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Abstract In a model with finitely many agents who have single-dipped Euclidean
preferences on a polytope in the Euclidean plane, a rule assigns to each profile of
reported dips a point of the polytope. A point x of the polytope is called single-best
if there is a point y of the polytope such that x is the unique point of the polytope at
maximal distance from y. It is proved that if the polytope does not have either exactly
two single-best points or exactly four single-best points which form the vertices of a
rectangle, then any Pareto optimal and strategy-proof rule is dictatorial. If the polytope
has exactly two single-best points, then there are non-dictatorial strategy-proof and
Pareto optimal rules, which can be described by committee voting (simple games)
between the two single-best points. This also holds if there are exactly four single-
best points which form the vertices of a rectangle, but in that case, we limit ourselves
to describing an example of such a rule. The framework under consideration models
situations where public bads such as garbage dumping grounds or nuclear plants have
to be located within a confined region.
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1 Introduction

Consider the problem of locating a windmill park, garbage dumping ground, heavy
industry, or nuclear plant within a confined area, such as a city, province, or country.
These are examples of public bads: People agree on their usefulness or even necessity
but typically do not want them in their backyards. In this paper, we assume that the
public bad is to be located within a given region—a subset of the plane—and that
the location is determined by voting among a set of agents (for instance, inhabitants
of the region or political representatives). Each agent is characterized by a Euclidean
single-dipped preference: There is a worst point, the dip, which is a specific point of
the region, and preference increases with the Euclidean distance from this dip. A vote
then consists of reporting one’s dip. Typically, what an agent regards to be his dip is
private knowledge: It could coincide with his residence, the school of his children, an
important natural resource, etc. Also, the location of a public bad is typically decided
for a longer period, whereas an agent’s future situation is subject to change, only
possibly known to the agent. So a central planner may not have full information about
the true preferences of the agents. Therefore, in order for the location of the public bad
to be based on the right information about the agents’ preferences, the (voting) rule
should be strategy-proof: No agent should be able to achieve a location farther away
from his true dip by not reporting truthfully. Additionally, we will require the rule to
be Pareto optimal: It should not assign a location for which there is another location at
least as distant for all and strictly farther away for some agents, given the reported dips.

In this paper, we assume that the region is a two-dimensional polytope A, i.e., the
convex hull of at least three but finitely many points, which are the extreme points
of the polytope. An important concept is that of a single-best point, i.e., a point of A
that is the unique point at maximal distance from some other point of A. Single-best
points are always extreme points, although not every extreme point is necessarily a
single-best point. For instance, if the boundary of A is a triangle with vertices a, b, and
c, then these three points are the single-best points if the triangle is acute. However, if
the angle at a is right, then a can be a best point, but it is not a single-best point, and
if this angle is obtuse, then a is not even a best point.

We assume that there are n ≥ 2 agents; a profile is a vector of n points of A—
interpreted as a vector of reported dips—and a rule assigns a point of A to each profile.
Our main results are as follows. If A does not have exactly two single-best points and if
A does not have exactly four single-best points which form the vertices of a rectangle,
then a strategy-proof and Pareto optimal rule must be dictatorial: There is a fixed
agent d such that the rule always assigns a point at maximal distance from d’s dip.
This result is obtained by proving that the set of decisive coalitions is an ultrafilter and,
in particular, closed under taking intersections. The last property does not hold if A has
exactly two single-best points or exactly four single-best points which are the vertices
of a rectangle. For the case that A has exactly two single-best points a and b—which
means, roughly, that A is sufficiently flat with a and b as ‘end points’—we characterize
all strategy-proof and Pareto optimal rules under a few mild additional (tie-breaking)
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assumptions: Such rules are described by committee (simple game) voting between a
and b. Similarly, for the case where A has exactly four single-best points which are
the vertices of a rectangle, we can obtain strategy-proof and Pareto optimal rules by
committee voting between the upper and lower and between the left and right vertices
of the rectangle; for this case, we content ourselves by giving an example.

The message of the paper is therefore that dictatorship can be avoided only if the
region is sufficiently flat (in terms of width) or if we can identify four locations which
are the vertices of a rectangle and which are the only single-best points. The lesson to
be learnt from these results is that in order to make strategy-proof and Pareto optimal
(e.g.) majority voting possible, one has to restrict the range of potential locations for
the public bad accordingly. Although there is certainly some hindsight intuition for
these results—like a small induced preference domain in the flat case and separability
of preferences along axes in the rectangular case—the proofs are far from trivial. In
particular, it is far from straightforward to show that the mentioned cases are the only
ones in which dictatorship can be avoided.

Since some parts of the proof rely on the finiteness of the set of extreme points
of a region A, extension of our results to general compact convex set does not seem
straightforward. In a companion note (Öztürk et al. 2013), we show that dictatorship
continues to hold when A is a disk (a circle and its inside), but this needs a separate
proof.

Related literature To the dictatorship part of our results, the classical work of Gibbard
(1973) and Satterthwaite (1975) does not directly apply since we do not have full
preference domains. An exception is the acute triangle: If we know that the rule
assigns a vertex, then in this case dictatorship follows from Gibbard-Satterthwaite,
since single-dipped preferences generate the full domain of six (strict) preferences
over the vertices (see the end of Sect. 3).

In one dimension, single-dipped and single-peaked preferences are both special
cases of value restriction (Inada 1964), but it is well known that the consequences for
Pareto optimal and strategy-proof rules are quite different. Also in spatial models like
ours, this is the case. In particular, under single-dipped preferences, strategy-proofness
and Pareto optimality force the outcome of the rule to be on the boundary of the region
under consideration—which is also why the restriction to compact sets is natural in
the present framework. As a result, under single-dipped preferences much is going to
depend on the shape of the boundary of the region. Typically, also, continuity of a rule
is not a condition that can be imposed since even a dictatorial rule is not continuous:
A small change in the preference (dip) of the dictator may cause the outcome to
swap to the opposite side of the region; the same happens with committee voting
between two points or between the four corner points of a rectangle. Thus, adding
continuity as a requirement would lead to genuine impossibility. Generally speaking,
single peakedness of preferences seems to allow for more possibilities and to lead less
frequently to dictatorship (Black 1948; Moulin 1980; Border and Jordan 1983).

In spite of its apparent relevance, existing work on collective decision making in
the presence of single-dipped preferences is relatively limited. As far as we know
ours is the first paper to study strategy-proofness under single-dipped preferences
in two-dimensional space. The one-dimensional case has been studied before. Pere-

123



86 M. Öztürk et al.

mans and Storcken (1999) characterize all strategy-proof rules for the case that A is
an arbitrary subset of the real line, and preferences are single-dipped (and not nec-
essarily symmetric). An implication of their work is that individual and coalitional
strategy-proofness are equivalent in this model. Also Barbera et al. (2012) reach this
conclusion and sharpen the bounds on the range of strategy-proof rules, depending
on different subclasses of single-dipped preferences. Manjunath (2009) specifically
studies unanimous (instead of Pareto optimal) and strategy-proof rules defined on a
real interval, i.e., a one-dimensional polytope, for a larger class of single-dipped pref-
erences, i.e., not only Euclidean preferences—see the concluding section for a discus-
sion about related extensions within our framework. Typically, in this one-dimensional
case, strategy-proof and unanimous rules can be characterized as committee voting
between the end points of the interval, comparable to our case with two single-best
points. Thus, all these works concern the location of a public bad where the region A is
one-dimensional.

The private good case with single-dipped preferences is considered in Klaus et
al. (1997), which deals with the division of a perfectly divisible commodity. Klaus
(2001) considers the case where this commodity is an indivisible object and has to be
allocated to one of the agents. Ehlers (2002) considers the probabilistic allocation of
an indivisible object.

The line of reasoning in the proof of the dictatorship result, based on decisive
coalitions and ultrafilters, has been used before, see Kirman and Sondermann (1972)
and Hansson (1976).

Finally, there is a—more extensive—literature on mechanism design for the loca-
tion of public bads (obnoxious facilities) when monetary transfers are allowed, see
for instance Kunreuther and Kleindorfer (1986) or, more recently, Lescop (2007) or
Besfamille and Lozachmeur (2010). Sakai (2012) considers the location of a public
bad as a pricing problem, where locations differ in cost. Berliant et al. (2013) presents
an equilibrium model to determine the location of polluting firms.

Organization of the paper Section 2 starts with notations, the basic model, and some
preliminary results. In Sect. 3 we derive the dictatorship result, and in Sect. 4 we
consider the non-dictatorship cases. Section 5 concludes. Some auxiliary results and
some of the proofs are delegated to the Appendix.

2 Notations, basic model, and preliminaries

We start by fixing some notations to be used throughout the paper.

2.1 Notations

For a subset X of R
2 (endowed with the usual topology), we denote by ∂X its boundary,

by X◦ its interior, and by X its closure.
Some of the following notions are illustrated in Figure 1.
Let a, b, c ∈ R

2 be three different points. Then [a, b] denotes the closed line
segment between points a and b, ]a, b[ the (relatively) open line segment between a
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Fig. 1 Illustrating some notions of Sect. 2.1

and b, and [a, b[ and ]a, b] the two half open line segments. The midpoint of [a, b]
is denoted by ma,b and its perpendicular bisector by �a,b. For x ∈ R

2, we denote by
σa,b(x) the reflection of x in the line �a,b, i.e., �a,b is the perpendicular bisector of
[x, σa,b(x)].

If a, b, and c are non-collinear, we denote ma,b,c = �a,b ∩ �b,c ∩ �a,c (and regard
ma,b,c as a point rather than a set). Further, �(a, b) denotes the straight line through
the points a and b.

