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Abstract We establish some elementary results on solutions to the Bellman equation
without introducing any topological assumption. Under a small number of conditions,
we show that the Bellman equation has a unique solution in a certain set, that this
solution is the value function, and that the value function can be computed by value
iteration with an appropriate initial condition. In addition, we show that the value
function can be computed by the same procedure under alternative conditions. We
apply our results to two optimal growth models: one with a discontinuous production
function and the other with “roughly increasing” returns.
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252 T. Kamihigashi

1 Introduction

Dynamic programming has been one of the most fundamental tools in economic analy-
sis, particularly since Stokey and Lucas (1989).1 One of the limitations of Stokey and
Lucas’ work and earlier studies was that models with unbounded returns were not fully
addressed though such models are extremely common in economics. This has been
a major issue in the subsequent economic literature on dynamic programming, and
important contributions have been made by Alvarez and Stokey (1998), Durán (2000),
Le Van and Morhaim (2002), Rinćon-Zapatero and Rodríguez-Palmero (2003, 2007,
2009), Martins-da-Rocha and Vailakis (2010), and Matkowski and Nowak (2011).

One thing common to the results established by these recent contributions is that
they rely heavily on topological assumptions, such as the continuity of the return
function and that of the feasibility correspondence. While these assumptions are com-
pletely standard in many models, there are important cases in which they clearly fail.
For example, threshold effects are associated with discontinuous technologies (Azari-
adis and Drazen 1990); moreoever, discontinuities are a common feature of ecologi-
cal phenomena (Muradian 2001; Nævdal 2003).2 Even a well-behaved maximization
problem that depends continuously on a parameter often results in discontinuities since
parametric continuity of the objective function does not imply parametric continuity
of the solution.3 Thus, in general, discontinuities are widespread in principal–agent
models and game theoretic models (though such models are beyond the scope of this
paper).4

The purpose of this paper is to establish some elementary results on solutions to
the Bellman equation—or fixed points of the Bellman operator—without introducing
any topological assumption. Such results not only apply to models with discontinu-
ities but also disentangle basic properties of fixed points of the Bellman operator from
topological assumptions. One might think that in our approach, topological assump-
tions would simply be replaced by alternative, more abstract assumptions, but that is
certainly not the case. In fact, the conditions required for each formal result proved in
this paper are all included in the statement of the result itself, and they are expressed
mostly in terms of inequalities between functions. Therefore, our results are highly
accessible to applied researchers as well as graduate students.

Our main results are twofold. First, given an order interval of functions that is
mapped into itself by the Bellman operator, if the upper and lower boundaries of this
order interval satisfy transversality-like conditions, then (a) the Bellman operator has
a unique fixed point in the order interval; (b) this fixed point is the value function;

1 Recent applications of dynamic programming include Algan et al. (2011), Bloch and Houy (2012), Dutta
and Radner (2012), Goenka and Lin (2012), Karp and Zhang (2012), Llanes and Trento (2012), Roy and
Zilcha (2012), Herrera and Martinelli (2013), Reis (2013), and Schaar et al. (2013).
2 See Kamihigashi and Roy (2006, 2007) for optimal growth models with discontinuous technologies.
3 Recall that the Theorem of the Maximum (e.g., Stokey and Lucas 1989, Theorem 3.6) shows that paramet-
ric continuity of the objective function only implies upper hemicontinuity of the solution correspondence,
which means that the correspondence is in general not continuous. See Dutta and Mitra (1989a,b) for related
discussions.
4 See Kamihigashi and Furusawa (2010, Figure 5) for a simple example.
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and (c) the value function can be computed by value iteration starting from the lower
boundary of the order interval. Second, if there exists a function that is mapped upward
by the Bellman operator, and if this function is dominated by the value function and
satisfies a transversality-like condition, then the value function can be computed by
value iteration starting from this function.

To understand why such results can be shown without any topological assumption,
note that most of the recent contributions except for Le Van and Morhaim (2002) are
based on variants of the contraction mapping theorem. In this approach, the Bellman
operator is shown to be some type of contraction, and a variant of the contraction
mapping theorem is used to show that the Bellman operator has a unique fixed point
in the space of continuous functions with a suitable topology. Then, this fixed point is
shown to be the value function using standard arguments.

However, the technical conditions required for these results imply that any fixed
point in the function space under consideration must be the value function. Since
there is only one value function, it follows that the uniqueness of a fixed point can be
guaranteed without using any variant of the contraction mapping theorem. The idea of
our approach is to use the Knaster–Tarski fixed point theorem instead of a variant of the
contraction mapping theorem and to impose a minimal set of assumptions required for
the application of the Knaster–Tarski theorem. It turns out that this approach requires
no topological assumption, yielding results that are considerably simpler than most
existing results. We clarify this point by comparing one of our main results with the
recent result developed by Rinćon-Zapatero and Rodríguez-Palmero (2003, 2009) and
Martins-da-Rocha and Vailakis (2010).

There is of course a downside to our approach, which offers only a minimal con-
vergence result and directly establishes no property of the value function except that
it lies in the given order interval. On the other hand, in most cases, our convergence
result is sufficient for computing the value function, and it is also useful in establishing
certain properties of the value function under additional conditions. We discuss the
latter point in some detail in Sect. 3.2.

In some sense, this paper is intended to be a continuation of Section 4.1 of Stokey
and Lucas (1989), in which several fundamental results on dynamic programming were
developed without topological assumptions. Stokey and Lucas introduced topological
assumptions in their subsequent analysis, but it is possible to continue further without
introducing any topological assumption. Our results are also similar in spirit to those
shown by Bertsekas and Shreve (1978, Chapter 5), who mainly used monotonicity
arguments. Our results extend some of their results to cases in which the return function
is unbounded both above and below. In Sects. 2 and 3, we offer detailed discussions
of how our results relate to existing ones, including the relevant results of Stokey and
Lucas (1989) and Bertsekas and Shreve (1978).

The rest of the paper is organized as follows. In the next section, we describe our
framework and state our main results, which we prove in the Appendix. In Sect. 3, we
demonstrate how they can be used to derive other useful results and discuss related
results in the literature. In Sect. 4, we present three examples. The first two examples
are optimal growth models with logarithmic utility: one having a discontinuous pro-
duction function and the other having “roughly increasing” returns. The third example
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demonstrates that value iteration may fail to converge to the value function unless the
initial function is chosen appropriately. In Sect. 5, we conclude the paper.

