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Abstract We address in this paper the question of the existence of a Social Welfare
Function that would be sustainable and would allow us to obtain solutions to optimal
growth models. We define sustainability by two new axioms called Never-decisiveness
of the present and Never-decisiveness of the future. We first show that a SWF which has
Never-decisiveness properties cannot be defined on a ball of l+∞. We must (i) restrict
to the set of utility streams for which the value of the SWF is finite and (ii) introduce
additional assumptions in order to obtain the Never-decisiveness properties. Our main
result in this paper is therefore to show that the undiscounted utilitarian criterion is an
anonymous and never-decisive criterion for optimal growth models. We consider the
set of utilities of consumptions which are generated by a specific technology, namely
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a technology with decreasing returns for high levels of capital, and restrict ourselves
to good programs, i.e., any program for which intertemporal utility is well defined.
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Never-decisiveness of the future · Never-decisiveness of the present ·
No-dictatorship of the future · No-dictatorship of the present · Optimal growth
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1 Introduction

Optimal growth theory is largely built around the discounted utilitarian approach,
but the debate between authors subscribing to discounted utilitarianism and authors
rejecting it has always been vivid. Ramsey (1928) himself, in a much-cited statement,
held that “discount later enjoyments in comparison with earlier ones [is] a practice
which is ethically indefensible and arises merely from the weakness of imagination.”
This debate is particularly passionate when the sustainability of growth is concerned,
because the process of discounting forces a fundamental asymmetry between present
and future generations, particularly those in the distant future, and so appears to be
in contradiction with the intergenerational equity concern underlying the search for
sustainability.

Several alternative social welfare functions (SWFs) have been proposed in the opti-
mal growth literature. The Rawlsian or maximin criterion (Rawls 1971; Solow 1974)
maximizes the utility of the least well-off generation. The undiscounted utilitarian cri-
terion (Ramsey 1928; Koopmans 1965) maximizes the infinite sum of the (negative)
differences between actual utilities and their upper bound (the bliss), with a zero-utility
discount rate. With the overtaking criterion (Gale 1967), one utility stream is said to
be better than another if from some date on, the first one is greater than the second
one. Whereas the usual discounted utilitarian criterion assumes a constant discount
rate, criteria with nonconstant and declining discount rates, hyperbolic for instance,
have also been used (see, e.g., Heal 1998).

In the context of each particular growth model, the shape of the optimal growth
paths obtained under these various criteria is intimately dependent on the properties of
each criterion. For instance, in the canonical Dasgupta–Heal–Solow model of growth
with exhaustible resources, optimal consumption asymptotically vanishes with the dis-
counted utilitarian criterion, whereas it grows forever with the undiscounted utilitarian
criterion, and remains constant with the maximin criterion (see, e.g., Dasgupta and
Heal 1979). The properties leading to these different paths are related to discounting,
but also to the degree of intertemporal substitutability of utilities embodied in the crite-
rion; more deeply, these properties are consubstantial with the axiomatic foundations
of the criteria, as we have been knowing since Koopmans (1960).

The axiomatic approach founding social welfare criteria considers the set of
intertemporal utility streams generated by a general set of bounded consumptions
and defines a preference relation between them. This relation is ideally required to
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satisfy two main axioms, the Pareto axiom and the Anonymity axiom. Pareto guaran-
tees efficiency. Broadly speaking, it demands that the preference relation is sensitive
to the well-being of each generation. Anonymity guarantees equity, which is an equal
treatment of all generations, in the sense that any finite permutation of utilities does not
change the evaluation of the utility stream. Besides, preferences are often required to be
independent1 and to satisfy some continuity, transitivity and completeness properties.
Unfortunately, Basu and Mitra (2003) show that when the social welfare criterion is
represented by a function, it cannot satisfy simultaneously the Pareto and Anonymity
axioms when instantaneous utilities are uniformly bounded: It is impossible to repre-
sent by a numerical function a preference relation embodying both the efficiency and
equity requirements.

For practical purposes then, the point is to determine which axiom(s) we are ready
to drop, depending on the context. Obviously, the discounted utilitarian criterion does
not satisfy Anonymity. It seems very counterintuitive to drop Anonymity as far as
sustainability is concerned. The undiscounted utilitarian criterion does not satisfy
completeness: It is not a well-defined, real-valued function on all l∞2 and cannot
therefore define a complete order on l∞. The overtaking criterion also is not a well-
defined function of l∞, since it cannot rank a pair of utility streams of l∞ for which
neither the first overtakes the second, nor the second overtakes the first. This criterion
does not also satisfy the axiom of “Strong Relative Anonymity,” introduced by Asheim
et al. (2010), where “strong” reflects that all infinite permutations are considered. The
maximin criterion does not satisfy the independence property. Nevertheless, neither
completeness nor independence seem crucial for sustainability.

Chichilnisky (1996) drops the Anonymity axiom. But her purpose is to capture the
idea of sustainable growth, and so she proposes a weaker concept of equity embodied
in two new axioms: No-dictatorship of the present and No-dictatorship of the future.
A social welfare function is said to give a dictatorial role to the present if it disregards
the utilities of all generations from some generations on. Conversely, a social welfare
function gives a dictatorial role to the future if it is only sensitive to the utilities of
the generations coming after some generations. She exhibits, for the set of uniformly
bounded consumptions, a social welfare criterion satisfying, besides the Pareto and
independence requirements, these two axioms for sustainability. It is a mixed criterion,
composed of one discounted utilitarian part taking into account the interests of the
present and a part taking into account only the interests of the future.

This approach is very appealing. But its drawback is that most of the time the
Chichilnisky’s criterion does not allow us to obtain explicit optimal growth paths with
optimal control techniques. Chichilnisky (1996) does not apply her criterion to growth
models but confines herself to the axiomatic approach. Applications are presented in
Chichilnisky (1997) and Heal (1998), in the framework of canonical optimal growth
models with exhaustible or renewable resources. When the discounted utilitarian part
of the criterion embodies a constant discount rate, they claim that they obtain, using
nonstandard techniques, a solution in the case of exhaustible resources, but they show

1 See Definition 1 below.
2 l∞ =

{
(yg)g=1,...,∞ : yg ∈ R, supg

∣∣yg
∣∣ < ∞

}
.
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that no solution exists in the model with renewable resources. Only when the discount
rate is decreasing are they able to obtain a solution to the renewable resource model.
Figuières and Tidball (2012) focus on the inexistence result of the case with a constant
discount rate and show that they can find in the model with renewable resources
“near-optimal” growth paths.

More recently, Alvarez-Cuadrado and Long (2009) have proposed another mixed
criterion named the mixed Bentham–Rawls criterion, weighted average of a discounted
utilitarian part as in Chichilnisky’s criterion, and a maximin part. They show that
Chichilnisky does not obtain this criterion because it does not satisfy the independence
property she imposes, property that they do not find compelling.

We address in this paper the question of the existence of a continuous SWF which is
sustainable, in the sense that this continuous SWF is anonymous, Pareto and indepen-
dent and allows us to obtain solutions to optimal growth models. We introduce a new
concept of sustainability embodied in two new axioms, we call Never-decisiveness
of the present and Never-decisiveness of the future. These axioms are inspired by the
No-dictatorship axioms. We show that in the set of utilities bounded uniformly by
a constant, there exists, up to a positive scalar, a unique SWF which is continuous,
anonymous, Pareto and independent. This SWF satisfies our two Never-decisiveness
axioms. Moreover, we can use this SWF to solve the discrete time version of the origi-
nal Ramsey model (Ramsey 1928). Actually, the two Never-decisiveness axioms give
another axiomatic foundation to the Gale’s overtaking criterion (Gale 1967). More
precisely, we show that, under the assumptions introduced above and some others
(see below), the overtaking criterion for optimal growth models satisfies Anonymity,
Pareto axioms and the two Never-decisiveness axioms for sustainability.