The Euclidean distance between a and b is denoted by ||a − b||. A straight line
� divides the plane R

2 into two half-planes. For a /∈ �, H(�, a) indicates the closed
half-plane containing a; we write H◦(�, a) for the open half-plane, thus H◦(�, a) =
H(�, a)◦. The circle with center a and radius r ≥ 0 is denoted by �(a, r), hence
�(a, r) = {x ∈ R

2 : ||a − x || = r}. For x, y ∈ R
2 on the same circle with center

a ∈ R
2, we write [a; x�y] for the arc between x and y, that is, [a; x�y] = �(a, ||a −

x ||)\H◦(�(x, y), a) if a is not on �(x, y), otherwise [a; x�y] = �(a, ||a − x ||).
For an arbitrary set D, we denote by |D| its cardinality.

2.2 The basic model

We next formulate the basic model. There is a finite set N = {1, . . . , n} (n ≥ 2) of
agents and a compact subset A ⊆ R

2 of alternatives or simply points.1 Each agent is
endowed with a (Euclidean single-dipped) preference Rx , x ∈ A, defined as follows:
for all y, z ∈ A, (y, z) ∈ Rx if ||x − y|| ≥ ||x −z||. The point x is the dip of preference
Rx . Clearly, preference Rx is completely determined by its dip; therefore, if convenient,
we will denote a preference by its dip. An element p = (p(1), . . . , p(n)) ∈ AN , where
p(i) is the dip of agent i , is called a profile (of single-dipped preferences). A social
choice function or simply rule is a map ϕ : AN → A. We are interested in rules that
satisfy the following two properties. Rule ϕ is called

1 In most of the paper, A will be a convex set, specifically, a polytope.
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[PO] Pareto optimal if for every profile p ∈ AN , every agent i ∈ N , and every
point a ∈ A with ||p(i)− a|| > ||p(i)− ϕ(p)|| there is an agent j ∈ N such that
||p( j)− a|| < ||p( j)− ϕ(p)||;
[SP] strategy-proof if for every agent i in N and all profiles p, q ∈ AN , with
q( j) = p( j) for all j ∈ N\{i}, we have ||p(i)− ϕ(p)|| ≥ ||p(i)− ϕ(q)||.

The interpretation of Pareto optimality is as usual, and strategy-proofness (also as
usual) implies that no agent can improve the outcome by misreporting his preference.

A subset of N is called a coalition. Strategy-proofness is equivalent to the following
condition (see Lemma 6.1 in the Appendix for a proof). Rule ϕ is called

[ISP] intermediate strategy-proof if for every coalition S ⊆ N and all profiles
p, q ∈ AN such that p( j) = q( j) for all j ∈ N\S and there is a point a with
p(i) = a for all i ∈ S, we have ||a − ϕ(p)|| ≥ ||a − ϕ(q)||.

Intermediate strategy-proofness says that if all agents of a coalition S in some pro-
file p have the same preference, and these agents simultaneously misrepresent their
preferences in possibly different ways, resulting in a profile q, then no agent of S
benefits if the rule ϕ is applied. Observe that this is weaker than what is usually called
‘coalitional strategy-proofness,’ since in ISP it is assumed that the true preferences of
the agents of a coalition S are identical.

Often ISP will be used instead of SP without explicit mentioning.

2.3 Preliminary results

Let S ⊆ N be a coalition and let a, b ∈ A. By (aS, bN\S) ∈ AN , we denote the
profile p with p(i) = a for all i ∈ S and p(i) = b for all i ∈ N \ S. (If S = N we
usually write aN instead of (aN , b∅).) To such a two-dipped profile, a Pareto optimal
rule always assigns a boundary point, as the following lemma shows.

Lemma 2.1 Let a, b ∈ A, S ⊆ N, and p = (aS, bN\S). Let ϕ : AN → A be a
Pareto optimal rule. Then ϕ(p) ∈ ∂A.

Proof Let � = �(a, b) if a 
= b and let � be an arbitrary straight line through a if
a = b. Let x be the intersection of � and the line �′ through ϕ(p) perpendicular to �.
Now for points c on �′ such that ϕ(p) ∈ ]c, x], it follows that ||a − c|| > ||a − ϕ(p)||
and ||b − c|| > ||b − ϕ(p)||. Hence, by Pareto optimality, we must have c /∈ A, so
that ϕ(p) cannot be an interior point of A. Hence ϕ(p) ∈ ∂A. �


Observe that the proof of this lemma does not use the compactness of the set A.
Thus, the lemma justifies our restriction to compact sets: If A is not bounded, then a
Pareto optimal rule does not exist, and if A is not closed, it may also fail to exist.

For a preference Ra , the set of best points is denoted by b(Ra) or by b(a), i.e.,
b(Ra) = b(a) = {y ∈ A : ||a − y|| ≥ ||a − z|| for all z ∈ A}. A coalition S ⊆ N is
decisive (given a rule ϕ) if ϕ(p) ∈ b(Ra) for all a ∈ A and all p ∈ AN with p(i) = a
for all i ∈ S. Clearly, if S is decisive and S ⊆ T ⊆ N , then T is decisive. A rule ϕ is
dictatorial if there is a dictator, i.e., an agent d ∈ N such that {d} is decisive.

A collection W of subsets of N is called an ultrafilter on N if for all subsets
S, T ⊆ N we have (i) ∅ /∈ W , (ii) if S, T ∈ W , then S ∩ T ∈ W , and (iii) S ∈ W
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or N \ S ∈ W . We have the following familiar property, of which we include the
simple proof for completeness. For more information on ultrafilters, see for instance
Aliprantis and Border (2006).

Lemma 2.2 Let W be an ultrafilter on N. Then there exists a unique d ∈ N such that
{d} ∈ W .

Proof By properties (i) and (ii) of an ultrafilter, there can be at most one such d. If
N \ {i} ∈ W for all i ∈ N then ∩i∈N N \ {i} ∈ W by (ii), but this violates (i) since
∩i∈N N \ {i} = ∅. Hence, there must be a d ∈ N with N \ {d} /∈ W , so by (iii) we
have {d} ∈ W . �


3 Dictatorship

Throughout this section, the set A is a polytope with non-empty interior, i.e., the
convex hull of a finite set C = {c1, c2, . . . , ck} ⊆ R

2 with k ≥ 3 where all points in C
are extreme points of A. Further, ϕ : AN → A is a strategy-proof and Pareto optimal
rule.

The main purpose of the section is to identify those cases where ϕ is a dictatorship,
culminating in Theorem 3.10. First we give an outline of the proof.

3.1 Outline of the proof

We first show that, if ϕ always assigns a boundary point, then this must always be an
extreme point, i.e., an element of C (Lemma 3.1). Together with Lemma 2.1, which
stated thatϕ always assigns boundary points to two-dipped profiles (this followed from
Pareto optimality alone), we obtain that ϕ always assigns extreme points to two-dipped
profiles (Lemma 3.2).

Next, we formally introduce the concept of a single-best point: This is a point which
is the unique best point for at least one element of A. The auxiliary Lemmas 3.3 and 3.4
prove some geometrical facts about single-best points.

Lemma 3.5 shows that, if the two dips in a two-dipped profile have unique best
points—so these points are single-best points—then the rule ϕ must assign one of
these single-best points to such a profile. Suppose this is the single-best point for a
coalition S. Then Lemma 3.6 shows that, in every two-dipped profile between S and
N \ S, the rule must assign the single-best point for coalition S, under the additional
assumption that there are at least three single-best points in A. In that case, coalition
S is called quasi-decisive; thus, Lemma 3.6 shows that for every coalition S, either
S or N \ S is quasi-decisive, provided that there are at least three single-best points.
In Lemma 3.7, we take this a step further and show that, again under the condition
that there are at least three single-best points, for each coalition S, either S or N \ S
is decisive; recall that this means that S gets a best point whenever all the agents of S
have the same preference (dip).

Lemma 3.8 shows that, if there are at least three single-best points and an addi-
tional condition holds, then the set of decisive coalitions is closed under intersection.
Lemmas 6.3 and 3.9 show that this additional condition is equivalent to the set of
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single-best points being non-rectangular; a finite set in R
2 is rectangular if it consists

of four points which are the vertices of a rectangle. Hence, so far we have proved
that if the set of single-best points contains at least three points and is not rectangular,
then the set of decisive coalitions is an ultrafilter. So by Lemma 2.2, there must be a
decisive single agent, hence a dictator (Theorem 3.10).

We repeat that this line of argument is familiar in social choice (e.g., Kirman and
Sondermann 1972; Hansson 1976).

The cases where we do not necessarily have dictatorship are treated in Sect. 4.

3.2 Proof of the main result

We start by showing that only extreme points can be boundary outcomes of ϕ.

Lemma 3.1 Let p ∈ AN and ϕ(p) ∈ ∂A. Then ϕ(p) ∈ C.

Proof Some of the main ideas of the proof can be explained by considering a regular
polygon (cf. Remark 3.11). So we let A be a regular 5-polygon (see Figure 2, which
also illustrates the rest of the proof) and we let p be a two-dipped profile, say p =
(aS, bN\S). The proof of the general case (which is considerably more complicated)
is in the Appendix.

We argue from contradiction. If the boundary point ϕ(p) is not an element of C ,
then it is contained in a line segment between adjacent vertices c and c′. Let the
perpendicular bisectors �c,ϕ(p) and �c′,ϕ(p) of [c, ϕ(p)] and [c′, ϕ(p)] intersect the
opposite boundary of A in the points ā and b̄, respectively. By Pareto optimality, it
follows that neither a nor b can be located between those bisectors, so say that a is to
the left of �c,ϕ(p) and b is to the right of �c′,ϕ(p).

