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Abstract In many online systems, individuals provide services for each other; the
recipient of the service obtains a benefit but the provider of the service incurs a cost. If
benefit exceeds cost, provision of the service increases social welfare and should there-
fore be encouraged—but the individuals providing the service gain no (immediate)
benefit from providing the service and hence have an incentive to withhold service.
Hence, there is scope for designing a protocol that improves welfare by encouraging
exchange. To operate successfully within the confines of the online environment, such
a protocol should be distributed, robust, and consistent with individual incentives. This
paper proposes and analyzes protocols that rely solely on the exchange of fiat money
or fokens. The analysis has much in common with work on search models of money
but the requirements of the environment also lead to many differences from previ-
ous analyses—and some surprises; in particular, existence of equilibrium becomes a
thorny problem and the optimal quantity of money is different.

Keywords Online exchange - Token exchange

JEL Classification D51 - E40

1 Introduction

This paper is motivated by the problem of online exchange of files (or data or
services). In typical systems that serve this purpose—Napster, now defunct, is the
most familiar example but there are many in current operation, including Gnutella
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212 M. van der Schaar et al.

and Kazaa (file sharing), Seti@home (computational assistance), Slashdot and Yahoo
Answers (answers to queries)—a single interaction involves an agent who wants a
file (or data or service) and an agent who can provide it. The former benefits from
obtaining the file but the latter bears the (often non-trivial) cost of providing it and so
has an incentive to free-ride.! Assuming that benefit exceeds the cost, provision of the
service increases social welfare and should therefore be encouraged—but how?

This problem is a particular instance of trade in the absence of a double coincidence
of wants, which has motivated a large literature on search models of money. Indeed,
we shall formalize our problem in the same terms, and the “solution” we develop is
for a (benevolent) designer to institute a system that relies on fiat money or tokens
(we use the terms interchangeably), to introduce a quantity of tokens into the system,
and to recommend strategies to the participants for requesting and providing service.
Because our agents are self-interested, the designer must recommend strategies that
constitute an equilibrium—>but our environment also imposes other constraints on the
designer: the system must be anonymous and distributed, must take account of the
fact that agents meet only electronically (and not face-to-face), that files and tokens
are indivisible, that the designer cannot know the precise parameters of the population
and, perhaps most importantly, that the designer cannot constrain the number of tokens
that agents hold.>3

This paper asks how much a designer can accomplish, given these constraints,
by judicious choice of the protocol—the quantity of tokens and the recommended
strategies. To answer this question, we characterize equilibrium protocols and among
these, the ones that are robust to small perturbations of the population parameters
(the designer’s slight misperceptions of these parameters); we prove that robust equi-
librium protocols exist; we provide bounds for the efficiency of robust equilibrium
protocols; we show that the “optimal quantity of money” in our setting is different
than in other settings considered in the literature; we provide an effective procedure
for choosing a robust equilibrium protocol whose efficiency is at least good (if not
optimal); and we provide numerical simulations to illustrate some of the theorems and
also to demonstrate that design matters: a great deal of efficiency may be lost if the
designer chooses the “wrong” protocol.

As in the familiar search models of money, our environment is populated by a
continuum of agents each of whom is initially endowed with a unique file that can

1 Empirical studies show that this free-riding problem can be quite severe: in the Gnutella system for
instance, almost 70 % of users share no files at all (Adar and Hubeman 2000).

21t might be useful to note that none of the systems mentioned above involve a central authority or central
monitoring agency. Napster, for instance, merely maintained many partial lists (distributed across many
servers) of music files available and contact information for subscribers who had these files; users seeking
files could simply search these lists and then contact the file-holder directly. In practice, the absence of a
central agency is crucial, since it could not handle the volume of traffic that would be generated and would
be exceedingly vulnerable to attack. Hence, a distributed system is a sine qua non.

3 The reader might wonder how agents who do not meet in person can exchange tokens at all, since they can
only exchange electronic files, and electronic files would seem to be easily duplicated. In fact, however, there
are practicable, secure, and private procedures for online token exchange, utilizing hardware or software
or both; see Buttyan and Hubaux (2001), Chandrakumar et al. (2003) and Ciuffoletti (2010) for instance.
Similar procedures can also serve as escrow accounts to assure that service that is promised is actually
provided and that payment that is promised is actually made.
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be duplicated and provided to others.* In each period, a fraction of the population
is matched; one member of each match—the client—must decide whether to request
service (provision of a file or forwarding of a packet) and the other—the server—must
decide whether to provide the service (if requested). The client who receives the service
derives a benefit, the server who provides the service incurs a cost. To simplify the
analysis, we assume here that, except for the uniqueness of the files they possess, all
agents are identical and that all files are equally valuable to receive and equally costly
to provide. (We discuss extensions in the Conclusion.) We assume benefit exceeds
cost, so that social welfare is increased when the service is provided, but that cost
is strictly positive, so that the server has a disincentive to provide it. The designer
supplies a supply of tokens and recommends strategies (circumstances under which
service should be requested or provided); together these constitute a protocol. We
assume that the price of service is fixed at one token; this restriction seems natural
in our environment and is made in much of the search literature; see also below and
the Conclusion. We differ from much of the literature in three ways suggested by the
motivation discussed. First, we do not impose an exogenous upper bound on money
holdings: agents can store as much money as they wish. Second, we require that the
protocol should induce an equilibrium (i.e., that the recommended strategies are best
replies in the (unique) steady-state distribution) that is robust to small perturbations
of the population parameters. Third, we allow the designer to control both the money
supply and the price. As we shall show, each of these has significant implications.
Leaving aside degenerate protocols in which there is no trade, all robust equilibrium
protocols are Markov (not history dependent), symmetric (the population plays a single
pure strategy) and have a particularly simple form: clients request service whenever
their token holding is above zero; servers provide service when their token holding is at
or below a threshold K and do not provide service when the token holding is above K.
We prove that robust equilibria exist but the absence of an exogenous upper holdings
makes the proof surprisingly hard. (See Sect. 6). Having shown that robust equilib-
ria exist we turn to our original question: which equilibrium protocols are the most
efficient? We have shown that we can restrict attention to threshold strategies; among
protocols that employ the threshold K the one that would be most efficient if agents
were compliant has token supply K /2. However, these protocols need not be equilibria
and the most efficient protocols may have token supplies different from K /2; K /2
need not be the optimal quantity of money. We go on to provide estimates for efficiency
of various protocols and an effective procedure for the designer to choose a “good”—if
not optimal—protocol. Simulations illustrate these results and some related points.
Following a discussion of the literature below, the remainder of the paper is orga-
nized in the following way. Section 3 introduces the model and defines strategies,
the steady-state value function, best responses, equilibrium, and robust equilibrium.
Section 4 discusses the nature of equilibrium and robust equilibrium and estab-
lishes existence of robust equilibrium. Simulations illustrate the nature of equilibrium.
Section 5 discusses efficiency of protocols, shows that almost full efficiency is obtain-

4 In the real systems we have in mind, the population is in the tens of thousands or hundreds of thousands
50 a continuum model seems a reasonable approximation.
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able by an equilibrium protocol if agents are sufficiently patient or the benefit/cost
ratio is sufficiently large, establishes lower bounds for efficiency of equilibrium proto-
cols and uses these bounds to provide an effective procedure for constructing efficient
equilibrium protocols, and shows that the optimal quantity of money in our setting,
with no exogenous bound on money holdings is different from the optimal quantity
of money in settings with an exogenous bound on money holdings. Numerical sim-
ulations give some idea of the efficiency loss resulting from choosing the “wrong”
protocol. Section 6 concludes and offers some directions for further research. Proofs
are collected in the “Appendix”.

2 Literature

Following the seminal work of Kiyotaki and Wright (1989), there is a large literature
on search models of money which has contributed enormously to our understanding
of money in various environments. A portion of this literature—e.g. Camera and Cor-
bae (1999), Berentsen (2002)—allows agents to accumulate more than one unit of
money, while maintaining the assumption of Kiyotaki and Wright (1989) that there is
an exogenously given upper bound on money holdings; this is precluded in our envi-
ronment. A different portion of this literature—e.g. Cavalcanti and Wallace (1999a,b),
Berentsen et al. (2007) and Hu et al. (2002)—assumes that agents have and can con-
dition on (complete or partial) knowledge of the money holdings of (some of) their
counter-parties in each match, which is again precluded in our environment. A partic-
ularly striking paper in this literature is Kocherlakota (2002), which shows that any
individually rational outcome can be supported in equilibrium provided money is infi-
nitely divisible and the common discount factor is above some minimum threshold.
However, Kocherlakota (2002) also assumes that agents have a good deal of infor-
mation about the money holdings of their counterparties. To quote the abstract: “The
one-money theorem says that the allocation is achievable using only one money if that
money is divisible and money holdings are observable. The two-money theorem says
that the allocation is achievable using two divisible monies, even if money holdings are
concealable.” To elaborate: the one-money theorem assumes that agents must display
their true money holdings; the two-money theorem assumes that agents can display
less money than they actually have but cannot display more money than they actually
have. In both cases, agents have (complete or partial) knowledge about the money
holdings of their counter-parties and can condition on it. In our work, agents have no
knowledge about the money holdings of their counter-parties and so cannot condition
on it.

