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Abstract This paper characterizes both point-rationalizability and rationalizability in
large games when societal responses are formulated as distributions or averages of indi-
vidual actions. The sets of point-rationalizable and rationalizable societal responses
are defined and shown to be convex, compact and equivalent to those outcomes that
survive iterative elimination of never best responses, under point-beliefs and proba-
bilistic beliefs, respectively. Given the introspection and mentalizing that rationaliz-
ability notions presuppose, one motivation behind the work is to examine their viability
in situations where the terms rationality and full information can be given a more par-
simonious, and thereby a more analytically viable, expression.
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1 Introduction

Games with a finite number of players are not able to adequately represent many eco-
nomic environments. In order to capture the numerical negligibility of individuals in
the economy, many papers employ a continuum of players. A large number of such
papers have recently used the idea of “rationalizability,” which amounts to common
knowledge of rationality of the agents. For example, Guesnerie (1992) introduces
the concept of strong rationality in a specific market with a continuum of producers,
and Evans and Guesnerie (2003) study the concept of strong rationality in macro-
economics. These works use an intuitive or model-specific definition of the idea of
rationalizability. The goal of this paper is to provide a formal characterization of
rationalizability in general game environments with a continuum of players.

Unlike in general equilibrium structures, as fashioned in the mid-1960s by Aumann
(1964) and others following him, a continuum of players is now studied in a context
where interdependence is made explicit and rendered analytically tractable. In the
theory of large games, a player’s payoff depends, in addition to his or her own actions,
on some statistical summary1 of the game. In contrast to games with finitely many
players, each agent in a large game is strategically negligible. The other is no longer
a player or a fully delineated group of players, but rather the society or the collective
that is the formalized subject of the game. A player’s actions, then, are influenced by
how he or she conceives and conceptualizes the society of which he or she is a part,
rather than how he or she conceptualizes specific individuals. Certain results such as
the existence results of Nash equilibria have been well established in the theory of
large games.2 The objective of this paper is to examine notions of rationalizability in
the context of large games.

The concept of rationalizability has been introduced into game theory independently
by Bernheim (1984) and Pearce (1984).3 They assert that agents only use strategies
that are best responses to their forecasts and therefore, as in a Nash equilibrium, some
strategies in the action set will never be played. Unlike Nash equilibrium, however,
rationalizability does not assume that players correctly predict the actions of the other
players. Instead, rationalizability only assumes common knowledge of rationality of
the players. In this context, rationality means that all players are payoff maximizers,
and common knowledge of rationality means that every player knows all other players
are rational, and every player knows all other players know that everyone else is rational
and so on.4 While rationalizability assumes that a player will not choose a strategy
which is not expected utility maximizing given any subjective belief about opponents’
strategies, Bernheim (1984) also analyzes another concept, point-rationalizability,
which assumes rationality under point-beliefs; this is to say, no player will choose a
strategy which is not a best response to any strategy profile of his or her opponents.

1 In the sequel, “societal response” is used interchangeably with “statistical summary,” and “agent” with
“player.”
2 See the survey and the references in Khan and Sun (2002).
3 It is less known, but common knowledge of (or common belief in) rationality has already been studied
in Böge and Eisele (1979). Their contribution is well explained in Section 7 of Perea (2013).
4 Aumann (1976) offers a formal definition of common knowledge.

123



Rationalizability in large games 459

The set of rationalizable strategy profiles can be defined as the maximal subset of
strategy profiles, such that any strategy of an individual player is a best response to
his or her forecast of opponents’ strategies within the subset. This characterization
is related to Basu and Weibull (1991) where a set of strategy profiles is said to be
closed under rational behavior (henceforth, CURB) if the set contains all its best
responses. The set of rationalizable strategy profiles is thus the maximal CURB set.
Or, equivalently, the set of rationalizable strategy profiles can be characterized as the
set that survives the iterated elimination5 of strategies which are never best responses.
Bernheim (1984) shows that these characterizations are well defined and equivalent.

However, Bernheim (1984), Pearce (1984) and the subsequent literature6 restrict
attention to games with a finite number of players, except that Jara-Moroni (2012)
focuses on a specific type of large games which is discussed in the sequel. This paper
combines the literature on large games with the literature on rationalizability and char-
acterize rationalizability in large games. To reiterate, this initiative is motivated by the
fact that the idea of rationalizability appears in applied work with a continuum of play-
ers, despite the fact that a formal characterization of rationalizability in general game
models is lacking. Specifically, the characterizations in Bernheim (1984) are adapted
to large games. The set of rationalizable societal responses is demonstrated to be well
defined as the maximum CURB set of societal responses. Moreover, similar to (Bern-
heim 1984), it is shown that the set is also related to the set of societal responses that
survive iterative elimination of strategy profiles that are not best responses to forecasts
of the society. This captures the ideas of the characterization in Bernheim (1984) as
well as that of Pearce (1984). Thus, by focusing on rationalizability within a large game
framework, this solution set can be justified by the epistemic assumption that it is com-
mon knowledge that only best responses are ever chosen. This epistemic interpretation
of rationalizability may also provide a plausible justification for equilibrium play in
large games. For example, if the set of rationalizable societal responses is a singleton,
then any best response profile to that societal response forms a Nash equilibrium.

In this paper, rationalizability is studied in large games with several different formu-
lations of societal responses. The first model takes distributions of individual actions
as societal responses: the payoff to each player depends on both his and her own
action and the proportion of other players who play each action. For example, in vot-
ing games,7 the payoff of each voter depends on the electoral outcomes which in turn
depends on the proportion of the electorate that votes for each candidate. The second
model formulates averages of all players’ actions as societal responses: each player’s
payoff depends on both own action and the averages of all actions. For example, in
the rational expectations model of Muth,8 the profit of each farmer depends on his or
her own supply and the aggregate supply of all farmers. In terms of averages, averages

5 This process is exactly the one used by Pearce (1984) to define rationalizability. But Pearce (1984) uses
mixed strategies to eliminate the never best responses.
6 See, for example, Brandenburger and Dekel (1987), Dekel et al. (2007), Chen and Luo (2012) and their
references.
7 See, for example, Banks and Duggan (2006).
8 See, for example, Guesnerie (1992). There are some other rational expectations models, see the discussion
in Khan (2008, p. 76).
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of transformed actions are also discussed briefly to formulate transformed summary
statistics as societal responses: players’ payoffs depend on their own actions, and the
mean of individual plays under a general transformation. For example, in monopolistic
competition models with summary statistics,9 the payoff of each firm depends on its
own action, and some summary statistics of the aggregate strategy profile.

This paper is most closely related to the work of Jara-Moroni (2012) who charac-
terizes rationalizability similarly, but within the framework of large games considered
in Rath (1992), in which the action set is a compact subset of a finite-dimensional
Euclidean space and societal responses are averages of individual actions. However,
unlike Jara-Moroni (2012), the first formulation of societal responses in this paper
works on distributions as considered in Khan and Sun (1995, 1999), Keisler and Sun
(2009), Carmona and Podczeck (2009) and Noguchi (2009). The second formulation
addresses this issue for the characterization of rationalizability in games with averages
as societal responses, but with an infinite-dimensional action set. Moreover, note that
the tools for the analysis in Jara-Moroni (2012) are based on the standard integration
theory of correspondences in the finite-dimensional setting10 that are no longer valid
in an infinite-dimensional setting, whereas at the same time, the infinite-dimensional
action set is widely used in the literature for large games and mathematical economics.