2 Main results

Let X be a set, and � be a nonempty-valued correspondence from X to X . Let D be
the graph of �:

D = {(x, y) ∈ X × X : y ∈ �(x)}. (2.1)

Let u : D → [−∞,∞). In the optimization problem introduced below, X is the state
space, � is the feasibility correspondence, u is the return function, and D is the domain
of u.

Let � and �(x0) denote the set of feasible paths and that of feasible paths from x0,
respectively:

� = {{xt }∞t=0 ∈ X∞ : ∀t ∈ Z+, xt+1 ∈ �(xt )}, (2.2)

�(x0) = {{xt }∞t=1 ∈ X∞ : {xt }∞t=0 ∈ �}, x0 ∈ X. (2.3)

Let β ≥ 0. Given x0 ∈ X , consider the following optimization problem:

sup
{xt }∞t=1∈�(x0)

LT ↑∞
T∑

t=0

β t u(xt , xt+1), (2.4)

where L ∈ {lim, lim} with lim = lim inf and lim = lim sup. Since u(x, y) < ∞ for
all (x, y) ∈ D, the objective function is well defined for any feasible path.

For {xt }∞t=0 ∈ �, we define

S({xt }∞t=0) = LT ↑∞
∞∑

t=0

β t u(xt , xt+1). (2.5)

The value function v∗ : X → R is defined by

v∗(x0) = sup
{xt }∞t=1∈�(x0)

S({xt }∞t=0), x0 ∈ X. (2.6)

Note that v∗(x0) is unaffected if �(x0) is replaced by �0(x0),5 where

�0 = {{xt }∞t=0 ∈ � : S({xt }∞t=0) > −∞}, (2.7)

�0(x0) = {{xt }∞t=1 ∈ �(x0) : {xt }∞t=0 ∈ �0}, x0 ∈ X. (2.8)

5 We follow the convention that sup ∅ = −∞.
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Let V be the set of functions from X to [−∞,∞). The Bellman operator B on V
is defined by

(Bv)(x) = sup
y∈�(x)

{u(x, y) + βv(y)}, x ∈ X, v ∈ V . (2.9)

Given v ∈ V , it need not be the case that Bv ∈ V . A fixed point of B is a function
v ∈ V such that Bv = v. It follows from Kamihigashi (2008, Theorem 2) that v∗ is a
fixed point of B provided that v∗ ∈ V :

Lemma 2.1 If v∗ ∈ V , then v∗ is a fixed point of B.

This is essentially the same result as Theorem 4.2 of Stokey and Lucas (1989). The
difference is that Lemma 2.1 does not assume that u(x, y) > −∞ for all (x, y) ∈ D;
this assumption is often violated in applications. Instead, the lemma assumes that
v∗ ∈ V .

Let v,w : X → R. The partial order ≤ on the set of functions from X to R is
defined in the usual way:

v ≤ w ⇐⇒ ∀x ∈ X, v(x) ≤ w(x). (2.10)

The partial order ≤ on the set of functions from D to R is defined in the same way. It
is immediate from (2.9) that B is a monotone operator on V :

v ≤ w ∈ V ⇒ Bv ≤ Bw. (2.11)

If v ≤ w, we define the order interval [v,w] by

[v,w] = { f ∈ V : v ≤ f ≤ w}. (2.12)

The order interval [−∞, w] means [v,w] with v = −∞; likewise, [v,∞] means
[v,w] with w = ∞.6

Now, we are ready to state the main results of this paper, the proofs of which appear
in the Appendix.

Theorem 2.1 Suppose that there exist v, v ∈ V such that

v ≤ v, (2.13)

Bv ≥ v, (2.14)

Bv ≤ v, (2.15)

∀{xt }∞t=0 ∈ �0, limt↑∞β tv(xt ) ≥ 0, (2.16)

∀{xt }∞t=0 ∈ �, limt↑∞β tv(xt ) ≤ 0. (2.17)

Then the following conclusions hold:

6 Given r ∈ R, the notation r is understood as the extended real number r or the function identically equal
to r depending on the context.
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(a) The Bellman operator B has a unique fixed point in [v, v].
(b) This fixed point is the value function v∗.
(c) The increasing sequence {Bnv}∞n=1 converges to v∗ pointwise.7

In conclusion (c) above, the sequence {Bnv}∞n=1 is increasing because we have
Bn+1v ≥ Bnv for any n ∈ N by applying Bn to both sides of (2.14). The next two
results follow from intermediate steps in the proof of Theorem 2.1.

Proposition 2.1 Suppose that there exists v ∈ V satisfying (2.17) and

v∗ ≤ v. (2.18)

Then v∗ is the largest fixed point of B in [−∞, v].8
Theorem 2.2 Suppose that v∗ ∈ V . Suppose further that there exists v ∈ V satisfying
(2.14), (2.16), and

v ≤ v∗. (2.19)

Then v∗ is the smallest fixed point of B in [v,∞]. Furthermore, the increasing sequence
{Bnv}∞n=1 converges to v∗ pointwise.

Proposition 2.1 and the first conclusion of Theorem 2.2 can be shown by extending
the proof of Stokey and Lucas (1989, Theorem 4.3) to our slightly more general
setting (though we do not entirely follow this route). Their argument, which assumes
the stronger version of (2.16) with � in place of �0, in fact goes through even with
the original version of (2.16). The idea of replacing � with �0 is due to Le Van and
Morhaim (2002). This replacement is important because even the value function v∗
almost never satisfies the stronger version of (2.16) if the return function is unbounded
below. See Sect. 3.3 for related conditions used by Rinćon-Zapatero and Rodríguez-
Palmero (2003) and Martins-da-Rocha and Vailakis (2010).9

To our knowledge, the second conclusion of Theorem 2.2 is new. If it is known
a priori that v∗ ∈ [v, v], which implies both (2.18) and (2.19), then Theorem 2.1
follows directly from Proposition 2.1 and Theorem 2.2. But since it is not known a
priori whether v∗ lies in [v, v], the additional contribution of Theorem 2.1 is to show
that v∗ indeed lies in [v, v].

If there exist functions v, v ∈ V satisfying (2.13)–(2.15), then the Bellman oper-
ator B has a fixed point in [v, v] by the Knaster–Tarski fixed point theorem (see the
Appendix for a precise argument). However, this fixed point need not be the value
function v∗. In fact, under (2.13)–(2.15), we do not even know whether v∗ lies in V .
Even if it does, it still need not lie in [v, v] though it is a fixed point of B by Lemma
2.1.