We come back to the seminal definition of SWF through the Yosida theorem. We
consider the SWF, W, which are restrictions to l+∞ of continuous, linear functions on
l∞. From the Yosida theorem, such a SWF has a unique decomposition: W (x) =∑∞

t=0 at xt +φ(x), where x ∈ X , a set of infinite sequences,
∑∞

t=0 |at | < ∞, and φ is
purely finitely additive. This SWF satisfies the No-dictatorship axioms introduced by
Chichilnisky (1996) for sequences of utility streams. We show that, in l∞, a continuous
and independent SWF satisfies the No-dictatorship axioms if, and only if, it satisfies
the Never-decisiveness axioms. Notice that this criterion is a nonconstructible criterion
(see Lauwers 2012).

Now consider optimal growth models with decreasing returns. In these models, the
feasible consumption paths are uniformly bounded by the same quantity. So, without
any lost of generality, we can assume that the set of sequences X is [0, 1]∞. With
this restriction, we show that there exists no SWF W (as defined above) from X into
R+, with at > 0, ∀t,

∑∞
t=0 at = 1, φ purely finitely additive, which satisfies the

two Never-decisiveness axioms. This result comes from the assumption
∑∞

t=0 at = 1.
We therefore remove it and assume

∑∞
t=0 at = +∞.3 The criterion is not complete

anymore. Then, we easily show that the SWF W satisfies the two Never-decisiveness
axioms on the set of utility sequences for which the value of the social welfare function
is finite.

3 For simplicity, we also assume that ∀t, 0 < a ≤ at ≤ a.
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Asheim et al. (2012) and Asheim and Mitra (2010) propose the sustainable dis-
counted utilitarianism. As Chichilnisky does, they drop the Anonymity axiom. They
propose to replace it by the axiom of Hammond equity for the future introduced by
Asheim and Tungodden (2004), which entails that the social welfare is sensitive to the
interests of the present generation only when the present is worse off than the future.
It may not be the case with our criterion (see example in “Appendix 1”).

Basu and Mitra (2007) propose and characterize a set of new social welfare criteria
called the overtaking social welfare relations, allowing us to ensure an equal treatment
of all generations. They show that the overtaking SWRs can be characterized in terms
of four axioms. Moreover, in a one-dimensional Ramsey growth model, they actually
show that the optimal path for the Gale overtaking criterion coincides with the optimal
path for overtaking SWRs. From Dana and Le Van (1990), one can see that this path
is actually the optimal path for the SWF obtained from Anonymity, Pareto axioms
and our Never-decisiveness axioms. Observe that Asheim et al. (2010) show that Basu
and Mitra welfare criterion is also incomplete. In other words, it may be effective in
the sense of selecting a small set of optimal or maximal elements for a given class
of feasible infinite utility streams. They establish a result that generalizes the time-
invariant overtaking criterion to satisfy stationarity and an Anonymity criterion called
Strong Relative Anonymity.

To sum up, for the issue of sustainability and intergenerational equity, our main
result is to show that the undiscounted utilitarian criterion is a nondictatorial and
anonymous criterion for optimal growth models. It is also upper-semicontinuous for
the product topology, under a set of assumptions which can be summarized as follows:
Instead of l+∞ as set of utilities, we just consider the set of utilities of consumptions
which are generated by a specific technology, namely a technology with decreasing
returns for high levels of capital; by doing so, we restrict ourselves to good programs
in the sense of Gale (1967), Brock (1970), Arkin and Evstigneev (1987), and Dana
and Le Van (1990), Dana and Le Van (1993), when the state variables are in a finite
dimension, and Zaslvaski (2007) when these variables belong to an abstract compact
metric space, i.e., any program for which intertemporal utility is well defined.4

The paper is organized as follows. In Sect. 2 we present the Never-decisiveness
criteria when the state space is, respectively, l+∞ or [0, 1]∞. We show that for an optimal
growth model with decreasing returns for high value of capital stock where the utilities
of the streams of consumptions typically belong to [0, 1]∞, there exists no SWF which
is never-decisive. We then restrict the state space to the sets of utilities for which the
value of the SWF is finite. In Sect. 3, we show that, actually, the Gale’s overtaking
criterion, restricted to the set of good programs, is anonymous and never-decisive.5

Section 4 shows that using the overtaking criterion, one can obtain optimal solutions

4 It is well known that the undiscounted utilitarian criterion is not complete on l+∞. In order to decrease
incompleteness, Lauwers (2012) introduces a stronger notion of anonymity called maximal anonymity.
Unfortunately, the criterion he obtains is a nonconstructible object if we impose it to be also Pareto.
5 Gale (1967), Dana and Le Van (1990) and Dana and Le Van (1993) require that the technology exhibits
decreasing returns. Here, we drop this assumption. We show that the turnpike result in Gale (1967) also
holds with nonconvex technologies. Zaslvaski (2007) also drops the convexity assumption but assumes the
asymptotic turnpike property holds.

123



286 A. Ayong Le Kama et al.

to growth models. Some examples of models are also presented in this section. In
particular, we present an economy with a convex–concave production function (see
Dechert and Nishimura 1983). In Dechert and Nishimura (1983), the proof of existence
of a poverty trap is given, but its precise value is not easy to compute. As a by-product,
we obtain here the explicit value of this poverty trap. We also use our criterion to solve
two growth models, respectively, with exhaustible and renewable resources.

2 Never-decisiveness criterion

We introduce here a new concept, called Never-decisiveness, based on Chichilnisky
(1996) concept of No-dictatorship. We show that the two concepts are equivalent in
l∞. As we are interested in finding solutions of optimal growth models, we restrict
ourselves to the space of uniformly bounded consumptions. Then we know that the
Chichilnisky criterion may not allow us to obtain solutions. We show how our criterion
overcomes this problem.

2.1 Preliminaries

We first recall the concepts of No-dictatorship of the present and No-dictatorship of
the future given by Chichilnisky (1996).

Let X denote a set of infinite sequences. A criterion W is a nondecreasing function
from X into R.

A criterion W exhibits No-dictatorship of the present if there exist x ∈ X, y ∈ X
which satisfy W (x) > W (y), and for any N , there exist k ≥ N , (zt )t≥k+1, (st )t≥k+1
such that

W (x0, . . . , xk, zk+1, . . . , zk+t , . . .) ≤ W (y0, . . . , yk, sk+1, . . . , sk+t , . . .).

A criterion W exhibits No-dictatorship of the future if there exist x ∈ X,
y ∈ X which satisfy W (x) > W (y), and for any N , there exist k ≥
N , (zt )t=0,...,k, (st )t=0,...,k such that

W (z0, . . . , zk, xk+1, . . . , xk+t , . . .) ≤ W (s0, . . . , sk, yk+1, . . . , yk+t , . . .).

We now define the concepts of Never-decisiveness of the present and Never-
decisiveness of the future.