The rest of the paper is organized as follows: Sect. 2 presents the model and results on
large games with societal responses formulated as distributions of individual actions.
Section 3 shows the corresponding results when societal responses are formulated as
averages of individual actions or of transformed actions when the action set is allowed
to be infinite dimensional. Section 4 concludes the paper. Relevant results on corre-
spondences are stated in Appendix A, and relegated proofs are provided in Appendix B.

2 Games with distributions as societal responses

A game with a continuum of players has two basic objects: an abstract atomless
probability space11 (I, I, λ) representing the space of player names, and a nonempty
compact metric space A representing a common action space. Each player i ∈ I
chooses his or her own action from the action set A. Let M(A) be the space of
probability measures on A endowed with the weak topology.12 M(A) represents the
collection of all societal responses which are distributions of possible plays in the
game. The space of players’ payoffs UA is then given by the space of all continuous
functions on the product space A × M(A) endowed with its sup-norm topology and
with B(UA), its Borel σ -algebra.

9 See, for example, Rauh (1997, 2003).
10 One can refer to Hildenbrand (1974) for the theory of correspondences in the finite-dimensional setting.
11 A probability space (I,I, λ) is atomless if for any S ∈ I with λ(S) > 0, there exists a S′ ∈ I, such
that S′ ⊆ S and 0 < λ(S′) < λ(S).
12 It is standard to forgo referring to this as the narrow topology, the topology of convergence in distrib-
ution, or the weak∗-topology, the formally correct designation. Throughout this paper, for any metrizable
topological space X, M(X) is used to denote the space of probability measures on X endowed with this
weak topology. It is known that if X is a compact metric space, the space M(X) is also a compact metric
space.
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Rationalizability in large games 461

A large game G is a measurable function from I to UA. And a strategy profile of G
is a measurable function f : I → A which specifies a strategy for each player. A Nash
equilibrium of a game G is a strategy profile f ∗ of G such that for λ-almost all i ∈ I ,

ui ( f ∗(i), λ f ∗−1) ≥ ui (a, λ f ∗−1)

for all a ∈ A, where ui ≡ G(i).
It is well known, see Khan and Sun (1995) for example, that if the action set A

of a large game is a countable compact metric space, there is a Nash equilibrium.
In order to develop general results on the existence of a Nash equilibrium (and the
characterization of point-rationalizability and rationalizability in the sequel) in a large
game with a general compact metric space as its action set, the notion of a saturated
probability space13 is used to formalize the space of player names. A probability
space is said to be almost countably generated, if its σ -algebra can be generated by
a countable number of subsets together with the null sets. The basic definition of a
saturated probability space is as follows.

Definition 1 A probability space (I, I, λ) is saturated if there is no subset S ∈ I with
λ(S) > 0, such that the restricted probability space (S, IS, λS) is almost countably
generated, where IS ≡ {S′ ∩ S : S′ ∈ I} and λS is the probability measure re-scaled
from the restriction of λ to IS .

From the above definition, it follows that saturated probability spaces must be atom-
less.14 Furthermore, the Lebesgue unit interval is not a saturated space, and any atom-
less Loeb probability space is saturated. The Lebesgue unit interval however can be
extended into a saturated probability space.15

The following antecedent result is on the existence of Nash equilibria in a large
game.16

Proposition 1 A game G : (I, I, λ) −→ UA has a Nash equilibrium if any of the
following two (sufficient) conditions hold: (1) A is countable; (2) (I, I,λ) is a saturated
probability space.

2.1 Point-rationalizability

In a large game G, when a Nash equilibrium is used as a prediction of the outcome,
it requires not only that each player knows the equilibrium of the game but also that

13 There are different terminologies related to the various equivalent definitions of a saturated probability
space: it is called “ℵ1-atomless” and “a probability space to have the saturation property” in Hoover
and Keisler (1984), “nowhere separable” in Džamonja and Kunen (1995), “a probability space with a set
of uncountable cardinals as its Maharam spectrum” in Fajardo and Keisler (2002),“super-atomless” in
Podczeck (2008), “nowhere countably generated” in Loeb and Sun (2009) and “rich” in Noguchi (2009).
14 See Podczeck (2008, Fact) for example.
15 See, for example, Kakutani (1944), Podczeck (2008) and Sun and Zhang (2009).
16 This result is summarized from Khan and Sun (1995, Theorem 10), Keisler and Sun (2009, Theorem 4.6),
Carmona and Podczeck (2009, Theorem 2) and Noguchi (2009, Theorem 2). Throughout the paper, results
previously available in the literature are called “Propositions.”
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each player correctly expects the societal response induced by the Nash equilibrium.
But in general, it is unclear whether such requirements are satisfied. The implications
of the assumption that rationality is common knowledge are now explored.

Unlike games with a finite number of players in which one could work on strategy
profiles directly, in large games, to create their forecasts, all players will use intuition
to access societal responses they face. Thus, a player is rational if the player uses only
those strategies which are best responses to some point or probabilistic belief about
societal responses. The remainder of this section starts with an analysis of reasonable
societal responses in G in which forecasts of all players are assumed to be points in
the set of all societal responses M(A). For any τ ∈ M(A) and any i ∈ I , let B(i, τ )

be player i’s best response when he or she faces τ . That is,

B(i, τ ) = arg max
a∈A

ui (a, τ ).

Then, facing a set of societal responses D ⊆ M(A) and being rational, player i will
only choose a strategy from B(i,D), where

B(i,D) =
⋃

τ∈D
B(i, τ )

is the image of D under B(i, ·). If all players forecast the same set of societal responses
D ⊆ M(A), then a strategy profile that satisfies rationality will be a measurable
selection chosen from the correspondence17 B(·,D) : I � A.

Let Pr : 2M(A) → 2M(A) be a mapping, such that for any subset D ⊆ M(A),

Pr(D) =
{
λ f −1 : f is a measurable selection of B(·,D)

}
.

It is clear that Pr(D) is the set of societal responses that are induced by all strategy
profiles that are rationally played with respect to D under point-beliefs when all players
are rational. To show Pr(D) is well defined, one needs to show that the measurable
selection of B(·,D) is not vacuous. Thus, it is necessary to check the measurability of
the correspondence B(·,D) for some subset D of M(A) to ensure that a measurable
selection exists. The following result provides a sufficient condition.18

Lemma 1 For any nonempty closed set D of M(A), B(·,D) : I � A is measurable
and has nonempty closed values.19

Beginning from the set of all action distributions M(A), the assumption that player
i ∈ I is rational and knows that the other players are rational implies that reasonable

17 A correspondence F from a set X to Y is a relation which assigns to each x ∈ X a subset F(x) of
Y . F : X � Y is used to distinguish a correspondence from a function from X to Y . One can refer to
Aliprantis and Border (2006, Chapters 17 and 18) for standard notions and results on correspondences. For
sake of reference, a brief summary of results on correspondences that are used in this paper is provided in
Appendix A.
18 Proofs of all lemmas are provided in Appendix B.
19 Hence, B(·, D) is also compact-valued since A is compact.
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forecasts of societal responses should be from the set of all distributions induced by
measurable selections from the correspondence B(·,M(A)). With the assumption of
common knowledge of rationality, by iterating this logic, one obtains the following
iterative elimination process:

Pr0(M(A)) = M(A)

Prt+1(M(A)) = Pr(Prt (M(A))), for all t ≥ 1.

