock pollutants (Hoel and
Karp 2001, 2002; Newell and Pizer 2003; Kelly 2005; Karp and Zhang 2006; Heutel
2011). Rezai et al. (2012) point out that an intertemporal externality component of
the greenhouse gas emission problem can be addressed by shifting produced capital
into climate capital, avoiding intergenerational redistribution. Finally, Karp (2005)
discusses hyperbolic discounting in the climate change context.

Section 2 provides the background to the paper. It discusses the consumption dis-
count rate in the standard model and introduces the concept of intertemporal risk
aversion. Section 3 extends the discounting formula to intertemporal risk aversion and
stochastic projects. It shows that, in a model of comprehensive risk attitude, even minor
growth risk can reduce the social discount rate to the level of pure time preference. Sec-
tion 4 incorporates smooth ambiguity aversion. It applies the model to second-order
uncertainty over expected growth and over the correlation between project payoff and
baseline uncertainty. Section 5 concludes.

3 For critical discussions of this approach, see in particular Pindyck (2009), Nordhaus (2009), Horowitz
and Lange (2009), and Millner (2011).
4 They find a coefficient of smooth ambiguity aversion very close to the risk aversion coefficients I discuss
in the context of risk aversion. However, their approach exogenously assumes a low value of Arrow–Pratt
(and, thus, intertemporal) risk aversion. Then, their coefficient of relative smooth ambiguity aversion picks
up the remaining aversion necessary to explain asset prices.
5 In particular, some ambiguity models (but not the smooth ambiguity model) imply time-inconsistent
decisions, which might not be considered rational or normatively desirable.
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2 Background

2.1 Discounting the future under uncertain growth

The consumption or social discount rate characterizes how the value of consumption
develops over time. This section lays out the basic setting and summarizes important
aspects of the recent debate over the correct social discount rate (Stern 2007; Nordhaus
2007; Weitzman 2007, 2009; Dasgupta 2009; Plambeck et al. 1997). First-period
consumption x1 ∈ X is certain, whereas second-period consumption is captured by
the probability measure p over X .6 In the standard model, a decision maker evaluates
utility for every period and for every state of the world by a utility function u and sums
over states and over time to arrive at

U s(x1, p) = u(x1) + e−δEpu(x2). (1)

The utility discount rate δ is known as the rate of pure time preference.
The decision maker faces a trade-off between aggregate consumption in the present

and in the future. Growth is stochastic and his utility is u(x) = x1−η

1−η
, η > 0, η �= 1.

Given x1, the consumption growth rate g = ln x2
x1

is normally distributed with

g ∼ N (μ, σ 2). The risk-free social or consumption discount rate r = ln dx2−dx1
|Ū

characterizes a marginal, certain trade-off between the future (dx2) and the present
(dx1) that leaves overall welfare unchanged:7

r = δ + ημ − η2 σ 2

2
. (2)

The formula is a well-known extension of the classic Ramsey (1928) formula that
makes growth stochastic. More precisely, the consumption or social discount rate
equals the right-hand side of the Ramsey equation. Given incomplete markets, exter-
nalities, and transaction costs, this right-hand side is a preferred measure for optimality
of trade-offs characterizing long-term projects and legislation that affect consumption.
I emphasize the risk-free nature of the trade-off characterized by the consumption (or
social) discount rate. The rate evaluates deterministic projects in an uncertain growth
scenario. Frequently, this rate in Eq. (2) is also applied to evaluate certainty-equivalent
project payoffs. However, Sect. 3.2 discusses why the stochastic discount rate should
be used instead for evaluating stochastic projects. The first term characterizing the
discount rate in Eq. (2) reflects pure impatience. The second term is a consequence
of economic growth. The consumption elasticity of marginal utility η characterizes
the percentage decrease in marginal utility from a percentage increase in consump-
tion. Together with the expected growth rate μ, the term ημ equals the decrease in
marginal utility because of expected consumption growth. The parameter η captures
aversion to intertemporal consumption changes. Apart from expected growth, these

6 Formally, X is a compact metric space and p ∈ P an element of the space of Borel probability measures
on X .
7 See Eq. (9) and footnote 22 for a mathematically more explicit statement of this trade-off.
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changes include expected wiggles that are caused by stochastic fluctuations. The deci-
sion maker’s aversion to these wiggles is captured in the term μσ 2

2 . This aversion to
wiggles in the consumption path is the only risk contribution in the standard model and
η is simultaneously interpreted as a measure of risk aversion. For the annual discount
rate, the parameters δ, μ, and σ are in the order of percent, whereas η is in the unit
order. Therefore, σ 2 makes the third term 10–100 times smaller than the others, and
risk can be neglected in discounting.8

The parameter choices of Stern (2007) can be approximated by δ = 0.1 %, η = 1,
and μ = 1.3 % delivering r = 1.4 % under certainty. Whereas Stern’s team argues
from a normative perspective for these choices, the majority of integrated assessment
modelers reject that standpoint.9 A representative of this positive school is Nordhaus,
creator of the widely used open-source integrated assessment model DICE. His para-
meter choices in DICE-2007 (Nordhaus 2008) are δ = 1.5 %, η = 2, and μ = 2 %10

delivering r = 5.5 % (again under certainty). This difference in the social discount
rate implies a factor 10 difference in the resulting optimal carbon tax. Introducing
uncertainty with a standard deviation of σ = 2 % (4 %) results in an adjustment of
the risk-free rate by 0.02 % (0.08 %) in the case of Stern and 0.08 % (0.3 %) in the
case of Nordhaus. The lower standard deviation of σ = 2 % is used by Weitzman
(2009) to approximate the volatility of economic growth without climate change and
catastrophic risks. The high standard deviation of σ = 4 % is the rounded estimate
of historic consumption fluctuations by Kocherlakota (1996).11 The magnitude of the
resulting adjustments for the low standard deviation are negligible, whereas the high
standard deviation results in minimal adjustments.

2.2 Intertemporal risk aversion

The standard model of the previous section implicitly assumes that a decision maker’s
aversion to risk coincides with his aversion to intertemporal variation. Epstein and
Zin (1989) and Weil (1990) derive an alternative setting that disentangles these two
a priori quite different characteristics of preference. Traeger (2010a) extends their
framework to a multi-commodity setting, introducing a new measure of intertem-
poral risk aversion that measures the difference between Arrow–Pratt risk aversion
and the propensity to smooth consumption over time. The current section motivates
the Epstein–Zin generalization of risk attitude along the lines of intertemporal risk
aversion. Later sections use the intertemporal risk aversion measure to give a more
compact characterization of the social discount rate adjustment under general risk
attitude and to show and exploit its similarity to the smooth ambiguity measure in the

8 The parameter σ characterizes risk in the sense of volatility. In the climate change debate, risk is frequently
used to also denote a reduction in the expected value, e.g., as a consequence of catastrophic events. Such a
reduction mostly affects the expected growth term of the social discount rate.
9 Moreover, Dasgupta (2008) points out that, from a normative perspective, an egalitarian choice of δ =
0.1 % should also call for a higher propensity of intergenerational consumption smoothing η > 1.
10 The growth rate is endogenous in the DICE model and has been reconstructed from Nordhaus (2007,
694).
11 Kocherlakota (1996) estimates μ = 1.8 % and σ = 3.6 % based on 90 years of annual data for the
United States.
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634 C. P. Traeger

case of general uncertainty. From the perspective of intertemporal risk aversion, the
standard model is risk neutral. It only generates aversion to stochasticity because of
the resulting wiggles in the consumption path and a decision maker’s propensity to
smooth consumption over time, not because of intrinsic aversion to being uncertain
about the future. As a consequence, expressing the social discount rate in terms of
intertemporal risk aversion splits its constituents cleanly into those contributions aris-
ing in the standard model and those additional contributions that are due to intrinsic
risk aversion.

The curvature of the utility function u in Eq. (1) captures both aversion to risk and
aversion to intertemporal variation. A priori, however, risk aversion and the propensity
to smooth consumption over time are two distinct concepts. More generally, welfare
is characterized by two independent functions corresponding to these two distinct
preference characteristics

U (x1, p) = u(x1) + e−δ f −1 [
Ep f ◦ u(x2)

]
. (3)

Under certainty, the f -functions cancel. Therefore, utility u is a measure for the
appreciation of consumption that derives from the willingness to trade over time.
The concavity of u captures the aversion to intertemporal consumption variation.
The curvature of f describes intertemporal risk aversion, which can be interpreted
as aversion with respect to utility gains and losses. Note that the curvature of f is
a one-dimensional risk measure even in a multi-commodity world.12 Contrary to a
widespread belief, Eq. (3)—not Eq. (1)—is the general representation of preferences
satisfying the Neumann and Morgenstern (1944) axioms, additive separability over
certain consumption paths, time consistency, and (finite time) stationarity (Traeger
2012).13

A representation-free, i.e., choice-based characterization of, intertemporal risk aver-
sion, motivates why the standard model generally falls short of capturing risk attitude
comprehensively. The general definition is provided in Traeger (2010a). It requires at
least two uncertain periods. Here, I give a simplified characterization that requires the
absence of pure time preference.14 Let � characterize preferences on X × P repre-
sented by Eq. (3) with δ = 0. A decision maker is called (weakly)15 intertemporal
risk averse, if and only if for all x∗, x1, x2 ∈ X

(x∗, x∗) ∼ (x1, x2) ⇒ (x∗, x∗) �
(

x∗,
(

1

2
, x1; 1

2
, x2

))
, (4)

12 See Kihlstrom and Mirman (1974) for the complications that arise when trying to extend the Arrow–
Pratt risk measures to a multi-commodity setting. Even more interestingly, measures of intertemporal risk
aversion can be applied straightforwardly to contexts where impacts do not have a natural cardinal scale.
13 Note that, in general, preferences represented by Eq. (3) cannot be represented by an evaluation function
of the form Us (x1, p) = u1(x1) + Epu2(x2).
14 I abandon pure time preference for the sake of simplicity in the characterization only. This step does not
change the intuition of the axiom with respect to its general form. Obviously, I keep pure time preference
when discussing discount rates.
15 The strong notion would involve the additional requirement (x∗, x1) �∼ (x∗, x2) in the premise and a
strict preference in the implication.
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where the term ( 1
2 , x1; 1

2 , x2) denotes a fair coin flip returning either x1 or x2. The
premise in Eq. (4) states that a decision maker is indifferent between a certain constant
consumption path delivering the same outcome x∗ in both periods and another certain
consumption path that delivers outcome x1 in the first and outcome x2 in the second
period. For example, x1 can be an inferior outcome with respect to x∗. Then, x2 is a
superior outcome with respect to x∗. On the right-hand side of Eq. (4), the decision
maker receives x∗ in the first period, independent of his choice. For the second period,
he has a choice between the certain outcome x∗ or a lottery that returns with equal
probability either the superior or the inferior outcome. The decision maker is called
(weakly) intertemporal risk averse if he prefers the certain outcome x∗ in the second
period over the lottery.16 I show in Proposition 5 in “Appendix 2” that a decision
maker (with δ = 0) is intertemporal risk averse in the sense of Eq. (4) if and only if
the function f in the representation (3) is concave.