Consider the profile (āS, bN\S). By (I)SP, we have ||a − ϕ(āS, bN\S)|| ≤ ||a −
ϕ(p)|| and ||ā − ϕ(p)|| ≤ ||ā − ϕ(āS, bN\S)||. Hence, ϕ(āS, bN\S) ∈ {c, ϕ(p)}.
By PO, this implies ϕ(āS, bN\S) = c. Again by SP, ||b̄ − ϕ(āS, b̄N\S)|| ≥ ||b̄ −
ϕ(āS, bN\S)|| = ||b̄ − c||, but this implies ϕ(āS, b̄N\S) = c since c is at maximal
distance from b̄ in A.

Fig. 2 Illustrating the proof of
Lemma 3.1 for A a regular
5-polygon
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By an analogous argument, now starting by moving the agents in N \ S from b to
b̄, we obtain ϕ(āS, b̄N\S) = c′. This contradiction completes the proof for this case.

�

The next lemma follows by combining Lemmas 2.1 and 3.1.

Lemma 3.2 Let a, b ∈ A and S ⊆ N. Then ϕ(aS, bN\S) ∈ C.

For a subset B of A, let AB denote the set of dips for which B is exactly the set of
best points, i.e.,

AB = {x ∈ A : b(x) = B}.

For a singleton {a}, we write Aa instead of A{a}. We can make the following obser-
vations. If B ⊆ A and B 
⊆ C , then AB = ∅. If B = {a, b} for some distinct
a, b ∈ C then AB ⊆ �a,b and if B = {a, b, c} for some distinct a, b, c ∈ C then
AB ⊆ �a,b ∩ �b,c. Moreover, if Aa 
= ∅ for some a ∈ C then Aa is convex. This can
be seen as follows. Let x, y ∈ Aa and let b ∈ A \ {a}, then x, y ∈ H◦(�a,b, b), hence
z ∈ H◦(�a,b, b) for any convex combination z of x and y, so b /∈ b(z). Since b was
arbitrary and b(z) 
= ∅, this implies that z ∈ Aa . Let

B = {a ∈ A : Aa 
= ∅}.

Elements of B are called single-best points. Hence, a point of A is a single-best point
if there is some preference for which this point is the unique best point. Combining
our observations, we see that for each a ∈ B the set Aa is a convex polygon which is
open relative to A and that A = ∪x∈B Ax .

The following two lemmas establish further facts about points in B. Their proofs
are delegated to the Appendix.

Lemma 3.3 Let a, b, and c be three distinct points in B. Then ma,b,c exists and
ma,b,c ∈ A◦.

Lemma 3.4 Let a ∈ B. Then A◦ \ Aa is connected.

In what follows we often use a notation like R = . . . x . . . yz . . . (x, y, z ∈ C) to
express that, in the preference R, x is strictly preferred to y and y to z such that other
points in C are either above y or below z in preference.

The next result can be interpreted as saying that ϕ leaves no room for compromis-
ing at two-dipped profiles. It says, more precisely, that at such a profile, if the two
preferences have unique best points, then the rule must assign one of those. Its proof
is delegated to the Appendix.

Lemma 3.5 Let S ⊆ N , a, b ∈ B, x ∈ Aa, y ∈ Ab, and p = (x S, yN\S) ∈ AN .
Then ϕ(p) ∈ {a, b}.

Call a coalition S ⊆ N quasi-decisive (given ϕ) if ϕ(p) = a for all a, b ∈ B and
every profile p = (x S, yN\S) with x ∈ Aa and y ∈ Ab. Recall that S is decisive if
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ϕ(p) = a whenever p(i) = a for all i ∈ S; so quasi-decisiveness is a weakening of
decisiveness. We now first show that, if there are at least three single-best points, then,
for every coalition, either that coalition or its complement is quasi-decisive. Next, we
will show that this remains true for decisiveness instead of quasi-decisiveness.

Lemma 3.6 Let |B| ≥ 3. Then for every S ⊆ N, either S or N \ S is quasi-decisive.

Proof Let S ⊆ N . If S = N or S = ∅ then we are done by Pareto optimality. So
assume S 
= ∅, N . Clearly, S and N \ S cannot both be quasi-decisive. Let a, b be
two different elements of B, and let x ∈ Aa, y ∈ Ab, and p = (x S, yN\S). By
Lemma 3.5, ϕ(p) ∈ {a, b}. Without loss of generality assume that ϕ(p) = a. Take
c, d ∈ B, v ∈ Ac and w ∈ Ad arbitrary, and let q = (vS, wN\S). It is sufficient to
prove that ϕ(q) = c. By Pareto optimality, we may assume that c 
= d. Lemma 3.5
implies ϕ(q) ∈ {c, d}. We proceed in four steps.

Step 1 Assume v = x .
Then, since v = x we have c = a. If also b = d, then ϕ(q) = c = a otherwise

coalition N \ S could manipulate from p to q and obtain d = b. So assume b 
= d. By
Lemma 3.4 there is a path2 from y tow disjoint from Aa . Along this path, we can find
points y = u1, u2, . . . , uk = w (k ≥ 2) such that ut ∈ A ft , ft ∈ B, for t = 1, . . . , k
(so f1 = b, fk = d) and such that for every t = 1, . . . , k − 1 we have Rut |B =
ft ft+1 . . . and Rut+1 |B = ft+1 ft . . .

3 For every t = 1, . . . , k let pt = (x S, uN\S
t ).

Thus, p1 = p and pk = q. Since ϕ(p1) = a, f1, f2 
= a, Ru2 |B = f2 f1 . . ., and

ϕ(p2) ∈ {a, f2} by Lemma 3.5, we have by strategy-proofness that ϕ(p2) = a, since
otherwise coalition N \ S could manipulate from p1 = p to p2, obtaining f2 instead
of a. Similarly, it follows that ϕ(p3) = a, ϕ(p4) = a, etc., so that ϕ(q) = ϕ(pk) = a,
hence ϕ(q) = c.
Step 2 Assume v 
= x and d 
= a.

Consider p′ = (x S, wN\S). Then Step 1 implies ϕ(p′) = a. By Step 1 applied to
p′ and q, if ϕ(q) = d then ϕ(p′) = d, a contradiction since d 
= a. Hence ϕ(q) = c.
Step 3 Assume y = v, w = x .

Let e ∈ B \ {a, b} (recall that |B| ≥ 3) and u ∈ Ae. Then ϕ(p) = ϕ(x S, yN\S) = a
implies by Step 1 that ϕ(x S, uN\S) = a. In turn, by Step 2, this implies that
ϕ(yS, uN\S) = b, which by Step 1 again yields ϕ(q) = ϕ(yS, x N\S) = b. Since
y = v, we have b = c, so ϕ(q) = c.
Step 4 Assume v 
= x, d = a.

Then ϕ(p) = ϕ(x S, yN\S) = a implies by Step 3 that ϕ(yS, x N\S) = b, hence
by Step 1 we obtain ϕ(yS, wN\S) = b. If y = v, hence b = c, we have ϕ(q) =
ϕ(vS, wN\S) = ϕ(yS, wN\S) = b = c. If y 
= v, then d = a 
= b and Step 2 imply
ϕ(q) = ϕ(vS, wN\S) = c.
Since the case v = x is covered in Step 1, the case v 
= x and d 
= a in Step 2,
and the case v 
= x and d = a in Step 4, all cases are covered, so the proof is
complete. �


2 I.e., the graph of a continuous function [0, 1] → A assigning y to 0 and w to 1.
3 Rx |D denotes the restriction of preference Rx to D ⊆ A.
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Lemma 3.7 Let |B| ≥ 3. Then for every S ⊆ N, either S or N \ S is decisive.

Proof Let S ⊆ N . Clearly, S and N \ S cannot both be decisive. By Lemma 3.6,
either S or N \ S is quasi-decisive. Assume that S is quasi-decisive, the other case is
analogous.

First, consider a profile p with p(i) = x for all i ∈ S such that x ∈ Aa for some
a ∈ B. We prove that ϕ(p) = a. Take a d ∈ B such that a ∈ ∂Ad , and take a
v ∈ Ad . Let r = (x S, vN\S). Quasi-decisiveness of S implies that ϕ(r) = a. By
applying intermediate strategy-proofness to the profiles r and p, we obtain ||v−a|| ≥
||v−ϕ(p)||. Since we can take v as close to a as desired (since a ∈ ∂Ad ), this implies
ϕ(p) = a.

Finally, let q be a profile with q(i) = y ∈ A for all i ∈ S. We show that ϕ(q) ∈
b(y). Suppose this were not the case. Then take b ∈ b(y) ∩ B (this is possible since
A = ∪{Ax : x ∈ B}) and z ∈ A such that z ∈ Ab. By the first part of the proof,
ϕ(q ′) = b where q ′(i) = z for all i ∈ S and q ′(i) = q(i) for all i ∈ N \ S. Then S
can manipulate from q to q ′, violating (intermediate) SP. �


In what follows we pin down those polytopes A for which the intersection of two
decisive coalitions is again decisive. Call a finite subset of R

2 rectangular, if it consists
of exactly four points which are the vertices of one and the same rectangle.

Lemma 3.8 Let the following conditions hold:

(i) |B| ≥ 3.
(ii) There are distinct a, b, c ∈ B such that ma,b,c ∈ ∂Aa ∩ A◦ and such that there is

no x ∈ B for which {a, b, c, x} is rectangular.4

Let S, T ⊆ N be both decisive. Then S ∩ T is decisive.