This elimination process, which keeps iteratively eliminating strategies which are
never best responses under some point-belief until there is no unreasonable societal
response, is called Iterated Elimination of Never Best Responses (henceforth, IENBR)
under point-beliefs. Infinite repetition of this process20 generates the set P

e
G , where

P
e
G = ⋂∞

t=0 Prt (M(A)).

Definition 2 An action distribution τ ∈ M(A) survives IENBR under point-beliefs
in G, if it is an element of P

e
G .

Note that any societal response induced by any Nash equilibrium can never be elimi-
nated by this process of IENBR under point-beliefs. Thus, that P

e
G is not empty follows

from the fact that a Nash equilibrium exists in G, given that (1) or (2) in Proposition 1
holds. Besides nonemptiness, the next result shows that P

e
G , the set of all action dis-

tributions that survive IENBR under point-beliefs, has some additional properties.

Theorem 1 In a large game G : (I, I, λ) −→ UA, PGe is a nonempty, compact
and convex set if either of the following two conditions hold: (1) A is countable;
(2) (I, I,λ) is a saturated probability space.

Proof Suppose (1) or (2) holds. Let {Ft } be a sequence of correspondences such that
Ft : I � A, t ≥ 0 is given by

F0(i) = A, for all i ∈ I

Ft (i) = B
(

i, Prt−1(M(A))
)

, for all i ∈ I, if t ≥ 1,

where

Prt (M(A)) = {λ f −1 : f is a measurable selection of Ft }.

Fix i ∈ I . By Berge’s maximum theorem, see, for example, Aliprantis and Border
(2006, Theorem 17.31), the joint continuity of ui on A × M(A) implies that B(i, ·)
is upper hemicontinuous and compact-valued on M(A). Thus, by Proposition 2 (P2)
in Appendix A, B(i,M(A)) is a compact metric space because both A and M(A)

are compact metric spaces. By Lemma 1, F1 is measurable, nonempty-valued and
compact-valued. By induction over t , together with Proposition 4 in Appendix A,

20 This idea is referred to as an “eductive process” in Guesnerie (1992) and used to characterize a standard
market with a continuum of producers.
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Prt−1(M(A)) is also compact and convex for all t ≥ 1. Therefore, being the inter-
section of the nested family of nonempty compact convex sets {Prt (M(A))}, P

e
G is

nonempty, convex and compact. �
Although P

e
G , the set of all action distributions that survive IENBR under point-

beliefs, is a natural construct to represent rationality and common knowledge of ratio-
nality, point-rationalizability should be such that the set of point-rationalizable societal
responses is also a fixed point of Pr . However, it is unclear whether the outcome that
survives IENBR under point-beliefs satisfies this or not. Thus, to capture the epistemic
definition of point-rationalizability in G, a CURB set of societal responses under point-
beliefs is proposed. A set of societal responses D is a CURB set under point-beliefs
in G if it contains all action distributions that are induced by strategy profiles which
are selections from B(·,D). More formally, a set of action distributions D is said
to be CURB under point-beliefs in G if D ⊆ Pr(D). A CURB set of distributions
under point-beliefs D is tight if D = Pr(D). Thus, point-rationalizability in G can
be defined as follows.

Definition 3 The set of point-rationalizable action distributions of G, PG , is G’s max-
imal tight CURB set of action distributions under point-beliefs.

Bernheim (1984) shows that in a game with a finite number of players, when all play-
ers have continuous payoffs and compact strategy sets, the set of point-rationalizable
strategy profiles coincides with the set of strategy profiles that survive IENBR under
point-beliefs. To connect the point-rationalizability to the process of IENBR under
point-beliefs in large games, the next result establishes that P

e
G , the set of all soci-

etal responses that survive IENBR under point-beliefs, is equivalent to PG , the set
of point-rationalizable societal responses under some general conditions. Thus, under
those conditions, PG naturally has all properties that P

e
G has in a large game G.

Theorem 2 An action distribution of a large game G : (I, I, λ) −→ UA is point-
rationalizable if and only if it survives IENBR under point-beliefs, i.e., PG = P

e
G ,

provided one of the following two conditions holds: (1) A is countable; (2) (I, I, λ)

is saturated.

Proof Throughout this proof, the notations are as in the proof of Theorem 1. Suppose
(1) or (2) holds. It needs to be shown that P

e
G = Pr(Pe

G) and P
e
G is also the maximal

tight CURB set of distributions under point-beliefs.
First, it is shown that Pr(Pe

G) ⊆ P
e
G . Suppose that τ ∈ Pr(Pe

G). Then, τ ∈
Pr0(M(A)), and by definition, there exists a measurable selection f of B(·, P

e
G), such

that τ = λ f −1. As B(i, P
e
G) ⊆ Ft (i) for all t ≥ 0 and all i ∈ I, f is also a selection

of Ft . Consequently, τ ∈ Prt (M(A)) for all t ≥ 1. Therefore, Pr(Pe
G) ⊆ P

e
G .

The next step is to show that P
e
G ⊆ Pr(Pe

G). Let F : I � A be a correspondence

such that for all i ∈ I, F(i) = cl-Lim {Ft (i)}.21 Take any point τ from P
e
G . It is clear

21 For any sequence {xt } in a topological space, let cl-Lim {xt } be the set of its limit points. For any
sequence of sets {At } in a topology space, let cl-Lim {At } be the union of all such cl-Lim {xt } with xt ∈ At
for all t .
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that τ ∈ Prt (M(A)) for all t . Hence, there exists a sequence of functions { f t }, such
that f t is a measurable selection of Ft and λ( f t )−1 = τ , for all t ≥ 0. It is trivial that
{λ( f t )

−1} converges weakly to τ . According to Proposition 4 (P1) in Appendix A,
there exists a measurable selection f ∗ of cl-Lim { f t } such that τ = λ f ∗−1. Therefore,
τ ∈ DF where DF = {λ f −1 : f is a measurable selection of F}.