7 In this paper, “increasing” means “nondecreasing,” “decreasing” means “nonincreasing,” “positive”
means “nonnegative,” and “negative” means “nonpositive.”
8 This means that any fixed point v of B in [−∞, v] satisfies v ≤ v∗. A similar remark applies to the first
conclusion of Theorem 2.2.
9 Rinćon-Zapatero and Rodríguez-Palmero (2003, Theorem 5) also use a function satisfying (2.17) as an
upper bound on an increasing sequence of fixed points of the Bellman operators corresponding to truncated
problems.
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Therefore, additional conditions are needed to ensure that v∗ ∈ [v, v]. Conditions
(2.16) and (2.17), which we called transversality-like conditions in the Introduction,
serve this purpose, implying that any fixed point of B in [v, v] must be the value func-
tion v∗. Since we already know that B has a fixed point in [v, v], this fixed point must
be the value function v∗, so that v∗ lies in [v, v]. The uniqueness of a fixed point of B
in [v, v] follows from the fact that any fixed point in [v, v] equals v∗. Rinćon-Zapatero
and Rodríguez-Palmero (2003) offer several nontrivial, economically relevant exam-
ples satisfying stronger versions of (2.13)–(2.17).

If (2.16) and (2.17) are violated, then the Bellman operator B can have multiple
fixed points in [v, v]; see Kamihigashi (2013). It follows that conditions such as (2.16)
and (2.17) are crucial to ensuring that v∗ is the only fixed point of B in [v, v].

Note that in conclusion (c) of Theorem 2.1, convergence to v∗ is guaranteed only
from v. Our argument for this convergence result is based on the simple observation
that the limit of the increasing sequence {Bnv}∞n=1 is the supremum of the sequence.
This allows us to interchange this supremum with another supremum (see (6.16)–
(6.18)) to show that the limit is the value function v∗. The case of the decreasing
sequence {Bnv}∞n=1, which also converges pointwise, is not symmetric since the sup
and inf operators are in general not interchangeable. In Sect. 4.3, we construct an
example satisfying (2.13)–(2.17) in which limn↑∞ Bnv = v∗.10

Recall that the definition of the value function v∗ in (2.6) depends on the definition
of L , which can be lim or lim. Thus, there are in fact two value functions: one with
L = lim and the other with L = lim. An interesting implication of Theorem 2.1 is
that these two functions coincide under (2.13)–(2.17). This is because the unique fixed
point of B established in Theorem 2.1 depends only on B, which is independent of L .

3 Corollaries

3.1 Special cases

In this subsection, we show various special cases of the results shown in the previous
section to illustrate how our results can be used to derive other useful results. Many of
the results shown here are more or less known, but these results are intended to clarify
how our results relate to existing ones. The last two results in this subsection are new
and useful in our view. Let us start with a simple consequence of Proposition 2.1.

Corollary 3.1 Suppose that there exists v ∈ V satisfying (2.15), (2.17), and (2.18).
Let v∗ be the pointwise limit of the decreasing sequence {Bnv}∞n=1. Then v∗ ≤ v∗.
Furthermore, if v∗ is a fixed point of B, then v∗ = v∗.

Proof The inequality v∗ ≤ v∗ is immediate from (2.15) and (2.18). If v∗ is a fixed
point of B, then v∗ ≤ v∗ by Proposition 2.1; thus, v∗ = v∗.

The above result is essentially equivalent to Theorem 4.14 of Stokey and Lucas
(1989). Corollary 3.1 along with Proposition 2.1 implies the following.

10 See Strauch (1966, p. 880) for a related example of an undiscounted stochastic model.
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Corollary 3.2 Suppose that u ≤ 0. Then v∗ is the largest negative fixed point of B.
Let v∗ be the pointwise limit of the decreasing sequence {Bn0}∞n=1. Then v∗ ≤ v∗.
Furthermore, if v∗ is a fixed point of B, then v∗ = v∗.

Proof Since u ≤ 0, we have B0 ≤ 0 and v∗ ≤ 0; thus, (2.15) and (2.18) hold with
v = 0. In addition, (2.17) trivially holds. Hence, the conclusions hold by Proposition
2.1 and Corollary 3.1.

The above result is essentially equivalent to Proposition 5.8 of Bertsekas and Shreve
(1978). The following result deals with the case u ≥ 0.

Corollary 3.3 Suppose that u ≥ 0, and that v∗ ∈ V . Then v∗ is the smallest positive
fixed point of B, and the increasing sequence {Bn0}∞n=1 converges to v∗ pointwise.

Proof Since u ≥ 0, we have B0 ≥ 0 and v∗ ≥ 0; thus (2.14) and (2.19) hold with
v = 0. In addition, (2.16) trivially hold. Hence the conclusions hold by Theorem 2.2.

The above result is essentially equivalent to Proposition 5.7 of Bertsekas and Shreve
(1978). Corollaries 3.2 and 3.3 indicate that our results in the previous section extend
their results to problems in which the return function is unbounded both above and
below. Since such return functions are common in economics, this extension is signifi-
cant. It is also nontrivial given that Bertsekas and Shreve’s (1978, Chapter 5) arguments
rely heavily on the assumption that the return function takes only one sign, as assumed
in Corollaries 3.2 and 3.3 above.

Next, we consider the case in which the return function u is bounded:

Corollary 3.4 Suppose that β ∈ [0, 1). Suppose further that there exist constants
μ,μ ∈ R such that

μ ≤ u ≤ μ. (3.1)

Then conclusions (a)–(c) of Theorem 2.1 hold with

v = μ

1 − β
, v = μ

1 − β
. (3.2)

Proof We have v ≤ v by construction. Note that for any x ∈ X , we have

(Bv)(x) = sup
y∈�(x)

{u(x, y) + βv(y)} (3.3)

≥ sup
y∈�(y)

{μ + βμ/(1 − β)} = μ/(1 − β) = v(x). (3.4)

Thus, Bv ≥ v. We similarly obtain Bv ≤ v. Hence, (2.13)–(2.15) hold. Since v and
v are constant functions and β ∈ [0, 1), (2.16) and (2.17) trivially hold. Conclusions
(a)–(c) of Theorem 2.1 now follow.

The above result is similar to the well-known result that if u is bounded and con-
tinuous, and if � is continuous and compact-valued, then the Bellman operator has
a unique fixed point in the space of bounded continuous functions; this fixed point
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is the value function; and value iteration converges uniformly to the value function
starting from any bounded continuous function (Stokey and Lucas 1989, pp. 79–80).
Corollary 3.4 shows that similar conclusions can be obtained without any topological
assumption except for the globally uniform convergence result. This result is particu-
larly useful to applied researchers and graduate students because it can be shown and
used without knowing mathematical concepts such as metric spaces, contractions, and
completeness. In addition, even under standard topological assumptions, the approach
based on the contraction mapping theorem fails as soon as one inequality is removed
from (3.1), but our approach continues to work:

Corollary 3.5 Suppose that β ∈ [0, 1), and that v∗ ∈ V . Suppose further that there
exists a constant μ ∈ R such that u ≥ μ. Then v∗ is the smallest fixed point v of B with
v ≥ μ/(1 − β), and the increasing sequence {Bnμ}∞n=1 converges to v∗ pointwise.