Our work is closest to Zhou (1999) and Berentsen (2000). Zhou (1999) assumes
money is divisible and the supply of money is given endogenously but the price is
determined endogenously.” Berentsen (2000) assumes money is indivisible and the
price is given exogenously but the money supply is determined endogenously. In our
work, both the money supply and the price are chosen exogenously by the designer.
Of course, from an economic point of view, all that really matters is the ratio M/p

5 We say “the” price because Zhou (1999) considers only single-price equilibria.
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of the money supply M to the price p, fixing either the money supply or the price
amounts simply to choosing a normalization. So it would be more accurate to say that
in both Zhou (1999) and Berentsen (2000), the ratio M/ p is determined endogenously:
fixing M, as Zhou (1999) does, is just choosing a normalization; fixing p, as Berentsen
(2000) does, is just choosing a different normalization. In our work, we have chosen
a particular price normalization p = 1 but the money supply, and hence the ratio
M/ p, is determined exogenously by the designer. Our designer has more control and
that control is important because if the designer did not control M/ p, the designer
could not be sure of designing an optimal equilibrium protocol. Indeed, if the designer
did not control M/ p, it would seem to make no sense to even talk about designing
protocols, much less optimal equilibrium protocols. We also note that neither Zhou
(1999) nor Berentsen (2000) prove that equilibrium exist; they both provide sufficient
conditions but those conditions are stringent and endogenous—they are not conditions
on the primitives of the model (benefit/cost ratio and discount factor).

This work also connects to an Electrical Engineering and Computer Science liter-
ature that discusses token exchanges in online communities. Some of that literature
assumes that agents are compliant, rather than self-interested, and does not treat incen-
tives and equilibrium (Chandrakumar et al. 2003; Buttyan and Hubaux 2003); some of
that literature makes use of very different models than the one offered here Jarvis and
Tan (2006) and Figueiredo et al. (2004); and some of the literature is not formal and
rigorous, offering simulations rather than theorems (Mohr and Pai 2006). The papers
closest to ours are probably Friedman et al. (2006, 2007), which treat somewhat dif-
ferent models. However, these papers seem puzzling in many dimensions and many
of the proofs seem mysterious (at least to us).

Another literature to which this work connects is the game-theoretic literature on
anonymous interactions. In a context in which interactions were publicly observable,
full cooperation (i.e., provision of service) could be achieved at equilibrium by the
use of trigger strategies, which deny service in the future to any agent who refuses
service in the present. As Kandori (1992) and Ellison (2000) have pointed out, in
some contexts, cooperation can be supported even without public observability if
agents deny service in the future to all agents whenever they have observed an agent
who refuses service in the present; in this equilibrium, any failure to provide service
results in a contagion, producing wider and wider ripples of defection, until no agent
provides service. However, contagion is not likely to sustain cooperation in the systems
of interest to us, because the population is so large (typically comprising tens of
thousands or even hundreds of thousands of agents) that an agent is unlikely, in a
reasonable time frame, to meet any other agent whose network of past associations
overlap with his. (When the population is literally a continuum, no agent ever meets
any other agent whose network of past associations overlap with his.) A more relevant
literature, of which Kandori (1992) is again the seminal work, uses reputation and
social norms as devices as a means of incentivizing cooperation. The work that is
closest to ours is Park et al. (2010), which asks which reputation-based systems can
be supported in equilibrium and which of these achieve the greatest social efficiency.
Because provision of service in their model depends on the reputations of both client
and server, some central authority must keep track of and verify reputations; hence,
these systems are not distributed in the sense we use here.

@ Springer



216 M. van der Schaar et al.

3 Model

The population consists of a continuum (mass 1) of infinitely lived agents. Each agent
can provide a resource (e.g, a data file, audio file, video file, service) that is of benefit to
others but is costly to produce (uploading a file uses bandwidth and time). The benefit
of receiving this resource is b and the cost of producing it is ¢; we assume b > ¢ > 0.°
Agents care about current and future benefits/costs and discount future benefits/costs at
the constantrate 8 € (0, 1). Agents are risk neutral so seek to maximize the discounted
present value of a stream of benefits and costs.

Time is discrete. In each time period, a fraction p < 1/2 of the population is
randomly chosen to be a client and matched with a randomly chosen server; the
fraction 1 — 2p are unmatched.” (No agent is both a client and a server in the same
period.) When a client and server are matched, the client chooses whether or not to
request service, the server chooses whether or not to provide service (e.g., transfer the
file) if requested.

The parameters b, ¢, 8, p completely describe the environment. Because the units
of benefit b and cost ¢ are arbitrary (and tokens have no intrinsic value), only the
benefit/costratior = b/cis actually relevant. We consider variations in the benefit/cost
ratio r and the discount factor 8, but view the matching rate p as immutable.

3.1 Tokens and strategies

In a single interaction between a server and a client, the server has no incentive
to provide services to the client. The mechanism we study for creating incentives
to provide service involves the exchange of fokens. Tokens are indivisible, have no
intrinsic value, cannot be counterfeited, and can be stored and transferred without loss.
Each agent can hold an arbitrary non-negative finite number of tokens, but cannot hold
a negative number of tokens and cannot borrow. We emphasize that our tokens are
purely electronic objects and are transferred electronically.

The designer creates incentives for the agents to provide or share resources by
providing a supply of rokens and recommending strategies (behavior) for agents when
they are clients and servers. At the moment, we allow for strategies that depend on
histories but we show that optimal strategies (best responses) depend only on current
token holdings.

An event describes the particulars of a match at a particular time: whether the agent
was chosen to be a client or a server or neither, whether the agent was matched with
someone who was willing to serve or to buy, whether the agent received a benefit and
surrendered a token or provided service and acquired a token or neither, and the change
in the token holding. Write ¢, for an event at time ¢. A history of length T specifies an
initial token holding m and a finite sequence of events 1 = (m; €q, €1, €7—_1). Write

6 If b < c there is no social value to providing service; if ¢ < 0 agents will always be willing to provide
service.

7 We assume that the matching procedure is such that the Law of Large Numbers holds exactly; Duffie
and Sun (2007), Alds-Ferrer (1999), Podczeck (2010) and Podczeck and Puzzello (2012) construct such
matching procedures.
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Hr for the set of histories of length 7', H = | J; Hr for the set of finite histories. An
infinite history specifies an initial token holding m and an infinite sequence of events
h = (m; €, €1, ...). We insist that finite/infinite histories be feasible in the sense that
net token holdings are never negative (i.e., a request for service by an agent holding
0 tokens will not be honored). Given a finite or infinite history /4, write d (h, t) for the
change in token holding at time ¢ and d* (h, t), d~ (h, t) for the positive and negative
parts of d(h, t). Note that d(h, t) = +1 if the agent serves, d(h, t) = —1 if the agent
buys, d(h, t) = 0 otherwise. Note also that the token holding at the end of the finite
history 4 is

T-1

N(hy=m+ > d(h,t)

=0

A strategy is a pair (0, 1) : H — {0, 1}; T is the client strategy and o is the server
strategy. Following the history &, t(h) = 1 means the client requests service and
7(h) = 0 means the client does not request service; o (h) = 1 means the server pro-
vides service, o (h) = 0 means the server does not provide service. (Note that we
require individual agents to follow pure strategies, but we will eventually allow for the
possibility that different agents follow different pure strategies, so the population strat-
egy might be mixed). If service is requested and provided, a single token is transferred
from client to server, so the client’s holding of tokens decreases by 1 and the server’s
holding of tokens increases by 1. Tacitly, we assume that a token is transferred if and
only if service is provided; like the transfer of tokens itself, this can be accomplished
electronically in a completely distributed way.

3.2 Steady-state payoffs, values and optimal strategies

Because we consider a continuum population, assume that agents are matched ran-
domly and can observe only their own histories, the relevant state of the system from
the point of view of a single agent can be completely summarized by the fraction u of
agents who do not request service when they are clients and the fraction v of agents
who do not provide service when they are servers. If the population is in a steady
state then w, v do not change over time. Given u, v, a strategy (t, o) determines in
the obvious way a probability distribution P(t, o|u, v) over infinite histories H. We
define the discounted expected utility to an agent whose initial token holding is m and
who follows the strategy (t, o) to be

o0
Eu(m,t.0lp,v) = > P(t.oluw.v)(h) D B'[d"(h.0)b—d~ (h.t)c]
heH t=0
(Here and below, when some of the variables 8, b, ¢, u, v, 7, o are clearly understood

we frequently omit all or some of them; this should not cause confusion.)
Given p, v, 7, 0 and an initial token holding m, we define the value to be
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V(im,u,v,t,0) = sup Eu(m, t,0|u,v)

(t,0)

Discounting implies that the supremum—which is taken over all strategy profiles—
exists and is at most b/ (1 — B).

Given w, v the strategy (z, o) is optimal or a best response for an initial token
holding of m if

Eu(m,t,0|n,v) > Eu(m, v, o'|u, v)

for all alternative strategies t’, o’. Because agents discount the future at the constant
rate §, the strategy (z, o) is optimal if and only it has the one-shot deviation property;
that is, there does not exist a finite history /& and a profitable deviation (z’, ¢’) that
differs from (z, o) following the history 4 and nowhere else. A familiar and straight-
forward diagonalization argument establishes that optimal strategies exist and achieve
the value; we record this fact below, omitting the proof.

Proposition 1 For each ., v and each initial token holding m there is an optimal
strategy t, o and

Eu(m,t,o|lp,v) =V(im, u,v,1,0)

3.3 Optimal strategies

We want to characterize optimal strategies, but before we do, there is a degeneracy
that must be addressed. If i = 1, then no one ever requests service so the choice of
whether to provide service is irrelevant; if v = 1, then no one ever provides service so
the choice of whether to request service is irrelevant. In what follows, we sometimes
ignore or avoid these degenerate cases, but this should not lead to any confusion.

Fix B8, b, c, i, v; let (t, o) be optimal for the initial token holding m. Note that
the continuation of (7, o) must also be optimal following every history that begins
with m. If & is such a history and the token holding at % is n, then (7, o) induces a
strategy (", o’*) from an initial token holding » that simply transposes what follows
h back to time 0, and this strategy must be optimal for the initial token holding of
n. Conversely, any strategy that is optimal for the initial token holding of n must
also be optimal following /4. It follows that optimal strategies (z, o) (Whose existence
is guaranteed by Proposition 1) depend only on the current token holding but are
otherwise independent of history; we frequently say such strategies are Markov—but
note that they are Markov in individual token holdings. Write X (u, v, 8) for the set
of optimal strategies.