Thus, to establish that P
e
G ⊆ Pr(Pe

G), it suffices to show that DF ⊆ Pr(Pe
G), i.e.,

any measurable selection of F is also a measurable selection of B(·, P
e
G). One only

needs to show that F(i) ⊆ B(i, P
e
G) for all i ∈ I . Toward this end, fix i ∈ I and choose

any a ∈ F(i). According to the construction of F , one can find at ∈ Ft (i) for each
t ≥ 0, such that a is the limit point of {at }. That is to say, there is a sequence {τ t } such
that τ t ∈ Prt−1(M(A)) and at ∈ B(i, τ t ) for all t . Because P

e
G is the intersection of

a nested family of compact sets, the sequence {τ t } admits a limit point τ 0 ∈ P
e
G and a

subsequence {τ tk } converges weakly to τ 0. Furthermore, given that B(i, ·) is compact-
valued and upper hemicontinuous, one obtains a ∈ cl-Lim {B(i, τ tk )} ⊆ B(i, τ 0) ⊆
B(i, P

e
G). Hence, F(i) ⊆ B(i, P

e
G) for all i ∈ I .

It has now been shown that P
e
G is a tight CURB set of distributions under point-

beliefs of G (i.e., P
e
G = Pr(Pe

G)). The final step is to show that P
e
G is the maximal one.

Suppose not. Then there exists some D ⊆ M(A) for which Pr(D) = D, and some
number k, such that D ∩ Prk(M(A)) = D, i.e., D ∪ Prk(M(A)) = Prk(M(A)),
but D∩ Prk+1(M(A)) ⊂ D. Note that for any two sets, D1,D2 ⊆ M(A), Pr(D1)∪
Pr(D2) ⊆ Pr(D1 ∪ D2). So,

Pr(D) ∪ Prk+1(M(A)) ⊆ Pr(D ∪ Prk(M(A))) = Prk+1(M(A)).

Intersecting left and right sides with D, one obtains D ⊆ D ∩ Prk+1(M(A)), which
is a contradiction. This completes the proof. �
2.2 Rationalizability

Instead of being points in the set of all societal responses M(A), forecasts of any player
under probabilistic beliefs are probability distributions on M(A). Rationalizability in
this setting is defined and characterized in the remainder of this section.

Let M (M(A)) be the space of probability measures on M(A) endowed with the
weak topology. For any μ ∈ M (M(A)) and any i ∈ I , let B̂(i, μ) be player i’s
best response when he or she faces μ. That is, B̂(i, μ) = arg maxa∈AUi (a, μ), where
Ui (a, μ) = ∫

M(A)
ui (a, τ )dμ(τ) is the expected payoff of player i if a is played,

and μ is player i’s belief of societal responses. Thus, if player i facing the set of
societal responses D ⊆ M(A), being rational, player i will only choose a strategy
from B̂(i,M(D)) where

B̂(i,M(D)) =
⋃

μ∈M(D)

B̂(i, μ)

is the image of M(D)22 under B̂(i, ·).

22 Note that for any nonempty D ⊆ M(A), M(D) = {μ ∈ M (M(A)) : supp μ ⊆ D}.

123



466 H. Yu

Let P̂r : 2M(A) → 2M(A) be a mapping such that for any subset D ⊆ M(A),

P̂r(D) = {λ f̂ −1 : f̂ is a measurable selection of B̂(·,M(D))}.

Note that for any D ⊆ M(A), B(i,D) ⊆ B̂ (i,M(D)). Thus, when D is non-
empty and closed, P̂r(D) is nonempty, as Lemma 1 guarantees that there is a mea-
surable selection of B(·,D), and such a selection is also a measurable selection of
B̂ (·,M(D)).

Thus, a set of action distributions D is a CURB set in G if D ⊆ P̂r(D). A CURB
set of action distributions D is tight if D = P̂r(D). Similar to point-rationalizability,
the set of rationalizable distributions can be defined as the maximum fixed
point of P̂r .

Definition 4 The set of rationalizable action distributions of G, RG , is G’s maximal
tight CURB set of action distributions.

To characterize rationalizability in G, one can now consider R
e
G , the set of all

distributions that survive IENBR under probabilistic beliefs in G. Starting from all
societal responses M(A), by common knowledge of rationality under probabilistic
beliefs,

R
e
G =

∞⋂

t=0

P̂r
t
(M(A)),

where P̂r
0
(M(A)) = M(A) and P̂r

t+1
(M(A)) = P̂r(P̂r

t
(M(A))), for all t ≥ 1.

The last result in this section is now ready to be presented.

Theorem 3 In a large game G : (I, I, λ) −→ UA, the set of rationalizable action
distributions, RG, is nonempty, compact and convex, and it is the same as R

e
G , if one

of the following two conditions holds: (1) A is countable; (2) (I, I,λ) is a saturated
probability space.

Proof The proof is a modification of proofs of Theorems 1 and 2 above. Let {F̂ t } be
a sequence of correspondences such that F̂ t : I � A, t ≥ 0 is given by

F̂0(i) = A, for all i ∈ I

F̂ t (i) = B̂
(

i,M
(

P̂r
t−1

(M(A))
))

, for all i ∈ I, if t ≥ 1,

where

P̂r
t
(M(A)) = {λ f̂ −1 : f̂ is a measurable selection of F̂ t }.

For any i ∈ I , the continuity of ui on A × M(A) implies that Ui is continuous on
A × M (M(A)) by Proposition 7. Therefore, similar to the proof of Theorem 1, it
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is clear that R
e
G is nonempty, closed and convex. Furthermore, let F̂ : I � A be a

correspondence, such that for all i ∈ I ,

F̂(i) = cl-Lim {F̂ t (i)}.

By arguments similar to the proof of Theorem 2, one can show that R
e
G is also the

maximum tight CURB set of action distributions in G. The proof is now complete. �
The idea of finding tight CURB sets by iterating a mapping is implicit in the state-

ment and proof of Berge (1963, Theorem 8, p.113); also see the proof of Jungbauer and
Ritzberger (2011, Theorem 2) for a recent treatment.23 However, the main technical
challenges in the proofs of Theorems 1 to 3 are to identify the relevant convergence
concept for the elimination process and to ensure some measurable selection from best
responses in each step of elimination. This difficulty does not arise in the case of finite
player games considered in Bernheim (1984). Nor is the solution covered by the game
of a continuum of players considered in Jara-Moroni (2012) when the action space is
finite dimensional, and the societal responses are seen as a convex combinations of
actions. The following four remarks conclude this section.

Remark 1 An interesting situation arises when the set of rationalizable societal
response RG of a game G is a singleton. As shown in Proposition 1, there always
exists a Nash equilibrium in the games described in this section under (1) or (2). If
RG is a singleton, the rationalizable action distribution must be the equilibrium distri-
bution induced by its Nash equilibrium. This observation is also true for games in the
next section.

Remark 2 The framework in this section is in terms of distributions. The most relevant
mathematical tools revolve around distribution of a correspondence from an atomless
probability space to a metric space. Recall that action set A is assumed to be a compact
metric space in a game. When A is countable, the theory is developed in Khan and
Sun (1995). If A is uncountable, one has to impose the saturation property upon the
name space, so that one can use the distribution of correspondences in Keisler and
Sun (2009).