Proof Let v = μ/(1−β) ∈ V . Then (2.14) and (2.16) hold as in the proof of Corollary
3.4. In addition, (2.19) is immediate from the inequality u ≥ μ. Thus, the conclusions
hold by Theorem 2.2.

The above result is similar to Corollary 3.3, but requires the additional assumption
that β ∈ [0, 1) in order to allow for the case μ < 0. To our knowledge, the next two
results are new although they are somewhat similar to Corollaries 3.4 and 3.5. The
new results show how one can construct functions v and v that can be used to apply
Theorems 2.1 and/or 2.2 even when the conditions of Corollaries 3.4 and 3.5 are too
restrictive; see Sect. 4.1 for applications.

Corollary 3.6 Suppose that there exist functions u, u : D → [−∞,∞) such that

u ≤ u ≤ u. (3.5)

Suppose further that there exist correspondences �,� : X → X such that

∀x ∈ X, �(x) ⊂ �(x) ⊂ �(x). (3.6)

Let v : X → R be the value function given by (2.6) with u and � replacing u and
�, respectively. Let v : X → R be the value function given by (2.6) with u and �

replacing u and �, repectively. Suppose that v ∈ V , and that (2.16) and (2.17) hold.
Then conclusions (a)–(c) of Theorem 2.1 hold.

Proof We have v ≤ v by construction. Since v ≤ v ∈ V , we have v ∈ V as well.
Note that for any x ∈ X , we have

(Bv)(x) = sup
y∈�(x)

{u(x, y) + βv(y)} (3.7)

≥ sup
y∈�(y)

{u(x, y) + βv(y)} = v(x), (3.8)

where the last equality holds by Lemma 2.1. It follows that Bv ≥ v. We similarly
obtain Bv ≤ v. Now (2.13)–(2.15) hold. Since (2.16) and (2.17) hold by assumption,
conclusions (a)–(c) of Theorem 2.1 now follow.
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Corollary 3.7 Suppose that v∗ ∈ V , and that there exists a function u : D →
[−∞,∞) such that u ≤ u. Suppose further that there exists a correspondence � :
X → X such that �(x) ⊂ �(x) for all x ∈ X. Define v as in Corollary 3.6. Suppose
that (2.16) holds. Then v∗ is the smallest fixed point v of B in [v,∞], and the increasing
sequence {Bnv}∞n=1 converges to v∗ pointwise.

Proof We have (2.14) and (2.16) as in the proof of Corollary 3.6. In addition, (2.19)
is immediate from the inequality u ≤ u. Since v∗ ∈ V by hypothesis, we have v ∈ V
by (2.19). Thus, the conclusions hold by Theorem 2.2.

3.2 Properties of the value function

There are two obvious limitations of the convergence result in Theorems 2.1 and 2.2.
First, convergence to the value function v∗ is guaranteed only from one particular func-
tion v. Second, convergence occurs only pointwise. Despite these limitations, there are
various situations in which this convergence result can help establish a property of the
value function. This is because pointwise convergence preserves many important prop-
erties such as monotonicity, concavity, convexity, measurability, and supermodularity.
In fact, any property that can be expressed in terms of weak inequalities is preserved
under pointwise convergence. In addition, since our convergence result deals only with
a particular increasing sequence starting from v, it suffices to verify that a property of
interest is preserved at the limit of this sequence. The following result formalizes this
idea.

Corollary 3.8 Suppose that v∗ ∈ V . Let v ∈ V satisfy (2.14), (2.16), and (2.19). Let
W ⊂ V satisfy the following conditions:

(i) v ∈ W .
(ii) For any v ∈ W with Bv ≥ v, we have Bv ∈ W .

(iii) For any increasing sequence {vn}∞n=1 ⊂ W with limn↑∞ vn ∈ V , we have
limn↑∞ vn ∈ W .

Then v∗ ∈ W .

Proof Let v and W be as above. For n ∈ N, let vn = Bnv, and let v∗ = limn↑∞ vn . By
Theorem 2.2, we have v∗ = v∗. Since v ∈ W by condition (i), and since the sequence
{Bnv} is increasing by (2.14), we have vn ∈ W for all n ∈ N by condition (ii). By
condition (iii), we have v∗ ∈ W ; that is, v∗ ∈ W .

To see how the above result can be used in practice, suppose that one wishes to
establish that the value function has a certain property, say property (P). One can do
so in four steps as follows:

I. Find a function v ∈ V with property (P) that satisfies (2.14), (2.16), and (2.19).
II. Show that if a function v ∈ V has property (P) and satisfies Bv ≥ v, then Bv

also has property (P).
III. Show that for any increasing sequence {vn} such that each vn has property (P),

limn↑∞ vn also has property (P).
IV. Using Corollary 3.8, conclude that the value function v∗ has property (P).
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This type of argument is not new (e.g., Stokey and Lucas 1989, p. 52; Amir et al.
1991, p. 637), but note that it is the convergence result in Theorems 2.1 and 2.2 that
makes the above procedure work. In Sect. 4.2, we apply a slightly different version of
this procedure to an optimal growth model with “roughly increasing” returns.

3.3 Comparison with the result shown by Rincón-Zapatero and
Rodríguez-Palmero/Martins-da-Rocha and Vailakis

We now compare Theorem 2.1 with Martins-da-Rocha and Vailakis’ (2010, Sec. 3)
result on the Bellman operator, which is built upon the work of Rinćon-Zapatero
and Rodríguez-Palmero (2003, 2009). Under numerous technical conditions, their
result shows that the Bellman operator has a unique fixed point in a certain set of
continuous functions, that this fixed point is the value function, and that value iteration
converges locally uniformly to the value function starting from any continuous function
in the given function set. Since our result does not establish any property of the value
function and ensures only pointwise convergence from a specific initial function, the
conclusions of our result are weaker in some directions. However, our result, which
requires only a small subset of the conditions required by their result, is considerably
simpler to apply. This point immediately becomes clear in what follows.

The result stated by Martins-da-Rocha and Vailakis (2010, Theorem 3.1) requires
the assumptions listed below:

DP0. (i) X = R
m+ for some m ∈ N. (ii) β ∈ (0, 1). (iii) The right-hand side of (2.5)

with L = lim exists in R for all {xt }∞t=0 ∈ �.