Theorem 1 For all b, c, B, i, v with v < 1, every optimal strategy (t, o) has the

property that T(n) = 1 for everyn > 1; i.e. “always request service when possible”.?

8 Because a request for service will not be honored when an agent holds 0 tokens, it is irrelevant whether
7(0) =0o0rz(0) =1.
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In view of Theorem 1, we suppress client strategies t entirely, assuming that clients
always request service whenever possible. We abuse notation and continue to write
¥ (u, v, B) for the set of optimal strategies.

We now show that optimal (server) strategies also have a simple form. Say that the
(server) strategy o is a threshold strategy (with threshold K) if

on)y=1 if n<K
on)=0 if n>K €))

We write ok for the threshold strategy with threshold K and
Y={okx:0=< K < o0}

for the set of threshold strategies.

Theorem 2 For each ., v, b, c, B with u < 1 the set of optimal (server) strategies
consists of either a single threshold strategy or two threshold strategies with adjacent
thresholds.

(The assumptions in Theorems 1 and 2 that v < 1 and u < 1 avoid the degeneracies
previously noted.)

3.4 Protocols

The designer chooses a per capita supply of tokens o € (0, co) and recommends
a strategy to each agent; we allow for the possibility that the designer recommends
different strategies to different agents. Because self-interested agents will always play a
best response, the designer will recommend only strategies in ¥; in view of anonymity,
it does not matter which agents are recommended to play each strategy, but rather only
the fraction of agents recommended to play each strategy. Hence, we can identify a
recommendation with a mixed threshold strategy, which is a probability distribution
on X; with the obvious abuse of notation, we view y as a function y : Ny — [0, 1]
such that

y(K) > 0 foreach K >0
o
> yK) =1
K=0

Write A(X) for the set of mixed threshold strategies. As usual, we identify the thresh-
old strategy ox with the mixed strategy that puts mass 1 on og. Assuming that the
designer only recommends best responses (because other recommendations would
not be followed), we interpret an element y € A(X) as a recommendation that the
fraction y (K) plays the threshold strategy ok .

A protocol is a pair IT = («, y) consisting of a per capita supply of tokens « €
(0, 00) and a mixed strategy recommendation y € A(X).
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3.5 Invariant distributions

If the designer chooses the protocol IT = («, y) and agents follow the recommendation
y, we can easily describe the evolution of the foken distribution (the distribution of
token holdings). The token distribution must satisty the two feasibility conditions:

> 0tk =1 )
k=0
D knk) =a @3)
k=0

Write

pw=n0), v= > nk

o (k)=0

Evidently, with respect to this token distribution, u is the fraction of agents who have
no tokens, hence cannot pay for service, and v is the fraction of agents who do not
serve (assuming they follow the protocol).

To determine the token distribution next period, it is convenient to think backward
and ask how an agent could come to have k tokens in the next period. There are three
possibilities; the agent could have

— k — 1 tokens in the current period, be chosen as a server, meet a client who can
pay for service, and provide service (hence acquire a token);

— k+ 1 tokens in the current period, be chosen as a client, meet a server who provides
service, and buy service (hence expend a token);

— k tokens in the current period but neither provide service nor buy service (hence
neither acquire nor expend a token).

Given a recommendation y it is convenient to define ¥ : Ny — [0, 1] by

o (n) = D" y(K)ok (n)

K=0

Assuming that the Law of Large Numbers holds exactly in our continuum framework
and that all agents follow the recommendation y, o (n) is the fraction of agents in
the population who serve when they have n tokens, so o” is the population strategy.
Keeping in mind that token holdings cannot be negative, it is easy to see that the token
distribution next period will be

n+(k) =nk — Dlp(1 = wo” (k — D]
+nk+ Dlp(1 —v)]
+n(®)[1 = p(1 = wo” k) — p(1 —v)] “)

where we use the convention n(—1) = 0.
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Given the protocol IT = («, y), the (feasible) token distribution 5 is invariant if
n4+ = n; that is, n is stationary when agents comply with the recommendation y.
Invariant distributions always exist and are unique.

Theorem 3 For each protocol T1 = («, y) there is a unique invariant distribution
0" which is completely determined by the feasibility conditions (2) and (3) and the
recursion relationship

(k) =k — Dip(1 — o (k — 1]
+n(k + DIp(1 — )]
[ — p(1 — wo? (k) — p(1 — )] 5)

3.6 Definition of equilibrium and robust equilibrium

Assuming agents are rational and self-interested, they will comply with a given pro-
tocol if and only if compliance is individually optimal, that is, no agent can benefit by
deviating from the protocol. To formalize this, fix a protocol IT = (e, ), and let '!
be the unique invariant distribution. Write

=00, V= D" k)
o (k)=0

for the fraction of agents who have no tokens and the fraction of agents who do not
serve (in the invariant distribution induced by IT), respectively. We say IT = (e, y) is
an equilibrium protocol if o is an optimal strategy (given given 1, n™) whenever
y (K) > 0. Thatis, y puts positive weight only on threshold strategies that are optimal,
given the invariant distribution that IT itself induces.

Using the one step deviation principle, we can provide a useful alternative descrip-
tion of equilibrium in terms of the value function V. As noted before, because optimal
strategies exist and are Markov, we may unambiguously write Vi for the value follow-
ing any history at which the agent has k tokens. (The value function depends on the
population data u, v and on the environmental parameters b, ¢, 8; but there should be
no confusion in suppressing those here.)

Fix any Markov strategy o. In order for o to be optimal, it is necessary and sufficient
that it achieves the value V; following every token holding ¢. Expressed in terms of
current token holdings and future values, and taking into account how behavior in a
given period affects the token holding in the next period, this means that o is optimal
if and only if it satisfies the following system of equations:

Vo = po(O)[(1 — p)(—c+ V1) + uBVol
+oll —a(0)]1BVo + (1 —20)BVo
Vi = pl(1 = v)(b+ BVi—1) +vBVi]
+ po (O)[(1 — w)(—c + BViy1) + B Vil
+pll —o()1BVk + (1 —2p)BVi
foreachk > 0 (6)
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Applying this observation to the threshold strategy ox and carrying out the requisite
algebra, we conclude that ok is optimal if and only if

— ¢+ BVis1 = BVi if k<K (7)
—c+ BVipr < BVi if k> K ®)

(If it seems strange that «, ¥ do not appear in these inequalities, remember that the
value depends on the invariant distribution 7', which in turn depends on « and on )
Given a benefit/cost ratio r > 1 and a discount factor 8 < 1, write E Q(r, B) for the
set of protocols IT that constitute an equilibrium when the benefit/cost ratio is » and
the discount factor is 8. Conversely, given a protocol IT write E (IT) for the set {(r, 8)}
of pairs of benefit/cost ratios » and discount factors 8 such that IT is an equilibrium
protocol when the benefit/cost ratio is r and discount factor is 8. Note that EQ, E are
correspondences (which might have empty values) and are inverse to each other.
Given r, B we say that I1 is a robust equilibrium if (r, B) belongs to the interior
of E(I); i.e., there is some & > 0 such that IT € EQ(r’, B/) whenever |r' —r| < ¢
and |8’ — B| < e. Write EQR(r, B) for the set of robust equilibrium protocols for
the benefit/cost ratio r and discount factor 8 and E R(IT) for the set {(r, 8)} of pairs
of benefit/cost ratios for which IT is a robust equilibrium. Note that EQR, ER are
correspondences (which might have empty values) and are inverse to each other.

4 Equilibrium and robust equilibrium

We first describe the nature of equilibrium and robust equilibrium and then use that
description to show that robust equilibria exist. The crucial fact about equilibrium is
that the strategy part of an equilibrium protocol can involve mixing over at most two
thresholds and that these thresholds must be adjacent; the crucial fact about robust
equilibrium is that the strategy cannot involve strict mixing at all but must rather be a
pure strategy.

Theorem 4 For each benefit/cost ratio r > 1 and discount factor f < 1 the set
E Q(r, B) is either empty or consists of protocols that involve only (possibly degener-
ate) mixtures of two threshold strategies with adjacent thresholds.

Theorem 5 IfT1 = («, o) is a robust equilibrium then o is a pure threshold strategy.