A criterion W exhibits Never-decisiveness of the present if for any x ∈ X, y ∈ X
which satisfy W (x) > W (y), then, for any N , there exist k ≥ N , (zt )t≥k+1, (st )t≥k+1
such that

W (x0, . . . , xk, zk+1, . . . , zk+t , . . .) ≤ W (y0, . . . , yk, sk+1, . . . , sk+t , . . .).

A criterion W exhibits Never-decisiveness of the future if for any x ∈ X,
y ∈ X which satisfy W (x) > W (y), then, for any N , there exist k ≥ N ,
(zt )t=0,...,k, (st )t=0,...,k such that
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W (z0, . . . , zk, xk+1, . . . , xk+t , . . .) ≤ W (s0, . . . , sk, yk+1, . . . , yk+t , . . .).

The following definition generalizes Definition 7 in Chichilnisky (1996), p. 251:

Definition 1 Let X be a nonempty subset of l∞ and W be a criterion from X into R.
The criterion W is independent if there exists a linear function l on l∞ such that for
any x ∈ l∞, any y ∈ l∞, W (x) = W (y) ⇔ l(x − y) = 0.

From Chichilnisky (1996), p. 251, when X = l∞,W can be represented by a linear
function on l∞. Now, when X is a subset of l∞, we say that W is independent if it is
affine.

We say that the SWF W is sustainable if it is complete (i.e., well defined on the
whole space l+∞), increasing and satisfies the two No-dictatorship axioms.

We consider the SWFs which are restrictions to l+∞ of continuous, linear functions
on l∞. From Yosida theorem, such a SWF W has a unique decomposition

W (x) =
∞∑

t=0

at xt + φ(x)

where
∑∞

t=0 |at | < ∞ and φ is purely finitely additive. If W is increasing, then at > 0
for all t and φ is increasing.

In the following Proposition, when X = l∞, sustainability is equivalent to Never-
decisiveness:

Proposition 1 Let W be a continuous independent SWF from l∞ into R+. Then W
is sustainable if, and only if, it satisfies Never-decisiveness of the future and Never-
decisiveness of the present.

Proof 1. From Chichilnisky (1996), Theorem 2, if W is sustainable, then it has the
decomposition:

W (x) =
∞∑

t=0

at xt + φ(x) (1)

where
∑∞

t=0 |at | < ∞ and φ is purely finitely additive. Moreover, at > 0,∀t and
φ �= 0. We can assume

∑∞
t=0 at = 1 and φ(1, 1, . . . , 1, . . .) > 0.6

2. Let us consider a SWF W as in (1). We will prove that it is never-decisive.

(a) Never-decisiveness of the present
Let W (x) > W (y) with x ∈ �∞, y ∈ �∞. Choose λ > 0 large enough s.t.
φ(λ, λ, . . .) = λφ(1, 1, . . .) >

∑∞
t=0 at xt −∑∞

t=0 at yt and λ > supt |yt |. For
any N large enough, we have φ(λ, λ, . . .) = λφ(1, 1, . . .) >

∑N
t=0 at xt −∑∞

t=0 at yt . Take such an N. For any k ≥ N , define zt = 0, ∀t ≥ k + 1, z′
t =

6 This last assumption is the one used by Chichilnisky (1996).
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λ,∀t ≥ k + 1. Then φ(y0, . . . yk, z′
k+1, . . .) = φ(λ, λ, . . .) = λφ(1, 1, . . .).

Then

W (x0, . . . , xk, zk+1, . . .) =
k∑

t=0

at xt <

∞∑
t=0

at yt + λφ(1, 1, . . .)

<

k∑
t=0

at yt +
∞∑

t=k+1

at z
′
t + φ(y0, . . . yk, z′

k+1, . . .)

= W (y0, . . . yk, z′
k+1, . . .).

(b) Never-decisiveness of the future

Let W (x) > W (y) with x ∈ �∞, y ∈ �∞. Let λ > 0 satisfy λ+ φ(y) > φ(x).
There exists N s.t. for any k ≥ N , λ

∑k
t=0 at + φ(y) > φ(x)+ ∑∞

t=k+1 at xt ,
since

∑∞
t=0 at = 1 and

∑∞
t=T at xt → 0, when T → +∞. For any k ≥ N ,

define zt = 0 for t = 0, . . . k, z′
t = λ for t = 0, . . . k. Then

W (z0, . . . , zk, xk+1, . . .) =
∞∑

t=k+1

at xt + φ(x) < λ

k∑
t=0

at + φ(y)

=
k∑

t=0

at z
′
t + φ(y) = W (z′

0, . . . z
′
k, yk+1, . . .).

3. Obviously, if W is a Never-decisive social welfare function, then it is sustain-
able. ��

2.2 The case where X ⊆ [0, 1]∞

We mentioned at the beginning of the paper that in optimal growth models with
decreasing returns, the feasible consumption paths are uniformly bounded. So, without
loss of generality, we can first assume X = [0, 1]∞.

Proposition 2 The SWF W from X into R+:

W (x) =
∞∑

t=0

at xt + φ(x)

with at > 0,∀t,
∑∞

t=0 at = 1, φ positive, purely finitely additive, which satisfies the
two No dictatorship properties.7

7 In Chichilnisky (1996), we have a proof for l∞. Here, we give a proof for [0, 1]∞.
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Proof (a) No-dictatorship of the present

Let x satisfy xt = ζ for any t with ζ < min{1, φ(1, 1, . . .)}. Let yt = 0,∀t . Take
γ = 0 and σt = 1,∀t . Then, for any K,

W (x0, . . . , xK , γK+1, . . . , ) = ζ

K∑
t=0

at + φ(x0, . . . , xK , 0, . . . , 0, . . .)

= ζ

K∑
t=0

at + φ(0) = ζ

K∑
t=0

at

< ζ <

∞∑
K+1

atσt + φ(1, 1, . . .)

= W (y0, . . . , yK , σK+1, . . .)

(b) No-dictatorship of the future

Let x0 = 1, xt = 0 for t ≥ 1, and let all components of y, z and s be equal to 0.
Then, since a0 > 0 and x0 = 1 > 0 = y0, W (x) > W (y), but

W (z0, z1, . . . , zK , yK+1, . . .) = W (s0, . . . , sK , xK+1, . . .)

for all K ≥ 0. Essentially, the property that W is increasing in all components
implies No-dictatorship of the future. ��

However, in “Appendix 2,” we show that the basic one sector Ramsey model with
a criterion defined by (1), where xt is the utility at period t of the representative
consumer, has no solution if the marginal productivity at the origin of the production
function is larger than 1. When this marginal productivity is less than one, the criterion
defined by (1) and the one defined by the discounted sum of utilities give the same
solution to the Ramsey model.

The following proposition shows that there exists no independent, continuous (for
the l∞ topology) SWF which is never-decisive in [0, 1]∞.

Proposition 3 There exists no continuous independent SWF W from X into R+:

W (x) =
∞∑

t=0

at xt + φ(x)

with at > 0,∀t,
∑∞

t=0 at = 1, φ positive, purely finitely additive, which satisfies the
two Never-decisiveness properties.

Proof Claim 1 If φ(1, 1, . . .) ≥ 1, then W does not satisfy the Never-decisiveness of
the future axiom.
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Indeed, let W (x) > W (y)where xt = 1, ∀t and yt = 0, ∀t . Let N be the first index
s.t. aN > 0. Then ∀k ≥ N , ∀(z0, . . . , zk) ∈ [0, 1]k, ∀(z′

0, . . . , z′
k) ∈ [0, 1]k ,

W (z0, . . . , zk, xk+1, . . . xk+t ) =
k∑

t=0

at zt +
∞∑

t=k+1

at xt + φ(1, 1, . . .)