Remark 3 The compactness assumption of the action set is essential to characterize
rationalizability in this section as well as in that of Bernheim (1984) and Pearce
(1984). In games with a finite number of players and general Polish action spaces,
Arieli (2010) shows that the set of strategies which survive IENBR may not be the set
of rationalizable strategies, and that ω1 (the first uncountable ordinal) rounds might
be necessary to get to the CURB set.24 Thus, it is of interest to ask how one could
characterize rationalizability in a large game with general action space without the
assumption of compactness. It is possible that one can characterize rationalizability
in way similar to this section when the compactness of the action set is relaxed by
assuming instead that (a) the common action space is a complete metric space, and

23 The author thanks the referee for these references.
24 The author is thankful to the referee for pointing this out.
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that (b) each player is permitted to choose his or her actions from a compact subset of
this space.25 However, for a large game with a general Polish space as its action set,
it is unclear whether the set of rationalizable societal responses coincides with the set
of societal responses that survive IENBR. Future work may address this question.

Remark 4 In a large game, the set of point-rationalizable societal responses is con-
tained in the set of rationalizable societal responses. Even with finite actions, the
inclusion can be proper. This follows from Example 4 in Jara-Moroni (2012).

3 Games with averages as societal responses

It is also of interest to consider large games where societal responses are formulated as
averages of individual responses or transformed individual responses. This section is
devoted to discussing both point-rationalizability and rationalizability in such settings,
in particular, games with an infinite set of strategies which may not be expressed as a
linear combination of a finite number of elements.26 In Sect. 3.1, societal responses are
averages of individual responses, whereas in Sect. 3.2, societal responses are averages
of transformed individual responses. Throughout this section, the space of players is
still assumed to be an atomless probability space (I, I, λ).

3.1 Point-rationalizable and rationalizable averages of actions

Note that any compact metric space can be isometrically embedded in a separable
Banach space.27 Thus, let the common action set A be a nonempty weakly compact
set in a separable (infinite-dimensional) Banach space28 (X, ‖ · ‖). Let con (A) be the
closed convex hull of A. As A is weakly compact, con (A) is weakly compact.29 Let
CA be the space of weakly continuous real-valued functions on A × con (A) endowed
with the sup-norm topology with its Borel σ -algebra B(CA).

A large game GC is a measurable function from I to CA. And a strategy profile of
such a game is a measurable function f : I → A. A Nash equilibrium of a game GC

is a f ∗ : I → A, such that for λ-almost all i ∈ I ,

25 See Yu and Zhang (2007) for details of such a large game setting.
26 Note that in Jara-Moroni (2012), the analysis for rationalizability is given for societal responses formu-
lated as averages but with the action set being a compact subset of a finite-dimensional space.
27 In fact, for a compact metric space X , this separable Banach space is C(X), the space of continuous
real-valued functions on X with the sup-norm topology with its Borel σ -algebra B(C(X)); see Aliprantis
and Border (2006, Lemma 3.23 and Theorem 9.14) for example.
28 Measure spaces of agents and infinite-dimensional Banach spaces are widely used in the economics
literature; see Rustichini and Yannelis (1991) for the existence of Nash equilibria of atomless games with
infinite-dimensional action spaces and for the existence of competitive equilibria in models with an atomless
measure space of agents and an infinite-dimensional commodity space, where the algebraic dimension of
L∞(E) is bigger than the algebraic dimension of the underlying strategy/commodity space for each non-null
subset E of agents; also see Yannelis (2009) and Khan (2012) for recent developments.
29 This is implied by the Krein-Smulian Theorem; see Aliprantis and Border (2006, Theorem 6.35).

123



Rationalizability in large games 469

ui ( f ∗(i),
∫

I

f ∗dλ) ≥ ui (a,

∫

I

f ∗dλ) for all a ∈ A,

where ui ≡ GC (i) and
∫

I f ∗dλ is the Bochner integral of f ∗ over I .
The following lemma is on the existence of Nash equilibria in GC .

Lemma 2 A large game GC : (I, I, λ) −→ CA has a Nash equilibrium if one of the
following two conditions holds: (1) A is countable; (2) (I, I,λ) is saturated.

To discuss point-rationalizability and rationalizability in such a setting, note that a
societal response in a game is now the Bochner integral of a strategy profile over I . Let
A ≡ con (A), the set of all societal responses. According to rationality, for any ι ∈ A
with which player i ∈ I perceives as a societal response under some point-beliefs,
player i will only choose action from B(i, ι) where

B(i, ι) = arg max
a∈A

ui (a, ι).

And, for any μ ∈ M(A) with which player i perceives as a probability distribution
over societal responses, player i will only choose action from B̂(i, μ) where

B̂(i, μ) = arg max
a∈A

∫

A
ui (a, ι)dμ(ι).

Thus, the elimination processes under point-beliefs and probabilistic beliefs are
mappings Pr : 2A → 2A and P̂r : 2A → 2A, respectively, such that for any subset
X ⊆ A,

Pr(X) =
⎧
⎨

⎩

∫

I

f di : f is a measurable selection of B(·, X)

⎫
⎬

⎭ ,

and

P̂r(X) =
⎧
⎨

⎩

∫

I

f̂ di : f̂ is a measurable selection of B̂(·,M(X))

⎫
⎬

⎭ ,

where B(i, X) is the image of X under B(i, ·) and B̂(i,M(X)) is the image of M(X)

under B̂(i, ·) for any i ∈ I .
Now consider iterative elimination of societal responses from A. Eliminating from

all societal responses A, by common knowledge of rationality, in each step, players
would only use forecasts based upon those averages that are generated from best
responses to players’ forecasts in turn based upon the set of averages in the previous
step, under both point-beliefs and probabilistic beliefs. Formally,
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Pr0(A) = A, and Prt+1(A) = Pr(Prt (A)), for all t ≥ 1.

P̂r
0
(A) = A, and P̂r

t+1
(A) = P̂r(P̂r t (A)), for all t ≥ 1.

As a result, in GC , the sets of all societal responses that survive IENBR, under point-
beliefs and probabilistic beliefs, respectively, are

P
e
GC =

∞⋂

t=0

Prt (A) and R
e
GC =

∞⋂

t=0

P̂r
t
(A).

Similarly, one can consider the fixed point property of these elimination processes to
define point-rationalizability and rationalizability. A set of averages X ⊆ A is a CURB
set if X ⊆ P̂r(X) (or a CURB set under point-beliefs if X ⊆ Pr(X).) A CURB set
of averages X is tight if X = P̂r(X). With these preparations, point-rationalizability
and rationalizability in GC are defined naturally as below.

Definition 5 In a large game GC , the set of point-rationalizable averages, PGC , is
the maximal tight CURB set of averages under point-beliefs of GC , and the set of
rationalizable averages, RGC , is the maximal tight CURB set of averages of GC .

The next theorem establishes the equivalence between rationalizability and the
outcome of IENBR in a large game with averages of individual actions as societal
responses where the action set is allowed to be infinite dimensional.

Theorem 4 In a large game GC : (I, I, λ) −→ CA, the set of point-rationalizable
averages PGC = P

e
GC , the set of rationalizable averages RGC = R

e
GC , and these sets

are nonempty, convex and weakly compact, if one of the following two conditions
holds: (1) A is countable; (2) (I, I,λ) is saturated.