The existence of equilibrium or robust equilibrium does not seem at all obvious (and
our proof is not simple). For both intuition and technical convenience, it is convenient to
work “backward”: rather than beginning with population parameters r, 8 and looking
for protocols IT that constitute an equilibrium for those parameters, we begin with
a protocol IT and look for population parameters r, 8 for which IT constitutes an
equilibrium. That is, we do not study the correspondences E Q(r, ) and EQR(r, B)
directly, but rather the inverse correspondences E(IT) and E R(IT). This is easier for
several reasons, one of which is that the latter correspondences a/ways have non-empty
values.
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To give an intuitive understanding of the difficulty and how we overcome it, fix a
protocol IT = (o, o) and let 17“ be the invariant distribution. Because we will eventu-
ally want to find a robust equilibrium, we assume o is a threshold strategy: o = ok.
To look for population parameters r, 8 for which IT is an equilibrium, let us fix » and
let B vary. (We could fix B and let r vary, or vary both 8, r simultaneously, but the
intuition is most easily conveyed by fixing r and letting B vary.) As we have already
noted, the invariant distribution nn, and hence /LH, pi depends only on IT and so
does not change as B varies. Given the invariant distribution, if g is close to 0, an
agent has little incentive to acquire tokens; however, the incentive to acquire tokens
increases as 8 — 1. It can be shown that there is a smallest discount factor By, (IT)
with the property that an agent whose discount factor is at least 87 (IT) will be willing
to continue providing service until he has acquired K tokens. This is not enough,
because ox will only be incentive compatible if the agent is also willing to stop pro-
viding service after he has acquired K tokens. However, it can also be shown that
there is a largest discount factor Bg (IT) for which the agent is willing to stop provid-
ing service after he has acquired K tokens, and that g7 (IT) < By (IT). (Recall that
r, IT are fixed.) For every discount factor 8 in the closed interval [B; (IT), By (IT)],
the protocol IT is an equilibrium when the population parameters are r, 8; that is,
(r, B) € E(II). From this, it can be shown that for every discount factor 8 in the
interval (B (IT), By (IT1)), the protocol IT is a robust equilibrium when the popula-
tion parameters are r, 8, that is, (r, ) € ER(IT). Similarly, we can hold 8 fixed
and let r vary from 1 to oo, construct the corresponding intervals [r (IT), ry (IT)]
with r7 (IT) < ry(IT) and then show that for every benefit/cost ratio r in the open
interval (rp (IT), ry (IT)) the protocol IT is a robust equilibrium when the popula-
tion parameters are r, B; that is, (r, ) € ER(IT). This is the content of Theorem 6
below.

Applying this procedure for every protocol yields a family { £ R(IT)} of non-empty
open sets of parameters r, § for which robust equilibria exist. However, our work is not
done because we do not know whether a robust equilibrium exists for given population
parameters r, 8. To see that it does, we show that { E R(IT)} covers a big enough set
of population parameters. In particular, for each r > 1, there is a 8* < 1 such that
{ER(TT)} covers the set {T1(r, B) : B > B*}; this means that for each » > 1 and
B > B* there is a protocol IT that constitutes a robust equilibrium for the population
parameters r, 8. Similarly, for each 8 > 0 there is a 7* > 0 such that if » > r* there
is a protocol that constitutes a robust equilibrium for the population parameters 3, r.
The proof is not easy; to do so, we first establish (Theorem 6) some special properties
of protocols of the form [1x = (K /2, 0k); we then apply these special properties
(Theorem 7) to obtain the desired result.

It is natural to ask why our proof seems (and is) so much more complicated than
existence proofs in the literature, such as in Berentsen (2002). The answer is that the
literature establishes the existence of equilibrium only under the assumption that there
is an exogenous upper bound K* on the number of tokens any agent can hold. As
discussed above, this assumption makes it relatively easy to show that equilibrium
exists: Fix the benefit/cost ratio » > 1 and an arbitrary « > 0 and consider the
protocol (¢, okg=). As above, an agent whose discount factor § is at least 81 (¢, o)
will provide service until he has acquired K* tokens; under the assumption that K*
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Fig. 1 Pure and Mixed Equilibrium: o = 1/4 (blue (thick)—pure equlibrium; red (thin)—mixed equilib-
rium) (color figure online)

is an upper bound on the number of tokens any agent can hold, the agent will stop
providing service after he has acquired K* tokens because, by assumption, he cannot
hold more than K* tokens so providing service incurs a present cost with no future
benefit. Hence, (o, og+) is an equilibrium protocol for every § > B (I1) and is a
robust equilibrium protocol for every B > B («, ok+). Thus, any protocol can be
supported in equilibrium so long as agents are sufficiently patient. As we have noted
in the Introduction, assuming an exogenous upper bound on token holdings does not
seem realistic in the environments we consider.

Theorem 6 Fix a protocol T1 = («, o).

(i) Foreach benefit/costratior > 1, the set{f : I1 € EQ(r, B)} is a non-degenerate
closed interval [Br (T1), By (IT)] whose endpoints are continuous functions of r.

(ii) For each discount factor B < 1, the set {r : I1 € EQ(r, B)} is a non-degenerate
closed interval [r;(I1), ry (IT)] whose endpoints are continuous functions of .

These results are illustrated for « = 1/4 in Figs. 1 and 2. (Fig. 1 may give
the impression that the intervals for successive values of K do not overlap, but as
Fig. 2 illustrates, they actually do overlap; the overlap is masked by the granularity
of the Figure. However, as we have already said, we do not assert that overlapping of
intervals for successive values of K is a general property).

For the special protocols I1x = (K /2, ok ), in which the supply of tokens is exactly
half'the selling threshold, we prove in Theorem 7 below that the intervals corresponding
to successive values of the threshold overlap but are not nested. This is exactly what
we need to guarantee that (non-degenerate) equilibria always exist provided that g8, r
are sufficiently large. Theorem 10 provides estimates on how big 8, r must be.)

Theorem 7 Robust equilibria exist whenever B, r are sufficiently large. More pre-
cisely:
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Fig. 2 Threshold Equilibrium: & = 1/4

(i) For each fixed threshold K and benefit/cost ratio r > 1, successive f-intervals
overlap but are not nested:

BrIlg_1) < Br(Ig) < By(Ilg—1) < By (Ilk)
Moreover,
Klgnoo BL(g) =1

In particular, there is some B* < 1 such that EQR(r, B) # @ for all B > B*.
(ii) For each fixed threshold K and discount factor B < 1, successive r-intervals
overlap but are not nested:

re(Mg—1) <rp(Xlg) <rg(Ilg—1) < rg(Ilg)
Moreover,
lim rL(HK) =0
K—o0

In particular, there is some r* > 1 such that EQR(r, B) # @ for all r > r*.

It follows from Theorem 7 that, as K — o0, the left-hand end points 87 (ITg) — 1,
so a fortiori the lengths of B-intervals shrink to 0. It is natural to guess that the lengths
of these intervals shrink monotonically to 0, and simulations suggest that this guess
is correct, but we have neither a proof nor a good intuition that this is actually true.
We also guess that the lengths of r-intervals shrink monotonically, but again we have
neither a proof nor a good intuition that this is actually true.
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5 Efficiency

If agents were compliant (rather than self-interested), the designer could simply
instruct them to provide service at every meeting and they would comply, so the
per capita social gain in each period would be p(b — ¢). If agents follow the protocol
IT = (o, 0k), then service will be provided only in those meetings where the client
can buy service and the server is willing to provide service, so the per capita social
gain in each period will be p (b —¢)(1 — ,un)(l — vy, Hence, we define the efficiency
of the protocol IT to be

Eff(IT) = (1 — p™My(1 — v

In general, it seems hard to determine the efficiency of a given protocol or to compare
the efficiency of different protocols. However, we can provide efficiency bounds for
protocols that utilize a given threshold strategy ox and compute the precise efficiency
of the protocols g .”

Theorem 8 For each o € (0, 00), each threshold K and all values of the population
parameters we have:

(i) Effe, ox) < 1 — 5oy
(ii) Eff(a, ox) < Eff(T1k)

Gii) B = (1 ) = (25)°

Two implications of Theorem 8 are immediate. The first is that, in order that a
(threshold) protocol achieve efficiency near 1, it is necessary that it provide a large
number of tokens and also that it prescribe a high selling threshold. Put differently:
to yield full efficiency in the limit it is not enough to increase the number of tokens
without bound or to increase the threshold without bound—>both must be increased
without bound. The second is that the protocols I that provide K /2 tokens per capita
are the most efficient protocols that utilize a given threshold strategy o .

We caution the reader, however, that the protocols I[1x need not be equilibrium
protocols, and it is (robust) equilibrium protocols that we seek. However, it follows
immediately from Theorem 7 that whenever agents are sufficiently patient or the
benefit/costratio is sufficiently large (or both), then some protocol I is an equilibrium
for large K, and hence that nearly efficient equilibrium protocols always exist.

Theorem 9 (i) for each fixed discount factor B < 1
lim inf sup{Eff(Ilg) : [Ix € EQR(B,r)} =1
r—00
(ii) for each fixed benefit/cost ratior > 1

liéni?fsup{Eﬁ(HK) Mg €e EQR(B, )} =1

9 Berentsen (2002) derives similar results in a different model, with Poisson arrival rates.
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In words, as agents become arbitrarily patient or the benefit/cost ratio becomes
arbitrarily large, it is possible to choose robust equilibrium protocols that achieve
efficiency arbitrarily close to first best. Some intuition might be useful. Consider
the protocols I1x and the corresponding invariant distributions. As K increases, the
fraction of agents who cannot purchase service and the fraction of agents who will
do not provide both decrease—so efficiency increases. However, if r, 8 are fixed and
K increases, then the protocols ITx will eventually cease to be equilibrium protocols
so equilibrium efficiency is bounded. On the other hand, if we fix r and let 8 — 1
or fix B and let r — o0, then the thresholds K for which the protocols I1g are
equilibrium protocols blow up, and hence, efficiency tends to 1. Put differently: high
discount factors or high benefit/cost ratios make the use of high thresholds consistent
with equilibrium.

Theorem 9 provides asymptotic efficiency results; the following result presents an
explicit lower bound (in terms of the population parameters r, §) for the efficiency
obtainable by a robust equilibrium protocol.

Theorem 10 Given the benefit/cost ratio r > 1 and the discount factor f < 1,
define'®

1
KL = 1 —1,0
e { 8 s (1 + r) ]

1
K = log s (—)
T=p+8 \ 2r

Then:

(i) all the thresholds K for which T is a robust equilibrium protocol lie in the
interval [KT, KH];

(ii) the efficiency of the optimal robust equilibrium protocol is at least (1 — K++1)2 =
kL \?
(#5)

Theorem 10 yields a lower bound on efficiency because the optimal robust equilib-
rium protocol is at least as efficient as any protocol Ik that is a robust equilibrium, but
does not yield an upper bound on efficiency because the optimal robust equilibrium
protocol might be more efficient than any protocol I1x that is a robust equilibrium.