≥ φ(1, 1, . . .)

≥
∞∑

t=0

at

≥
k∑

t=0

at z
′
t +

∞∑
t=k+1

at yt + φ(0, 0, . . .)

= W (z′
0, . . . , z′

k, yk+1, . . .).

Claim 2 If 0 < φ(1, 1, . . .) < 1, then W does not satisfy the Never-decisiveness
of the present property.

To prove that, let ε > 0 satisfy 1 − ε > φ(1, 1, . . .) and let xt = 1, ∀t and
yt = 0, ∀t . Hence, W (x) > W (y). There exists N s.t. ∀k ≥ N ,

∑k
t=0 at xt =∑k

t=0 at > φ(1, 1, . . .)+ ∑∞
t=k+1 at . Then, for any k ≥ N , for any (zk+1, . . .) ∈

[0, 1]∞, any (z′
k+1, . . .) ∈ [0, 1]∞, we have

W (y0, . . . , yk, z′
k+1, . . .) =

∞∑
t=k+1

at z
′
t + φ(y0, . . . , yk, z′

k+1, . . .)

≤ φ(1, 1, . . .)+
∞∑

t=k+1

at

≤
k∑

t=0

at xt +
∞∑

t=k+1

at zt + φ(x0, . . . , xk, zk+1, . . .)

= W (x0, . . . , xk, zk+1, . . .).

The proof of the proposition is over. ��
We now extend the Never-decisiveness axioms to a SWF defined only on a subset

of [0, 1]∞. In view of Proposition 3, we now assume
∑∞

t=0 at = +∞ and impose a
domain restriction.

We consider a sequence a which satisfies at > 0, ∀t ≥ 0
∑∞

t=0 at = +∞, 0 <
a ≤ at ≤ a, ∀t . Let U be a subset of [0, 1]∞, and let x ∈ [0, 1]. Define

X (a, x) =
{

x ∈ U :
∞∑

t=0

at (xt − x)exists in R

}

We make the following assumption on X (a, x):
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Assumption 1 (T0): for any x ∈ X (a, x), we have xt → x when t → +∞ and
there exists a neighborhood V (x) of x which satisfies:
(T1): there exists x ∈ V (x), x �= x such that for any t , if xt ∈ V (x)∩[0, 1], then
there exist s ∈ V (x) ∩ [0, 1], s′ ∈ V (x) ∩ [0, 1], K such that for any k ≥ K ,
the sequence x′ defined by x ′

i = xi , i = 1, . . . , t, x ′
t+1 = s, x ′

t+i+1 = x, ∀i =
1, . . . , K , x ′

t+2+K = s′, x ′
i = x, i > t + 2 + K is in X (a, x).

(T2): there exist x ∈ V (x)∩[0, 1], x �= x, K such that for any k ≥ K , there exists
s ∈ V (x) ∩ [0, 1], and the sequence x′ defined by x ′

i = x, i = 1, . . . , k, x ′
k+1 =

s, x ′
k+i+1 = xk+i+1, ∀i > 0, is in X (a, x).

Let W (x; a, x) = ∑∞
t=0 at (xt − x)+ φ(x) for any x ∈ X (a, x). Since xt → x , we

have φ(x) = φ(x). Thus, we can take W (x; a, x) = ∑∞
t=0 at (xt − x).

Proposition 4 Suppose (T0), (T1) and (T2) hold. Then the social welfare function
W (·; a, x) satisfies the two Never-decisiveness axioms on X (a, x).

Proof (a) Never-decisiveness of the present

Let W (x; a, x) > W (y; a, x) with x ∈ X (a, x), y ∈ X (a, x). From
(T0), (T1), since xt → x, yt → x when t → +∞, one can find
x̂, s, s′, close to x , and τ , s.t. for any T ≥ τ , for any k, when x̂ > x ,
the sequence yk = (y0, y1, . . . , yT , s, zT +2, . . . , zT +1+k, s′, x, x, . . .), with
zT +1+i = x̂, i = 1, . . . , k , is in X (a, x) and when x̂ < x , the sequence
xk = (x0, x1, . . . , xT , s, zT +2, . . . , zT +1+k, s′, x, x, . . .) with zT +1+i = x̂, i =
1, . . . , k, is in X (a, x).
When x̂ > x , we have

W (yk; a, x)=
T∑

t=0

at (yt −x)+aT +1(s − x)+(x̂ − x)
T +1+k∑

T +2

at +aT +2+k(s
′ − x)

Then W (yk; a, x) → +∞. Therefore, W (yk; a, x) > W (x; a, x) for k large
enough.
When x̂ < x , we have

W (xk; a, x)=
T∑

t=0

at (xt −x)+ aT +1(s − x)+ (x̂−x)
T +1+k∑

T +2

at + aT +2+k(s
′−x)

then W (xk; a, x) → −∞. Therefore, W (xk; a, x) < W (y; a, x) for k large
enough.

(b) Never-decisiveness of the future

Again, let W (x; a, x) > W (y; a, x) with x ∈ X (a, x), y ∈ X (a, x). From
(T0), (T2), since xt → x, yt → x when t → +∞, one can find x̂ , close
to x , and τ , s.t. for any T ≥ τ , there exists s and when x̂ > x , the sequence
yT = (x̂, x̂, . . . , x̂, s, yT +2, yT +3, . . .) is in X (a, x) and when x̂ < x , the
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sequence xT = (x̂, x̂, . . . , x̂, s, xT +2, zT +3, . . .) is in X (a, x). We have

W (yT ; a, x) =
T∑

t=0

at (x̂ − x)+ aT +1(s − x)+
+∞∑
T +2

at (yt − x).

When T → +∞,
∑T

t=0 at (x̂ − x) → +∞, |aT +1(z − x)| ≤ 2a and∑+∞
T +2 at (yt − x) → 0. Hence, W (yT ; a, x) > W (x; a, x) for T large enough.

We also have

W (xT ; a, x) =
T∑

t=0

at (x̂ − x)+ aT +1(s − x)+
+∞∑
T +2

at (xt − x).

When T → +∞,
∑T

t=0 at (x̂ − x)+ aT +1(z − x)+ ∑+∞
T +2 at (xt − x) → −∞.

Hence, W (xT ; a, x) < W (y; a, x) for T large enough. ��
Corollary 1 Let (at ) satisfy

(i) ∀t, 0 < a ≤ at ≤ a
(ii)

∑∞
t=0 at = +∞.

Let X (a, 0) = {
x ∈ [0, 1]∞ : ∑∞

t=0 at xt < +∞}
, and W (x; a, 0) = ∑∞

t=0 at xt

for x ∈ X (a, 0).
Then X (a, 0) satisfies (T0), (T1), (T2) and W (.; a, 0) satisfies the two Never-

decisiveness axioms on X.

Proof We just have to check that X (a, 0) satisfies (T0), (T1) and (T2).
T0 is obviously true since xt → 0 for any x ∈ X (a, 0). T1 is satisfied with any

x > 0, s = 0, s′ = 0. T2 is satisfied with any x > 0, s = 0. ��
Definition 2 A social welfare function V is anonymous if V (x) = V (y) when, for
any i, j, i �= j, yt = xt ,∀t �= i, j , and yi = x j , y j = xi .