Proof Suppose, to the contrary (cf. Lemma 3.7), that N\(S ∩ T ) is decisive. Then we
have a partition X = S ∩ T, Y = S \ T and Z = N \ S of N such that X, Y and Z
are not decisive. Hence, any union of two of these sets, being the complement of the
third one, is decisive. We will derive a contradiction.

Let a, b and c be as in (ii) in the statement of the lemma. We choose (see Fig. 3(a))
ã ∈ A◦ close to a and b, c, ab, ac ∈ A◦ close to m := ma,b,c such that

Rb = ba . . . c . . .

Rc = ca . . . b . . .

Rab = ab . . . c . . .

Rac = ac . . . b . . .

Rã = . . . c . . . b . . . a

and such that all these preferences (restricted to C) are strict. Moreover, we choose
b ∈ Ab and c ∈ Ac. (These choices are possible since ma,b,c ∈ ∂Aa ∩ A◦; in particular,

4 Lemma 3.3 implies that ma,b,c ∈ A◦ for distinct a, b, c ∈ B, but the condition ma,b,c ∈ ∂Aa is not
necessarily fulfilled.
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this implies that m is the center of the circle through a, b, and c such that the set A is
inside this circle, which enables the choices b ∈ Ab and c ∈ Ac.) If ã cannot be chosen
this way, then we choose it such that Rã = . . . b . . . c . . . a and proceed analogously.)
By choosing all these points close enough to a and m, respectively, we have that for
any profile q with dips at these points, any point in A◦ is Pareto dominated by some
boundary point. Hence, by Lemma 3.1, ϕ(q) ∈ C for such profiles q. In particular, ϕ
assigns a point in C to any of the following profiles:

p = (̃aX , b
Y
, cZ )

pab = (̃aX , aY
b , cZ )

pac = (̃aX , b
Y
, aZ

c )

r = (̃aX , aY
b , aZ

c ) .

We first prove the following claim.
Claim ϕ(p) ∈ {a, b, c}.

To prove this claim, let ϕ(p) = x, ϕ(pab ) = y and ϕ(pac ) = z. Since Y ∪ Z is
decisive and since ab, ac ∈ Aa , we have by strategy-proofness that ϕ(r) = a.

First consider r and pab . If ac and c are chosen sufficiently close, then by Lemma 6.2
it follows that the first change, starting from below, in the preferences Rac and Rc must
be a swap betweenϕ(r) andϕ(pab ). Sinceϕ(r) = a, this implies that either (i.a) y = a
or (i.b) y = c.

Similarly, comparing r and pac yields either (ii.a) z = a or (ii.b) z = b.
We next compare p and pab . These profiles differ for the agents in Y , who have dips

b in p and dips ab in pab . By going from b to ab, only the perpendicular bisector �a,b

is crossed. By Lemma 6.2, as before the first change in preference from below must
be a swap between ϕ(p) = x and ϕ(pab ) = y, but this implies that �x,y coincides
with �a,b. This implies that, if x 
= y, then x is the mirror image of y with respect to
the perpendicular bisector of [a, b]. Therefore, we have either (iii.a) x = y or (iii.b)
x 
= y and σa,b(x) = y.

Similarly, comparing p and pac yields either (iv.a) x = z or (iv.b) x 
= z and
σa,c(x) = z.

If x = y or x = z, then (i.a) and (i.b) or (ii.a) and (ii.b) imply that x ∈ {a, b, c}.
Let x 
= y, x 
= z. Then σa,b(x) = y and σa,c(x) = z by (iii.b) and (iv.b). Since
a, b, c are distinct and thus �a,b 
= �a,c it follows that z 
= y. If y = a or z = a, then
σa,b(x) = y and σa,c(x) = z imply x = b or x = c, hence we are done again. So,
assume y 
= a and z 
= a, then y = c by (i.b) and z = b by (ii.b). Then by (iii.b) and
(iv.b) we have σa,b(x) = y = c and σa,c(x) = z = b. We now assume a 
= x and
derive a contradiction, which will complete the proof of the Claim. Since σa,c(a) = c
and σa,b(a) = b the assumption a 
= x implies that a, b, c and x are vertices of a
rectangle. (See Fig. 3(b).) To derive the contradiction it is, in view of condition (ii) in
the lemma, sufficient to prove that x ∈ B. Let d ∈ b(Ra), hence d /∈ {a, b, c}, with
d 
= x . We will show that m ∈ �x,d . Since m = ma,x , this implies that a, x , and d
are on the same circle with center m. Since a and x are on the same diameter in this
circle, we have that ||d − a|| < ||x − a||, contradicting d ∈ b(Ra). So a ∈ Ax , hence
x ∈ B.
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(a) (b)

Fig. 3 Illustrating the proof of Lemma 3.8

We are left to show that m ∈ �x,d . Suppose, to the contrary, that m /∈ �x,d . Since
d ∈ b(Ra) we have a ∈ H(�x,d , x), hence m ∈ H◦(�x,d , x) and therefore b, c ∈
H◦(�x,d , x) by the choice of these points (note that these points can be chosen close
enough to m to achieve this, given that there are only finitely many candidates for the
points x and d). By the choice of ã, also ã ∈ H◦(�x,d , x). But this implies that d
Pareto dominates x at profile p, contradicting ϕ(p) = x . This completes the proof of
the Claim.

Consider the profile p′ = (cX , b
Y
, cZ ). Since X ∪ Z is decisive and c ∈ Ac we

have that ϕ(p′) = c. Strategy-proofness and the Claim now imply that x = ϕ(p) = c.

Let p′′ = (b
X
, b

Y
, aZ

c ). Since X ∪ Y is decisive and b ∈ Ab we have ϕ(p′′) = b.
We have already seen in the proof of the Claim that z = ϕ(pac ) ∈ {a, b}. So strategy-
proofness implies ϕ(pac ) = b. Since ϕ(p) = c, coalition Z can manipulate from pac

to p, violating strategy-proofness. �

Before continuing with the main result of this section, a consideration of the poly-

topes to which the preceding lemmas apply is in order. First, let |C | = 3, i.e., A is
a triangle including its interior. If this triangle is acute, then B = C , hence |B| = 3
and also condition (ii) of Lemma 3.8 is trivially satisfied. If this triangle is not acute,
however, then |B| = 2 and this case will be studied in the next section. Second, let
|C | > 3. If |B| = 2, which means, roughly, that the polytope A is rather flat—an exact
characterization is given by Lemma 4.1, then again the results in the next section apply.
For cases where |B| ≥ 3 the following lemma provides an exact characterization of
those polytopes where condition (ii) of Lemma 3.8 is not satisfied. The proof is in the
Appendix.

Lemma 3.9 Let |B| ≥ 3. Then condition (i i) in Lemma 3.8 does not hold if and only
if B is rectangular.

We can now formulate the main result of this section. Call ϕ dictatorial if there is
a dictator, i.e., an agent d ∈ N such that ϕ(p) ∈ b(p(d)) for all p ∈ AN .

Theorem 3.10 If |B| ≥ 3 and B is not rectangular, then ϕ is dictatorial.
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(a) (b)

Fig. 4 Remark 3.12

Proof By Lemmas 3.7, 3.8, and 3.9 the set of decisive coalitions is an ultrafilter.
Hence, by Lemma 2.2, there is a d ∈ N such that d is decisive. So ϕ is dictatorial with
dictator d. �


We conclude this section with two remarks. The first remark is about regular poly-
topes.

Remark 3.11 Call a polytope A in R
2 regular if its extreme points—the elements of

the set C—are the vertices of a regular polygon (equilateral triangle, square, etc.).
For such a regular polytope, Theorem 3.10 implies that ϕ is dictatorial if and only if
|C | 
= 4. Thus, on regular polytopes A, a strategy-proof and Pareto optimal rule is
dictatorial unless A is a square including its inside.

The second remark concerns a relation between the results of Gibbard (1973) and
Satterthwaite (1975) and Theorem 3.10.

Remark 3.12 Let C = {a, b, c} such that a, b, and c are the vertices of an acute
triangle. By Theorem 3.10, any strategy-proof and Pareto optimal rule on A must be a
dictatorship. An alternative proof of this fact could work as follows. Letϕ be such a rule
and first prove that ϕ(p) ∈ C for every p ∈ AN . Then, effectively, ϕ is a strategy-proof
and Pareto optimal social choice function on the set C of points, with full domain of
preferences, as can be seen in Fig. 4(a), where the perpendicular bisectors of the edges
are drawn. Hence, ϕ must be a dictatorship according to the Gibbard-Satterthwaite
theorem. If the triangle is not acute, then only four strict preferences are generated
(Fig. 4(b)), and thus, the Gibbard-Satterthwaite theorem does not apply. Indeed, in this
case, if the right or obtuse angle is at c, then a and b are the only single-best points, and
for instance, majority voting between a and b is a strategy-proof and Pareto optimal
rule (see Sect. 4.1).

4 Non-dictatorship

In this section, we study the two cases excluded in Theorem 3.10, namely the case
|B| = 2 and the case where B is rectangular. The main result in the first case—
two single-best points—is Theorem 4.5, which characterizes all Pareto optimal and
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strategy-proof rules for this case. In the second case—where there are exactly four
single-best points, forming the vertices of a rectangle—we content ourselves by giving
an example of a non-dictatorial Pareto optimal and strategy-proof rule.

4.1 |B| = 2

According to Theorem 3.10, dictatorship is implied by Pareto optimality and strategy-
proofness under two conditions on the set B of single-best points in C . In this section,
we consider the case where the first one of these conditions does not hold. The fol-
lowing lemma reveals a consequence of this assumption. It says that, if a and b are the
only single-best points, then the center of the circle ma,b,c through a, b, and any other
point c ∈ A \ [a, b] cannot be an interior point of A. Also the converse holds: If a and
b are single-best points and ma,b,c is not an interior point of A for every c ∈ A\ [a, b],
then a and b are the only single-best points.