Theorem 10 also yields the designer an effective procedure for finding a robust
equilibrium whose efficiency is good, if not optimal, since all that is necessary is to
check protocols ITx with thresholds K in the (finite) interval [KX, K#]. Moreover,
it is not necessary to conduct an exhaustive search. Rather the designer can begin
by checking the protocol ITx, where K is the midpoint of the interval [K, K] If
My (K —1) > c/B and My, (K) < c/B, then Il is an equilibrium protocol and the
search can stop. If My, (K — 1) < ¢/B, then for all K’ > K, My, (K" — 1) < ¢/p
(because ,BL(H K') > ﬂL(HK)). Therefore, threshold protocols for which K/ > K

10 Note that both the basis of the logarithms and the arguments are less than 1.
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cannot be an equilibrium and the designer can restrict search to the left half interval
(KL, K. If Mgy (K) > c/B, then for all K’ < K, My,,(K') > ¢/ (because
B (Mg > pH (k). Therefore, threshold protocols for which K’ < K cannot be
an equilibrium and the designer can restrict search to the right half interval [K, K 7].
Continuing to bisect in this way, the designer can find an equilibrium threshold protocol
in at most logz(KH — KLy iterations.

5.1 The optimal quantity of money

The question naturally arises: “Which equilibrium protocols are most efficient?”
Because all robust equilibrium protocols are threshold protocols, this amounts to ask-
ing for which values of «, K is (&, og) the most efficient equilibrium protocol. If
we focus on o we are asking a familiar question: “What is the optimal quantity of
money?” Kiyotaki and Wright (1989) constrain agents to hold no more than 1 unit of
money and show that the optimal quantity of money is 1/2. Berentsen (2002) relaxes
the constraint on money holdings to K and shows that (with certain assumptions) the
optimal quantity of money is K /2. However, this conclusion is an artifact of the con-
straint that agents can hold no more than K units of money. In our framework, which
does not place an exogenous constraint on money holdings, K /2 may not be—and
often will not be—the optimal quantity of money. Figure 3 illustrates this point in a
simulation, but it is in fact quite a robust phenomenon.

To see what this is so, fix # > 1 and K > 1. Theorem 7 guarantees that there is an
open interval of discount factors for which ITk is an equilibrium and an open interval
of discount factors for which [Tk is an equilibrium and these intervals overlap:

Brg) < Br(Tllg+1) < Bu(Tlk) < Bu(Tlk41)

09t |
!
0.8} 1

&
o
-
-
-~
-

0.7t i

efficiency E

04} - 1
03} _ |
02} - 1

0.1F — ]

0 0.2 0.4 0.6 0.8 1
discount factor 3

Fig.3 Optimal Equilibrium Protocols (red (thick)—I1 g ; blue (thin)—other protocols) (color figure online)
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Consider a discount factor 8 with 8. (Tlx) < B < Br(Ilg4+1). By construction,
g = (K /2, 0k) is an equilibrium and [Tg4+1 = ((K 4+ 1)/2, ox+1) isnot, so [k is
the most efficient equilibrium protocol among the protocols I1g:. However, these are
not the only protocols: if we seek the most efficient among a// equilibrium protocols, we
must also consider protocols («, og-) for values of « other than o = K'/2. However,
for discount factors 8 < Br (ITg+1) for which |81 (ITx+1) — B| is sufficiently small,
there will be token supplies « < (K + 1)/2 for which [(K + 1)/2 — «] is as small
as we like and for which (o, og41) is an equilibrium protocol. If [(K + 1)/2 — «] is
small, then the invariant distributions for (¢, 0x+1) and for (K + 1)/2, ox+1) will
be close, and hence the efficiency of («, ox41) will be almost equal to the efficiency
of (K +1)/2, 0k+1) = Ilk41. Since the efficiency of 1k is strictly greater than
the efficiency of 1 this means that («, og+1) is an equilibrium protocol that is more
efficient than I1g . In other words, for discount factors less than but very close to Sx +1,
K /2 is not the optimal quantity of money.
As this discussion illustrates, it is crucial to the design problem that the designer be
able to choose the quantity of money «, since it is through « that the designer controls

efficiency (social welfare).

5.2 Choosing the right protocol

The reader may wonder why we have put so much emphasis on choosing the right
protocol. As Fig. 3 already shows, the reason is simple: choosing the wrong protocol
can result in an enormous efficiency loss. Figure 4, which compares efficiency of the
most efficient protocol with efficiency of a protocol for which the strategic threshold
is constrained to be K = 3, makes this point in an even starker way: as the reader will
see, except for a small range of discount factors, the efficiency loss is enormous.

o o
© ©
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~
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efficiency E
o o o
w B o

e o
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T
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o

0.2 0.4 0.6
discount factor 8

Fig. 4 Inefficient Equilibrium Protocols (red (thick)—TI13; blue (thin)—optimal equilibrium protocols)

(color figure online)
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6 Conclusion

In this paper, we have analyzed in some detail a simple, practicable, and distributed
method to incentivize trade in online environments through the use of (electronic)
tokens. We have shown that when agents are patient, the method we offer can achieve
outcomes that are nearly efficient, provided the right protocol (supply of tokens and
recommended threshold) is chosen, but that equilibrium and efficiency are both sen-
sitive to the precise choice of protocol. Surprisingly, the “optimal” supply of tokens
need not be half the recommended threshold; this conclusion, and others, and much of
the difficulty of our arguments are a consequence of our allowing agents to accumu-
late as many tokens as they wish, rather than imposing an exogenous bound on token
holdings (which is common in the literature).

Our analysis is silent about convergence to the steady state. In particular, we do not
know whether the recommended strategies would lead to convergence to the invariant
distribution for all initial token distributions or for some particular token distributions.
Berentsen (2002) proves convergence under some conditions, but in a continuous time
model in which token holdings are subject to an exogenous bound; we have already
noted that the latter is a strong (and, in our view, unrealistic) assumption. Another
point is worth making as well. By definition, the recommended strategy is a best reply
when the system is in the steady state, but the recommended strategy need not be a
best reply—and very likely is not a best reply—when the system is not in the steady
state—so why should agents follow it?

We have assumed that service and tokens are both indivisible. This seems a natural
assumption given the environment in which we are interested because a partial file
is usually worthless by itself and because there is no (extant) technology for online
exchange of fractional tokens. The assumption that service and tokens are exchanged
one-for-one is a genuine restriction. It is conceivable that there would exist an equi-
librium in which different quantities of tokens sometimes change hands, and such
equilibria (if they do exist) might be more efficient than the ones we consider here.
Determining whether such equilibria exist and characterizing them (if they do exist)
seems a daunting task that none of the literature seems to have addressed.!!

We have considered the simplest setting, in which agents are identical, all files are
equally valuable, and no errors occur. In a more realistic setting, we would need to
take account of heterogeneous agents and files and allow for the possibilities of errors
(in transmission of files or exchange of tokens or both). We have followed here the
well-known adage “one has to start somewhere”—but we are keenly aware that there
is much more work to be done.

Appendix: Proofs

Proof of Theorem 1 We first estimate V (n + 1) — V(n) (for n > 0) which is the loss
from having one less token. To this end, fix an optimal Markov strategy (t, o). We

T Zhou (1999) considers equilibria for various prices, but all the equilibria she studies are assumed to have
a single price and agents holding in these equilibria are only in integral multiples of the single price.
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define a history-dependent strategy (z’, o’) and estimate the expected utility to an
agent who begins with n tokens and follows (z’, ¢’); this is a lower bound on V (n).
The strategy (', 0”) is most easily described in the following way: Begin by following
the behavior prescribed by the strategy (o, t) but for an agent who holds one more
token than is actually held, i.e., (z/, 6’)(h) = (t,0)(N(h) + 1). If it never happens
that the agent holds O tokens, requests service, and is matched with an agent who is
willing to provide service, then continue in this way forever. If it does happen that the
agent holds 0 tokens, requests service, and is matched with an agent who is willing to
provide service, then service is not provided in that period (because the agent cannot
pay) and after that period (t’, ¢") = (z, o). In other words, the agent behaves “as if”
he held one more token than actually held until the first time such behavior results in
requesting service, being offered service, and being unable to pay for service; after that
point, revert to (z, o). The point to keep in mind is that if a moment of deviation occurs,
then an agent with one more token would hold exactly 1 token, would request and
receive service, and in the next period would have 0 tokens—so that reverting to (t, o)
is possible. Beginning with  tokens and following the strategy (t’, o) yields the same
string of payoffs as beginning with n+ 1 tokens and following the strategy (t, o) except
in the single period in which deviation occurs; in that period, the expected loss of utility
is at most bp. Hence, the expected utility from beginning with n tokens and following
the strategy (t/, o) yields utility at least V (n + 1) — bp. Hence, V(n + 1) — V(n) <
bp < b < b/B. However, this is the incentive compatibility condition that guarantees
that an agent strictly prefers to request service when holding n+-1 tokens, so the proofis
complete. O

At this point, it is convenient to collect some notation and isolate two technical
results. Fix p, b, ¢, i, v and consider a Markov strategy o. For each k, let V,; (k, B)
be the value of following o when the initial token holding is k and the discount factor
is B. As with the optimal value function V defined in the text, the value function V,
can be defined by a recursive system of equations:

Vo (0, B) = po (O)[(1 — w)(—c+ BVs (1, B))
+p[1 =0 (0)18V5(0, ) + (1 —2p)BV5(0, B)
Vo(k, B) = pl(1 =v)(b+ BVs(k — 1, B) +vB Vs (k, B)]
+po (K)[(1 — pu)(—c+ BVo(k + 1, B)) + up Vo (k, Bl
+p[l =0 (K)1BVs(k, B) + (1 —2p)B Vs (k, B)
for k>0 &)