In the two-period setting, the intertemporally additive reformulation of Epstein and
Zin (1989, 1991) infinite horizon recursive utility model is17

U (x1, p) = x1−η
1

1 − η
+ e−δ 1

1 − η

[
Epx1−RRA

2

] 1−η
1−RRA

, (5)

where RRA is the coefficient of Arrow–Pratt risk aversion. It is easily verified that
Eq. (5) results from Eq. (3) using the intertemporal risk aversion function

f (z) = (
(1 − η)z

) 1−RRA
1−η . (6)

16 The lottery on the right-hand side of Eq. (4) will make the decision maker either better off or worse
off than (x∗, x∗), whereas, on the left-hand side, the decision maker knows that if he picks an inferior
outcome for some period, he certainly receives the superior outcome in the other. Calling preferences
satisfying Eq. (4) intertemporal risk averse is motivated by the facts that, first, the definition intrinsically
builds on intertemporal trade-offs and, second, Normandin and St-Amour (1998, 268) make the point that
the conventional Arrow–Pratt measure of risk aversion is an atemporal concept.
A decision maker is defined as (weakly) intertemporal risk loving if the preference relation � in Eq. (4) is
replaced by 	. He is defined to be risk neutral if he is both intertemporal risk loving and intertemporal risk
averse (relation � in Eq. (4) is replaced by ∼).
17 In a multi-period framework Eq. (5) translates into the recursion

U (xt−1, pt ) = x1−η
t−1

1 − η
+ β

1

1 − η

[
Ept

(
(1 − η)U (xt , pt+1)

) 1−RRA
1−η

] 1−η
1−RRA

, (�)

To obtain the normalization used by Epstein and Zin (1989, 1991), multiply Eq. (�) by (1 − β)(1 − η) and

take both sides to the power of 1
1−η

. Define U∗(xt−1, pt ) = (
(1 − β)1 − ηU (xt−1, pt )

) 1
1−η . Expressing

the resulting transformation of Eq. (�) in terms of U∗ delivers their version

U∗(xt−1, pt ) =
(

(1 − β)x1−η
t−1 + β

[
Ept

(
U∗(xt , pt+1)

)1−RRA
] 1−η

1−RRA

) 1
1−η

.
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Instead of Arrow–Pratt risk aversion, I will make frequent use of the measure of relative
intertemporal risk aversion

RIRA(z) = − f ′′(z)
f ′(z)

|z| =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 1 − RRA

1 − η
if η < 1

1 − RRA

1 − η
− 1 if η > 1.

(7)

The measure RIRA(z) depends on the choice of zero in the definition of the utility
function u. This normalization dependence is the analog to, e.g., the wealth level
dependence of the Arrow–Pratt measure of relative risk aversion.18,19 Traeger (2010a)
further elaborates that f and RIRA can be interpreted as a measure for the difference
between Arrow–Pratt risk aversion and the willingness to smooth consumption over
time.

2.3 Quantification of parameters

For my quantitative analysis, I focus on the case of risk, where parametric estimates
have converged to a more reliable quantification of general attitude than for ambiguity.
However, I show that the formal adjustments of the discount rate to include ambiguity
attitude are almost identical to the adjustment in the case of intertemporal risk aver-
sion. Thus, the quantitative illustration in the case of risk translates immediately into
an illustration of the quantitative effects under ambiguity aversion. Estimates of the
generalized isoelastic model usually build on Epstein and Zin (1991) and Campbell’s
(1996) log-linearizing the Euler equations. The estimation of the isoelastic model is
significantly more challenging than in the case of the standard model.20 However,
over the recent years, a somewhat reliable set of parameters emerges to be η = 2

3 and
RRA ∈ [8, 10], explaining well asset prices and related puzzles (Vissing-Jørgensen
and Attanasio 2003; Bansal and Yaron 2004; Basal et al. 2010). The message of these
estimates and calibration results is that agents tend to have a higher aversion to risk than
to intertemporal substitution. I denote the corresponding preference scenario by “D”
for “disentangled model” and use the values η = 2

3 and RRA = 9.5 that are empha-
sized by Vissing-Jørgensen and Attanasio (2003). These estimates imply a coefficient
of relative intertemporal risk aversion of RIRA = 27. The standard model does not

18 In the standard model, the Arrow–Pratt measure of relative risk aversion depends on what is considered
the x = 0 level. For example, whether or not breathing fresh air is part of consumption or whether human
capital is part of wealth changes the Arrow–Pratt coefficient.
19 Note that positivity of RIRA indicates intertemporal risk aversion independently of whether f is increas-

ing and concave or decreasing and convex (see footnote 34). In both cases, − f ′′
f ′ is positive. Moreover,

measuring utility in negative units as in the isoelastic case for ρ < 0 makes z negative. Therefore, the
definition of relative risk aversion has to employ the absolute of the variable z (Traeger 2010a). The same
reasoning applies to the measure of smooth ambiguity aversion.
20 These models have to make assumptions about the covariance of consumption growth and stock returns,
the share of stocks in the financial wealth portfolio, the properties of the expected returns to human capital,
and the share of human capital in overall wealth.
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allow the decision maker to distinguish between risk and intertemporal smoothing atti-
tude. In consequence, the joint, entangled estimate usually falls somewhere inbetween
the disentangled estimates of Arrow–Pratt risk aversion and the propensity to smooth
consumption over time. For my quantitative analysis, I use the entangled standard
model with η = 2 as scenario “N”. The value of 2 is widespread and, in particular,
employed in Nordhaus’s (2008) integrated assessment of climate change. The standard
model implies zero intertemporal risk aversion. Depending on the assessment, I also
provide sensitivity scenarios or vary parameters on a continuum.

3 Discounting under intertemporal risk aversion

3.1 Risk-free projects

Intertemporal risk aversion results in the following adjustment of the risk-free rate.

Proposition 1 The risk-free social/consumption discount rate in the isoelastic setting
with intertemporal risk aversion is

r = δ + ημ − η2 σ 2

2
− RIRA |1 − η2|σ

2

2
. (8)

In the presence of growth uncertainty, a decision maker exhibiting positive intertempo-
ral risk aversion RIRA > 0 discounts the future payoffs at a lower rate. In consequence,
a certain project with a relatively low productivity can still improve the welfare of an
intertemporal risk averse decision maker, even if an evaluation based on the standard
model rejects the project.

In Eq. (8), the parameter η reflects only aversion to intertemporal fluctuations.
Therefore, the term η2 σ 2

2 is interpreted as the cost of expected fluctuations triggered by
the aversion to non-smooth intertemporal consumption paths. I refer to the expression
as “the standard risk term,” as it is the only expression capturing risk in an analysis
based on the standard model. In the case of fully disentangled preferences (scenario
D, see Sect. 2.3), the magnitude of the intertemporal risk aversion contribution is

RIRA |1 − η2|σ 2

2

η2 σ 2

2

≈ 33,

times that of the standard risk contribution. Figure 1 depicts the different discounting
contributions as a function of η. The graph sets RRA = 9.5, μt = 2 % and σt = 4 %.

The positive growth term (brown, dash-dotted) dominates for reasonably high val-
ues of η. The intertemporal risk aversion term (blue, dashed) defines the main reduc-
tion. The standard risk term (black, dotted) plays a very minor role in determining the
overall discount rate net of pure time preference (green, solid). Note that the intertem-
poral risk aversion contribution is continuous at η = 1. Keeping RRA fixed, RIRA is
itself a function of η as it measures the difference between Arrow–Pratt risk aversion

123



638 C. P. Traeger

0.5 1.0 1.5 2.0

1

2

3

4
in

Fig. 1 Depicts the different contributions of the discount rate as well as the total discount rate net of pure
time preference r −δ. The terms are drawn as a function of aversion to intertemporal fluctuations η, keeping
relative Arrow–Pratt risk aversion fixed at RRA = 9.5 and using μt = 2 % and σt = 4 %. A minus sign in
the bracket implies that the term is negative and subtracted from the positive growth term. The abbreviation
ira denotes the contribution from intertemporal risk aversion

and aversion to intertemporal substitution.21 Moving from the standard model with
RRA = η = 2 to the disentangled model with η = 2

3 implies two changes in the
discount rate. First, the growth effect is significantly reduced once η captures only the
attitude to intertemporal substitution (brown dash-dotted line is evaluated further to
the left). This first effect is an indirect effect of disentanglement. It merely corrects
the estimate of the growth term in the standard Ramsey equation. Second, intertem-
poral risk aversion reduces the discount rate (blue dashed line is now subtracted from
the brown dashed line). This second effect is the direct effect of intertemporal risk
aversion. When moving in Fig. 1 from η = 2 all the way to η = 2

3 , the indirect effect
implies an even larger reduction in the discount rate than the direct effect.