Lemma 4.1 Let a, b be distinct single-best points. Then {a, b} = B if and only if
ma,b,c /∈ A◦ for every c ∈ A \ [a, b].

Proof For the only if part, suppose {a, b} = B. First observe that for any B ⊆ C with
|B| ≥ 2, we have that AB , if not empty, consists of a line segment (which may happen
if |B| = 2) or a single point. Since Ax = ∅ for all x ∈ A \ {a, b}, this implies that any
open subset of A◦ has a non-empty intersection with Aa or Ab. Now let c ∈ A \ [a, b]
and suppose ma,b,c ∈ A◦. Then (see Fig. 5) the set (V ◦

cab ∪ V ◦
cba)∩ A◦, where Vcab =

{x ∈ A : (c, a), (a, b) ∈ Rx } and Vcba = {x ∈ A : (c, b), (b, a) ∈ Rx }, is an open
subset of A◦. However, Aa ∩(V ◦

cab ∪V ◦
cba)∩ A◦ = ∅ and Ab ∩(V ◦

cab ∪Vcba)
◦∩ A◦ = ∅.

This contradicts that any open subset of A◦ has a non-empty intersection with Aa or
Ab. Hence, ma,b,c /∈ A◦.

Fig. 5 Illustrating the proof of Lemma 4.1
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For the if part, suppose that c ∈ B for some c ∈ A\{a, b}. Clearly, c /∈ [a, b], hence
ma,b,c exists and, by assumption, ma,b,c /∈ A◦. Let x ∈ A be a point for which c is the
unique best point. Then (with notations as before) we must have x ∈ V ◦

cab ∪ V ◦
cba , but

this implies that ma,b,c is an interior point of the convex hull of a, b, and x , and thus
of A. This contradiction completes the proof of the if part. �


For the remainder of this section, we assume that B = {a, b} and that ϕ is a
Pareto optimal and strategy-proof rule. We first show that in almost all cases, we have
ϕ(p) ∈ {a, b}.
Lemma 4.2 Let p ∈ AN , p 
= m N

a,b,c for all c ∈ C\{a, b}. Then ϕ(p) ∈ {a, b}.
Proof To the contrary suppose ϕ(p) /∈ {a, b}. We write m for ma,b,ϕ(p) if a, b, and
ϕ(p) are not collinear; otherwise, ϕ(p) ∈ ]a, b[ and we take m = ϕ(p). (Below it
will follow that ϕ(p) ∈ ∂A, so that in view of Lemma 3.1 the latter case will actually
not occur.) By Lemma 4.1, m /∈ A◦, which implies that ||x − ϕ(p)|| ≤ ||x − a|| or
||x−ϕ(p)|| ≤ ||x−b|| for all x ∈ A (since otherwise m would be an interior point of the
triangle with vertices a, b, x for some x ∈ A, hence an interior point of A). In particular,
we have for every i ∈ N with p(i) /∈ {a, b,m} that ||p(i)− ϕ(p)|| < ||p(i)− a|| or
||p(i)− ϕ(p)|| < ||p(i)− b||. If ||p(i)− ϕ(p)|| < ||p(i)− a|| for some i ∈ N , then
consider the profile p′ with p′(i) = b and p′( j) = p( j) for all j 
= i . Ifϕ(p′) = b then
agent i would manipulate from p′ to p since ϕ(p) 
= b, and if ϕ(p′) = a then agent i
would manipulate from p to p′. Hence, strategy-proofness implies ϕ(p′) /∈ {a, b}. If
||p(i) − ϕ(p)|| < ||p(i) − b|| for some i ∈ N then we consider the profile p′′ with
p′′(i) = a and p′′( j) = p( j) for all j 
= i and similarly derive that ϕ(p′′) /∈ {a, b}.
Therefore, we may assume that p(N ) ⊆ {a, b,m}. Since p(N ) ⊆ {a, b} would imply
ϕ(p) ∈ {a, b} by Lemma 3.5, contrary to our assumption, we may further assume that
p is of the form p = (aS, bT ,mV ) for some coalitions S, T , and V = N \(S∪T ) 
= ∅.
By Pareto optimality, we have that either S and T are non-empty or V = N .

Suppose thatϕ(p) ∈ A◦. Then there are points of A on the straight line throughϕ(p)
perpendicular to �(a, b) that Pareto dominate ϕ(p) given the profile p, contradicting
Pareto optimality of ϕ. Hence, ϕ(p) ∈ ∂A, so that ϕ(p) ∈ C by Lemma 3.1. Thus, by
the condition on p in the lemma, V 
= N , so that S, T, V 
= ∅.

Next, let a = ma,ϕ(p) and consider profile pa = (aS, bT ,mV ). We prove that
ϕ(pa) = a. (See Fig. 6 for an illustration of this part of the argument.) By comparing
p and pa , strategy-proofness implies that ||ϕ(pa)−a|| ≥ ||ϕ(p)−a|| = ||a −a|| and
||ϕ(p)− a|| ≥ ||ϕ(pa)− a||. Consider the profile q = (aS, bT ∪V ). Note that b ∈ Aa ;
also, since by Lemma 4.1, ma,b,c /∈ A◦ and ma,b,c ∈ �a,b for all c ∈ A\{a, b}, it follows
that a ∈ Ab. Now Lemma 3.5 implies ϕ(q) ∈ {a, b}, hence strategy-proofness yields
||m − a|| = ||m − b|| ≤ ||m − ϕ(pa)||. This means that ϕ(pa) is not inside the circle
with center m through the points a, b and ϕ(p), but then ϕ(pa)must be on this circle
since there are no points of A outside this circle (since otherwise we could find a point
in B different from a and b, a contradiction). Hence, ||m −a|| = ||m −ϕ(pa)||. Since
||ϕ(p)−a|| ≥ ||ϕ(pa)−a||, ||ϕ(pa)−a|| ≥ ||a −a|| and ||m −a|| = ||m −ϕ(pa)||
it follows that either ϕ(pa) = ϕ(p) or ϕ(pa) is on the circle with center m through a
and ϕ(p) on the arc between a and b not containing ϕ(p). The latter case, however,
implies ϕ(pa) = a since there cannot be points of C on this arc other than a or b.
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Fig. 6 Illustrating the proof of Lemma 4.2

Hence, ϕ(pa) ∈ {a, ϕ(p)}. But ϕ(p) is Pareto dominated by a at the profile pa . So,
ϕ(pa) = a.

Now let b = mb,ϕ(p) and consider the profile pab = (aS, b
T
,mV ). Note that

b ∈ H◦(�a,b, b). Similarly as above we have b ∈ Aa . Therefore, ϕ(pab) = a by
strategy-proofness.

By an analogous argument but now starting with the profile pb = (aS, b
T
,mV ),

we obtain ϕ(pab) = b, a contradiction which completes the proof. �

In order to characterize all strategy-proof and Pareto optimal rules while avoid-

ing technicalities due to preference indifferences, we make the following additional
assumptions. The first assumption takes care of the cases not covered by Lemma 4.2.
More precisely, suppose ma,b,c ∈ A for some c ∈ C \ {a, b}. Then by Lemma 4.1 we
must have ma,b,c ∈ {m,m}, where {m,m} = ∂A ∩ �a,b.

Assumption 4.3 ϕ(p) ∈ {a, b} for p = mN and p = mN .

The second assumption, which is a version of the familiar non-bossiness condition,
guarantees that indifferent agents cannot change the assigned point.

Assumption 4.4 For all i ∈ N and p, q ∈ AN such that p( j) = q( j) for all j ∈
N \{i}, if ||p(i)−a|| = ||p(i)−b|| and ||q(i)−a|| = ||q(i)−b||, then ϕ(p) = ϕ(q).

With these additional assumptions, it is straightforward to verify that (a strategy-
proof and Pareto optimal rule) ϕ depends only on the individual preferences between
a and b and not on the exact location of the dips. We will now develop a precise
description of ϕ.

Let Wϕ
a be the set of pairs (S,U ) ∈ N × N with S ∩U = ∅ and such that ϕ(p) = a

for all profiles p with a single-best for all agents in S and both a and b best for all
agents in U . Let Wϕ

b be defined analogously. Since ϕ depends only on the individual
preferences between a and b we have that the pair (Wϕ

a ,Wϕ
b ) is both proper and

strong, i.e., either (S,U ) ∈ Wϕ
a or (T,U ) ∈ Wϕ

b for all pairwise disjoint sets S, U
and T with S ∪ T ∪ U = N . Pareto optimality of ϕ implies that the pair (Wϕ

a ,Wϕ
b )
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is Pareto optimal, i.e., (S,U ) ∈ Wϕ
a if S 
= ∅ and S ∪ U = N , and (T,U ) ∈ Wϕ

b if
T 
= ∅ and T ∪ U = N . Furthermore, strategy-proofness of ϕ implies that the pair
(Wϕ

a ,Wϕ
b ) is monotone, i.e., (S′,U ′) ∈ Wϕ

a whenever (S,U ) ∈ Wϕ
a and S ⊆ S′

and S ∪ U ⊆ S′ ∪ U ′ and (T ′,U ′) ∈ Wϕ
b whenever (T,U ) ∈ Wϕ

b and T ⊆ T ′ and
T ∪ U ⊆ T ′ ∪ U ′. It is straightforward to check that any proper and strong, Pareto
optimal and monotone pair (Wa,Wb) defines a Pareto optimal and strategy-proof rule
ϕ, satisfying Assumptions 4.3 and 4.4, with (Wϕ

a ,Wϕ
b ) = (Wa,Wb). We summarize

these findings in the following theorem.