DP1. The feasibility correspondence � is continuous and compact-valued.

DP2. The return function u is continuous on D.

Let C(X, [−∞,∞)) be the set of continuous functions from X to [−∞,∞). Under
DP0(i), we define

X∗ = X\{0}, (3.9)

C∗(X) = {v ∈ C(X, [−∞,∞)) : ∀x ∈ X∗, v(x) > −∞}. (3.10)

Although DP2 requires u to be continuous, it is allowed that u(x, y) = −∞ for some
(x, y) ∈ D. The following assumption requires that one can avoid u(x, y) = −∞
unless x = 0.

DP3. There exists a continuous function q : X∗ → X∗ such that

∀x ∈ X∗, (x, q(x)) ∈ D, u(x, q(x)) > −∞. (3.11)

DP4. (i) There exist v, v ∈ C∗(X) satisfying (2.13)–(2.15). (ii) We have

∀{xt }∞t=0 ∈ �0, lim
t↑∞ β tv(xt ) = 0, (3.12)

∀{xt }∞t=0 ∈ �0, lim
t↑∞ β tv(xt ) = 0. (3.13)
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(iii) For any x0 ∈ X∗, �0(x0) = ∅. (iv) There exists v̂ ∈ C∗(X) such that

∀x ∈ X∗, v(x) < v̂(x), (Bv̂)(x) < v̂(x), (3.14)

∃ε > 0, sup
x∈X∗:‖x‖<ε

v(x) − v̂(x)

v(x) − v̂(x)
< ∞, (3.15)

∃δ > 0, sup
x∈X∗:‖x‖<δ

v(x) − v̂(x)

(Bv̂)(x) − v̂(x)
< ∞, (3.16)

where ‖ · ‖ is any norm on R
m .

DP5. There exists an increasing sequence {K j }∞j=1 of compact subsets of X such that
�(K j ) ⊂ K j for each j ∈ N, and such that for any compact set K ⊂ X , there exists
j ∈ N with K ⊂ K j .

We are now ready to present the result stated by Martins-da-Rocha and Vailakis
(2010):

Theorem 3.1 (Martins-da-Rocha and Vailakis 2010, Theorem 3.1) Under DP0–DP5,
the following conclusions hold:
(a) The Bellman operator B has a unique fixed point in [v, v] ∩ C∗(X).
(b) The unique fixed point of B in [v, v] ∩ C∗(X) is the value function v∗.
(c) For any v ∈ [v, v] ∩ C∗(X), the sequence {Bnv}∞n=1 converges to v∗ in the

topology generated by the family {d j }∞j=1 of semidistances defined for all f, g ∈
[v, v] ∩ C∗(X) by

d j ( f, g) = sup
x∈K j \{0}

∣∣∣∣ln
f (x) − v̂(x)

v(x) − v̂(x)
− ln

g(x) − v̂(x)

v(x) − v̂(x)

∣∣∣∣ , j ∈ N. (3.17)

Let us compare the conclusions of Theorem 2.1 with those of Theorem 3.1 under
DP0–DP5 (which imply the hypotheses of Theorem 2.1 by Corollary 3.9 below). In
terms of the existence of a fixed point, Theorem 2.1 is weaker than Theorem 3.1 in the
sense that the latter shows that the fixed point lies in C∗(X) (and thus the value function
v∗ is continuous). In terms of uniqueness, Theorem 2.1 is stronger than Theorem 3.1,
which ensures uniqueness only in [v, v] ∩ C∗(X). In terms of convergence, Theorem
2.1 is considerably weaker than Theorem 3.1, which shows that convergence to v∗
occurs from any initial function in [v, v] ∩ C∗(X) under a criterion much stronger
than ours.

Let us now clarify which parts of DP0–DP5 are needed for the conclusions of
Theorem 2.1. The following is a corollary of Theorem 2.1.

Corollary 3.9 Assume DP0(i), DP0(ii), DP4(i), (3.12), and DP5. Then the functions
v and v given by DP4(i) satisfy (2.13)–(2.17), and thus conclusions (a)–(c) of Theorem
2.1 hold.

Proof DP4(i) ensures (2.13)–(2.15). Condition (3.12) implies (2.16). To verify (2.17),
let {xt }∞t=0 ∈ �. By DP5, there exists a compact set K j with j ∈ N such that x0 ∈ K j

and �(K j ) ⊂ K j . Since v is continuous by DP4(i), we have v(xt ) ≤ maxx∈K j v(x) <

∞ for all t ∈ Z+, which together with DP0(ii) implies (2.17).
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The above result shows that a small subset of the conditions stated in DP0–DP5 is
sufficient to show that the value function v∗ is the unique fixed point of the Bellman
operator B in [v, v] and that convergence to v∗ occurs from v. In the proof, (2.17) is
shown as a consequence of DP5 rather than (3.13). The only role of DP0(i) is to keep
C∗(X) well defined, while that of DP5 is to ensure (2.17). Thus, DP0(i) can be dropped
entirely if we do not require v, v ∈ C∗(X), while DP5 can be replaced by a weaker
sufficient condition for (2.17). The following result can be shown by modifying the
proof of Corollary 3.9.

Corollary 3.10 Let β ∈ [0, 1). Suppose that there exist v, v ∈ V satisfying (2.13)–
(2.16). Suppose further that for any x ∈ X, there exists a set K ⊂ X such that
�(K ) ⊂ K and supx∈K v(x) < ∞. Then conclusions (a)–(c) of Theorem 2.1 hold.

4 Examples

Throughout this section, we assume that β ∈ (0, 1) for simplicity.

4.1 Optimal growth with threshold effects

Azariadis and Drazen (1990, p. 508) define threshold effects as “radical differences in
dynamic behavior arising from local variations in social returns to scale” and explain
this idea by using a discontinuous production function. In this subsection, we consider
a one-sector growth model with this feature. The example here is a special case of the
model studied by Kamihigashi and Roy (2007).

Let θ, θ, x̂ > 0 with θ < θ . Consider the production function f : R+ → R

specified by

f (x) =
{

θx if x < x̂,

θx if x ≥ x̂ .
(4.1)

Figure 1 illustrates a production function of this form. We define

u(x, y) = ln[ f (x) − y], (x, y) ∈ D, (4.2)

�(x) = {y ∈ R : 0 ≤ y ≤ f (x)}, x ∈ X. (4.3)

This is clearly a special case of the framework described in Sect. 2.
Since the production function f is discontinuous, it is immediately clear that u is

not a continuous function and � is not a continuous correspondence.11 Hence, any
result that requires u and � to be continuous is not applicable here. For example, it is
easy to see that this example violates DP1 and DP2 in Sect. 3.3. It also violates DP5,
which rules out unbounded growth.