Figure 2 illustrates the crucial difference between the standard model and a model
of general risk attitude in terms of the resulting discount rates. The standard model
confines RRA = η. The thick colored line moving upwards from the origin depicts
the discount rate net of pure time preference r − δ in the standard model. The yellow
region of the otherwise red line reflects the most common preference specifications,
η ∈ [1, 2]. Accounting for higher risk aversion in the standard model moves r − δ

up along the RRA = η line and significantly increases the discount rate. In contrast,
higher risk aversion in the disentangled model decreases the discount rate. The thin
black lines going from right to left increase risk aversion while keeping η = 2

3 (D) and
η = 2 (N). The thin black lines moving up increase η while fixing RRA at 5 and 10.
All of the cited estimates of the disentangled model imply discount rates in the lowest
corner of the shaded area between these lines. In contrast, an attempt to accommodate

21 The Epstein–Zin preference representation in Eq. (5) implies a switch in the sign of utility when η

crosses unity. During this sign, switch 1 − η goes through zero, while RIRA has a pole. One could redefine
RIRA |1 − η2| as the actual measure of intertemporal risk aversion, as it is positive if and only if Eq. (4)
holds. I stick to the definition in Eq. (7) because this measure is completely analogous to the measure
suggested for smooth ambiguity aversion.
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Fig. 2 Depicts the total discount rate net of pure time preference r − δ as a function of η and RRA.
Moving along the thick (red and yellow) line keeps RRA = η, representing the only movement possible
in the standard model. The yellow part of the line marks the most common parameterization η ∈ [1, 2].
Increasing risk aversion along this line necessarily leads to high discount rates. In contrast, increasing risk
aversion in the disentangled model corresponds to a movement to the left and reduces the discount rate. The
two thin black lines a and a′ from right to left hold η fix at 2

3 (as in D) and 2 (as in N), while increasing risk
aversion. The two thin lines b and b′ moving up hold RRA fix at 5 and 10, while increasing η. The cited
estimates of the disentangled model all imply rates in the lowest left corner of the shaded area between the
thin black lines. It is μt = 2 % and σt = 4 % (color figure online)

observed risk aversion of RRA ∈ [5, 10] in the standard model would imply discount
rates far above the 7 % bound of the graph (plus pure time preference).

Gollier (2002) derives a social discount rate that closely relates to the rate charac-
terized in Eq. (8). It differs in two respects. First, only Eq. (8) decomposes the discount
rate into terms that resemble the rate in the standard model, and a term capturing the
deviation from the standard model. The term capturing this deviation, which is pro-
portional to intertemporal risk aversion, fleshes out the magnitude of the difference
between employing the standard model and the comprehensive model. Moreover,
the term will be crucial in drawing the parallel to discounting under smooth ambi-
guity aversion. Second, his derivation of the isoelastic special case of his model is
an approximation and assumes that the support of the growth rate is a small neigh-
borhood around zero. In contrast, the normal growth distribution assumed here has
infinite support. Contrary to a seemingly widespread belief, Gollier’s equation neither
holds for normal growth, nor does he claim so. For normal growth, equation (14) in
Gollier (2002) misses a term η σ 2

2 . Gollier’s derivation starts with the Arrow–Pratt
approximation of the certainty equivalent. The Arrow–Pratt approximation is globally
exact for normally distributed risk and CARA utility, i.e., for utility or risk aversion
functions that capture constant absolute aversion rather than constant relative aversion
as assumed by isoelastic preferences. For short-time horizons, low-growth, and low-
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variance, Gollier’s approximation is good in the case of a normal growth distribution
and CARA aggregators. I discuss these results in “Appendix 3.”

3.2 Stochastic projects

In the preceding section, uncertainty is about economic growth. Many long-term
investment projects, however, are characterized by uncertain payoffs. Greenhouse
gas mitigation and climate change adaptation projects are important examples. Once
stochasticity of the project is introduced, the correlation between project payoff and
uncertain economic growth becomes crucial for valuation. Lind (1982) argues for full
positive correlation between project payoffs and economic baseline growth. Weitzman
(2007) points out that this standard approach to cost-benefit analysis does not apply
to climate change projects. The major areas impacted by climate change would be
“ ‘outdoor’ aspects (broadly defined) like agriculture, coastal recreational areas, and
natural landscapes,” which are little correlated with technological progress. Moreover,
some of these impacts directly affect utility rather than production. Various economists
used related arguments to promote the use of the risk-free rate for the assessment of
climate change projects. Indeed, the risk-free rate coincides with the discount rate for
an uncorrelated stochastic project (see below).

Some common integrated assessment models imply a different correlation mecha-
nism. Nordhaus (2008) notes that a high growth realization implies more production
and, thus, more emissions. Then, damages and abatement payoff are both high. The
resulting positive correlation between growth (or wealth) and project payoff is driven
by the production–emissions–damage link. I add a third consideration driving cor-
relation in the climate change context. The causal chain pointed out by Nordhaus
(2008) and captured in his integrated assessment model DICE relies on the exogenous
growth rate affecting emissions. However, if climate change turns out to have severe
economic impact, then it is likely to affect the economic growth rate (Pindyck 2011).
A possible transmission channel from climate change to economic growth is the mere
straining of resources that would otherwise lead to technological progress. Another
channel could divert general technological progress into adaptation technology that
merely serves to maintain the status quo. Dell et al. (2012) find evidence that a similar
channel indeed affects the growth rates in developing economies even at the moderate
levels of climate change experienced in the past. A further transmission channel can
be a distributional tension caused by fresh water scarcity, droughts, and agricultural
impacts in some regions of the world, triggering social conflict within a society as
well as international conflicts. In general, all three correlation arguments (Weitman’s,
Nordhaus’, and the one added here) apply to the evaluation of climate change related
projects and the integrated assessment of climate change under uncertainty.

This section derives the discounting formula for projects that are correlated with
economic baseline growth. I show that general risk attitude creates a much more
important role for correlation than in the standard model. For stochastic projects, the
decision maker no longer trades a deterministic unit of consumption between the
present and the future. Formally, she trades a marginal unit dx1 of her current certain
consumption x1 against a marginal fraction dε of a stochastic project y with expected
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unit payoff, i.e., Ey = 1. The future payoff y is correlated with uncertain future
baseline consumption x2. The stochastic discount rate is characterized as r = ln dε

−dx1
for an intertemporal trade-off that leaves overall welfare constant:

0 = d

dx1
u(x1)dx1 + β

d

dε
f −1 [

Ep(x2,y) f ◦ u(x2 + εy)
]∣∣
∣
ε=0

dε. (9)

I briefly comment on this extension of the social discounting model. First, for a certain
project, the marginal payoff εy is certain and corresponds to dx2 in the usual derivation
of the risk-free social discount rate.22 Second, marginality in the trade-off that defines
the discount rate plays the same role as in any other economic price concept. The
analytic formula for the discount rate will characterize (in rates) the present value
willingness to pay for a marginal unit of the stochastic project. This willingness to
pay depends on correlation. Third, I formalize a trade-off between a marginal current
unit and the first marginal part of a finite stochastic unit project y.23 Fourth, observe
that the derivation does not rely on an optimal allocation of an adaptation–mitigation
portfolio. Such an optimality assumption would be inadequate in the climate change
application that I discuss.

I assume that the uncertain productivity of the project ln y and the stochastic eco-
nomic consumption growth rate g are jointly normally distributed with standard devi-
ations σy, σg , and correlation κ . The expected growth rate is denoted as μg and the
condition Ey = 1 determines the remaining parameter of the distribution.24

Proposition 2 The stochastic social discount rate in the isoelastic setting with
intertemporal risk aversion is

r = δ + ημg − η2 σ 2
g

2
− RIRA |1 − η2|σ

2
g

2
+ηκ σgσy + |1 − η| RIRA κ σgσy . (10)

The second line distinguishes the stochastic social discount rate from its risk-free rel-
ative of the previous section. In the case of certainty about the project, this second line
vanishes (σy = 0). The same is true if the risk of the project and the baseline scenario
are uncorrelated (κ = 0). The discount rate characterizes a marginal shift between

22 In this case, the formula above reduces to a more precise notation of what is commonly written as
d

dx2
. . . Ep . . . u(x2) : the above notation makes explicit that (for y = 1) the marginal unit (ε or dx2) in the

decision maker’s trade-off is certain, while the baseline x2 is uncertain.
Observe that also the first-period derivative in Eq. (9) can be rewritten as d

dε1
u(x1 + ε1 y1)|ε1=0,y1=1dε1.

23 Modeling an infinitesimal share of a non-marginal unit project rather than a marginal project itself is
important. It is well known that risk effects are second-order effects. Therefore, stochasticity effects of an
infinitesimal project would vanish.
24 Let μy denote the expected value of (the marginal distribution of) ln y. The condition Ey = 1 implies

μy = − σ2
y

2 . Making use of this constraint, it is Var(y) = eσ2
y − 1 ≈ σ 2

y + σ4
y

2 . Thus, in the percentage
range, σy also approximates well the standard deviation of the project y itself. I refer to κ as the correlation
between the project and the baseline even though, more precisely, it is the correlation between ln y and the
growth rate g = ln x2

x1
.
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current consumption and uncertain future consumption. Therefore, risk aversion with
respect to the marginal project itself is a second-order effect that does not find its
way into the discount rate. Stochasticity of the small project only contributes through
its interaction with baseline uncertainty. The second term in the second line of Eq.
(10) distinguishes the correlation contribution in a model including intertemporal risk
aversion from the correlation contribution in the standard model.

I assess the magnitude of the correlation contribution in the same growth scenario
as before with μ = 2 % and σy = σg = 4 %. I discuss and relax the assumption
that the standard deviation of the project payoff equals that of the growth process
in the next section. The correlation multiplier in scenario N, the standard model
with Nordhaus’ preferences, is ησgσy = 0.3 %. In contrast, scenario D (disentan-
gling η = 2

3 from RRA = 9.5) reduces the standard multiplier of the correlation
coefficient to ησgσy = 0.1 %, but adds an intertemporal risk aversion multiplier of
|1 − η| RIRA σgσy = 1.4 %. The correlation contributions to the social discount rate
are proportional to these multipliers and the correlation coefficient. For example, a
correlation of κ = ±0.5 increases the social discount rate in the disentangled sce-
nario by ±0.8 % to an overall rate of 2.4 % and 0.9 %, respectively (for δ = 1.5 %).
Thus, under intertemporal risk aversion, the correlation between the project payoff
and economic growth is of first-order importance for the discount rate. Figure 1 shows
the dominant correlation multiplier caused by intertemporal risk aversion as a func-
tion of η in light gray. It is the amount added (subtracted) from the risk-free rate
when accounting for full positive (negative) correlation and comprehensive risk atti-
tude.