The proof of Theorem 4 is similar to proofs of Theorems 1 to 3, and thus, it is
relegated to Appendix B.

Now, note that norm continuous functions on norm compact sets are weakly con-
tinuous too. Together with the fact that if A is norm compact, con (A) is also norm
compact, one can consider the space of payoffs as CN

A , the space of norm continuous
real-valued functions on A × con (A) endowed with the sup-norm topology with its
Borel σ -algebra by this topology. Then, the following result is a direct corollary of
Lemma 2 and Theorem 4.

Corollary 1 Let a large game be a measurable function GC : (I, I, λ) −→ CN
A . In

GC , a Nash equilibrium exits, the set of point-rationalizable averages PGC = P
e
GC , and

the set of rationalizable averages RGC = R
e
GC , if one of the following two conditions

hold: (1) A is countable; (2) (I, I,λ) is saturated. Moreover, under such conditions,
PGC and RGC are nonempty, convex and norm compact.

One could also address point-rationalizability and rationalizability in large games
under some alternative definitions of measurability and integrability of averages of
individual responses. Consider the dual X∗ of a separable Banach space X . Let the
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common action set A be a weak∗ compact subset of X∗ and B the weak∗ closed
convex hull of A. Note that B is still weak∗ compact. Let CB

A
∗

be the space of weak∗
continuous real-valued functions on A × B, endowed with the sup-norm topology and
its Borel σ -algebra B(CB

A
∗
) generated by this topology. Thus, a large game is simply a

measurable function from (I, I, λ) to CB
A

∗
. Nash equilibria, the process of IENBR and

rationalizable averages can be defined as earlier in GC but with all integrals interpreted
as Gel′fand integrals. Under the condition that (1) A is countable, or (2) (I, I,λ) is a
saturated probability space, one can show that a Nash equilibrium always exists, the
set of point-rationalizable averages is equivalent to the set of averages that survive
IENBR under point-beliefs and the set of rationalizable averages is the same as the set
of averages that survive IENBR. Furthermore, sets of point-rationalizable averages
and rationalizable averages are non-empty, compact and convex. All one needs is
Proposition 6. Note that Corollary 1 also covers the case of the norm topology in X∗,
provided that the Bochner integral is used.

3.2 Point-rationalizable and rationalizable transformed summary statistics

There are some games in the literature in which societal responses are averages of
transformed individual responses.30 Let the common action set A be a nonempty
compact metric space. As before, a strategy profile is a measurable function f : I →
A, which specifies a strategy for each player. Let s be a continuous function from A to
the n-dimensional Euclidean space R

n , and C the range of s. The continuity of s and
compactness of A imply that C is also compact. Let � be the convex hull of C . Thus,
for any given strategy profile f , let σ f = ∫

I (s ◦ f )dλ ∈ �. The mean σ f of s ◦ f
is a transformed summary statistics of the society which the players can observe. Let
P denote the space of all continuous payoff functions on A × � with the sup-norm.
A large game31 is thus a measurable function Γ : I → P , and its equilibrium is a
strategy profile f ∗ : I → A, such that each player plays a best response against the
induced vector of summary statistics, i.e.,

Γ (i)( f ∗(i), σ f ∗) ≥ Γ (i)(a, σ f ∗)

for λ-almost all i ∈ I and a ∈ A.
Point-rationalizability and rationalizability in such a game Γ can be formulated as

before with some subtle technical points. Focusing on point-rationalizability, note that
as now societal responses in Γ are transformed summary statistics, the elimination

30 See, Rauh (1997), for example, where the context of monopolistic competitions is considered. It is
assumed there that the players’ payoffs depend on their own action and the transformed summary statistics
of the aggregate strategy profiles in terms of the moments of the distributions of players’ actions. The
existence of Nash equilibria has been shown in Rauh (2003) and Yu and Zhu (2005) for such games where
societal responses are formulated as transformed summary statistics.
31 The model used to characterize rationalizability in Jara-Moroni (2012) is a special case of the model
considered here. To cover the case considered in Jara-Moroni (2012), one can take A as a subset of R

n and
s as the identity map.
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process under rationality and common knowledge of rationality under point-beliefs is
a mapping Pr : 2� → 2� so that for any subset X ∈ �,

Pr(X) =
⎧
⎨

⎩

∫

I

s ◦ f (i)dλ, f is a measurable selection of B(·, X)

⎫
⎬

⎭ .

Because s : A → C is continuous, the correspondence s−1 : C � A, such that
s−1(c) = {a ∈ A : s(a) = c}, is a weakly measurable correspondence with non-
empty closed values from the measurable space C with Borel σ -algebra to the com-
pact metric space A. By the standard integration theory of correspondences in the
finite-dimensional setting and the Kuratowski–Ryll–Nardzewski selection theorem,
which is reported as Proposition 3 (P2) in Appendix A, one could characterize point-
rationalizability in Γ as in a large game GC that is studied earlier. Similarly, one can
also formalize rationalizability in Γ .

All these characterizations can be carried out to a large game with summary statistics
in infinite-dimensional Banach space instead of n-dimensional Euclidean space R

n ,
provided that (1) the player space is modeled by a saturated probability space, or (2) C is
countable. Moreover, the existence of Nash equilibria in the corresponding framework
can be obtained as well. This is guaranteed by the properties of the integration of
correspondences in infinite-dimensional spaces together with the Kuratowski–Ryll–
Nardzewski selection theorem. In fact, if the player space inΓ is modeled by a saturated
probability space, one could also rely on the model that is discussed in Sect. 2 directly:
in any game Γ , all players’ payoffs depend continuously on summary statistics, and
therefore, they also depend continuously on the distribution of actions in the weak
topology.32 To see this, let G(i)(a, τ ) = Γ (i)(a,

∫
A sdτ) for all a ∈ A, τ ∈ M(A)

and i ∈ I . One can check that G is a large game as defined in Sect. 2, so that the
characterization of rationalizability in G is well defined. Therefore, as in Γ , players’s
forecasts are based on summary statistics, and one can then take the equivalent class
of rationalizable action distributions in G with respect to

∫
A sdτ to get rationalizable

summary statistics in Γ .

4 Conclusions

In this paper, point-rationalizability and rationalizability have been examined in several
different settings emphasized in the theory of large games. In all cases, the set of
rationalizable societal responses which is the maximum tight CURB set has been
defined, respectively. In addition, it is shown to be equivalent to the set of all societal
responses which survive IENBR of the same game.

The concept of rationalizability can be justified by the epistemic assumption that it is
common knowledge that only best responses are ever chosen. Thus, a natural question
to ask is under what general conditions one can relate equilibrium to rationalizability,
so that one can provide a plausible justification for reaching equilibria. Moving beyond

32 The author is thankful to the referee for this observation.
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the questions of analysis, this is to ask how to apply the notion of rationalizability, as in
Guesnerie and Jara-Moroni (2011), to the equilibrium outcomes in a broad spectrum
of situations: monopolistic competition, as in Rauh (1997), financial markets, as in
Angeletos et al. (2007), restaurant pricing and the economics of “social influences,”
as in Karni and Levin (1994), and many other scenarios that deal with a continuum of
players.