11 By using a different state variable, it is possible to construct a continuous return function, but the
feasibility correspondence cannot be made continuous.
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Fig. 1 Production function of
the form (4.1)

In contrast, our results are easily applicable. To be specific, define

u(x, y) = ln(θx − y), u(x, y) = ln(θx − y), (4.4)

�(x) = {y ∈ R : 0 ≤ y ≤ θx}, �(x) = {y ∈ R : 0 ≤ y ≤ θx}. (4.5)

Let B and B be the Bellman operators corresponding to (u, �) and (u, �), respectively.
Then, using the method of undetermined coefficients, it is easy to show that there exist
γ , γ , η, η > 0 such that v = B v and v = Bv with

v(x) = γ ln x + η, v(x) = γ ln x + η. (4.6)

In particular,

γ = γ = 1

1 − β
, η = 1

(1 − β)2 [ln θ + β ln β + (1 − β) ln(1 − β)], (4.7)

and η is similar.12 It is easy to see that (2.13)–(2.15) hold. It is also easy to verify (2.16)
and (2.17) following Rinćon-Zapatero and Rodríguez-Palmero (2003, Example 12);
thus, conclusions (a)–(c) of Theorem 2.1 hold.

12 To derive these values of γ and η, for example, suppose that v takes the form given by (4.6), and solve
the maximization problem maxy∈�(x){ln(θx − y)+β[γ ln y+η]}. Substitute the solution into the objective
function and find the values of γ and η such that the maximized objective function always equals γ ln x +η.
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Fig. 2 Production function of
the form (4.8)

Note that in the above argument, it was not required to show that v and v are the
value functions corresponding to (u, �) and (u, �), respectively. However, one can
easily show that v and v are indeed the associated value functions by using Theorem
2.1 or Corollary 3.1.13 In that case, one can apply Corollary 3.6 or 3.7 to obtain the
corresponding conclusions.

In this example, the production function is assumed to have only one discontinuity
and to be upper semicontinuous. However, these properties are not required by our
results. Indeed, the above arguments go through as long as the production function
lies between θx and θx .

4.2 Optimal growth with roughly increasing returns

The importance of increasing returns in explaining cross-country differences in the
long run has been well recognized since Romer (1986). In this subsection, we consider
an optimal growth model with “roughly increasing” returns, which is again a special
case of the model studied by Kamihigashi and Roy (2007). In particular, we assume
that the production function f is continuous and strictly increasing, and that there
exist θ, θ ∈ R++ and α ∈ (1, 1/β) such that

θxα ≤ f (x) ≤ θxα. (4.8)

13 The latter approach is used by Stokey and Lucas (1989, Section 4.4).
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Figure 2 illustrates a production function of this form, which roughly exhibits increas-
ing returns. We define the return function u and the feasibility correspondence � by
(4.2).

In this example, both u and � are continuous, but to our knowledge, in the current
literature, there is no result on the convergence of value iteration that applies to this
example. However, our results are easily applicable as in the previous subsection. To
demonstrate this, define u, �, u, and � by (4.4) and (4.5) with θxα and θxα replacing
θx and θx , respectively. Then following the procedure in the previous subsection, we
see that there exist γ , γ , η, η > 0 such that v = B v and v = Bv with v and v given
by (4.6); thus, we can apply Theorem 2.1 in the same way. In particular, the increasing
sequence {Bnv} converges to v∗ pointwise.

It follows from Kamihigashi and Roy (2007, Lemma 3.3) that the value function
v∗ here is upper semicontinuous. Let us show that v∗ is in fact continuous.14 Since v

is continuous, and since the Bellman operator B here maps a continuous function to
another continuous function, Bnv is continuous for each n ∈ N. However, we cannot
apply Corollary 3.8 here since continuity is not preserved under pointwise conver-
gence. On the other hand, the pointwise limit of an increasing sequence of continuous
functions is lower semicontinuous (e.g., Aliprantis and Border 2006, Lemma 2.41).
This suffices for our purpose since then v∗ is both upper and lower semicontinuous,
i.e., v∗ is continuous.

4.3 Nonconvergence of {Bnv} to v∗

Under (2.13)–(2.17), conclusion (c) of Theorem 2.1 shows that the increasing sequence
{Bnv}∞n=1 converges to the value function v∗ pointwise. The natural question is as
follows: Does the decreasing sequence {Bnv}∞n=1 also converge to v∗? The answer is
no in general.

To verify this, let α ∈ (0, β). Consider the symbolic diagram depicted in Fig. 3;
more precisely, assume the following:

X = {(i, j) : i, j ∈ Z+, j ≤ i}, (4.9)

�((i, j)) =

⎧
⎪⎨

⎪⎩

{(i ′, 0) : i ′ ∈ Z+} if (i, j) = (0, 0),

{(i, j)} if i = j = 0,

{(i, j + 1)} if j < i,

(4.10)

u((i, j), (i ′, j ′)) =

⎧
⎪⎨

⎪⎩

−α if (i, j) = (i ′, j ′) = (0, 0),

−β−i if (i, j) = (i ′, j ′) = (0, 0),

0 otherwise.

(4.11)

14 Note from Le Van and Morhaim (2002) that continuity of v∗ is not necessarily immediate. One can
verify the continuity of v∗ here by following Le Van and Morhaim (2002, Theorem 3(iii)), even though
their assumptions rule out increasing returns. One can also verify it more directly using the interiority of
optimal paths. However, given that v∗ is known to be upper semicontinuous, the following argument seems
to be more efficient.

123



Elementary results on solutions 267

Fig. 3 States (i, j) ∈ X (circles), feasible transitions (arrows), and associated returns (values adjacent to
arrows) under (4.9)–(4.11)

The value function v∗ can be computed directly:15

v∗((i, j)) =
{

−α/(1 − β) if (i, j) = (0, 0),

−β− j/(1 − β) otherwise.
(4.12)

Let v = v∗ and v = 0. Then v ≤ v and Bv = v. Since u ≤ 0, we have Bv ≤ v.
Thus (2.13)–(2.15) hold. As any feasible path eventually becomes constant, (2.16) and
(2.17) hold with equality. Hence, Theorem 2.1 applies.