3.3 The relevance of future risk

How relevant is uncertainty for the evaluation of long-term projects? Weitzman (2009)
emphasizes the importance of uncertainty about climate sensitivity and economic
damages for the assessment of climate change policies. His analysis builds crucially
on generating fat tails in a standard expected utility model. His interesting findings have
been criticized in a series of papers for their assumptions about the climate system as
well as for stretching a too simple economic trade-off model beyond the domain where
it is meaningful (Horowitz and Lange 2009; Pindyck 2009; Nordhaus 2009; Millner
2011). The current paper opens up a very different perspective on how uncertainty
affects climate change evaluation. Even without uncertainty about the climate system
itself, uncertainty about economic growth has a major impact on optimal climate
policy. Including uncertainty about the climate system, the interaction and correlation
between growth and project payoffs becomes a major ingredient for evaluating climate
change and pricing carbon. The section analyzes the relevance of growth and project
uncertainty in the model of comprehensive risk attitude.

The previous sections have shown that growth uncertainty reduces the discount rate.
The two-period model of those sections is equivalent to a simple iid growth model.
However, once uncertainty becomes persistent, it is well known that uncertainty not
only changes the level of the discount rate, but also its term structure (Weitzman 1998;
Azfar 1999). Making the time step explicit in Eq. (8) results in
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rT = δT + ημT − η2 σ 2
T

2
− RIRA |1 − η2|σ

2
T

2
,

where variables indexed by T depend on the time horizon (payoff period). For an iid
process like a Brownian motion, the variance grows linearly in futurity T . Then, if
expected growth is constant (μT = T μ), payoffs in period T are simply discounted
at T times the constant rate stated in Eq. (8). However, with persistent uncertainty, the
variance grows faster and the term structure of the discount rate falls: payoffs in the
distant future are discounted at a relatively lower (annual average) discount rate than
payoffs in the close future.

In the following, I analyze the importance of uncertainty for the evaluation of climate
change, comparing the models with and without a comprehensive representation of
risk attitude. The analysis relies on the primordial importance of the discount rate for
climate change evaluation, impressively documented in Nordhaus’s (2007) simulation
discussed in the introduction. I build the analysis around the following question: At
what level of riskiness do uncertainty effects cancel the growth effect in the social
discount rate? Growth discounting is the main economic driver of discounting. If
uncertainty effects cancel the growth effect, then future costs and benefits are solely
discounted with the pure rate of time preference δ. I compare the necessary risk
level between the standard and the disentangled model, and I analyze how this risk
depends on the correlation between growth and project payoffs. A major advantage of
approaching the uncertainty comparison in this way is that the uncertainty analysis is
independent of pure time preference—a parameter whose magnitude is most contested
in the debate.

The analysis uses a time horizon (or period) of 50 years. I now discuss long-term
growth uncertainty, a highly intertemporally correlated event, instead of discussing a
representative year in an iid growth scenario. I keep the assumption of an expected 2 %
annual growth rate of consumption. In 50 years, climate change is going to affect our
planet severely under almost any forecast. It will affect economic activities directly
as well as non-produced consumption. Some events such as changes in precipitation
patterns (or land loss) can also cause social unrest or war.25 I will measure uncertainty
in terms of the variance of the growth process (and the project payoff) and translate it
into the probability of being worse off tomorrow than today.

Corollary 1 The discount rate reduces to pure time preference, i.e., rT = δT , if and
only if

1. in the case of the risk-free rate

σT =
(

1

2

(
η + |1 − η2|

η
RIRA

))− 1
2

μT
1
2 . (11)

25 Similarly, learning about climate sensitivity and, thus, an important ingredient for damages, takes place
on a similar time scale (Kelly and Kolstad 2001; Keller et al. 2004).
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2. in the case of a risky project with σT = σgT = σyT

σT =
(

1

2

(
η + |1 − η2|

η
RIRA

)
− κ

(
1 + |1 − η|

η
RIRA

))− 1
2

μT
1
2 . (12)

3. in the case of a general risky project

σyT =
(
η2 + |1 − η2| RIRA

)
σgT − 2η

μT
σgT

2κ (η + |1 − η| RIRA)
.

The conditions for eliminating the growth effect are identical for the risk-free rate and
for the case of a risky project whose payoffs are uncorrelated to overall growth. More
uncertainty is required, if the risk terms are to cancel the growth term, for a project
whose payoffs are positively correlated to growth uncertainty. If the expected growth
rate is simply μT = μT , with a constant annual expectation of μ, then Eqs. (11)
and (12) show that (only) a standard deviation that evolves proportional to

√
T leaves

the annual discount rate constant (at pure time preference). This fact illustrates once
again that the term structure of the discount rate is flat only for iid uncertainty where
σT ∝ √

T .
I analyze Corollary 1 using concrete probabilistic events. By p� ≡ P(x50 ≤ x1),

I denote the probability that anything including climate change causes society to be
worse off in T = 50 years than today. It is the probability mass in the thin left tail of
the growth distribution that implies a non-increasing standard of living between today
and in 50 years. For the subsequent simulations, I keep expected consumption growth
at a annual rate of 2 % and T = 50, which implies μT = 1. Table 1 summarizes the
numerical results for the different preference representations and for differing degrees
of correlation. The table follows part 2 of Corollary 1 assuming σgT =50 = σyT =50

(relaxed further below). In scenario N, the intertemporally expected utility standard
model, a standard deviation of unity is necessary to eliminate growth discounting
from the risk-free discount rate (κ = 0). This standard deviation translates into the
large probability of p� = 16 % that society is equal or worse off in 50 years. In
contrast, the disentangled scenario D with a comprehensive treatment of risk attitude
implies σ = 0.3 and p� = 0.04 %. A chance of 4 in 10,000 that we might not
be better off in 50 years than today seems quite reasonable. Then, we should not
discount the future for growth in the disentangled model. The probability necessary
in the standard model is 400 times larger. The sensitivity scenario S1 in the table
leaves relative Arrow–Pratt risk aversion RRA at the estimate of 9.5, but increases
aversion to intertemporal substitution η to Nordhaus’ value of 2. This change reduces
intertemporal risk aversion, but still results in a probability p� necessary to reduce
discounting to pure time preference that is only a 30th of the probability needed in
scenario N. Sensitivity scenario S2 further reduces intertemporal risk aversion by also
lowering the Arrow–Pratt coefficient of risk aversion to 5. Then, p� is about a fifth of
the corresponding probability in scenario N.

The table also shows the important role played by the correlation between project
payoff and growth uncertainty in the disentangled approach: correlation can change

123



Why uncertainty matters 645

Table 1 Risk that reduces the social discount rate to pure time preference

η RRA RIRA κ = −1 κ = −0.5 κ = 0 κ = 0.5 κ = 1

σ (%) p� (%) σ (%) p� (%) σ (%) p� (%) σ (%) p� (%) σ (%) p� (%)

N 2 2 0 71 7.9 82 11 100 16 140 24 – –

D 2
3 9.5 27 20 0.00002 23 0.0009 30 0.04 49 2 – –

S1 2 9.5 7.5 30 0.04 33 0.13 39 0.5 49 2 73 8.5

S2 2 5 3 42 0.8 47 1.7 55 3.6 71 7.9 120 19

σ = σy = σg = standard deviation; p� = probability of being worse off in 50 years than today; κ =
correlation coefficient between project and baseline risk. The κ = 0 case is equivalent to the risk-free social
discount rate. Expected growth is an annual 2 % over 50 years. The settings are “N” based on Nordhaus,
“D” for the disentangled parameter estimates (Sect. 2.3), and sensitivity scenarios “S1” and “S2”

the probability p� by several orders of magnitude. With disentangled preferences and
a correlation coefficient κ = −.5, a probability of p� = 0.0009 % is sufficient to
make the risk terms cancel the growth effect, yielding a social discount rate that is
equivalent to pure time preference. In contrast, with a correlation coefficient κ = +.5,
a probability of p� = 2 % would be needed. Under standard preferences, these prob-
abilities would be 11 % and 24 %, respectively. The stochasticity of the project with
expected unit payoff can be characterized as follows. Let py = P(y < 0.5 ∨ y > 2)

denote the probability that the project pays less than half or more than double of the
expected unit. The interval σy ∈ [0.2, 0.3] found for a non-positive correlation in the
disentangled approach translates into py ∈ [0.1 %, 2.2 %], whereas the corresponding
interval σy ∈ [.7, 1] in the N scenario translates into py ∈ [35 %, 54 %]. For perfect
positive correlation κ = 1, the risk effects can only cancel the growth effect if the
standard deviation of baseline growth exceeds that of the stochastic project. Thus,
condition (12) has no solution.26

Disentangling the two different risks yields further insight. The left graph in Fig. 3
depicts combinations of standard deviations that reduce the social discount rate to
pure time preference. The right graph translates these standard deviations into the
probabilities p� that society is equal or worse off in 50 years under the expected
annual growth rate of 2 % (growth uncertainty) and into the probability py that the
project pays out less than half or more than double the expected unit.27 The dashed
lines correspond to disentangled preferences (D), whereas the solid lines correspond
to Nordhaus preferences (N). The graphs demonstrate that more uncertainty of the
stochastic project decreases the baseline risk necessary for a reduction in the discount
rate, if and only if the correlation is negative. For a positive correlation, higher project
uncertainty also requires a higher volatility of baseline growth if risk effects are to
cancel the growth effect. The graphs clearly show the importance of the correlation

26 The entries in Table 1 correspond to the intersections of the corresponding curves on the left of Fig. 3
with the dotted 45◦ line. The shape of the curves for κ = 1 demonstrates why there is no solution to Eq.
(12) (no intersection of the κ = 1 curves with the dotted line).
27 Note that such a translation into probabilities is possible because the marginal distribution of the bivariate
normal only depends on the volatility in the remaining dimension. Also note that the vertical range of the
right graph corresponds to a σy -range of [0, 0.5].
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Fig. 3 Depicts the combinations of standard deviations (left) and probabilities (right) of baseline growth
(horizontal axis) and project payoff (vertical axis) implying a discount rate reduction to the rate of pure
time preference. p� represents the probability of being worse off in 50 years than today under a normally
distributed growth rate with expected value of 2 % per year. py represents the probability that the payoff of
the stochastic unit project lies outside of the interval [0.5, 2]. The numbers labeling the curves denote the
correlation κ between baseline growth and project payoff. The dashed curves (originating at “D”) are based
on the disentangled approach, and the solid curves (originating at “N”) are based on Nordhaus’ entangled
preferences. The intersections of the curves in the left graph with the dotted line (identity) depicts the σ

values reported in Table 1

coefficient already for low levels of the project’s payoff uncertainty py . Moreover,
the graphs reiterate the order of magnitude difference resulting from entangled versus
disentangled preferences.