It is immediate that there exists no affine SWF defined on [0, 1]∞ which is
anonymous, excepting the purely finitely additive up to affine transformation. Unfor-
tunately, no purely finitely additive SWF satisfies the Never-decisiveness of the
future axiom. Indeed, let V (x0, x1, . . .) > V (y0, y1, . . .). For any finite change
(x ′

0, . . . , x ′
T ), (y

′
0, . . . , y′

T ) of the present, we always have

V (x ′
0,. . .,x

′
T , xT +1,. . .)=V (x0, x1, . . .) > V (y0, y1, . . .)=V (y′

0,. . .,y
′
T , yT +1, . . .)

For any x ∈ [0, 1], any a > 0, define

X (a, x) = {x ∈ [0, 1]∞ : a
∞∑

t=0

(xt − x) ∈ R}.

Let X be the collection of X (a, x) which satisfy (T0), (T1) and (T2). We have
the following Theorem.
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Theorem 1 There is a set of domains in 2[0,1]∞ \ {∅} such that, for each of these
domains, there exists a SWF which is independent, anonymous and Pareto. Moreover,
for each of these domains, the SWF satisfies the two Never-decisiveness properties.

Proof Consider X . Define W (.; a, x) by: for any X (a, x) ∈ X , any x ∈ X (a, x),

W (x; a, x) = a
∞∑

t=0

(xt − x).

From Definition 1, it is independent. Obviously, W (.; a, x) is anonymous and Pareto.
From Proposition 4, it satisfies the two Never-decisiveness properties. ��

Corollary 2 Let a > 0 and

X (a, 0) = {x ∈ [0, 1]∞ : a
∞∑

t=0

xt < +∞}.

Then X (a, 0) ∈ X . The SWF W (.; a, 0) defined by

∀x ∈ X (a, 0),W (x; a, 0) = a
∞∑

t=0

xt

is anonymous, independent and Pareto.

Proof From Corollary 1, X (a, 0) ∈ X . Then apply Theorem 1. ��

3 The overtaking criterion as an anonymous and never-decisive criterion
for optimal growth models

The difficulty is to exhibit a criterion which satisfies assumptions (T0), (T1) and (T2)

on some set X of sequences. We will show that the overtaking criterion introduced
by Gale (1967) for optimal growth models actually induces an anonymous and never-
decisive SWF on the set of utilities of good programs of an intertemporal economy.

First, we construct the subset X on which the SWF (the overtaking criterion) is
defined. It will be the set of the utilities yielded by good programs. We have the
property that any good program converges, and therefore, the utilities yielded by good
programs converge too (assumption (T0) above is satisfied). Second, we prove that
under the assumptions on the economy presented below, the utilities of good programs
satisfy (T1) and (T2).

We consider an intertemporal economy where the instantaneous utility of the rep-
resentative consumer depends on κt , the capital stock on hand at date t, and on κt+1,
the capital stock for date t + 1. Given κt , the set of feasible capital stocks for the next
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period t +1 is Γ (κt ). We assume that at any period t the feasible capital stock on hand
belongs to A, a subset of R

n+. More explicitly, we make the following assumptions.8

Assumptions

H1: A is a compact, convex set of R
n+ with nonempty interior.

H2: Γ is a continuous correspondence with nonempty images. It satisfies Γ (A) ⊆ A.
Its graph is the set graph Γ = {(κ, χ) ∈ A × A : χ ∈ Γ (κ)}.
H3: intgraphΓ , the interior of the graph of Γ , is nonempty.
We will denote by cographΓ the convex hull of graphΓ .
H4: The instantaneous utility function u : cographΓ → R+ is strictly concave and
continuous. It is increasing with respect to the first variable and decreasing with respect
to the second variable.
For the simplicity of our presentation, we also assume the following.
H5: The function u is differentiable in the interior of cograph Γ .
H6: The set I (A) = {κ ∈ A : (κ, κ) ∈ graphΓ } is nonempty.

Remark 1 1. Dana and Le Van (1990) show that the following assumptions imply
intgraphΓ �= ∅.

– Free disposal assumption: If χ ∈ Γ (κ), κ ′ ≥ κ, χ ′ ≤ χ, κ ′ ∈ A, χ ′ ∈ A,
then χ ′ ∈ Γ (κ ′).

– Existence of expansible capital stocks: There exists (κ, χ) ∈ graphΓ , with
χ >> κ , i.e., χi > κi , ∀i ∈ {1, . . . , n}.

2. If Γ is continuous and satisfies the condition:
There exists a number a such that {‖κ‖ ≥ a, χ ∈ Γ (κ)} ⇒ ‖χ‖ < ‖κ‖, then
I (A) is compact.

3. An example where H1–H2 and H5 are satisfied. Let Γ (κ) = {χ ∈ R+ : χ ∈ [0,
f (κ)]}, where f is a continuous increasing function which satisfies f (0) =

0, f (1) = 1, f (κ) < κ, ∀κ > 1. Take A = [0, a] with a > 1.

A sequence κ is feasible from κ0 ∈ X if, ∀t ≥ 0, κt+1 ∈ Γ (κt ). We denote
by Π(κ0) the set of feasible sequences from κ0. Following Gale (1967), a program
from κ0 is a feasible sequence from κ0. The set of programs is denoted by Π , i.e.,
Π = ∪κ∈AΠ(κ).

Lemma 1 Assume H1–H2. Then Π(κ0) is compact for the product topology.

Proof See, e.g., Le Van and Dana (2003), chapter 4. ��

3.1 Good programs

Definition 3 A stationary point (κ, κ) satisfies

x = u(κ, κ) = max {u(κ, κ) : (κ, κ) ∈ graphΓ } .

8 This setup is borrowed from Dana and Le Van (1990), but we do not assume here that graphΓ is convex,
i.e., we do not impose a technology with decreasing returns to scale.
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Proposition 5 There exists a stationary point (κ, κ) which satisfies

(i) x = u(κ, κ) = max {u(κ, κ) : (κ, κ) ∈ graphΓ } ;
(ii) if (κ, κ) ∈ intgraphΓ , then

u(κ, χ)+ u1(κ, κ)χ − u1(κ, κ)κ ≤ u(κ, κ), ∀(κ, χ) ∈ graphΓ,

where u1(κ, χ) = ∂u(κ, χ)/∂κ and u2(κ, χ) = ∂u(κ, χ)/∂χ .

Proof (i) Since I (A) is compact, the proof of the existence of (κ, κ) is obvious.
(ii) If (κ, κ) is interior, then u1(κ, κ) + u2(κ, κ) = 0. Since u is concave, for any

(κ, χ) ∈ graphΓ , we have

u(κ, κ)− u(κ, χ) ≥ u1(κ, κ)(κ − κ)+ u2(κ, κ)(κ − χ) = u1(κ, κ)χ − u1(κ, κ)κ.

��
We now add another assumption.

H7: (κ, κ) ∈ intgraphΓ .

Assumption H7 is not very restrictive, since in the one-dimensional Ramsey
model it implies that consumption is strictly positive at the Golden Rule. Indeed,
if Γ (κ) = {χ : 0 ≤ χ ≤ f (κ)} where f is the production function, then κ satisfies
x = maxκ u( f (κ)− κ).

Let p̄ = u1(κ, κ).