From the value function, we define the marginal utilities
My (k, B) = Vo (k + 1, B) — Vo (k, B) (10)

If B is fixed/understood, we simplify notation by writing Vi, (k) = V,(k, B) and
My (k) = M (k, B).
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It is also convenient to introduce some auxiliary parameters:

¢ =—(1—-v)pp
$pe=1—=B+ (1 —=v)+ 1 —wpn)opp
¢r = —(1 —wpp (11)

We note the signs of these parameters and various combinations:

¢l < 07 ¢C > 05 ¢r < 0 (]2)

o1+ éct+¢r >0, +¢ >0, ¢+ >0
Using these auxiliary parameters and the recursion relations for V, and performing
some simple algebraic manipulations yields a useful matrix representation involving
marginals that we will use frequently:

¢c ¢r 0 <o 0 1— b
| M (0) =
& ¢ ¢ 0 M, (1)
0 ¢ ¢ ¢ O : = : (13)
: P ) 0
. . . . . MU (Kl _ 1)
0 -+ 0 & ¢ ek (1 —wpc
In short form,write this matrix representation as
PM =u (14)

Lemma 1 Fix p, b, c, i, v and B. Let o be a Markov strategy with the property that

o [1 i 0sk<K
T =10 if K <k <K

Then,

(i) if 0 <k < Ky then My (k) > 0
(ii) in the range 0 < k < Kj, M, is either increasing, decreasing or decreasing
then increasing
(iii) if My (K1 — 1) > ¢/B then

My (0) > Mo (1) > -+ > My (K1 —2) = Mo(Ky1 — 1) 2 ¢/B

Proof We first consider the token holding levels 0 < k < K. We make use of the
matrix representation (13).

To prove (i), we first show that M, (k) > 0 for0 < k < K;.If K1 < 3, this follows
by simply solving the matrix representation, so we henceforward assume K; > 3. If
there exists a token holding level k* with 0 < k* < K such that M, (k*) < 0, then
one of the following must hold: either (a) there two consecutive such token holding
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levels, or (b) the marginal payoffs of the neighboring token holding levels are both
positive. We consider these cases separately.

(a) In this case, there exists k* such that M, (k*), M, (k* + 1) are both non-positive.
Of these, one is at least as big; say M, (k*) > M, (k* + 1). From the identities
above we see that

GiMo (k™) + g My (K* + 1)
_¢r

_ @+ oM (k" + 1)

N _¢r

< My (k* +1)

Mo (k" +2) =

Proceeding inductively, it follows that
0= Mo (k") = Mo (K" + 1) = -+ = Mo (K1 — 1)
Moreover,

deMs (K1 —1) = (1 — w)pc — ¢ Ms(Ky —2)
> —pMs (K1 —2)
> —pM(K —1)

This requires ¢, < —¢; which contradicts the sign relations (12). The argument
when M, (k* + 1) > M, (k™) is similar and is left for the reader.

(b) In this case, there exists k* such that M, (k* —1) > 0, M, (k*) < 0, My (k*+1) >
0. This entails

GiMo (k" — 1) + g My (k%) + Mo (k" +1) <0 15)

which again contradicts the sign relations (12).

From the above, we conclude M, (k) > 0 for 0 < k < K. To see that M, (0) > 0
note that

— @My (1) = ¢ My (0) — (1 —v)pb < —p M (0) (16)

Therefore, M, (1) < M4 (0), so M, (0) > 0, as desired.
Finally, to see that M, (k) > O for K| < k < K>, apply the recursion equations (9)
to obtain
$1My(k — 1) + (¢c + ¢r)Mo (k) =0 A7)

We know that M, (K1 — 1) > 0 so the sign relations (12) imply that M, (K1) > 0 as
well. Now it follows inductively that M, (k) > O for K1 < k < K». This completes
the proof of (i).

@ Springer



234 M. van der Schaar et al.

To prove (ii), it is enough to show that M, has no local maximum for 0 < k < Kj.
If M had a local maximum k* in this range, we would have M, (k*) > M, (k* — 1)
and M, (k*) > M, (k* 4+ 1). However, algebraic manipulation yields the inequalities

_ TOMo (k" = 1) — ¢ Mo (K" + 1)

My (%) .
_¢1 - ¢r
< 29O ke
= (k™)
< My (k%)

which is a contradiction. This establishes (ii)
To prove (iii), first manipulate the matrix identity (13) to obtain:

(I =v)ppMs (K1 —2)
==+ {A=v)+A=u)pp)Ms(K —1) = (1 = p)pc
>0 =p+A=v)pp)Ms (K1 —1) = (1 —v)pBMs (K1 —1)  (18)

In view of (ii), the marginal payoffs are decreasing, so this establishes (iii).

Lemma 2 Fix p, b, c and a threshold protocol 11 = (a, ox) with corresponding
w v The marginal utility My (k, B) is strictly increasing in the discount factor
B, ie,if0 < B < B < 1, then,

My (k, B1) < Mgy (k, B2) forall k (19)

Proof To economize slightly on notation, we write 0 = og. We present the proof in
three steps.

In Step 1, we prove that if there exist 0 < K; < K < K — 1 such that Vk €
(K1, K21, My (k, B1) > M, (k, B2), then at least one of the following is true, My (K1 —
L, B1) = My (K1 — 1, B2) or Ms(K2 + 1, B1) = My (K2 + 1, B2).

In Step 2, we prove that if there exists a k* € [0, K — 1] such that M, (k*, B1) >
My (k*, B2), then for all k € [0, K — 1], M, (k, B1) > My (k, B2). Step 2 uses the
result of Step 1.

In Step 3, we disprove the possibility that k € [0, K — 1], My (k, B1) = M, (k, B2).

Step 2 and Step 3 together show a contradiction and therefore, k € [0, K — 1],
Mo (k, B1) < Mq (k, B2).

Step 1 We assert that if there are indices 0 < K| < Ky < K —1 suchthat M, (k, B1) >
M (k, B>) for all K1 < k < K> then at least one of the following must hold:

(A) Mos(K1—1,81) = Mo (K1 — 1, B2)
(B) or My (K2 + 1, B1) > My (K2 + 1, B2).
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To see this, note that simple manipulations of the matrix representation (13) yield

— if K = K then

(1=v)pMo(Ki — 1, ) + (1 — p)pMs(K2 + 1, B)
=/p—-1+ A=)+ UA—=pw)p)Ms (K1, B)

— if K5 > K then

(I =v)pMs (K1 =1, B) + (1 = w)pMs (K2 + 1, B)
=/ =1+ —-wp)Ms (K1, B)
=+1/-DIMo (K1 +1,8) +--- + Mo (K2—1, B)]
=+0/ =1+ 1 =v)p)Ms(K2, B)

Since 81 < B> and we have assumed M, (k, B1) > My (k, B2) for0 < K1 < K> <
K — 1, in each of the cases above the right-hand side is larger when § = 1 than when
B = B>. Because the terms in the left-hand sides are positive, it follows that at least
one of (A), (B) must hold, as asserted.

Step 2 We assert first that if there is a k*,0 < k* < K such that M, (k*, B1) >
M, (k*, B2), then at least one of the following must hold:

(C) there exists some K3, 0 < K3 < Ky, such that M, (k, 1) > M, (k, B2) for all k,
0<k<Kj3

(D) there exists some K4, 0 < K4 < Ky, such that M, (k, B1) > M, (k, B>) for all k,
Ky <k<K_1

To see this, note first that if k* = 0 satisfies the hypothesis, then (C) holds with K3 = 0
and that if &* = K — 1 satisfies the hypothesis, then (D) holds with K4 = K — 1.
Hence, it suffices to consider a k*, 0 < k* < K — 1, that satisfies the hypothesis.
We now make use of Step 1. Set K| = K> = k*. Applying Step 1 once increases the
token holding interval where M, (k, 1) > M, (k, B2) by 1. Let K| and K> be the new
end points of the interval and apply Step 1 again. Continuing in this way, we come
eventually to a point where either K1 = 0or K» = K — 1. If K1 = 0, set K3 = K>
and note that (C) holds. If K, = K — 1, set K4 = K — 1 and note that (D) holds

We now show that either (C) or (D) leads to the desired conclusion. Consider (C)
first. Using the matrix representation (13), we obtain

(1 =v)pBMs(K1 +1,8) + (1 —v)pb
= [1—0—=1-=wp)BIMs (0, B)
+ A =-BIMs(L,8) +---+ MK — 1, B)]
+[1—0-0—-v)p)BIMs(Ky, B)
The right-hand side is bigger when 8 = 8; than when 8 = B,. Therefore, M, (K1 +1,

p1) = Mo (K1 + 1, f2). By induction, My (k, f1) = Mo (k, f2) for all k, 0 < k <
K -1
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Now consider (D). Using the matrix representation (13), we obtain

(I —w)ppMs(Kr — 1, B) + (1 — p)pc
=[1-0-0=-v)p)BIM;(K — 1, 8)
+ (A =BIMo(K =2,8)+---+ M; (K2 + 1, B)]
+ =0 =0=wp)BIMs (K2, B)

The right-hand side is bigger when 8 = f; than when = B,. Therefore, M, (K> —
1, B1) = My (K, — 1, B2). By induction, M, (k, B1) > My (k, B2) forall k,0 < k <
K —1.

Taking (C) and (D) together completes Step 2.