4 Ambiguity aversion and second-order uncertainty

4.1 Ambiguity

A different shortcoming of the intertemporally additive expected utility standard model
is its assumption that uncertainty can be described by a unique probability measure.
In many real-world applications, these probability distributions or risks are unknown.
Different strands of literature capture non-risk uncertainty under the names deep uncer-
tainty, hard uncertainty, or ambiguity. In this paper, I employ and extend Klibanoff et
al.’s (2005) model of smooth ambiguity aversion (KMM) and show how ambiguity
affects the discount rate. In contrast to many models of ambiguity and deep uncertainty,
the KMM model satisfies normative desiderata including time consistency and other
rationality constraints. I show the close similarity of this ambiguity model to the model
of intertemporal risk aversion. The KMM model captures uncertainty about the correct
objective probability distribution in terms of second-order uncertainty: a subjective
probability distribution over objective probability distributions or risk. The model is
particularly interesting and applicable in the context of climate change and long-term
economic growth: in both situations, we face too little data and insufficient knowledge
about the underlying model to derive confident probabilistic estimates governing the
future.
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The basic structure of the model is similar to a Bayesian prior model. The Bayesian
prior is interpreted as ambiguous second-order uncertainty. The crucial distinction
between the smooth ambiguity and the standard Bayesian model lies once more in
the preference representation that accompanies the uncertainty model. In a standard
Bayesian expected utility model, a decision maker evaluates objective first-order prob-
abilities and subjective second-order probabilities with the same risk aversion func-
tion (simultaneously capturing aversion to intertemporal substitution). In contrast,
the KMM model incorporates the finding that individuals generally prefer objec-
tive risk to subjective risk. For this purpose, the model introduces a new measure
of risk aversion for ambiguous lotteries, i.e., the subjective second-order probabil-
ity distributions. I will explain that this measure of ambiguity is a close analog to
the measure of intertemporal risk aversion. The original KMM model does not dis-
entangle attitudes in the case of objective risk. By introducing ambiguity aversion,
the model introduces intertemporal risk aversion only to subjective lotteries, while
keeping intertemporal risk neutrality for objective lotteries. I extend the model to cap-
ture both, disentangled aversion to subjective and to objective risk. I show that the
resulting social discounting model is a clone of the model discussed in the previous
sections.

The decision-theoretic literature has developed a range of different approaches to
capture situations of ambiguity. I briefly survey the most important ones in the remain-
der of this section. One way to characterize non-risk uncertainty is by extending the
concept of probabilities to more general set functions called “capacities.” These set
functions weigh possible events but are not necessarily additive in the union of dis-
joint events. Because of this non-additivity, the standard measure integral has to be
exchanged for the more general Choquet integral in order to calculate expected utility,
giving rise to the name “Choquet expected utility.” A second approach defines an eval-
uation function that expresses beliefs in the form of sets of probability distributions
rather than unique probability distributions. The first and simplest such representa-
tion goes back to Gilboa and Schmeidler (1989). Here, a decision maker evaluates
a scenario by taking expected values with respect to every probability distribution
deemed possible and then identifies the scenario with the minimal expected value in
this set.28 A more general representation of this type is given by Ghirardato et al.
(2004), Maccheroni et al. (2006a), and, in an intertemporal framework, Maccheroni
et al. (2006b). There are several equivalence results between the Choquet approach
and that of multiple priors as well as rank-dependent utility theory where a deci-
sion maker uses distorted probabilities in an expected utility approach increasing the
weights given to small probability events. In the climate change context, the main
advantage of the smooth ambiguity model over these alternatives is its normative
attractiveness achieved by maintaining time consistency and the essence of the inde-
pendence axiom. Just as importantly for my purposes, I want to show that the KMM
model is closely related to the model of intertemporal risk aversion and yields similar
discounting results. Finally, its similarity to the Bayesian framework makes the model

28 Hansen and Sargent (2001) give conditions under which this approach is equivalent to what is known as
robust control or model uncertainty, which again has overlapping representations with the model of constant
absolute intertemporal risk aversion presented in Traeger (2012).
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not only easy to interpret, but also allows me to relate to Weitzman’s (2009) discourse
on structural uncertainty.

4.2 The generalized model of smooth ambiguity aversion

The section introduces the smooth ambiguity aversion model by Klibanoff et al. (2005)
and, in the intertemporal setting, by Klibanoff et al. (2009). It represents ambiguity
(non-risk uncertainty) as second-order probability distributions, i.e., probabilities over
probabilities. The model introduces a different attitude for evaluating second-order
uncertainty as compared to first-order risk. For the purpose of my paper, this model
has two advantages over the other approaches cited above. First, the model is time
consistent, making it suitable not only for a descriptive but also for a normative decision
framework. Translated into the simple setting of this paper, the generally recursive
evaluation of the future writes as

V (x1, p, π) = u(x1) + βΦ−1

⎧
⎨

⎩

∫

Θ

Φ
[
Epθ (x2)u(x2)

]
dπ(θ)

⎫
⎬

⎭
.

For a given parameter θ , the probability measure pθ on the consumption space X
denotes first-order or “objective” probabilities over consumption. The expectation
operator takes expectations with respect to pθ . However, the parameter θ and, thus,
the correct objective probability distribution are unknown. The probability measure π

denotes the prior over the parameter θ ∈ Θ .29

In Klibanoff et al.’s setting, the utility function u corresponds to the utility function
of the standard model. It jointly captures aversion to intertemporal substitutability
and “objective” or first-order risk. The function Φ captures additional aversion with
respect to second-order uncertainty, which they call ambiguity aversion. For Φ linear,
the model collapses to the standard Bayesian model. The coefficient describing relative
ambiguity aversion is defined as

RAA = Φ ′′(z)
Φ ′(z)

|z|.

A different perspective on ambiguity aversion in the KMM model is as follows. The
utility function captures aversion to intertemporal substitution. Aversion to objective
risk is only captured to the degree that risk generates intertemporal fluctuations in
the consumption path. In contrast, the evaluation of the subjective prior incorporates
intrinsic aversion to ambiguity, just as intertemporal risk aversion incorporated intrin-
sic aversion to risk. I noted that intrinsic aversion is, e.g., able to explain asset pricing
puzzles. However, the current model only picks up intrinsic aversion to ambiguity, not
to risk. Thus, it remains unclear what part of the ambiguity aversion effects are driven

29 I adopt a continuous parameter space Θ , whereas this parameter space is finite in Klibanoff et al.’s
(2009) axiomatization of the model. Moreover, Klibanoff et al. (2005, 2009) setting features acts rather
than probability measures on the outcome space.
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by additional aversion to subjective as opposed to objective risk, and what effects that
are labeled ambiguity aversion are merely driven by uncertainty aversion dominating
the propensity to smooth consumption over time.

In this paper, I combine Klibanoff et al.’s model of ambiguity aversion with my
model of intertemporal risk aversion, leading to a welfare representation of the form

V (x1, p, π) = u(x1) + βΦ−1

⎧
⎨

⎩

∫

Θ

Φ
[

f −1Epθ (x2) f ◦ u(x2)
]

dπ(θ)

⎫
⎬

⎭
. (13)

In this generalization, u characterizes aversion to intertemporal substitution only, f
characterizes intertemporal risk aversion, and Φ characterizes ambiguity aversion.30

In the representation of Eq. (13), ambiguity aversion characterizes attitude with respect
to second-order uncertainty similar to the way that intertemporal risk aversion char-
acterizes attitude with respect to first-order risk. This parallel is a fundamental insight
into the smooth ambiguity model and will also emerge in the expression for the dis-
count rate. The current generalized framework permits a threefold disentanglement
of risk aversion, ambiguity aversion, and aversion to intertemporal substitution. To
enable an analytic derivation of the social discount rate, I will once more revert to
the isoelastic setting. In addition to the earlier assumptions of Sect. 2.2 and Eq. (6), I
assume Φ(z) = (ρz)ϕ , which yields a coefficient of relative ambiguity aversion

RAA =
{

1 − ϕ if ρ > 0

ϕ − 1 if ρ < 0.

4.3 The social discount rate and ambiguity about growth

In the context of climate change, Weitzman (2009) recently argued that the parameters
of the distribution governing economic growth are unknown. Like Weitzman, I adopt a
Bayesian setting to capture such second-order uncertainty. However, Weitzman sticks
with the standard risk model underlying Eq. (2), in contrast, I introduce ambiguity
attitude as formulated by Klibanoff et al. (2005, 2009) as well as intertemporal risk
aversion. Taking the simplest example of Bayesian second-order uncertainty, I assume
that expected growth is itself a normally distributed parameter θ with expectation μ

and variance τ 2. Formally, first-order uncertainty pθ is once more a joint normal
distribution over economic growth and project payoff (see Sect. 3.2). However, the
expected growth rate is unknown, and I assume E(g|θ) ∼ N (θ, σ 2) and θ ∼ N (μ, τ 2),
preserving the interpretation of μ as the overall expectation of the growth trend. The
special case of Proposition 3 for RIRA = 0 and κ = 0 has independently been derived
by Gierlinger and Gollier (2008).

30 In an alternative representation, I could apply the inverse of the function f characterizing intertemporal
risk aversion in front of Φ−1 instead of its current position where it acts on the expected value operator.
Then, the same preferences are represented with a different function Φ that would characterize only “access
aversion” to ambiguity as opposed intertemporal risk aversion.
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Proposition 3 The stochastic social discount rate in the isoelastic setting with
intertemporal risk aversion and ambiguity about expected growth is

r = δ + ημg − η2 σ 2
g + τ 2

2
− RIRA |1 − η2|σ

2
g

2
+ η κ σgσy + |1 − η| RIRA κ σgσy

− RAA |1 − η2|τ
2

2
. (14)

The first two terms on the right-hand side reflect, once more, the discount rate in the
standard Ramsey equation under certainty. The third term −η2 σ 2+τ 2

2 reflects the well-
known extension for risk. Note that the overall variance of the growth process is now
σ 2 + τ 2 because of the additional layer of uncertainty characterized by the second-
order variance τ 2. The second line gives the corrections if the project is stochastic.
This correction remains as in the previous section. The third line characterizes the new
contribution to intertemporal value development due to ambiguity aversion. The term
is proportional to second-order variance τ 2, relative ambiguity aversion RAA, and
the term |1 − η2| already encountered in the correction of the social discount rate for
intertemporal risk aversion. In fact, the contribution of ambiguity aversion is formally
equivalent to the contribution of intertemporal risk aversion, replacing first by second-
order variance and RIRA by RAA. Proposition 3 provides a full disentanglement
between the contributions already present under certainty, those arising under risk only
reflecting aversion to intertemporal fluctuations, the contributions driven by intrinsic
risk aversion, and those brought about by aversion to ambiguity.