Proposition 6 Under H1–H7, (κ, κ) is the unique solution to problem

max {u(κ, χ)+ p̄χ − p̄κ : (κ, χ) ∈ graphΓ } .

The proof is in “Appendix 3.”

Theorem 2 Assume H1–H7. For any program κ , either

(i) limT →+∞
∑T

t=0

[
u(κt , κt+1)− x̄

]
exists in R and κt → κ , or

(ii) limT →+∞
∑T

t=0

[
u(κt , κt+1)− x̄

] = −∞.

The proof is in “Appendix 3.”

Definition 4 A programκ ∈ Π(κ0) is good if limT →∞
∑T

t=0

[
u(κt , κt+1)− u(κ, κ)

]
exists in R.

Definition 5 The set of the good programs κ ∈ Π(κ0) is denoted G(κ0).

From Theorem 2 one gets:

Corollary 3 Assume H1–H7. If κ ∈ G(κ0) , then κt → κ .

3.2 Never-decisiveness and anonymous criteria

Since A is compact, there exists a number a > 0 such that for any program κ we have
u(κt , κt+1) ∈ [0, a], ∀t . We define
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U = {(xt )t : ∀t, xt = u(κt , κt+1), κ ∈ Π}

and

X = {x ∈ U :
∞∑

t=0

(xt − x) ∈ R}

Observe that we have X = ∪κG(κ).
Let

W (x) =
∞∑

t=0

(xt − x)

and

W (κ) =
∞∑

t=0

[u(κt , κt+1)− x].

Proposition 7 The social welfare function W is anonymous and satisfies the Never-
decisiveness properties on X.

Proof Anonymity is obvious. To prove that this SWF satisfies the Never-decisiveness
properties, we apply Proposition 4. We prove that assumptions (T0), (T1)and(T2)

are satisfied.
Assumption (T0) comes from Corollary 3.
To check (T1) : Since (κ, κ) ∈ intgraphΓ , there exists an open ball B((κ, κ), ε) ⊂

graph Γ which satisfies the following properties:

(i) There exists (κ̂, κ̂) ∈ B((κ, κ), ε) with κ̂ �= κ ,
(ii) (κ̂, κ) ∈ B((κ, κ), ε),

(iii) For any y close enough to κ , we have (y, κ̂) ∈ B((κ, κ), ε).

Since κt converges to κ , there exists N such that for any T ≥ N we have (κT −1, κT ) ∈
B((κ, κ), ε) and (κT , κ̂) ∈ B((κ, κ), ε).

Define s = u(κT , κ̂), x̂ = u(κ̂, κ̂), s′ = u(κ̂, κ). Observe that x̂ < x .
To check (T2): take x̂ = u(κ̂, κ̂) < x and for any T large enough s = u(κ̂, κT +1).

��

4 Solving optimal growth models with the overtaking criterion

We want to solve an optimal growth model with the SWF defined above. We first have:

Proposition 8 Assume H1–H7. Then W is upper-semicontinuous for the product
topology.

Proof See Dana and Le Van (1990). ��
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We then obtain

Theorem 3 Assume H1–H7. If G(κ0) �= ∅, then there exists an optimal path. It is
unique if graphΓ is convex.

Proof From Proposition 8 and Lemma 1, for the product topology, W is upper-
semicontinuous and Π(κ0) is compact. Therefore, an optimal path exists, since the
problem is to maximize W (κ) with κ ∈ Π(κ0). This optimal path is unique when
graphΓ is convex since u is assumed strictly concave. ��

4.1 Applications

We now give examples of models which satisfy H1–H7 and for which X is nonempty.

4.1.1 Convex technology

Assume graphΓ is convex. Now, let A = [0, 1], Γ (κ) = [0, f (κ)] where f is strictly
concave, increasing and differentiable with f ′(0) > 1, f (0) = 0, f (1) = 1, and
u(κ, χ) = v( f (κ) − χ), where v is real-valued, defined on R+, increasing, strictly
concave and differentiable. It is easy to check H1–H6. Observe that the stationary
point κ is defined by f ′(κ) = 1. It is therefore unique. Obviously, 0 < κ < f (κ) < 1.
In other words, H7 is satisfied. We claim that G(κ0) �= 0, ∀κ0 > 0. Indeed, since
f t (κ0) → 1 when t → +∞, there exists T such that f T (κ0) ≤ f (κ) and f T +1(κ0) >

f (κ). The sequence (κ0, f (κ0), . . . , f T (κ0), κ, κ, . . . , κ, . . .) ∈ G(κ0).

4.1.2 Economy with a convex–concave production function

Let A = [0, 1], Γ (κ) = [0, f (κ)]. Here we suppose that f is increasing, continu-
ously differentiable, f (0) = 0, f (1) = 1, strictly convex between 0 and κI < 1 and
strictly concave in [κI , +∞[. The function u is as before u(κ, χ) = v( f (κ) − χ),
where v is real-valued, defined on R+, increasing, strictly concave and differentiable.

Let a = maxκ∈A

{
f (κ)
κ

}
and κa ∈ A satisfy a =

{
f (κa)
κa

}
. Let F be defined as

follows: F(κ) = aκ, ∀κ ≤ κa; F(κ) = f (κ), κ ≥ κa . Then F is concave and
{(κ, χ) ∈ A × A : χ ≤ F(κ)} is cographΓ .

When f ′(0) > 1, there exists a unique κ ∈ (κI , 1) such that f ′(κ) = 1. One can
check that 0 < κ < f (κ) < 1, i.e., (κ, κ) ∈ int graphΓ . Assumptions H1–H7 are
satisfied. Again G(0) = ∅ and G(κ0) �= ∅ if κ0 > 0.

Now assume f ′(0) < 1 < f (κa)
κa

and f ′(κI ) > 1 (see Fig. 1). There are two points
κ, κ such that f ′(κ) = f ′(κ) = 1. But f (κ)−κ < 0, i.e., (κ, κ) /∈ graphΓ . We have
a unique stationary point κ . It satisfies 0 < κ < f (κ) < 1, i.e., (κ, κ) ∈ int graphΓ .
Again, H1–H7 are satisfied.

Let κ̃ satisfy f (κ̃) = κ̃ . Then κ̃ ∈ (0, 1). Moreover, κ < κ̃ ⇒ f (κ) < κ and
1 > κ > κ̃ ⇒ f (κ) > κ . That implies:

(i) any feasible path from κ0 < κ̃ will converge to 0. Hence, G(κ0) = ∅ for any
κ0 ≤ κ̃ .
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κ

f κ

κaκI κκ κ̃

Fig. 1 The convex–concave technology

(ii) for any κ0 > κ̃, f t (κ0) → 1. Hence, one can find T such that f T (κ0) ≤ κ and
f T +1(κ0) > f (κ). The sequence (κ0, f (κ0), . . . , f T (κ0), κ, κ, . . . , κ, . . .) ∈
G(κ0). Thus, G(κ0) �= ∅ for any κ0 > κ̃ .

One concludes that κ̃ is the poverty trap.