Theorem 4.5 Let B = {a, b} with a 
= b. Then

(i) If ϕ is strategy-proof, Pareto optimal, and satisfies Assumptions 4.3 and 4.4, then
(Wϕ

a ,Wϕ
b ) is proper and strong, Pareto optimal and monotone.

(ii) If (Wa,Wb) is proper and strong, Pareto optimal and monotone, then there is
a strategy-proof, and Pareto optimal rule ϕ, satisfying Assumptions 4.3 and 4.4,
such that Wa = Wϕ

a and Wb = Wϕ
b .

4.2 B is rectangular

In this section, we consider the case where B is rectangular. Thus, we assume that
B = {a, b, c, d} and that [a, b], [b, c], [c, d], and [d, a] are the edges of a rectangle.
Rather than attempting to describe all strategy-proof and Pareto efficient rules for
this case—which becomes a very technical exercise mainly due to many tie-breaking
decisions that have to be made—we content ourselves with giving a typical example
of a rule.

Example 4.6 (Cf. Fig 7.) Let h be the common perpendicular bisector of [a, d] and
[b, c] and let v be the common perpendicular bisector of [a, b] and [c, d]. For every
profile p define ϕ(p) as follows. If |{i ∈ N : p(i) ∈ H(h, a)}| ≥ |{i ∈ N : p(i) ∈
H(h, d)}| then ϕ(p) ∈ {c, d} and if |{i ∈ N : p(i) ∈ H(h, a)}| < |{i ∈ N : p(i) ∈
H(h, d)}| then ϕ(p) ∈ {a, b}. If |{i ∈ N : p(i) ∈ H(v, a)}| ≥ |{i ∈ N : p(i) ∈
H(v, b)}| then ϕ(p) ∈ {b, c} and if |{i ∈ N : p(i) ∈ H(v, a)}| < |{i ∈ N : p(i) ∈
H(v, b)}| then ϕ(p) ∈ {a, d}. In words, we let majority voting decide between {a, b}
and {c, d}, on the one hand, and between {a, d} and {b, c}, on the other. It can be
proved (left to the reader) that this rule is strategy-proof and Pareto optimal.

Fig. 7 Illustrating Example 4.6
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5 Concluding remarks

The preceding sections naturally lead to the question if the obtained results can be
extended to other regions, such as general compact convex sets. Since some of the
proofs seem to rely heavily on the finiteness of the set of extreme points, this question
does not appear to have a straightforward answer. In a companion note (Öztürk et al.
2013), we show that the dictatorship result extends to the disk (circle and its inside)
in R

2. This result may not come as a surprise in view of the fact that the disk can
be seen as the ‘limit’ of polytopes for which Theorem 3.10 implies dictatorship, but
nevertheless we need a separate proof to show this.

Another issue is the domain of preferences. One may expect the dictatorship result
to carry over to larger preference domains. Indeed, consider a polytope A with set
of extreme points C for which the dictatorship result holds under Euclidean single-
dipped preferences. Consider a larger domain of single-dipped preferences, including
the Euclidean ones, such that each best point of a preference in this domain is still an
element of C , and each element of C is the unique best point of some Euclidean single-
dipped preference (this holds, for instance, if A is a regular polygon with |C | 
= 4, and
if all preferences have strictly convex lower contour sets). Let ψ be a Pareto optimal
and strategy-proof rule. Then the restriction ofψ to profiles of single-dipped Euclidean
preferences must be a dictatorial rule ϕ, say with dictator d. For an arbitrary profile
p, we show that ψ(p) ∈ b(p(d)), so that ψ is dictatorial on the whole domain. To
the contrary, suppose that ψ(p) /∈ b(p(d)). Take a ∈ b(p(d)), hence by assumption
a ∈ C . Let q be the profile of Euclidean single-dipped preferences with b(q(d)) = {a}
and q( j) = a for all j ∈ N \ {d}. Then ψ(q) = ϕ(q) = a. Then, by intermediate
strategy-proofness, it follows that ψ(r) = a, where r is the profile with r(d) = q(d)
and r( j) = p( j) for all j ∈ N \ {d}. It follows that d can manipulate from p to r ,
contradicting strategy-proofness.

Also, by enlarging the domain of preferences, a non-dictatorship result may turn
into a dictatorship result. For instance, let C be the set {(−1, 0), (1, 0), (0, 1)}. Then
Theorem 4.5 applies, so there are non-dictatorial strategy-proof and Pareto optimal
rules. If we extend the domain of preferences by allowing for all distance functions
dε(x, y) = √

(x1 − y1)2 + ε(x2 − y2)2 for 1 ≤ ε ≤ ε0 for some ε0 > 1—so some
elliptic preferences are allowed—then one can still prove that a strategy-proof and
Pareto optimal rule assigns to each profile a point of C , but now all possible orders
over the three points in C are possible: for ε > 1 an agent with dip at the interior point
(0, (ε − 1)/2ε) of A is indifferent between the three extreme points, as is straight-
forward to compute. Thus, by the Gibbard-Satterthwaite Theorem, the rule must be
a dictatorship. Observe that allowing asymmetric preferences in the one-dimensional
case does not have this impact (cf. Manjunath 2009).

The non-dictatorship result for rectangles (Sect. 4.2) seems to be more robust and
continues to hold if we allow for a larger domain of elliptic (separable quadratic) single-
dipped preferences, as long as the axes are parallel to the edges of the rectangle. This
non-dictatorship results also easily extends to higher dimensions.

Finally, we mention that it at least under some assumptions, Pareto optimality can
be weakened to unanimity. Call a rule ϕ unanimous if ϕ(p) ∈ b(p(1))whenever p is a
profile with p(i) = p(1) for all i ∈ N . Suppose we would know that for each profile p,
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if ϕ(p) is not Pareto optimal, then there is a single-best point Pareto dominating ϕ(p).
Now let ϕ be unanimous and strategy-proof. Suppose ϕ(p)were not Pareto optimal for
some profile p. Then take a single-best point a ∈ A Pareto dominating ϕ(p), and take
b ∈ Aa . Let q be the profile with q(i) = b for all i ∈ N , then by unanimity, ϕ(q) = a.
Then ϕ(p) = a by (intermediate) strategy-proofness, a contradiction. So ϕ is Pareto
optimal. This argument applies, for instance, if A is a regular polygon and we have
that ϕ always assigns an extreme point. But it is not clear whether the latter follows
from unanimity and strategy-proofness alone. Note that in the one-dimensional case
(Manjunath 2009), unanimity and Pareto optimality are equivalent within the same
framework.

6 Appendix: A remaining proofs

We start by proving the claim in Sect. 2.2 that strategy-proofness and intermediate
strategy-proofness are equivalent.

Lemma 6.1 Let ϕ : AN → A be a rule. Then ϕ satisfies SP if and only if it satisfies
ISP.

Proof Clearly, ISP implies SP. Now let ϕ satisfy SP, let S ⊆ N , and let a ∈ A and
p, q ∈ AN such that p(i) = a for all i ∈ S and p(i) = q(i) for all i ∈ N \ S.
Without loss of generality suppose S = {1, . . . , s}. Define p0, p1, . . . , ps ∈ AN by
p0 = p, ps = q and for each i = 1, . . . , s − 1: pi ( j) = q( j) for j = 1, . . . , i
and pi ( j) = p( j) for j = i + 1, . . . , n. By SP we have ||p(i) − ϕ(pi−1)|| ≥
||p(i) − ϕ(pi )|| for every i = 1, . . . , s. Hence, ||a − ϕ(p)|| = ||p(1) − ϕ(p0)|| ≥
. . . ≥ ||p(s)− ϕ(ps)|| = ||a − ϕ(q)||. So ϕ satisfies ISP. �


We continue with the proof of Lemma 3.1. (The proof in the main text is for the
case where A is a regular 5-polygon.)

Proof of Lemma 3.1 Let ϕ(p) = c. To the contrary suppose that c /∈ C . Then c ∈
]̃cL , c̃R[ ⊆ ∂A for some c̃L , c̃R ∈ C . Let � be the line through c perpendicular to
]̃cL , c̃R[. Line � divides A in a left part and a right part, which we denote by L and
R, respectively, more precisely, L = H◦(�, c̃L) ∩ A and R = H◦(�, c̃R) ∩ A. For x
in ∂A ∩ L consider the perpendicular bisector �x,c of [x, c]. If x /∈ [̃cL , c], let dx be
the point of intersection of �x,c and ∂A which is not in H◦(�(x, c), c̃L ) (i.e., not in the
open half-plane bounded by the straight line through x and c and containing the point
c̃L ); if x ∈ [̃cL , c], let dx be the point of intersection of �x,c and ∂A which is not in
[̃cL , c].

Consider the set Z of points z ∈ C ∩ L such that dz is in between dz′ and c for all
z′ ∈ C ∩ L on the path along the boundary of A passing c̃L before c. If Z consists of
a unique point then call this point cL ; otherwise, let cL be the point of Z such that z is
in between cL and c for all other points z ∈ Z .5 We write dL instead of dcL . Clearly,
dL ∈ ∂A ∩ L since dc̃L ∈ ∂A ∩ L. Now the choice of cL implies that dL ∈ H(�z,c, z)

5 For a polytope of which the boundary is a regular polygon one can show that cL = c̃L .

123



On the location of public bads 103

(a) (b)

Fig. 8 Illustrating the proof of Lemma 3.1

for all z ∈ C ∩ L, hence that ||dL − z|| ≤ ||dL − c|| for all z ∈ C ∩ L. In turn, this
implies ||dL − x || ≤ ||dL − c|| for all x ∈ L.