Quantitatively, a decision maker who is more averse to ambiguity than to risk will
lower the discount rate more for second-order variance (ambiguity) than for first-
order variance (risk). Otherwise, the discussion from Sect. 3 stays qualitatively the
same. In general, an ambiguity averse decision maker will employ a lower (risk-free
or stochastic) discount rate when the baseline scenario is ambiguous. He is willing
to invest in a certain or stochastic project with relatively lower productivity than is a
decision maker who is ambiguity neutral or just faces (first order) risk.

Relating my result to Weitzman (2009), I ignore everything, but the first three
terms on the right of Eq. (14). The only difference between these remaining terms
and the standard equation (2) is the additional variance τ 2 in the third term (standard
risk term). This additional variance is a straightforward consequence of making the
growth process more uncertain by introducing a prior over some parameter of the
growth process. In the case of the normal distributions adopted here, the variance
simply adds up. From the given example, it is difficult to see how adding a Bayesian
prior would bring the standard risk term back into the order of magnitude comparable
to the other terms of the social discount rate. Instead of a doubling, a factor of 10–100
is needed. The only way to reach this result is by sufficiently increasing the variance
of the prior. Effectively, this is what Weitzman (2009) does in deriving what he calls
a dismal theorem. He introduces a fat tailed (improper) prior whose moments do not
exist. Consequently, the risk-free social discount rate in Eq. (14) goes to minus infinity
implying an infinite willingness to transfer (the first unit of certain) consumption into
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the future. Weitzman limits this willingness by the value of a (or society’s) statistical
life.31 Instead of augmenting uncertainty, the above proposition introduces ambiguity
aversion, i.e., the term RAA |1−η2| τ 2

2 , into social discounting, reflecting experimental
evidence that economic agents tend to be more afraid of unknown probabilities than
they are of known probabilities (most famously, Ellsberg 1961).

Observe that intertemporal risk aversion affects the correlation terms, whereas
ambiguity aversion does not. Uncertainty aversion enters the stage if the corresponding
uncertainty affects overall welfare. If uncertainty only affects the payoff of the mar-
ginal project, then aversion is a second-order effect absent from the social discount
rate. Thus, growth variance σ 2

g directly interacts with intertemporal risk aversion, and
uncertainty over the expected growth rate, captured by τ 2, directly interacts with ambi-
guity aversion. Moreover, correlation between overall economic growth and the project
payoff interacts growth uncertainty and the marginal project payoff. This interaction
results in the correlation terms captured in Eqs. (10)–(14). Intertemporal risk aversion
in these terms captures how intertemporal risk aversion with respect to correlated
overall growth affects the value of the marginal project. In contrast, the ambiguous
second-order distribution is not directly correlated with the project payoff and, thus,
ambiguity aversion only interacts directly with the variance of the expected economic
growth.

Current estimates of the parameter RAA in the KMM model are significantly less
reliable than in the intertemporal risk aversion framework, and I refrain from a numer-
ical analysis. Moreover, these models do not simultaneously estimate aversion to risk,
ambiguity, and intertemporal substitution.32 However, the similarity of the ambiguity
aversion effect to the direct effect of intertemporal risk aversion gives a good feeling
for the magnitude, by which a given degree of relative ambiguity aversion changes
the social discount rate. Instead of redoing these simulations for ambiguity aversion,
I will explore the effects of ambiguity about correlation between project payoffs and
economic growth.

4.4 The social discount rate and uncertainty about correlation

In Sect. 3.2, I discussed different arguments in favor of positive, negative, and no cor-
relation between climate change related project payoffs and baseline growth risk. In
this subsection, I introduce uncertainty about correlation. Taking the opposite extreme
of a perfectly known correlation, I assume an uniform prior over the correlation coeffi-
cient, which permits an analytic solution. I am particularly interested in the difference
between complete ignorance about the correlation and a known absence of correlation.
The first-order distribution capturing risk is a joint normal over project productivity

31 Note that Weitzman (2009) puts the prior on the variance σ rather than on the expected value of growth.
He loosely relates the uncertainty to climate sensitivity. The above is a significantly simplified, but insightful,
perspective on Weitzman’s approach—abstracting from learning.
32 Paralleling this paper is a work by Ju and Miao (2012) using a similar model of threefold disentanglement.
However, the authors fix Arrow–Pratt risk aversion exogenously to a level significantly lower than in the
cited estimates of Vissing-Jørgensen and Attanasio (2003), Bansal and Yaron (2004), and Basal et al. (2010)
and then find an ambiguity measure in the range these papers estimate for standard risk aversion.
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and economic growth as in the previous sections. I assume that the correlation κ ,
between project productivity ln y and economic growth g, is uniformly distributed on
[−1, 1].
Proposition 4 The stochastic social discount rate in the isoelastic setting with
intertemporal risk aversion and a uniform prior over correlation is

r = δ + ημg − η2 σ 2
g

2
− RIRA |1 − η2|σ

2
g

2

− ln

[
sinh

{
η σgσy + |1 − η| RIRA σgσy

}

η σgσy + |1 − η| RIRA σgσy

]

. (15)

The terms in the first line resemble the risk-free social discount rate under intertemporal
risk aversion derived in Sect. 3. The second line captures the effect of uncertainty
about the project and its correlation with baseline growth. This additional component

is of the form h(z) = ln
[

sinh{z}
z

]
, non-negative, and always reduces the discount

rate as long as z = (η + |1 − η| RIRA) σgσy �= 0. This latter condition, z �= 0,
is satisfied as long as the project and the baseline are stochastic and preferences do
not simultaneously satisfy η = 0 and RIRA = 0. The function h can be expanded
into h(z) = z2

6 − z4

180 + z6

2835 + O[z7], where the first term already gives a good
approximation for the magnitude relevant for the annual discount rate. In the setting
with annual iid growth uncertainty in Sect. 3.2, I found that z was below one percent in
all scenarios, which makes h(z) negligible. Observe that ambiguity aversion does not
affect the social discount rate in Eq. (15). Only the first-order probability distribution
(risk) affects overall growth, and only aversion the overall growth uncertainty finds
its way into the social discount rate, valuing a marginal project. Ambiguity over the
correlation coefficient merely affects the project payoff in second order and has no
effect on overall economic growth. Therefore, ambiguity aversion has no impact on
the social discount rate in the case of an ambiguous correlation parameter.

In the 50-year scenario, ignorance about correlation still only implies a small devi-
ation from the case of no correlation. I adopt a pure time preference of δ = 1.5 % and
the growth scenario introduced in Sect. 3.3. I assume a probability of p� = 0.1 % that
society will be worse off in 50 years than today. Then, in the disentangled scenario
D, ignorance over correlation reduces the average discount rate from an uncorrelated
1.3 % to 1.2 %.33 In the first sensitivity scenario (S1), where RRA = 9.5 and η = 2, it
reduces the average discount rate from 2.7 % to 2.6 %. The differences in the second
sensitivity scenario (average rate of 4.1 %) and in Nordhaus’s scenario (average rate
of 5.1 %) are negligible. The difference between the assumptions of ignorance over
correlation and no correlation grows as the risk increases. For p� = 0.5 %, ignorance
as opposed to being uncorrelated reduces the average rate from 0.6 % to 0.4 % in the
disentangled D scenario, and from 1.5 % to 1.3 % in the S1 scenario, still leaving
the last digit unchanged in the S2 and the N scenarions (with average rates of 3.5 %

33 The numbers represent the risk-free rate calculated in Eq. (8), and the risk-free rate less the term h(·)
evaluated for σg = σy = 0.3236 corresponding to p� = 0.1 %.
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(S2) and 4.9 % (N), respectively). Thus, for moderate growth risk, the intertempo-
ral evaluation of uncorrelated stochastic projects and projects with ignorance over the
correlation coefficient are both well approximated by the risk-free social discount rate.
Then, only a reasonably well-founded estimate of a non-trivial correlation will have
a major impact on the evaluation. For larger growth risk, the function h(z) captures a
small precautionary reduction in the growth rate when correlation is unknown.

5 Conclusions

The paper shows a close similarity between the recent smooth ambiguity model and a
reformulated version of the well-known Epstein–Zin–Weil model. Both models dis-
entangle uncertainty attitude from the propensity to smooth consumption over time.
The smooth ambiguity model does so by capturing an additional intrinsic uncertainty
aversion when evaluating subjective second-order uncertainty. Analogously, intertem-
poral risk aversion captures an additional intrinsic aversion to risk in the reformulated
Kreps–Porteus–Epstein–Zin–Weil model. I combined the models, obtaining a three-
fold disentanglement between risk aversion, intertemporal consumption smoothing,
and ambiguity aversion. The original version of the intertemporal smooth ambiguity
model, in contrast, entangles whether ambiguity aversion captures a difference from
risk attitude or a difference from consumption smoothing attitude. I showed how the
similarity of the two models and their unification translates into the resulting discount
rates.

Long-term investment projects are subject to major uncertainties. The assessment
of climate change is an important example. The recent discussion following the Stern
review has shown the primordial importance of the discount rate. This discussion is
framed almost exclusively in the standard intertemporally additive expected utility
setting. I pointed out several omitted contributions, three of which already arise in
settings of pure risk. First, decoupling Arrow–Pratt risk aversion from intertemporal
substitutability lowers the growth effect in the social discount rate. This increase in
future weight is a consequence of the empirical finding that the aversion to intertem-
poral consumption change is overestimated when the parameter simultaneously has
to capture the generally stronger aversion to risk. Second, decoupling risk aversion
from the a priori independent preference for consumption smoothing also removes an
implicit assumption of intrinsic or intertemporal risk neutrality. I showed that a term
proportional to the coefficient of relative intertemporal risk aversion further reduces
the risk-free social discount rate. The third contribution is for stochastic projects,
where payoffs are correlated to the economic baseline. I showed that, for moderate
risks, ignorance about correlation only implies a small precautionary effect reduc-
ing the discount rate. However, well understood correlation has a major influence
on cost-benefit analysis and intertemporal evaluation. I showed that, under general
uncertainty attitude, a small intertemporally correlated risk suffices to cut the discount
rate back to pure time preference, eliminating the major growth effect in discount-
ing. The application focused on analytic extensions on the Ramsey rule with simple
tractable solutions. These formulas invite back of the envelope calculations determin-
ing the relative importance of the different discounting contributions. Accounting for
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uncertainty in large-scale economic models is usually computationally expensive. The
derived formulas can guide a cost-benefit analysis of incorporating uncertainty into
integrated assessment models.