4.1.3 Growth and exhaustible resources

We consider the model in Le Van et al. (2010). The country possesses a stock of a
nonrenewable natural resource S0. This resource is extracted at a rate Rt and then sold
abroad at a price Pt , in terms of the numeraire, which is the domestic single consump-
tion good. The inverse demand function for the resource is P(Rt ). The revenue from
the sale of the natural resource,φ(Rt ) = P(Rt )Rt , is used to buy a foreign good, which
is supposed to be a perfect substitute of the domestic good, used for consumption and
capital accumulation. The domestic production function is F(kt ), where kt is physical
capital. The depreciation rate is δ. We define the function f (kt ) = F(kt )+ (1 − δ)kt ,
and we name it for simplicity the technology. The constraints of the economy are:

∀t, ct ≥ 0, kt ≥ 0, Rt ≥ 0,

ct + kt+1 ≤ f (kt )+ φ(Rt ),

+∞∑
t=0

Rt ≤ S0,

S0 > 0, k0 ≥ 0are given,

where ct is consumption. We assume that f is strictly concave, f (0) = 0, f ′(+∞) <

1, f ′(0) > 1. Let k̃ satisfy k̃ = f (k̃)+φ(S0). Such a k̃ is unique. Take A = [0, k̃]×
[0, S0]. Let κ = (k, R). Define Γ (κ) = {χ = (y, R) : 0 ≤ y ≤ f (k)+ φ(R)}. One
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can check that Γ is continuous and maps A into A. Observe that any feasible sequence
{Rt } will converge to zero. We also assumeφ′(0) < +∞. The representative consumer
has an instantaneous utility function u which is increasing, strictly concave and satisfies
u(0) = 0. We show that the methodology of Sects. 2, 3, and 4 may be used for the
present model.

Let k̄ satisfy

u( f (k̄)− k̄) = max {u( f (k)− k) : 0 ≤ k ≤ f (k)}
= max {u( f (k)− k) : 0 ≤ k ≤ f (k)+ φ(S0)}

Such a k̄ is unique and satisfies 0 < k̄ < f (k̄) and f ′(k̄) = 1. Let p̄ = u′( f (k̄)− k̄).
We let to the reader to prove the following claim (see the Proofs of Propositions 5, 6).

Claim 1 (k̄, k̄, 0) is the unique solution to the problem

max
{
u( f (k)− y + φ(R))+ p̄y − p̄k − p̄φ′(0)R : ((k, R), (y, R)) ∈ graphΓ

}
.

Let x̄ = u( f (k̄)− k̄).

Claim 2 For any program (k,R), either

(i) limT →+∞
∑T

t=0

[
u( f (kt )− kt+1 + φ(Rt ))− x̄

]
exists in R and kt → k̄, Rt →

0, or
(ii) limT →+∞

∑T
t=0

[
u( f (kt )− kt+1 + φ(Rt ))− x̄

] = −∞
Proof of Claim 2 (i) and (ii): Observe that

T∑
t=0

[
u( f (kt )− kt+1 + φ(Rt ))+ p̄kt+1 − p̄kt − p̄φ′(0)Rt − x̄

]

=
T∑

t=0

[
u( f (kt )− kt+1 + φ(Rt ))− x̄

] + p̄(kT +1 − k0)− p̄φ′(0)
T∑

t=0

Rt .

Since
∑T

t=0 Rt converges, use Claim 1 and the proof of Theorem 2 to conclude. ��
A program {(k,R)} is good if

∑+∞
t=0

[
u( f (kt )− kt+1 + φ(Rt ))− x̄

] ∈ R.
Now define

W (k,R) = lim
T →+∞

T∑
t=0

[
u( f (kt )− kt+1 + φ(Rt ))− x̄

]
.

W is upper-semicontinuous, and one can check that it is never-decisive. The optimal
solution (k∗,R∗) to

max
(k,R)

W (k,R)

under the constraints
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∀t, 0 ≤ kt+1 ≤ f (kt )+ φ(Rt ), k0 is given
+∞∑
t=0

Rt ≤ S0,

will converge to (k̄, 0).

4.1.4 Growth and renewable resources

We study the canonical model of growth with a renewable resource.9 The economy
possesses a stock of a renewable natural resource S0. This resource is extracted at
a rate Rt . The domestic production function is F(kt , Rt ). kt is the stock of physical
capital. The depreciation rate is δ. The natural growth of the renewable resource is
St+1 − St = H(St ). The function H is strictly concave, differentiable and satisfies
H(0) = 0, H(Ŝ) = 0, with Ŝ > 0. There is a representative consumer with a utility
function u depending on her consumption c. The technological constraints for each
period t are as follows:

ct + kt+1 ≤ F(kt , Rt )+ (1 − δ)kt

St+1 ≤ St + H(St )− Rt .

Let ψ(S) = S + H(S). The function ψ is strictly concave, ψ(0) = 0, ψ ′(+∞) <

1, since H ′(+∞) < 0. We define the function f (kt , Rt ) = F(kt , Rt ) + (1 − δ)kt ,
and we name it for simplicity the technology. We assume that F is strictly concave,
F(0, R) = F(k, 0) = 0, F1(+∞, ψ(Ŝ)) < δ, F1(0, ψ(Ŝ)) > δ. The constraints
become

0 ≤ kt+1 ≤ f (kt , Rt )

0 ≤ St+1 ≤ ψ(St )− Rt .

Let k̂ satisfy k̂ = f (k̂, ψ(Ŝ)). Let A = [0, k̂] × [0, Ŝ] and for κ = (k, S) define

Γ (κ) = {
χ = (k′, S′) : 0 ≤ k′ ≤ f (k, ψ(S)− S′), 0 ≤ S′ ≤ ψ(S)

}

Γ is continuous and maps A into A. Its graph is convex. There exists a unique κ̄ = (k̄, S̄)
such that (κ̄, κ̄) is in the interior of graphΓ and solves

max {u( f (k, ψ(S)− S)− k) : ((k, S), (k, S)) ∈ graphΓ } .

Namely, f1(k̄, ψ(S̄)− S̄) = 1, ψ ′(S̄) = 1. This model satisfies assumptions H1–H7.
Hence, one can define

9 See for instance Ayong Le Kama (2001).
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W (κ0, κ1, . . .) = W (k,S) = lim
T →+∞

T∑
t=0

[
u ( f (kt , ψ(St )− St+1)− kt+1)− x̄

]

where x = u
(

f (k, ψ(S)− S)− k
)
. The optimal solution to

max{κ1,κ2,...}
W (κ0, κ1, . . .) = max

(k,S)
W (k,S)

under the constraints

∀t, 0 ≤ kt+1 ≤ f (kt , ψ(St )− St+1),

0 ≤ St+1 ≤ ψ(St ), (k0, S0) are given

will converges to (k̄, S̄) if there exists a good program from (k0, S0).

Appendix 1

We give a simple example where a SWF which satisfies our Never-decisiveness axioms
does not satisfy the axiom of Hammond Equity for the future. First, our criterion is not
complete on [0, 1]∞. Now, consider x, y defined by x0 > 0, xt = 0,∀t ≥ 1, y0 =
x0
2 , yt = ( 1

8 × 1
2t−1 )x0, for t ≥ 1. These sequences satisfy: x0 > y0 > yt > xt for any

t ≥ 1. However, we have
∑∞

t=0 xt = x0 >
∑∞

t=0 yt = 3
4 x0.

Appendix 2

Consider two problems:

R : max
∞∑

t=0

β t u(ct )

C : max
∞∑

t=0

β t u(ct )+ φ(u(c1), u(c2), . . .)

under the constraint ct + kt+1 ≤ f (kt ) for all t, with k0 > 0 given.
LetΠ(k0) denote the set of feasible capital stocks. We make the following assump-

tions.