Let SL = {i ∈ N : p(i) ∈ H◦(�cL ,c, cL)}. Since ||dL − c̃L || ≤ ||dL − c|| and
�c̃L ,c ∩ A ⊆ L it follows that �cL ,c ∩ A ⊆ L. Pareto optimality of ϕ implies that either
SL is non-empty or p(i) ∈ �cL ,c ∩ A for all i ∈ N (since otherwise cL would Pareto
dominate c = ϕ(p)). Now similarly we can define cR, dR and SR for the right part of
A and have by Pareto optimality that either SR is non-empty or p(i) ∈ �cR ,c ∩ A for
all i ∈ N . Since L ∩ R = ∅ we have that �cL ,c ∩ A and �cR ,c ∩ A are disjoint. This
implies that both SL and SR are non-empty.

Now consider the profile qL with qL(i) = p(i) for all i /∈ SL and qL(i) = dL for
all i ∈ SL . With the aid of the following claim we will prove that ϕ(qL) = cL .
Claim Let v,w∈ AN , i ∈ SL , and a ∈ H◦(�cL ,c, cL) with v(i)=a, w(i)=dL , v( j)=
w( j) for all j ∈ N \ {i}, and ϕ(v)∈[dL ; cL�c]. Then ϕ(w) ∈ [dL ; cL�c].

To prove this, first note that ||a − x || ≤ ||a − c|| for all x ∈ [dL ; cL � c]; this is
so since a ∈ H(�(c, dL), cL) because c, dL ∈ ∂A, and therefore a ∈ H(�x,c, x) for
all x ∈ [dL ; cL� c]. (See Fig. 8(a).) Hence SP of ϕ implies ||a − c|| ≥ ||a − ϕ(w)||
otherwise agent i could manipulate from v tow. Again by strategy-proofness we have
||dL − ϕ(w)|| ≥ ||dL − c|| otherwise agent i could manipulate from w to v. Suppose
that ||dL − ϕ(w)|| > ||dL − c||. Then, since cL ∈ Z , we have ϕ(w) ∈ R. Since dL

and c are both in H(�c,ϕ(w), c) we have A ∩ H(�(dL , c), c̃L ) ⊆ H(�c,ϕ(w), c). Since
a ∈ A ∩ H◦(�(dL , c), c̃L) it follows that a ∈ H◦(�c,ϕ(w), c), contradicting ||a − c|| ≥
||a − ϕ(w)||. (See Fig. 8(b).) Therefore, we must have ||dL − ϕ(w)|| = ||dL − c||.

Now the two circles �(dL , ||dL − c||) and �(a, ||a − c||) intersect in c and say
c′. Since ||a − c|| ≥ ||a − ϕ(w)|| and ||dL − ϕ(w)|| = ||dL − c|| it follows that
ϕ(w) ∈ [dL ; c′�c]. But by the choice of cL , we have [dL ; c′�c]∩A = [dL ; cL�c]∩A.
Therefore, ϕ(w) ∈ [dL ; cL�c], which completes the proof of the Claim.

Repeated application of the Claim yields that ϕ(qL) ∈ [dL ; cL � c]. For all x ∈
[dL ; cL�c], we have by construction that H(�cL ,x , cL)∩A is a subset of H(�cL ,c, cL)∩
A and therefore contains no dips of the profile qL other than dL . Since SR 
= ∅, it
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follows that for profile qL the point cL Pareto dominates all x ∈ [dL ; cL � c] with
x 
= cL . Hence, ϕ(qL) = cL .

Next consider the profile r with r(i) = dR for all i ∈ SR and r(i) = qL(i) for all
i /∈ SR . SP of ϕ implies that ||dR −ϕ(r)|| ≥ ||dR −cL ||. But clearly dR ∈ H◦(�cL ,c, c)
and therefore ||dR − c|| < ||dR − cL ||. Hence, ||dR − ϕ(r)|| > ||dR − c|| and by the
definition of dR (similar to dL above) ||dR − c|| ≥ ||dR − x || for all x ∈ R. This
implies ϕ(r) ∈ L. By a completely analogous argument, now starting on the right part
of A with a profile qR , we can show that ϕ(r) ∈ R. Since L ∩ R = ∅, we have a
contradiction, which completes the proof of the lemma. �


Next, we prove Lemmas 3.3 and 3.4.

Proof of Lemma 3.3 Since a, b, c ∈ C they are not collinear and thus ma,b,c exists.
The straight lines �a,b, �a,c, and �b,c intersect at ma,b,c and determine six open non-
empty regions which divide A◦ \ (�a,b ∪�a,c ∪�b,c) into disjoint sets. A single-dipped
preference Rx is constant over a, b, and c as long as x stays in one of these regions.
Call these regions Vabc, Vbac, Vbca, Vcba, Vcab and Vacb; for x ∈ Vabc we have that a
is (strictly) preferred over b and b over c according to Rx and similarly for the other
five regions. Now Aa ⊆ (Vabc ∪ Vacb ∪ �b,c)

◦ ∩ A. Since Aa is non-empty we have
that (Vabc ∪ Vacb ∪ �b,c)

◦ ∩ A is non-empty and therefore (Vabc ∪ Vacb ∪ �b,c)
◦ ∩ A◦

is non-empty. Similarly (Vbca ∪ Vbac ∪ �a,c)
◦ ∩ A◦ and (Vcab ∪ Vcba ∪ �a,b)

◦ ∩ A◦
are non-empty. Take points xa, xb, xc in these respective regions, then ma,b,c is in the
convex hull of these three points and is therefore an interior point of A. �

Proof of Lemma 3.4 If A◦ \ Aa = Ab for some b ∈ B, then we are done since Ab is
convex and therefore connected. Therefore, let y, z ∈ A◦ with y ∈ Ab and z ∈ Ac

for some distinct b, c ∈ B \ {a}. Since A◦ ⊆ ∪{Ax : x ∈ B} it is sufficient to
prove that there is a path in A◦ \ Aa connecting y and z. Lemma 3.3 implies that
ma,b,c ∈ A◦. Convexity of A implies that A◦ is convex. Hence, [y,ma,b,c] ⊆ A◦
and [z,ma,b,c] ⊆ A◦. With notations as in the proof of Lemma 3.3, we may further
conclude that [y,ma,b,c[ ⊆ (Vbca∪Vbac∪�a,c)

◦ and [z,ma,b,c[ ⊆ (Vcab∪Vcba∪�a,b)
◦.

Since Aa ⊆ (Vabc ∪ Vacb ∪ �b,c)
◦ ∩ A and (Vabc ∪ Vacb ∪ �b,c)

◦ is disjoint from both
(Vbca ∪ Vbac ∪ �a,c)

◦ and (Vcab ∪ Vcba ∪ �a,b)
◦ it follows that we can construct a path

from y to z in A◦ \ Aa , as follows. (See Fig. 9.) Choose points y′ ∈ [y,ma,b,c[ and

Fig. 9 Illustrating the proof of
Lemma 3.4: path between y and
z; m = ma,b,c
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z′ ∈ ]ma,b,c, z] close enough to ma,b,c such that there is a path P from y′ to z′ in A◦
disjoint from Aa ; then the desired path is [y, y′] ∪ P ∪ [z′, z]. �


The following lemma is a consequence of (intermediate) strategy-proofness. It
will be used in the proof of Lemma 3.5 below. The lemma says that if an agent’s
preference changes by swapping two alternatives in C while not changing the (strict)
order between other alternatives in C , and if therefore the alternative assigned by the
rule changes, then the two swapped alternatives must be the alternatives assigned by
the rule.6

Lemma 6.2 Let ∅ 
= S ⊆ N , p, q ∈ AN and x, y ∈ C with x 
= y such that
(i) p( j) = q( j) for all j ∈ N \ S; (i i) p(i) = p( j) and q(i) = q( j) for all i, j ∈ S;
(i i i) for all i ∈ S, p(i) and q(i) order the alternatives of C strictly and coincide
on C except for a swap between x and y: p(i) = . . . xy . . . , q(i) = . . . yx . . .; and
(iv) ϕ(p), ϕ(q) ∈ C, ϕ(p) 
= ϕ(q). Then x = ϕ(p) and y = ϕ(q).

Proof By ISP, we may assume that S consists of a single agent, say i . By SP, we must
have p(i) = . . . ϕ(p) . . . ϕ(q) . . . and q(i) = . . . ϕ(q) . . . ϕ(p) . . .. Therefore, by the
assumptions on the profiles p and q, we must have that x = ϕ(p) and y = ϕ(q). �

Proof of Lemma 3.5 If a = b then the claim in the lemma follows from Pareto opti-
mality. Thus, let a 
= b and suppose that ϕ(p) = c /∈ {a, b}. We derive a contradiction.
Pareto optimality implies Rx = a . . . c . . . b . . . x and Ry = b . . . c . . . a . . . y We take
a path from x to c with the following properties (see below for a formal description):
(i) along this path, c can only become worse compared to other elements of C ; (ii)
along this path the preference over elements of C changes by swaps of at most two
alternatives at the same time; and (iii) along this path preferences over C are strict
except at swaps as in (ii). Formally, this path is the graph of a continuous function π
from [0, 1] to A with π(0) = x and π(1) = c such that (i) for all t1 < t2 and z ∈ C ,
if (z, c) ∈ Rπ(t1) then (z, c) ∈ Rπ(t2) and (c, z) /∈ Rπ(t2); (ii) for all t ∈ [0, 1] there
are no distinct z, z′, z′′ ∈ C such that π(t) ∈ �z,z′ ∩ �z,z′′ ; and (iii) there are at most
finitely many t for which π(t) ∈ �z,z′ for some z, z′ ∈ C . We call a pair Rπ(t1), Rπ(t2)
an ‘elementary change’ if the latter preference arises from the former after swapping
two adjacent alternatives in C .