6 Appendix 1

Notation: The calculations in the appendix make frequent use of the abbreviations
ρ = 1−η and α = 1−RRA, characterizing the exponents of the isoelastic aggregators.

Proof of Proposition 1 The first part of the proof calculates the marginal value of an
additional certain unit of consumption in the second period (dx2), expressed in terms
of marginal first-period consumption units (dx1). This value derives from the marginal
trade-off that leaves aggregate welfare

U (x1, p) = xρ
1

ρ
+ β

1

ρ

[
Epxα

2

] ρ
α

unchanged:

dU (x1, p) = xρ−1
1 dx1 + β

1

α

[
Epxα

2

] ρ
α
−1 Epαxα−1

2 dx2
!= 0

⇒ xρ−1
1 dx1 = −β

[
Epxα

2

] ρ
α
−1 Epxα−1

2 dx2

⇒ dx1

dx2
= −β

[
Ep

(
x2

x1

)α ] ρ
α
−1

Ep

(
x2

x1

)α−1

⇒ dx1

dx2
= −β

[
Epe

α ln x2
x1

] ρ
α
−1

Epe
(α−1) ln x2

x1

⇒ dx1

dx2
= −β

[
eαμ+α2 σ2

2

] ρ
α
−1

e(α−1)μ+(1−α)2 σ2
2

⇒ dx1

dx2
= −βeρμ+αρ σ2

2 −αμ−α2 σ2
2 e(α−1)μ+(1−α)2 σ2

2

⇒ dx1

dx2
= −βe(ρ−1)μ+(αρ+1−2α) σ2

2

⇒ dx1

dx2
= −βe(ρ−1)μ+(αρ+1−2α) σ2

2 .

The second part of the proof translates the relation into rates by defining the social

discount rate r = − ln dx1−dx2

(
= − ln dx2−dx1

|Ū
)

, the rate of pure time preference δ =
− ln β, and η = 1 − ρ

(= 1
σ

)
. Further below, I make use of the relation 1 = 1−η

ρ
.
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⇒ r = δ + (1 − ρ) μ − (α (ρ − 1) + 1 − α)
σ 2

2
(16)

⇒ r = δ + ημ − η2 σ 2

2
+

(
η2 + α (η + 1) − 1

) σ 2

2

⇒ r = δ + ημ − η2 σ 2

2
+

(
η2 + α

ρ
(1 − η) (η + 1) − 1

)
σ 2

2

⇒ r = δ + ημ − η2 σ 2

2
+

(
η2 + α

ρ

(
1 − η2

)
− 1

)
σ 2

2

⇒ r = δ + ημ − η2 σ 2

2
−

(
1 − α

ρ

) (
1 − η2

) σ 2

2

⇒ r = δ + ημ − η2 σ 2

2
− RIRA |1 − η2|σ

2

2
. (17)

��

Proof of Proposition 2 For the isoelastic specification and with the definition,

U2(ε) = f −1 [
Ep(x2,y) f ◦ u(x2 + εy)

] = 1

ρ

[
Ep(x2,y)(x2 + εy)α

] ρ
α

Eq. (9) translates into

xρ−1
1 dx1 + β

d

dε
U2(ε)

∣
∣∣∣
ε=0

dε
!= 0 (18)

In order to calculate d
dε

U2(ε)
∣∣
ε=0 dε the following definition is useful.

Vε(a, b) = Ep(x2,y)(x2 + εy)a yb. (19)

Then,

d

dε
U2(ε)

∣∣∣
∣
ε=0

= 1

α
Vε(α, 0)

ρ
α
−1αVε(α − 1, 1)

∣∣∣
∣
ε=0

= V0(α, 0)
ρ
α
−1V0(α − 1, 1) (20)

where equality between the first and the second lines follow from Lebesgue’s dom-
inated convergence theorem. Analogously to step 1 in the proof of Proposition 1, I
calculate with z = ln y
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V0(α, 0) = xα
1 Ep(x2,y)

( x2

x1

)α = xα
1 Ep(g,z)e

αg

= xα
1

∞∫

−∞

∞∫

−∞
eαg e

− 1
2(1−κ2)

[(
g−μg

σg

)2+
(

z−μy
σy

)2−2κ
(

g−μg
σg

)(
z−μy

σy

)]

2πσgσy

√
1 − ρ2

dg dz (21)

= xα
1 eαμg+α2 σ2

g
2 . (22)

Similarly,

V0(α − 1, 1) = xα−1
1 Ep(x,y)

( x2

x1

)α−1
y = xα−1

1 Ep(g,z)e
(α−1)g+z

= xα−1
1 e

−(1−α)

[
μg−(1−α)

σ2
g
2 +κσgσy

]
+μy+ σ2

y
2

so that

d

dε
U2(ε)

∣∣∣∣
ε=0

= xρ−α+α−1
1 e(αμg+α2 σ2

g
2 )(

ρ
α
−1)e

−(1−α)

[
μg−(1−α)

σ2
g
2 +κσgσy

]
+μy+ σ2

y
2

= xρ−1
1 e(ρ−1)μg+[α(ρ−1)+(1−α)]

σ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2 . (23)

Substituting the result into Eq. (18) and solving for the discount rate yields

r = ln
dε

−dx1
= δ + (1 − ρ)μg − [α(ρ − 1) + 1 − α]σ

2

2

+(1 − α)κσgσy −
(

μy + σ 2
y

2

)

.

The first line corresponds to Eq. (16) and, thus, Eq. (17), yielding the risk-free discount
rate under intertemporal risk aversion. Moreover, the random variable y was assumed
to yield an expected value (project payoff) of unity, which implies

Ep(x,y)y = eμy+ σ2
y
2

!= 1 ⇒ μy + σ 2
y

2
= 0,

eliminating the last bracket. Finally, 1 − α has to be expressed in terms of η (captur-
ing the effects of the standard model) and RIRA (capturing the additional effects of
intertemporal risk averison). I find for ρ > 0 that

1 − α = 1 − (1 − η)(1 − RIRA) = η + (1 − η) RIRA

and for ρ < 0 that

1 − α = 1 − (1 − η)(1 + RIRA) = η − (1 − η) RIRA .
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In both cases, this yields

1 − α = η + |1 − η| RIRA, (24)

which gives rise to the form stated in the proposition.

Proof of Corollary 1 In case 1 of the risk-free discount rate, Eq. (8) translates r50 =
50δ into the condition η 50μ

!= η2 σ 2

2 + RIRA |1 − η2|σ 2

2 , which results in the stated

equation for σ . Similarly in case 2, Eq. (10), σ = σg = σy , and η 50μg
!= η2 σ 2

g
2 +

RIRA |1 − η2|σ 2
g
2 − ηκ σgσy − |1 − η| RIRA κ σgσy yield the result. Without the

condition σ = σg = σy , the same reasoning gives statement 3 of the corollary.

Proof of Proposition 3 Define for the isoelastic specification

U a
2 (ε) = Φ−1

⎧
⎨

⎩

∫

Θ

Φ
[

f −1Epθ (x2,y) f ◦ u(x2 + εy)
]

dπ(θ)

⎫
⎬

⎭

= 1

ρ

⎧
⎨

⎩

∫

Θ

[
Epθ (x2,y)(x2 + εy)α

] ρ
α
ϕ dπ(θ)

⎫
⎬

⎭

1
ϕ

.

I have to solve once more the equation

dV (x1, p, π) = xρ−1
1 dx1 + β

d

dε
U a

2 (ε)

∣∣
∣∣
ε=0

dε
!= 0 (25)

for r = ln dε
−dx1

. Making once more use of the definition

Vε(a, b) = Epθ (x2,y)(x2 + εy)a yb ,

where θ replaces μg in p(x,y) of Eqs. (19) and (21), I find

d

dε
U a

2 (ε)

∣∣∣∣
ε=0

= 1

ρ

1

ϕ

⎧
⎨

⎩

∫

Θ

Vε(α, 0)
ρ
α
ϕdπ(θ)

⎫
⎬

⎭

1
ϕ
−1

⎧
⎨

⎩

∫

Θ

ρ

α
ϕVε(α, 0)

ρ
α
ϕ−1αVε(α − 1, 1)dπ(θ)

⎫
⎬

⎭

∣∣∣∣
∣∣
ε=0

=
⎧
⎨

⎩

∫

Θ

V0(α, 0)
ρϕ
α dπ(θ)

⎫
⎬

⎭

1
ϕ
−1
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∫

Θ

V0(α, 0)
ρϕ
α

−1V0(α − 1, 1)dπ(θ). (26)

With the help of Eq. (22), the expression {·} calculates to

∫

Θ

x
α(

ρϕ
α

)

1 e(αθ+α2 σ2
g
2 )(

ρϕ
α

)dπ(θ) = xρϕ
1 eρϕα

σ2
g
2

∫

Θ

eρϕθ e
− 1

2

(
θ−μg

σg

)2

√
2πσg

dθ

= xρϕ
1 eρϕα

σ2
g
2 eρϕμg+ρ2ϕ2 τ2

g
2 .

Acknowledging the equality of Eqs. (20) and (23) and their similarity to the second
integrand in Eq. (26) (for ρ ↔ ρϕ), this second integral becomes

∫

Θ

V0(α, 0)
ρϕ
α

−1V0(α − 1, 1)dπ(θ)

=
∫

Θ

xρϕ−1
1 e(ρϕ−1)θ+[α(ρϕ−1)+(1−α)]

σ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2 dπ(θ)

= xρϕ−1
1 e[α(ρϕ−1)+(1−α)]

σ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2

∫

Θ

e(ρϕ−1)θdπ(θ)

= xρϕ−1
1 e[α(ρϕ−1)+(1−α)]

σ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2 e(ρϕ−1)μg+(ρϕ−1)2 τ2

g
2 .