Consider the decreasing sequence {vn}∞n=1 ≡ {Bnv}∞n=1. If (i, j) = (0, 0), there is
only one feasible transition from (i, j), so that vn((i, j)) can be computed directly:

vn((i, j)) =
{

−β− j ∑n−(i− j)−1
k=0 βk if i > 0 and n ≥ i − j + 1,

0 otherwise.
(4.13)

15 Let i ∈ N. Then at state (i, i), we have v∗((i, i)) = −β−i /(1 − β). Note that v∗((i, i − k)) =
βkv∗((i, i)) for k = 1, . . . , i ; thus v∗((i, j)) = −βi− j v∗((i, i)) = −β− j /(1 − β). It remains to compute
v((0, 0)). If xt = (0, 0) for all t ∈ Z+, then S({xt }∞t=0) = −α/(1 − β). If x1 = (i, 0) with i > 0, then
S({xt }∞t=0) = βv∗((i, 0)) = −β/(1 − β) < −α/(1 − β). Hence, it is never optimal to leave state (0, 0),
so that v∗((0, 0)) = −α/(1 − β).
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This formula works for (i, j) = (0, 0) as well; that is, vn((0, 0)) = 0 for all n ∈ N.16

Now letting v∗ = limn↑∞ vn , we see that v∗((i, j)) = v∗((i, j)) for all (i, j) ∈
X\{(0, 0)}, but v∗((0, 0)) = 0 > v∗((0, 0)); i.e., the sequence {vn}∞n=1 fails to con-
verge to v∗ at (0, 0).

Interestingly, the sequence {Bnv∗}∞t=1 restarted from v∗ converges to v∗. Indeed,
(Bnv∗)((0, 0)) = −α(1 + β + · · · + βn−1) → v∗((0, 0)) as n ↑ ∞.

5 Concluding remarks

In this paper, we have established some elementary results on solutions to the Bellman
equation—or fixed points of the Bellman operator—without introducing any topologi-
cal assumption. Our main results are twofold. First, given an order interval of functions
that is mapped into itself by the Bellman operator, if the upper and lower boundaries
of the order interval satisfy transversality-like conditions, then (a) the Bellman equa-
tion has a unique solution in this order interval, (b) this solution is the value function,
and (c) the value function can be computed by value iteration starting from the lower
boundary of the order interval. Second, if there exists a function that is mapped upward
by the Bellman operator, and if this function is dominated by the value function and
satisfies a transversality-like condition, then the value function can be computed by
value iteration starting from this function. As a consequence of these results, we have
derived various known results to clarify how our results relate to existing ones. We have
applied our results to two optimal growth models, one with a discontinuous production
function and the other with “roughly increasing” returns. We have also presented an
example to show that even under the conditions of our first main result, value iteration
starting from the upper boundary of the order interval need not converge to the value
function.

Our results are elementary in the sense that they do not require any knowledge of
mathematics beyond undergraduate analysis. Therefore, they are highly accessible to
applied researchers as well as graduate students. Even in situations where standard
topological assumptions hold, our results are considerably simpler than most of the
existing results on fixed points of the Bellman operator. In addition, our results, which
require no topological assumption, apply to models with discontinuities and even to
those with “roughly increasing” returns.

In sharp contrast to the existing results based on variants of the contraction mapping
theorem, our results directly establish virtually no property of the value function.
Regarding this matter, we have shown how the increasing, convergent sequence given
by our results can be used to derive certain properties of the value function. We plan
to pursue applications of this idea as well as extensions to stochastic models in future
research.

16 To see this, define v0 = v = 0. Then v0((0, 0)) = 0. Let n ∈ Z+. With vn given by (4.13), we have
vn+1((0, 0)) = β supi∈X vn((i, 0)) = 0 since vn((i, 0)) = 0 for all i ≥ n. By induction, vn((0, 0)) = 0
for all n ∈ N.
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6 Appendix: Proofs

6.1 Proof of Theorem 2.1

The proof consists of three lemmas and a concluding argument. The proof of the first
lemma slightly generalizes an argument of Stokey and Lucas (1989, Theorem 4.3).
The second lemma essentially shows that BT v with T ∈ N and v ∈ V is the value
function of the T -period problem with the value of the terminal stock xT given by
v(xT ). This result extends the classical idea of Bertsekas and Shreve (1978, Section
3.2) to our setting. The last lemma is less trivial than the first two. The concluding
argument applies the Knaster–Tarski fixed point theorem and combines the first and
last lemmas.

Lemma 6.1 Let v ∈ V satisfy (2.17). Let v ∈ V be a fixed point of B with v ≤ v.
Then v ≤ v∗.

Proof Let x0 ∈ X . If v(x0) = −∞, then v(x0) ≤ v∗(x0). Consider the case v(x0) >

−∞. Let ε > 0. Let {εt }∞t=0 ⊂ (0,∞) be such that
∑∞

t=0 β tεt ≤ ε. Since v = Bv,
for any t ∈ Z+ and xt ∈ X , there exists xt+1 ∈ �(xt ) such that

v(xt ) ≤ u(xt , xt+1) + βv(xt+1) + εt . (6.1)

We pick x1 ∈ �(x0), x2 ∈ �(x1), . . . so that (6.1) holds for all t ∈ Z+. Then {xt }∞t=1 ∈
�(x0). By repeated application of (6.1), we have

v(x0) ≤ u(x0, x1) + βv(x1) + ε0 (6.2)

≤ u(x0, x1) + β[u(x1, x2) + βv(x2) + ε1] + ε0 (6.3)

... (6.4)

≤
T −1∑

t=0

β t u(xt , xt+1) + βT v(xT ) + ε, ∀T ∈ N. (6.5)

Since v(x0) > −∞, we have βT v(xT ) > −∞ for all T ∈ N. It follows that

v(x0) − ε − βT v(xT ) ≤
T −1∑

t=0

β t u(xt , xt+1). (6.6)

Applying limT ↑∞ to both sides and recalling (2.5) and (2.6), we have

v(x0) − ε − limT ↑∞βT v(xT ) ≤ limT ↑∞
T −1∑

t=0

β t u(xt , xt+1) ≤ S({xt }∞t=0) ≤ v∗(x0).

(6.7)
By (2.17), we have v(x0) − ε ≤ v∗(x0). Since this is true for any ε > 0, we have
v(x0) ≤ v∗(x0). Since x0 is arbitrary, we obtain v ≤ v∗. ��
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For any v ∈ V , define v1 = Bv; for each n ∈ N, provided that vn ∈ V , define
vn+1 = Bvn . The following remark follows from (2.11).

Remark 6.1 Let v,w ∈ V satisfy v ≤ w and Bw ≤ w. Then for all n ∈ N, we have
vn ≤ w and thus vn ∈ V .