Step 3 Using the matrix representation (13), we obtain

(1= —=0=wp)BIMs (0, )
+(1 = BIMs(1, ) + -+ My (K1 — 1, )]
+1 -0 -0=v)p)BIMs (K -1, )
= =v)pb+ (1 —ppc

In view of Step 2, the left-hand side is bigger when 8 = B than when 8 = 8,. How-
ever, the right-hand side is independent of S, so this is a contradiction. We conclude
that M, (k, B1) < My (k, Ba) forevery k,0 <k < K — 1. |

Proof of Theorem 2 Fix B. The Markov strategy o is optimal if and only if it satisfies
the Bellman optimality conditions:

BVo(k+1) = Vo(k)) = c, if o(k) =1 (20)
B(Ve(k+1) = Vs(k)) <c, if o(k)=0 (21)

If o is not a threshold strategy, there must exist integers K1 < K> such that

ocky=1, 0<k <K,
ok)=0, Ki<k<K>
ok)y=1, k=K, (22)

We will show that the Bellman optimality conditions are violated at K, and K> — 1.
To this end, let K3 be the smallest integer greater than K, for which o(K3) = 0.
(Such an integer exists because it cannot be optimal to serve when the token holding
is sufficiently high.) Thus, o (k) = 1, for K < k < K3z and M,(K3z — 1) > ¢/B.
Following o,

My (K3 =2) =[(1 —p)pc — pcMo(K3 — D]/p > My(K3 — 1) = c/B (23)

An inductive argument shows that M, (K7) > My (K> + 1) > ¢/B. According to the
recursion equations (9), we have
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My (Kz — 1) = (pe My (K2) + o Mo (K2 + 1)) /(=) > ¢/B

which is a contradiction. We conclude that a non-threshold strategy cannot be optimal;
equivalently, only threshold strategies can be optimal strategies.

It remains to show that the only possible optimal threshold strategies have adjacent
thresholds. Consider first two threshold strategies with consecutive thresholds K and
K + 1. We assert that

Moy (K) < c/B & Moy, (K) <c/B (24)
We prove direction “="; the “«<=" direction is similar and left to the reader. Suppose
instead that My, (K) > c/B. It follows that —¢, My, (K) > (1 — w)pc. If we

delete the last line in the matrix equation (13) for ok 1 and move My, (K) to the
right-hand side, we get another matrix equation

QKXKMO'KJH =u

where @ = ((1 — v)pb,0,...,0, —¢ My, (K)T. For the threshold K, ®x«x
M, = u. Therefore,

q>K><K(MG’K+| _Mo']() Zﬁ_u (25)
Lemma 1 guarantees that t — u > 0, so My, > My,. That is, My, (k) >
Mgy (k) for 0 < k < K — 1. Because My, (K) > ¢/B > My (K), it follows that

Mgy, (k) > Mgy (k) for O < k < K. According to the matrix equation, the following
identity holds for both 0 = o and 0 = ok 41:

I =vpb+ (1 —-pwpc=1A-pB+1—-wpp)Ms0)
K—-1
+(1 =) D Mo (k) + (1= B+ (1 = v)pB) My (K) (26)

k=1

This is a contradiction so we have established the direction =, as desired.
It follows directly from the matrix identity that

Moy (K) =c/B & Moy, (K) =c/B
Hence
Moy (K) > c/B < Moy, (K) > c/B 27)
We now assert that if K > K then

Moy (K) < c/B = My (K —1) < c/B (28)
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We have already shown that this is true when K=K+ 1;ie Mgy (K) < c/B.
Consider K = K +2. Of Myy ., (K+1) > ¢/B,then (27) implies that My, (K+1) >
c/B. Therefore, My, (K + 1) > My, (K). This is a contradiction to M, (K +
1) < Mgy, (K). Following inductively we obtain the assertion (28).

A similar argument (which we omit) shows that:

Moy (K = 1) > c/B = My (K) > ¢c/B.VK < K (29)

Finally, suppose ok is an optimal threshold strategy. Then, My, (K — 1) > ¢/B
and M, (K) < c¢/B. If the equalities hold strictly, (28) and (29) guarantee that o is
the only optimal threshold strategy. If M, (K — 1) = ¢/p (and hence, M, (K) <
¢/B), only ok and og_; are optimal threshold strategies. If My, (K) = c¢/B (and
hence, My, (K — 1) > ¢/B), only ok and ok are optimal threshold strategies. This
completes the proof. O

Proof of Theorem 3 This follows immediately from the representation of 74 and the
definition of invariance. O

Proof of Theorem 4 Given a protocol T = (a, o), let ' be the unique invariant
distribution; let un be the fraction of agents who have no tokens and v the fraction
of agents who do not provide service; these depend only on I'T and not on the population
parameters. If o = >_ y (K)o is a best response given the population parameters and
w™, vy must put strictly positive weight only on threshold strategies ok that are
pure best responses. In view of Theorem 2, there are at most two threshold strategies
that are pure best responses and they are at adjacent thresholds. That is, o is either a
pure threshold strategy or a mixture of two adjacent threshold strategies, as asserted.

O

Proof of Theorem 5 Suppose to the contrary that IT = («, o) is a robust equilibrium
protocol and that o = D" ¥ (K)ok is a proper mixed strategy, so that y (K) > 0 for
at least two values of the threshold K, Let MH be the fraction of agents who have no
tokens and v'! the fraction of agents who do not provide service; these depend only
on IT and not on the population parameters. In view of Theorem 4, o must assign
positive probability only to two adjacent threshold strategies; say o = y(K)og +
y(K + 1)ok+1 with y(K) > 0 and y (K + 1) > 0, and both ok, ox+1 must be best
responses. Because ox (K + 1) = 0 and og4+1(K + 1) = 1, equations (8), (9) (which
provide necessary and sufficient conditions for optimality in terms of the true value
function) entail that

—c+ BVk41 < BVk
—c+ BVki1 = BVk

Hence, —c + BVk 41 = BVk. Because ok is a best response, the value functions Vi
must coincide with the true value function V. Hence, an agent following ox must
be indifferent to providing service when holding K tokens. However, if 8 increases
slightly M, also increases, whence an agent following ox must strictly prefer to
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provide service. In other words, when f increases slightly, o can no longer be a best
response and ok can no longer be an equilibrium protocol. This is a contradiction,
so we conclude that a robust equilibrium protocol IT cannot involve proper mixed
strategies, as asserted. O

Proof of Theorem 6 We divide the proof of (i) into several steps.

Step 1 We first prove there exists & € [0, 1) such that
My (K —1,8) < — for g < gt

M, (K — 1,85 =

o™ o™

My(K —1,B) > Eforﬂ>ﬂl‘
To see this, define the auxiliary function
c
F(B)=Ms(K —1,8) — B

F is evidently continuous. Lemma 2 guarantees that M, (K — 1, ) is strictly
increasing in B, so F () is also strictly increasing in B as well. We show
that (1) > 0 and limg_.o F(8) < 0 and then apply the intermediate value
theorem to find BL.

To see that F(1) > 0, note first that the coefficients in the left-hand matrix of
(13) are simply ¢y = —p(1 —v), ¢ = p(1 —v+1—p)and ¢, = p(1 — ).
We split the matrix My, in two parts. To do this, write

u=(pl=vc 0 ... 0 p(l—po)’
' =pl=-v)b-c 0 ... 0 0 (30)

and define M/, , M” . to be the solutions to the equations
oM, =u, My, =u’ 31)

Note that My, = M, + Mg, and My, is the solution to (13). It is easy
to check that My, is a constant matrix: M, (k) = c for0 < k < K — 1.
Lemma 1 guarantees that the entries of My are strictly positive: M (k) > 0
for 0 < k < K — 1. Hence the entries of My, are strictly greater than
¢: My (k) > ¢ for0 < k < K — 1. In particular, F (1) > 0.

To see that limg_.o F(B) < 0, suppose not. Because F is strictly increasing,
this means F(B) > 0 for every B8 € (0, 1], which entails that M, (k) > % for
0 <k < K — 1. Summing the rows in (13) yields:

c Kc
,o(l—v)b+,0(1—u)c>K(1—,8)E:7—KC (32)

@ Springer



240 M. van der Schaar et al.
Note that Kc/B flows up as B — 0, so this is impossible. We conclude that
limg .o F(B) < 0, as asserted.

Because F is strictly increasing, the intermediate value theorem guarantees
that we can find an unique A% such that
F(B) <0 forB < pt
F(g') =0
F(B) >0 forB > Bt
The definition of F yields the desired property of g~
Step 2 Next we prove there exists 87 e (8%, 1) such that if 8 € [0, 8] then
Moy p(K — 1) < Pt P C prp < pl
+ ¢y c
M, gu(K —1) = M_
—¢ B
Mog p(K — 1) > Pt g pH
i $etbrc _ (1 _1 L __1 |c
To see this, note first that o B = [1 s+ p(l—v)ﬁ] i and define
another auxiliary function:
G(B) = Mu(K 1. ) (1 Lo, ! )C
= l'[ _ y —_ —_ —
p(d=v) pd=v)B) B
G is continuous and increasing. From Step 1 it follows that M, (K —1, 1) > ¢
s0G(l) = My, (K—1,1)—c > 0.Italso follows that M, (K —1, BL) = ﬁ;
because (1 — p(ll_v) + p(lju)ﬁL),ﬁ > ﬁ]_L’ we conclude that G(,BL) < 0.
Because G is continuous and increasing, there is a unique ﬂH € (,BL , 1) such
that
G(B) <0 for B < B
G =0
G(B) >0 for B> gt
Step 3 The definitions of F, G imply that in order for IT to be an equilibrium protocol

when the discount factor is 8 it is the necessary and sufficient condition that
F(B) = 0 and G(B) < 0. Hence, IT is an equilibrium protocol when the
discount factor is A exactly for 8 € [BL, B].

Because F, G are continuous in all their arguments and strictly increasing,
ﬂL, B H which are the zeroes of F, G, are continuous functions of the para-
meters as well. This completes the proof of (i).