H0 0 < β < 1.
H1 The function u : R → R is twice continuously differentiable and satisfies u(0) =
0. Moreover, its derivatives satisfy u′ > 0 (strictly increasing) and u′′ < 0 (strictly
concave).
H2 Inada condition u′(0) = +∞.
H3 The function f : R → R is twice continuously differentiable and satisfies
f (0) = 0. Its derivatives satisfy f ′ > 0 (strictly increasing), f ′′ < 0, strictly concave,
limx→∞ f ′(x) < 1.
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H4 φ is purely finitely additive, continuous for the l∞-topology, homogeneous of
degree 1, nondecreasing, φ(0) = 0, φ(1) > 0.

Lemma 2 Let x ∈ l∞ be such that limt→∞ xt = x, then

φ(x) = φ(x, x, . . .)

Proof Denote x = (x, x, . . .). Construct xn as:

xn
t = x for 0 ≤ t ≤ n

xn
t = xt for t > n

Since φ is purely finitely additive, for all n, φ(xn) = φ(x). On the other hand, ‖xn −
x‖ = supt>n |xt − x | ⇒ limn→∞ ‖xn − x‖ = 0, then

φ(x) = lim
n→∞φ(x

n)

= φ(x)

��
For each k ∈ Π(k0), define:

Φ(k) =
∞∑

t=0

β t u( f (kt )− kt+1)+ φ(u( f (k0)− k1), u( f (k1)− k2), . . .),

W (k) =
∞∑

t=0

β t u( f (kt )− kt+1)

ϕ(k) = φ(u( f (k0)− k1), u( f (k1)− k2), . . .).

(2)

Lemma 3 We have

sup
k∈Π(k0)

Φ(k) ≥ sup
k∈Π(k0)

W (k)+ sup
k∈Π(k0)

ϕ(k). (3)

Proof Take any ε > 0 satisfying ε < supk∈Π(k0)
ϕ(k). Fix T big enough such that for

all k ∈ Π(k0), we have

∞∑
t=T +1

β t u( f (kt )− kt+1) < ε.

Denote by k∗ the solution to Ramsey problem. Take k′ feasible, such that

ϕ(k′) > sup
k∈Π(k0)

ϕ(k)− ε > 0.

Define f t (k) = f ( f (. . . (k) . . .), t times. We will prove that there exists τ satisfying
k′

T +τ < f τ (k∗
T ).
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Indeed, suppose the contrary f τ (k∗
T ) ≤ k′

T +τ for all τ . Denote by k the solution to
the equation f (k) = k. We can verify easily that f t (k) → k when t → ∞, for all
k > 0.

We have:

f τ (k∗
T ) ≤ k′

T +τ ≤ f T +τ (k0).

From this inequality, we have k′
t → k when t tends to infinity. Hence, f (kt ) −

kt+1 → 0 when t → ∞. This implies, by using the Lemma 2, ϕ(k′) = 0, a contra-
diction.

Now take τ such that k′
T +τ < f τ (k∗

T ). Define k′′ as

k′′ = (k0, k∗
1 , k∗

2 , . . . , k∗
T , f (k∗

T ), f 2(k∗
T ), . . . , f τ−1(k∗

T ), k′
T +τ , k′

T +τ+1, . . .).

Since k′
T +τ < f τ (k∗

T ), the sequence k′′ is feasible. Observe that ϕ(k′′) = ϕ(k′). We
have

Φ(k′′) = W (k′′)+ ϕ(k′′)

>

T∑
t=0

β t u( f (k∗
t )− k∗

t+1)+ ϕ(k′)

> sup
k∈Π(k0)

W (k)+ sup
k∈Π(k0)

ϕ(k)− 2ε.

This inequality is true for all ε small enough. Let ε → 0, we obtain (3). ��
Claim (1) Suppose that f ′(0) > 1. Then problem C has no solution.
(2) Suppose f ′(0) ≤ 1. Then problems C and R have the same solution.

Proof (1) Suppose that C has a solution k. From the Lemma 3, we have k is a solution
to Ramsey problem and also a solution to problem

max
k∈Π(k0)

ϕ(k).

Since k is solution to Ramsey problem, we have kt → ks , solution to f ′(k) = 1
β

,

if f ′(0) > 1
β

and ks = 0 if f ′(0) ≤ 1
β

. Denote by k̃ the solution to f ′(k) = 1.

Observe that f (ks)− ks < f (k̃)− k̃.

Since k̃ < k, there exists T big enough such that f T (k0) > k̃. This implies the
sequence

k′′′ = (k0, f (k0), . . . , f T (k0), k̃, k̃, . . .)

is feasible.

Since f (ks)− ks < f (k̃)− k̃, and by using the Lemma 2, we have
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ϕ(k) < ϕ(k′′′),

a contradiction.
(2) The proof is trivial since in this case any feasible sequence k converges to 0 and

hence ϕ(k) = 0. ��

Appendix 3

Proof of Proposition 6 Let (κ̂, χ̂) be another solution. Then

u(κ̂, χ̂)+ p̄χ̂ − p̄κ̂ = u(κ̄, κ̄). (4)

Since (κ, κ) ∈ intgraph Γ , for λ ∈ (0, 1), close enough to 1, we have

(λκ + (1 − λ)κ̂, λκ + (1 − λ)χ̂) ∈ graphΓ.

Denote κλ = λκ + (1 − λ)κ̂, χλ = λκ + (1 − λ)χ̂ . Then

λu(κ, κ)+ (1 − λ)u(κ̂, χ̂)+ p̄χλ − p̄κλ < u(κλ, χλ)+ p̄χλ − p̄κλ ≤ u(κ, κ),

and then

λu(κ, κ)+ (1 − λ)
[
u(κ̂, χ̂)+ p̄χ̂ − p̄κ̂

]
< u(κ, κ)

or equivalently

u(κ̂, χ̂)+ p̄χ̂ − p̄κ̂ < u(κ, κ),

in contradiction with (4). ��

Proof of Theorem 2 Theorem 2 is identical to Proposition 1.3.1 and Corollary 1.3.2.
in Le Van and Dana (2003). But we have to modify the proof since graphΓ is not
assumed to be convex. Consider limT →+∞

∑T
t=0

[
u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄

]
which exists in R− ∪ {−∞} since ∀t, u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄ ≤ 0. We have

T∑
t=0

[
u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄

]=
T∑

t=0

[
u(κt , κt+1)− x̄

] − p̄(κ0 − κT +1). (5)

If limT →+∞
∑T

t=0

[
u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄

] ∈ R−, then u(κt , κt+1) +
p̄κt+1 − p̄κt → x̄ . Let (κ̂, χ̂) be a cluster point of {(κt , κt+1)}. Then u(κ̂, χ̂) +
p̄χ̂ − p̄κ̂ = x̄ . From Proposition 6 , (κ̂, χ̂) = (κ, κ). Therefore, the sequence (κt )

converges to κ . From (5),
∑∞

t=0

[
u(κt , κt+1)− x̄

] ∈ R.
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Relation (5) implies

T∑
t=0

[
u(κt , κt+1)− x̄

] ≤
T∑

t=0

[
u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄

] + | p̄.κ0| + | p̄.κT +1|.

Hence, if

lim
T →+∞

T∑
t=0

[
u(κt , κt+1)+ p̄κt+1 − p̄κt − x̄

] = −∞,

then limT →+∞
∑∞

t=0

[
u(κt , κt+1)− x̄

] = −∞, since the sequence (κT +1) is
bounded. ��
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