Lemma 6.2 Let v ∈ V satisfy (2.15). Let v ∈ V satisfy v ≤ v. Then for any T ∈ N,
we have vT ∈ V and

∀x0 ∈ X, vT (x0) = sup
{xt }∞t=1∈�(x0)

{
T −1∑

t=0

β t u(xt , xt+1) + βT v(xT )

}
. (6.8)

Proof Note from (2.15) and Remark 6.1 with w = v that vn ∈ V for all n ∈ N. For
any x0 ∈ X , we have

v1(x0) = sup
x1∈�(x0)

{u(x0, x1) + βv(x1)} (6.9)

= sup
x1∈�(x0)

sup
{xt }∞t=2∈�(x1)

{u(x0, x1) + βv(x1)} (6.10)

= sup
{xt }∞t=1∈�(x0)

{u(x0, x1) + βv(x1)}, (6.11)

where (6.10) holds because {u(x0, x1) + βv(x1)} is independent of {xt }∞t=2,17 and
(6.11) follows by combining the two suprema (see Kamihigashi 2008, Lemma 1). It
follows that (6.8) holds for T = 1.

Now assume (6.8) for T = n ∈ N. For any x0 ∈ X , we have

vn+1(x0) = sup
x1∈�(x0)

{u(x0, x1) + βvn(x1)} (6.12)

= sup
x1∈�(x0)

{
u(x0, x1)

+ β sup
{xi+1}∞i=1∈�(x1)

{n−1∑

i=0

β i u(xi+1, xi+2) + βnv(xn+1)
}}

(6.13)

= sup
x1∈�(x0)

sup
{xi+1}∞i=1∈�(x1)

{
n∑

t=0

β t u(xt , xt+1) + βn+1v(xn+1)

}
(6.14)

= sup
{xt }∞t=1∈�(x0)

{
n∑

t=0

β t u(xt , xt+1) + βn+1v(xn+1)

}
, (6.15)

where (6.13) uses (6.8) for T = n, (6.14) holds because u(x0, x1) is independent of
{xi+1}∞i=1, and (6.15) follows by combining the two suprema (see Kamihigashi 2008,

17 This step uses the assumption that � is nonempty-valued.
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Lemma 1). It follows that (6.8) holds for T = n + 1. By induction, (6.8) holds for all
T ∈ N. ��
Lemma 6.3 Let v, v ∈ V satisfy (2.13)–(2.16). Then v∗ ≡ limT ↑∞ vT ≥ v∗.18

Proof Note from (2.13)–(2.15), (2.11), and Remark 6.1 that {vT }∞T =1 is an increasing
sequence in V . Thus for any x0 ∈ X , we have

v∗(x0) = sup
T ∈N

vT (x0) (6.16)

= sup
T ∈N

sup
{xt }∞t=1∈�(x0)

{
T −1∑

t=0

β t u(xt , xt+1) + βT v(xT )

}
(6.17)

= sup
{xt }∞t=1∈�(x0)

sup
T ∈N

{
T −1∑

t=0

β t u(xt , xt+1) + βT v(xT )

}
(6.18)

≥ sup
{xt }∞t=1∈�0(x0)

LT ↑∞

{
T −1∑

t=0

β t u(xt , xt+1) + βT v(xT )

}
(6.19)

≥ sup
{xt }∞t=1∈�0(x0)

{
LT ↑∞

T −1∑

t=0

β t u(xt , xt+1) + limT ↑∞βT v(xT )

}
(6.20)

≥ sup
{xt }∞t=1∈�0(x0)

LT ↑∞
T −1∑

t=0

β t u(xt , xt+1) = v∗(x0), (6.21)

where (6.17) uses Lemma 6.2, (6.18) follows by interchanging the two suprema (see
Kamihigashi 2008, Lemma 1), (6.19) holds because �0(x0) ⊂ �(x0) (recall (2.8))
and LT ↑∞aT ≤ supT ∈N aT for any sequence {aT } in [−∞,∞), (6.20) follows from
the properties of lim and lim,19 and the inequality in (6.21) uses (2.16). It follows that
v∗ ≥ v∗. ��

To complete the proof of Theorem 2.1, suppose that there exist v, v ∈ V satisfying
(2.13)–(2.17). The order interval [v, v] is partially ordered by ≤ (recall (2.10)). Given
any F ⊂ [v, v], we have sup F ∈ [v, v] because

∀x ∈ X, (sup F)(x) = sup{ f (x) : f ∈ F} ∈ [v(x), v(x)]. (6.22)

Since B is a monotone operator, and since B([v, v]) ⊂ [v, v] by (2.13)–(2.15) and
(2.11), it follows that B has a fixed point v in [v, v] by the Knaster–Tarski fixed point
theorem (e.g., Aliprantis and Border 2006, p. 16). Since v ≤ v = Bv, we have vn ≤ v

for all n ∈ N by Remark 6.1; thus v∗ ≤ v.20 Since v ≤ v∗ by Lemma 6.1 and v∗ ≤ v∗

18 Here vT = BT v for all T ∈ N and v∗(x) = limT ↑∞ vT (x) for all x ∈ X .
19 We have lim(at + bt ) ≥ limat + limbt and lim(at + bt ) ≥ limat + limbt for any sequences {at } and
{bt } in [−∞, ∞) whenever both sides are well-defined (e.g., Michel 1990, p. 706).
20 See footnote 18 for the definitions of vn and v∗.
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by Lemma 6.3, it follows that v ≤ v∗ ≤ v∗ ≤ v. Hence v = v∗ = v∗. Therefore, v∗
is a unique fixed point of B in [v, v]; this establishes conclusions (a) and (b). Finally,
conclusion (c) holds because v∗ = v∗.

6.2 Proof of Proposition 2.1

Let v ∈ V satisfy (2.17) and (2.18). Then by Lemma 6.1, any fixed point v of B with
v ≤ v satisfies v ≤ v∗. Since v∗ ≤ v and v∗ is a fixed point of B by Lemma 2.1, it
follows that v∗ is the largest fixed point of B in [−∞, v].

6.3 Proof of Therem 2.2

Let v ∈ V satisfy (2.14), (2.16), and (2.19). Since Bv∗ = v∗ by Lemma 2.1, (2.13)–
(2.15) hold with v = v∗. Hence, by Lemma 6.3, v∗ ≥ v∗. Since v ≤ v∗, we also have
v∗ ≤ v∗. Thus v∗ = v∗. We have verified the second conclusion. If B has a fixed point
v ∈ [v,∞], then v∗ = v∗ ≤ v; thus the first conclusion also holds.
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