The concepts that are developed in this paper are characterizations of “correlated”
rationalizability.33 Thus, another question of interest is whether one could also char-
acterize independent rationalizability. This is a subtle question due to the fact that
when one works with a process with a continuum of independent random variables,
the sample realizations as well as the process itself are usually not measurable.34 It is
hoped that these questions can be addressed in subsequent work.

Appendix A

The first two propositions are on correspondences, whose details can be found in
Aliprantis and Border (2006, Chapters 17 and 18).

Let S and X be topological spaces and F a correspondence from S to X . F : S � X
has closed values or is closed-valued if F(s) is a closed set for each s ∈ S. The
terms compact-valued, convex-valued and nonempty-valued are similarly defined. Let
Fl(E) ≡ {s ∈ S : F(s)

⋂
E �= ∅} for any subset E of X . If Fl(C) is closed for each

closed subset C of Y, F : S � X is upper hemicontinuous. F has closed graph is its
graph {(s, x) ∈ S × Y : x ∈ F(s)} is a closed subset of S × X .

Proposition 2 P1: A correspondence with compact Hausdorff range space has
closed graph if and only if it is upper hemicontinuous and closed-valued.

P2: The image of a compact set under a compact-valued upper hemicontinuous
correspondence is compact.

Let (S, �) be a measurable space and X a topological space. A correspondence
F : S � X is said to be measurable, if for each closed subset C of X, Fl(C) ∈ �,
then F is said to be measurable; F is said to be weakly measurable, if for each open
subset O of X , Fl(O) ∈ �. A function f is said to be a selection of F if f (s) ∈ F(s)
for all s ∈ S. With this notation, the next proposition is a collection of measurability
results of correspondence and its selections.

Proposition 3 Let (S, �) be a measurable space and X a Polish space. Let F, F1, F2
be correspondences from S to X.

P1: If F has nonempty compact values, then F is measurable if and only if it is weakly
measurable.

P2 (Kuratowski–Ryll–Nardzewski Selection Theorem): If F is weakly measurable
and has nonempty closed values, then it admits a measurable selection.

P3: F has closed graph if and only if it is upper hemicontinuous and closed-valued.

33 See Brandenburger and Dekel (1987) for the discussion on correlated and independent rationalizability.
34 See Sun (2006) and its references.
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P4: If F1 and F2 are closed-valued and measurable, then their intersection corre-
spondence G, where G is such that for all s ∈ S, G(s) = F1(s)

⋂
F2(s), is

measurable and closed-valued.

Let X be a Polish space and (	,A, P) an atomless probability space. A measurable
function f : 	 → X is a measurable selection of a correspondence F : 	 � X if
f (ω) ∈ F(ω) for P-almost all ω ∈ 	. The next proposition is culled from the
corresponding results on the distribution of correspondences in Khan and Sun (1995)
and Keisler and Sun (2009).

Proposition 4 Let X be a compact metric space and (	,A, P) an atomless proba-
bility space. Then the following results are valid if, in addition, (1) X is a countable,
or (2) (	,A, P) is a saturated probability space.

P1: Let { fn}be a sequence of measurable functions from	 to X, such that τn = P fn
−1

converges weakly to τ ∈ M(X) as n → ∞. Let D(ω) = cl-Lim { fn(ω)}. Then,
D(ω) is nonempty for almost all ω, and there exists a measurable selection f of
D, such that P f −1 = τ .

P2: For any correspondence F from (	,A, P) to X, DF = {P f −1 : f is a mea-
surable selection of F} is convex.

P3: For any compact-valued correspondence F from (	,A, P) to X, DF is compact.

The next two propositions are modified from Khan and Sun (1996), Sun (1997),
Podczeck (2008) and Sun and Yannelis (2008). Proposition 5 is based on Bochner
integral, whereas Proposition 6 is based on the Gel′fand integral. See Yannelis (1991)
and his references for an earlier treatment on the integration of correspondences over
atomless probability spaces.

Let (	,A, P) be a finite measure space and X a Banach space. If f : 	 → X is
a Bochner integrable function,

∫
E f d P is the Bochner integral of f over E then for

E ∈ F . If F : 	 � X is a correspondence, the Bochner integral of F is, denoted by∫
	

Fd P ,

∫

T

Fd P =
⎧
⎨

⎩

∫

I

f d P : f is a Bochner integrable selection of F

⎫
⎬

⎭ .

The next proposition deals with the Bochner integration of correspondences.

Proposition 5 Let (	,A, P) be an atomless probability space and X a separable
Banach space. The following results are valid if, either (1) X is a countable or (2)
(	,A, P) is a saturated probability space,

P1: Let { fn} be a sequence of measurable functions from 	 to X, such that
∫

fnd P
converges to ι as n → ∞. Let D(ω) = w-cl-Lim { fn(ω)}. Then, D(ω) is non-
empty for almost all ω, and there exists a measurable selection f of D such that∫

f d P = ι.
P2: For any correspondence F from (	,A, P) into X,

∫
	

Fd P is convex.
P3: For any integrably bounded, weakly compact-valued correspondence F from

(	,A, P) to X,
∫
	

Fd P is weakly compact.
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P4: Let Y be a metric space and F a correspondence from 	 × Y to X, such that for
each fixed y ∈ Y, F(·, y) is a measurable, weakly compact-valued correspon-
dence from 	 to X. If F(ω, y) is upper hemicontinuous on Y for each fixed i ,
then

∫
	

F(ω, y)d P is weakly upper hemicontinuous on Y .

Let (	,A, P)be an atomless probability space and X the dual of a separable Banach
space. If f : 	 → X is a Gel′fand integrable function,

∫
E f d P is the Gel′fand integral

of f over E then for E ∈ F . If F : 	 � X is a correspondence, the Gel′ fand integral
of F is, denoted by

∫
	

Fd P ,

∫

T

Fd P =
⎧
⎨

⎩

∫

I

f d P : f is a Gel′fand integrable selection of F

⎫
⎬

⎭ .

The last proposition in this appendix is on the Gel′fand integration of correspondences.

Proposition 6 Let (	,A, P) be an atomless probability space and X the dual of a
separable Banach space. The following results are valid if, either (1) X is a countable
or (2) (	,A, P) is a saturated probability space.

P1: Let { fn} be a sequence of measurable functions from 	 to X, such that
∫

fnd P
converges to ι as n → ∞. Let D(ω) = w∗-cl-Lim { fn(ω)}. Then, D(ω) is
nonempty for almost all ω, and there exists a measurable selection f of D, such
that

∫
f d P = ι.

P2: For any correspondence F from (	,A, P) into X,
∫
	

Fd P is convex.
P3: For any integrably bounded, weak* compact-valued correspondence F from

(	,A, P) to X,
∫
	

Fd P is weak* compact.
P4: Let Y be a metric space and F a correspondence from 	 × Y to X, such that for

any fixed y ∈ Y, F(·, y) is a measurable, weak* compact-valued correspondence
from 	 to X. If F(ω, y) is upper hemicontinuous on Y for each fixed i , then∫
	

F(ω, y)d P is weakly upper hemicontinuous on Y .35

Appendix B

One can now prove the following lemma which is essential in the proof of Lemma 1.