Substituting these results back into Eq. (26) delivers

d

dε
U a

2 (ε)

∣∣∣∣
ε=0

= x
ρϕ

(
1
ϕ
−1

)

1 e

(
ρϕα

σ2
g
2

)(
1
ϕ
−1

)

e

(
ρϕμg+ρ2ϕ2 τ2

g
2

)(
1
ϕ
−1

)

xρϕ−1
1 e[α(ρϕ−1)+(1−α)]

σ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2 e(ρϕ−1)μg+(ρϕ−1)2 τ2

g
2

= xρ−1
1 e[α(ρ−1)+(1−α)]

σ2
g
2 +(ρ−1)μg+[ρϕ(ρ−1)+1−ρϕ]

τ2
g
2 −(1−α)κσgσy+μy+ σ2

y
2 .

Substituting this result into Eq. (25) and solving for r = ln dε
−dx1

yields analogously
to the proof of Proposition 2, the discount rate

r = δ + ημg − η2 σ 2
g

2
− RIRA |1 − η2|σ

2
g

2
+ η κ σgσy

+|1 − η| RIRA κ σgσy − [1 − 2ρϕ + ρ2ϕ]τ
2
g

2
.
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The last term can be rearranged to the form

[1 − 2ρϕ + ρ2ϕ]τ
2
g

2
= [(1 − ϕ) + ϕ(1 − ρ) − ϕρ(1 − ρ)]τ

2
g

2

= [(1 − ϕ) + (1 − ρ)2 + (ϕ − 1)(1 − ρ)2]τ
2
g

2

= [η2 + (1 − ϕ)(1 − η2)]τ
2
g

2
= η2 τ 2

g

2
+ RAA |1 − η2|τ

2
g

2
,

completing the proof. ��

Proof of Proposition 4 Up to Eq. (26), the proof is identical to that of Proposition 3.
In the next step, in V0(α, 0)

ρϕ
α the ambiguity parameter θ replaces κ instead of μg .

Thus, the first integral in Eq. (26) becomes

∫

Θ

x
α(

ρϕ
α

)

1 e(αμg+α2 σ2
g
2 )(

ρϕ
α

)dπ(θ) = xρϕ
1 eρϕμg+ρϕα

σ2
g
2

1∫

−1

1

2
dθ

= xρϕ
1 eρϕμg+ρϕα

σ2
g
2 .

For the integrand of the second integral in Eq. (26), I find

V0(α − 1, 1) = xα−1
1 e(α−1)μg+(α−1)2 σ2

g
2 +(α−1)θσgσy+μy+ σ2

y
2

delivering the integral

∫

Θ

V0(α, 0)
ρϕ
α

−1V0(α − 1, 1)dπ(θ)

=
∫

Θ

xρϕ−α
1 eρϕμg+ρϕα

σ2
g
2 −αμg−α2 σ2

g
2

xα−1
1 e(α−1)μg+(α−1)2 σ2

g
2 +(α−1)θσgσy+μy+ σ2

y
2 dπ(θ)

= xρϕ−1
1 e(ρϕ−1)μg+(ρϕα−2α−1)

σ2
g
2 +μy+ σ2

y
2

1∫

−1

e(α−1)θσgσy
1

2
dθ

= xρϕ−1
1 e(ρϕ−1)μg+(ρϕα−2α−1)

σ2
g
2 +μy+ σ2

y
2

sinh[(α − 1)σgσy]
(α − 1)σgσy

.
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Substituting these results back into Eq. (26) returns the second-period welfare change
in ε:

d

dε
U a

2 (ε)

∣∣∣∣
ε=0

= x
ρϕ

(
1
ϕ
−1

)

1 e

(
ρϕμg+ρϕα

σ2
g
2

)(
1
ϕ
−1

)

xρϕ−1
1 e(ρϕ−1)μg+(ρϕα−2α−1)

σ2
g
2 +μy+ σ2

y
2

sinh[(α − 1)σgσy]
(α − 1)σgσy

= xρ−1
1 e(ρ−1)μg+(ρα−2α−1)

σ2
g
2 +μy+ σ2

y
2

sinh[(α − 1)σgσy]
(α − 1)σgσy

.

Substituting this result into Eq. (25) and solving for r = ln dε
−dx1

yields analogously
to the proof of Proposition 2, the discount rate

r = δ + ημg − η2 σ 2
g
2 − RIRA |1 − η2|σ 2

g
2 − ln

[
sinh[(α−1)σgσy ]

(α−1)σgσy

]
.

By symmetry of the hyperbolic sine, the sign of (α −1) can be flipped simultaneously
in the numerator and the denominator. Using Eq. (24) to substitute for (1 − α) then
yields the result stated in the proposition. ��

7 Appendix 2

The following proposition formalizes how intertemporal risk aversion, defined in the
sense of Eq. (4), translates into the curvature of the function f in a preference repre-
sentation of the form (3).34

Proposition 5 Let preferences over X × P be represented by Eq. (3) with a continuous
function u : X → R and a strictly increasing and continuous function f : U → R,
where U = u(X) and β = 1.

(a) The corresponding decision maker is (weakly) intertemporal risk averse [loving],
if and only if the function f is concave [convex].

(b) The corresponding decision maker is intertemporal risk neutral, if and only if
there exist a, b ∈ R such that f (z) = az + b. An intertemporal risk neutral
decision maker maximizes intertemporally additive expected utility (Eq. (1)).

Proof of Proposition 5 (a) Sufficiency of axiom (4): The premise of axiom (4) trans-
lates with β = 1 into the representation (3) as

(
x∗, x∗) ∼ (x1, x2)

⇔ u(x∗) + u(x∗) = u(x1) + u(x2) (27)

⇔ u(x∗) = 1

2
u(x1) + 1

2
u(x2)

34 Recasting the proposition for a strictly decreasing continuous function f : U → R turns concavity in
statement (a) into convexity [and convexity into concavity]. Replacing the definition of intertemporal risk
aversion by its strict version given in footnote 15 switches concavity to strict concavity in the statement.

123



Why uncertainty matters 661

Writing the implication of the axiom in terms of representation (3) yields

(x∗, x∗) �
(

x∗, 1

2
x1 + 1

2
x2

)

⇔ u(x∗)+ ≥ f −1
(

1

2
f ◦ u(x1) + 1

2
f ◦ u(x2)

)
.

(28)

Combining Eqs. (27) and (28) returns

1

2
u(x1) + 1

2
u(x2) ≥ f −1

(
1

2
f ◦ u(x1) + 1

2
f ◦ u(x2)

)
, (29)

which for an increasing [decreasing] version of f is equivalent to

⇔ f

(
1

2
u(x1) + 1

2
u(x2)

)
> [<] 1

2
f ◦ u(x1) + 1

2
f ◦ u(x2).

Defining zi = u(xi ), the equation becomes

⇔ f

(
1

2
z1 + 1

2
z2

)
≥ [≤] 1

2
f (z1) + 1

2
f (z2). (30)

Because preferences are assumed to be representable in the form (3), there exists a
certainty equivalent x∗ to all lotteries 1

2 x1 + 1
2 x2 with x1, x2 ∈ X . Taking x∗ to be the

certainty equivalent, the premise and, thus, Eq. (30) have to hold for all z1, z2 ∈ u(X).
Therefore, f has to be concave [convex] on U (x) (Hardy et al. 1964, 75).

Necessity of axiom 4 The necessity is seen to hold by going backward through
the proof of sufficiency above. Strict concavity [convexity] of f with f increasing
[decreasing] implies that Eq. (30) and, thus, Eq. (29) have to hold for z1, z2 ∈ u(X).
The premise corresponding to (27) guarantees that Eq. (29) implies Eq. (28) which
yields the implication in condition (4). Replacing � by 	 and ≥ by ≤ in the proof
above implies that the decision maker is intertemporal risk averse, if and only if f is
convex [for an increasing version of f and concave for f decreasing].

(b) The decision maker is intertemporal risk neutral, if and only if f is concave and
convex on u(X), which is equivalent to f being linear.35 However, a linear function f
cancels out in representation (3) and makes it identical to the intertemporally additive
expected utility standard representation (1).

35 Alternatively use ∼ and = instead of � and ≥ in part (a) and use Aczél (1966, 46).
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8 Appendix 3

Relation to Proposition 1 and Gollier (2002)

Equation (14) in Gollier (2002) is

r = δ + η E g̃ − RRA(1 + η)
Var(g̃)

2
,

where δ = 1
β

− 1, g̃ = x̃2
x1

− 1, and β denotes Gollier’s utility discount factor. The
tilde ( ˜ ) marks random variables. In contrast, Eq. (16) for the isoelastic normal case
translates into

r = δ + ημ − ((1 − RRA)(−η) + RRA)
σ 2

2
= δ + ημ − RRA(1 + η)

σ 2

2
+ η

σ 2

2
.

Thus, Gollier’s approximate formula underestimates the social discount rate by the
term η σ 2

2 . Much of the difference can be traced back to the first step of his derivation,
where the Arrow–Pratt approximation of the certainty equivalent (or equivalently the
certainty-equivalent growth rate) loses a term proportional to σ 2

2 in a setting with
isoelastic preferences and a normal growth rate.

In a setting with CARA utility and a normal distribution of the growth rate Gollier’s
approximation does better. I assume that Gollier’s growth rate g̃ = x̃2

x1
−1 ∼ N (μ, σ 2),

which is equivalent to a distribution of second-period consumption x̃2 ∼ N
(
x1(1 +

μ), x2
1σ 2

) ≡ N (μx , σ
2
x ). Moreover, the assumption of CARA aggregators translates

into u(x) = − exp(−Au x)
Au

for utility and v(x) = − exp(−Avx)
Av

for Arrow–Pratt risk
aversion, adopting Gollier’s notation where Au is absolute aversion to intertemporal
substitution and Av is absolute aversion to risk in the Arrow–Pratt sense. Then, the
resulting exact discount rate becomes

r = 1

β
exp

(
Au

[
μx − x1 − Av

σ 2
x

2

])
(31)

≈ δ + Au (μx − x1) − Au Av

σ 2
x

2
= δ + Au x1 μ − Au Av x2

1
σ 2

2
. (32)

The second line is equivalent to Gollier’s equation (12), before replacing his absolute
aversion measures with relative aversion measures. Thus, in the CARA-normal case,
the quality of his approximation is given by the quality of the approximation going
from Eqs. (31) to (32). For this approximation to hold, risk has to be moderate and
expected absolute growth has to be small. Small absolute growth is equivalent to a
low expected growth rate or a low present consumption level.
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