Let pt = (π(t)S, yN\S). Then ϕ(p1) 
= c since c is not Pareto optimal at p1 (it is
dominated by b). Thus, there must be a first elementary change such that ϕ(pt1) = c
and ϕ(pt2) = d 
= c. By Lemma 6.2, this implies that Rπ(t1) = . . . cd . . . whereas
Rπ(t2) = . . . dc . . .

Now there are two cases.

Case 1 Ry = b . . . d . . . c . . . a . . . y (so d is preferred to c at Ry).
Then in the same way as above we can find a path ρ from y to c, profiles qt =

(π(t1)S, ρ(t)N\S) and t3 and t4 such that ϕ(qt3) = c, ϕ(qt4) = e 
= c and Rρ(t3) and
Rρ(t4) form an elementary change swapping c and e. Consider r = (π(t2)S, ρ(t4)N\S)

and ut = (π(t)S, ρ(t3)N\S) for t ∈ [t1, t2]. So, ut1 = qt3 and henceϕ(ut1) = ϕ(qt3) =
c. Let ϕ(r) = f . Note that Rρ(t3) = . . . d . . . ce . . . and Rρ(t4) = . . . d . . . ec . . ..

6 This is a restricted version of (Maskin) monotonicity, which is implied by strategy-proofness.
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Since ϕ(ut1) = c it follows by Pareto optimality and Lemma 6.2 that ϕ(ut2) = d.
Summarizing we have:

ut1 = qt3 qt4

i ∈ S ut1 (i) = Rπ(t1) = . . . cd . . . qt4 (i) = Rπ(t1) = . . . cd . . .

i ∈ N \ S ut1 (i) = Rρ(t3) = . . . d . . . ce . . . qt4 (i) = Rρ(t4) = . . . d . . . ec . . .

ϕ(ut1 ) = c ϕ(qt4 ) = e

ut2 r

i ∈ S ut2 (i) = Rπ(t2) = . . . dc . . . r(i) = Rπ(t2) = . . . dc . . .

i ∈ N \ S ut2 (i) = Rρ(t3) = . . . d . . . ce . . . r(i) = Rρ(t4) = . . . d . . . ec . . .

ϕ(ut2 ) = d ϕ(r) = f

There are two subcases.
Subcase d 
= f . Comparing ut2 and r , Lemma 6.2 implies Rρ(t3) = . . . d f . . . ce . . .

and Rρ(t4) = . . . f d . . . ec . . . So c, d, e, and f are all different. Comparing qt4 and r ,
Lemma 6.2 implies (i) Rπ(t1) = . . . e f . . . cd . . . and Rπ(t2) = . . . f e . . . dc . . . or (ii)
Rπ(t1) = . . . cd . . . e f . . . and Rπ(t2) = . . . dc . . . f e . . .But (i) implies that ϕ(ut1) = c
is Pareto dominated by f at ut1 , a contradiction; and (ii) implies that ϕ(qt4) = e is
Pareto dominated by d at qt4 , likewise a contradiction. So this subcase cannot occur.

Subcase d = f . Comparing qt4 and r , Lemma 6.2 implies Rπ(t1) = . . . ed . . . and
Rπ(t2) = . . . de . . .This implies the contradiction c = e and therefore also this subcase
cannot occur. This ends the proof of Case 1.
Case 2 Ry = b . . . c . . . d . . . a . . . y (so c is preferred to d at Ry).

By interchanging the roles of c and d and thus those of Rπ(t1) and Rπ(t2), and then
proceeding like in Case 1, we derive a similar contradiction. �


The following lemma will be used in the proof of Lemma 3.9. It states that we can
always find a, b, c ∈ B satisfying the first part of the condition in (ii) of Lemma 3.8.

Lemma 6.3 Let |B| ≥ 3 and let a ∈ B. Then there are distinct b, c ∈ B \ {a} such
that ma,b,c ∈ A◦ ∩ ∂Aa.

Proof For any two distinct points x, y ∈ B \{a}, we have ma,x,y ∈ A◦ by Lemma 3.3.
Now, since B is finite there must be distinct b, c ∈ B\{a} such that the set H◦(�a,b, b)∩
H◦(�a,c, b) contains no point of the form ma,x,y for distinct x, y ∈ B \{a}.7 We claim
that H◦(�a,b, b) ∩ H◦(�a,c, c) ∩ A also has empty intersection with �a,x for any
x ∈ C \B. If not, then there is such an x and a point xa ∈ H◦(�a,b, b)∩ H◦(�a,c, b)∩
H◦(�a,x , x)∩A with Rxa = ax . . . and such that Rσa,x (xa) = xa . . .But thenσa,x (xa) ∈
Ax , so x ∈ B, a contradiction. It follows that H◦(�a,b, b) ∩ H◦(�a,c, b) ∩ A ⊆ Aa .
Since ma,b,c = �a,b ∩ �a,c this implies that ma,b,c ∈ Aa . Since, clearly, ma,b,c /∈ Aa

we have ma,b,c ∈ ∂Aa . �


7 Start with arbitrary x, y. If there is a point ma,x ′,y′ ∈ H◦(�a,x , x) ∩ H◦(�a,y , y), then ma,x,y /∈
H◦(�a,x ′ , x ′) ∩ H◦(�a,y′ , y′) and we continue with x ′, y′, and so on.
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Fig. 10 Illustrating the proof of Lemma 3.9, Step 2

Proof of Lemma 3.9 For the only if direction, assume that condition (i i) in Lemma 3.8
does not hold. We show that B is rectangular. The proof of this fact proceeds in a few
steps. We start with stating (without proof) the following useful fact.

Step 1 A set Q ⊆ R
2 is an orthant if it is of the form Q = {p + λ1x1 + λ2x2 |

λ1, λ2 ≥ 0} for some p ∈ R
2 and some perpendicular vectors x1, x2 ∈ R

2 \ {0}.
Denote p(Q) = p. Let X be a compact and convex subset of R

2 with non-empty
interior, and suppose X can be written as X = ⋃

i∈I (Q
i ∩ X) where I is some index

set, Qi is an orthant with p(Qi ) ∈ X◦ for each i ∈ I , and (Q j ∩ X)◦ ∩ (Qk ∩ X)◦ = ∅
for all distinct j, k ∈ I . Then |I | = 4.
Step 2 Let a ∈ B and let b, c ∈ B \ {a}, b 
= c, such that ma,b,c ∈ A◦ ∩ ∂Aa . Since
condition (i i) in Lemma 3.8 does not hold, there is an x ∈ B such that {a, b, c, x}
is rectangular. Without loss of generality assume that �(a, b) and �(c, x), as well as
�(a, c) and �(b, x) are parallel. (See Fig. 10 for an illustration of the proof of this
step.) Denote Q = H(�a,b, x) ∩ H(�a,c, x). Then: Aa = Q◦ ∩ A.

In order to prove this, we first observe the following. Let y be any point of Aa and
let � be the line through a and y. Then y′ ∈ Aa for any point y′ ∈ A on � on the other
side of y than a. Therefore, to prove our claim, it is sufficient to prove that y ∈ ∂Aa

for every y ∈ ∂Q ∩ A. Suppose this were not true, without loss of generality suppose
there is some point in �a,b ∩ Q ∩ A which is not in ∂Aa . Then, since ma,b,c ∈ ∂Aa

and since Aa is convex there is a ŷ ∈ �a,b ∩ Q ∩ A such that [ma,b,c, ŷ] ⊆ ∂Aa

and such that (�a,b ∩ Q) \ [ma,b,c, ŷ] 
= ∅ but (�a,b ∩ Q) \ [ma,b,c, ŷ] ∩ Aa = ∅.
Then there must be a z ∈ B such that �a,z intersects �a,b at the point ŷ. Since, clearly,
ŷ ∈ ∂Aa ∩ A◦ and condition (i i) in Lemma 3.8 does not hold, there must be a v ∈ B
such that the set {a, z, b, v} is rectangular. This implies in particular that �a,z and �a,b

are perpendicular. But then y /∈ Aa for all y in Q◦ ∩ A on the straight line �′ through a
and ŷ. This is a contradiction with the observation at the beginning of the proof, since
ŷ ∈ ∂Aa . This completes the proof of the claim in Step 2.
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Step 3 Let a ∈ B. Then the set Aa is the intersection of A with an orthant Qa with
p(Qa) ∈ A◦.

To prove this, just note that by Lemma 6.3, there are b, c as in Step 2. The claim of
Step 3 now follows from Step 2.
We can now complete the proof of the only if direction. By Step 3, for each a ∈ B, the
set Aa is the intersection of A with an orthant Qa with p(Qa) ∈ A◦. Moreover, A =
⋃

a∈B Aa = ⋃

a∈B(Qa ∩ A). Hence by Step 1, |B| = 4, in particular B = {a, b, c, x}
with a, b, c, x as in Step 2. Thus, B is rectangular.

For the if direction, let B be rectangular with B = {v,w, y, z}. Clearly, among any
three distinct points in {v,w, y, z}, there is a point a such that ma,b,c ∈ ∂Aa ∩ A◦,
where b and c are the other two points, but together with the fourth point they form
the rectangular set B. Hence, condition (ii) does not hold. �
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