Lemma 3 Let X, Y be two nonempty compact metric spaces. Let F be a measur-
able correspondence with nonempty closed values from an atomless probability space
(I, I, λ) to Y , and for each i ∈ I consider a upper hemicontinuous and closed-valued
correspondence M(i, ·) : Y � X. Let G : I � Y ×X be such that G(i) is the graph of
M(i, ·) for all i ∈ I . If G is measurable, then the correspondence M(·, F(·)) : I � X
is measurable and closed-valued.

35 Part (1) of Propositions 5 and 6 is shown in Khan and Sun (1996). Part (2) of Propositions 5 and 6 is
shown for the case of atomless Loeb measures in Sun (1997). Based on some advanced functional analytic
methods, Podczeck (2008) proves P2 and P3 in Part (2) of Propositions 5 and 6. As shown in Sun and
Yannelis (2008)), Part (2) of Propositions 5 and 6 follows easily from the corresponding properties for
integration in the case of Loeb spaces in Sun (1997) and for distribution in the case of saturated spaces in
Keisler and Sun (2009).
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Proof Let φ : I � Y × X be a correspondence, such that φ(i) = F(i) × X for all
i ∈ I . For any open set O of Y × X , consider φl(O) = {i ∈ I : φ(i)

⋂
O �= ∅}.

Let PX and PY be the projection mappings from Y × X to X and Y , respectively. If
PX (O) �= X, φl(O) = ∅ ∈ I. If PX (O) = X, φl(O) = {i ∈ I : F(i)

⋂
PY (O) �=

∅} = Fl(PY (O)) ∈ I too, because F is measurable and PY is continuous. Thus,
φ is weakly measurable. By Proposition 3 (P1) in Appendix A, φ is also measurable
because by construction φ has nonempty compact values. Let φG be such that φG(i) =
φ(i)

⋂
G(i) for all i ∈ I . For any fixed i ∈ I , since M(i, ·) is upper hemicontinuous

and closed-valued, G(i) is closed by Proposition 3 (P3). Therefore, φG is closed-
valued and measurable. Furthermore, note that by construction of φG, M(i, S(i)) =
PX (φG(i)) for all i ∈ I . Therefore, the continuity of PX implies that M(·, S(·)) : I �
X is measurable and closed-valued. �

One can prove Lemma 1 now.

Proof of Lemma 1 For any fixed nonempty closed set D of M(A), let D(i) = D for
all i ∈ I . It is clear that D(·) is a measurable and closed-valued correspondence. By
Berge’s maximum theorem, for each i ∈ I , the joint continuity of ui on A × M(A)

implies that B(i, ·) is upper hemicontinuous and has nonempty compact values on
M(A). Thus, by Lemma 3, in order to show that B(·,D) is measurable and closed-
valued, it suffices to show G : I � M(A)× A is measurable where G(i) is the graph
of B(i, ·) for all i ∈ I .

Toward this end, for any given closed subset C of A × M(A), let UC = { f ∈
UA : there exists(a, τ ) ∈ C, such that, f (a, τ ) ≥ f (a′, τ ), for all a′ ∈ A}. It is
clear that G−1(UC ) = Gl(C) where Gl(C) = {i ∈ I : C ∩ G(i) �= ∅}. Thus, given
G is measurable, it is sufficient to prove that UC is closed. Let { f n} be a sequence
in UC that converges uniformly to f ∗. As the uniform limit of a net of continuous
real functions is still continuous (see, e.g., Aliprantis and Border (2006, Theorem
2.65)), f ∗ ∈ UA. So, for any ε > 0, the continuity of f ∗ implies that for any
convergent sequence {(an, τ n)} → (a∗, τ ∗), there exists some N1 ∈ N such that
for any n > N1, | f ∗(an, τ n) − f ∗(a∗, τ ∗)| < ε/2. The uniform convergence of
gn implies that there exists some N2 ∈ N, such that for any n > N2, and for all
(a, τ ) ∈ A × UA, | f n(a, τ ) − f ∗(a, τ )| < ε/2. Therefore, for any n > N , where
N = max{N1, N2},

| f n(an, τ n) − f ∗(a∗, τ ∗)| ≤ | f n(an, τ n) − f ∗(an, τ n)|
+| f ∗(an, τ n) − f ∗(a∗, τ ∗)| < ε.

Thus, f n(an, τ n) → f ∗(a∗, τ ∗). I now show that there exists some element (a, τ ) in
C such that f ∗(a, τ ) ≥ f ∗(a′, τ ), for all a′ ∈ A. For each n ∈ N, since f n ∈ UC ,
there exists (an, τ n) ∈ C , such that

f n(an, τ n) ≥ f n(a′, τ n), for all a′ ∈ A.

Furthermore, the closeness of C implies that there is a subsequence of (an, τ n) that
converges to some (â, τ̂ ) ∈ C . Without loss of generality, let the subsequence be
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the sequence itself. It is now clear that (â, τ̂ ) satisfies f ∗(â, τ̂ ) ≥ f ∗(a′, τ̂ ) for any
a′ ∈ A. Hence, f ∗ ∈ UC . The proof is complete. �

The next result is used in the proof of Theorem 3 to characterize expected payoffs
under probabilistic beliefs. One can check that it holds, along the lines of the proof of
Jara-Moroni (2012, Lemma 3.7).

Proposition 7 Let Y and X be compact metric spaces and u a continuous real-valued
function on Y × X. Let U : Y × M(X) be a function such that for any (y, μ) ∈
Y × M(X),

U (y, μ) =
∫

X

u(y, x)dμ.

U is continuous on Y × M(X).

Proofs of Lemma 2 and Theorem 4 are as follows.

Proof of Lemma 2 Let φ : con (A) � con (A) be the Bochner integral correspon-
dence such that for ι ∈ con (A), φ(ι) = ∫

I B(i, ι)dλ. By Berge’s maximum theorem
and Proposition 2 (P2) in Appendix A, φ has nonempty values. Then, together with
the convexity and upper hemicontinuity results in Proposition 5 in Appendix A, one
can appeal to the Fan-Glicksberg fixed point theorem to guarantee the existence of a
Nash equilibrium. �
Proof of Theorem 4 First, note that one can show that for any closed subset X ⊆
A, B(·, X) is measurable and has nonempty closed values by similar arguments in the
proof of Lemma 1. Let {Ft } be a sequence of correspondences, such that Ft : I �
A, t ≥ 0 is given by

F0(i) = A, for all i ∈ I and Ft (i) = B
(

i, Prt−1(A)
)

, for all i ∈ I, if t ≥ 1,

where Prt (A) = ∫
I Ft dλ. Let F : I � A be a correspondence, such that for all

i ∈ I, F(i) = cl-Lim {Ft (i)}. Then, one can now appeal to Proposition 5 (P1–P3) in
Appendix A to complete the proof by arguments similar to proofs of Theorems 1, 2
and 3. �
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