The proof of (ii) is similar and left to the reader.
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Proof of Theorem 7 We first consider (i). Fix r. Consider the two protocols [Ty =
(K/2,0k)and g4 = ((K+1)/2, og+1) and the corresponding intervals [ﬂlL, ,BIH]
and [,BZL, ﬂzH ] of discount factors that sustain equilibrium. We need to show that

Bl < By < Bi < B

(The sustainable ranges for two consecutive threshold protocols overlap but are not
nested). There are three inequalities to be established; we carry out the analyses in
(A), (B), and (C) below.

(A) To prove ¥ > BF, write B = BL. We show that Mo, (K) < g To see
this, suppose not; i.e. My, (K) > £ . The construction of ﬁlL guarantees that
My (K — 1) = ¢/B. We will use this inequality and equality to show that all

marginal payoffs of [1x 4 so large that they violate the restrictions imposed by
the bounded benefit b and cost c.

To simplify the notation, let wy = %(% — 1)%. Note wg+1 < wg. Then the
matrix identity (13) becomes:
wx +2 -1 o - 0 b
| My (0) [f
-1 wx+2 -1 0 : Mgy (1)
0 -1 wx+2-1 0 . =] (33)
: . . . . 0
N . . . . MO'X (X _ ])
0 0 —lox+2], c/B

Suppose Mgy, (K) > My (K — 1) = % We investigate the relation between
My, (K — 1) and My, (K — 2). Using the matrix identity,

Moy (K —1) (k41 +2) Moy, (K) — }%
C

Moy (K —2) — (0k +2)Mo (K — 1) — §

(wk 41 +2)MGK+1(K) - w1 +1
(wg +2)MUK (K —1) wg +1

Moreover, if 2 < k < K — 1 then

Moy (K —k) (@K1 + DIMog, (K) + Mo (K —k+1D]— 5
Moy (K —k—1)  (wk + D[Moy (K — 1) + My (K — k)] — i

By induction,

Moy, (K — k) >(wK+1+1)">(wK+1)">(l_ 1 )"
My (K —k —1) wk + 1 oK (K + 1)2
|- k >K+1
(K+1> " K+2

VO<k<K-1
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Next we prove My, (0) > My, (0). This is relatively easy since, if My, (0) <
M (0), then using the marginal payoff matrix and by induction, My, (K — 1) <
My, (K —1) = % This is a contradiction to My, (K — 1) > My, (K) = % .
Therefore, My, (0) > My (0).

The marginal payoffs are bounded as follows,

X—1
(Moy (0) + Moy (X — 1) + 0x D Moy (k) =b/B+c/B (34)
k=0

Howeyver, since

K

K
oK1 ) Moy, (k) >
k=0

K
1
oK1 D Moy, (k)
k=1

K+1K(K+2)K+1 X2

Moy (k
K (K+1)2K+2“”‘,§ ox (K)

K—-1
=K D Moy (k)
k=0

and Mgy (0)+ Mgy, (K) > My, (0) + My, (K — 1), a contradiction occurs. There-
fore, for B = B, Moy, (K) < 4. This means B3 > Bi. This completes (A).

(B) To prove ﬂZH > ,3{1 ,let B = ,31H , we need to show that the protocol ITg
must have My, (K + 1) < ¢/B. We use contradiction to prove this. The idea
is: Suppose My, ., (K + 1) > ¢/pB, then we show that all the marginal payoffs
of I1x 4 are large enough such that they violate the restriction imposed by the
bounded benefit » and cost c.

Suppose Moy (K + 1) > My, (K) = ¢/B. According to the matrix equation,
similar to part (A), by induction we can get,

Mo (K +1-K) _ (og+] "> (K +1)3 _
My, (K — k) wg +1 K(K +2)%’ -

Also Msy_,(0) > My (0). The marginal payoffs are bounded as follows,

X
(Moy (0) + Moy (X)) + wx D Moy (k) = b/B +c/B (35)
k=0
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However, since

K+1 K42 K+1
WK 41 Z Mgy, (k) > = [ PK+ Z Moy, (k)
k=0 k=1

K+2K(K+2) (K+1)°
>
K+1 (K+1)2 K(K+2)?

K
oK D Moy (k)
k=0
K
= wK Y Moy (k)
k=0

and Mgy (0)+ My, (K +1) > My (0) + My, (K), a contradiction occurs. There-
fore, for B = I, My, (K +1) < 4. This means pit > BH. This completes
part (B).

(C) To prove Br < pI, write B = B{!. We show that My, (K) > Mgy (K) = £
If not, then as in (A) we must have M, (K) < My, (K) = %; in that case we
show My, (k) < My, (k) for 0 < k < K. This will again violate the restrictions
imposed by b and c.

We extend the marginal payoff matrix in (33) from K x K to (K +1) x (K 4+ 1) and
incorporate My, (K). If M, (K) = %, such extension does not change the solution
of the marginal payoffs M, (k), Vk € [0, K]. Note the new coefficient matrix has the
same size of the coefficient matrix for ok 1. Suppose My, (K) < My (K) = %
According to the matrix equation,

M{T](_H(K - 1) _ (wK+l + 2)M0’](+] (K) - C/ﬂ

Moy (K —=1) (0K +2)Moy (K) —¢/B <!

Moreover, for 0 < k < K, we have

Moy (K —K) _ (@41 + Doy, (K) + Moy, (K —k+ D] —c/B
Moy (K — k) (wk + D[Moy (K) + Moy (K —k+ 1] —c¢/B

By induction, My, (k) < M, (k)0 < k < K. However, since

X—1
(Moy (0) + Moy (X — 1) + wx D Moy (k) =b/B +c/B (36)
k=0

Again, the left-hand side is bigger when X = K than when X = K + 1, which is a
contradiction. This completes part (C).

Combining (A), (B) and (C) establishes the desired string of inequalities. The
remaining conclusions of (i) follow immediately.

The argument for (ii) is very similar and left to the reader.
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Proof of Theorem 8 Fix a protocol I = (a, og) and let n'! be the corresponding
invariant distribution. We first find a closed form expression for n'!. To do this, plug
the strategy o into the characterization of the invariant distribution given in Theorem
3. A little algebra provides an identify involving n™(0), n™ (1), »™'(K) and a simpler
recursion relationship.

1 -0
n“(1)=:[———1lf—l}n“(0>

1 =n"(K)
n,. [2=1"0) -n"(K)] g B 1=9"O) 7 . n _
n (k) = |: 1 71(K) no(k—1)+ T—01(K) n(0)n (k—2)

From this we can solve recursively, obtaining

k
1—1"(0)
n
ky=|————— 37
n"(k) L—WWK) (37)
for all k = 0,1,..., K. Note that the one remaining degree of freedom is pinned

down by the requirement that the total token holding be equal to .
We next solve the following simple maximization problem:

maximize E*(x1,x2) =1 —x1 — x2 + x1x2
0<xp,x2<l1 (38)
subject to x1(1 —x))X = x2(1 — xp)K

To solve this problem, set f(x) = x(1 — K. A straightforward calculus exercise

shows that if 0 < x; < K+L1 <xp <land f(x1) = f(x2) then:

(@) x1+x > KLH’ with equality achieved at x| = xp = 1

K+1°
(b) x1xp < K+r1’ with equality achieved at x; = xp = KLH
Putting (a) and (b) together shows that the optimal solution to the maximization prob-
2
lem (38) is to have x| = xy = ﬁ and max E* = (1 — K+r1) .

If we take x; = u'l, xo = v and apply the closed form solution (37) for the
invariant distribution, we see that f(x1) = f(x2). By definition, Eff(IT) = E*(x1, x2)
)

1 2
Eff(I1) < max E* = (1 )

CK+1
On the other hand, if « = K /2 then the invariant distribution has n' (k) = K+r1 for
all k and
Eff(K/2,0x) = (1 Ly (K/(K + D]
, o = _——_— =
K K+1

Taken together, part (ii) and (iii) are proved.
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Next fix a protocol (o, og). Let [o] be the least integer greater than or equal to «
and set K* = 2[«]. There are two cases to consider.
In the first case, K < K*.

1 \? 1 2 1 2
Eff(a, ox) < (1——) < (1_ ) - (1——)
K+1 K*+1 2[a] + 1

which is the desired result in the first case.

In the second case, K > K*. Define the protocol IT" = ([«], ok); let n’ be the
invariant token distribution for IT’. Let 1'[* = ((oﬂ ok+); note that the invariant token
distribution n* is uniform (n*(k) = K*+1 = 2rrﬂ+1 forall k =0, 1, K*). Note
that TT" and IT have the same strategy component but that the token supply for I is
larger than for IT, and that IT" and IT* have the same token supply but that the strategy
component of T1” has a higher threshold.

We assert that " (0) > If not then n/ 0) <

ﬁ It follows that

W = K*+1
forallk € {0,1,..., K} wehave n'(k) < K*_+1 = n*(k). Hence
K* K* K*
[l = D kn*(k) = Zk(n (k) —n' (k) + D kn'(k)

k=0 k=0

K* K* * K*
< K> k) — ' () + D kn'(k) = K*(1 — Z n' (k) + > k' (k)

k=0 k=0 = =0

= K* Z n(k)+zkn (k) < Z kn' <k>+an (k) = Tato]

k=K* k=K*
.. .. ’ 1
This is a contradiction. Hence, n’(0) > alF

Because the token supply for IT is less than IT’, the number of agents with no tokens
is larger, so n(0) > n’(0) > ﬁ Hence,

Eff(IT) = (1 — n(0)(1 = n(K) < (1 = (0) < (‘ " 2al + 1)

which is the desired result in the second case. This complete the proof for part (i).

Proof of Theorem 9 Both assertions follow immediately by combining Theorems 7
and 8. O

Proof of Theorem 10 We first derive the lower bound K. If TTg = (K /2, o) is an
equilibrium protocol then consecutive marginal utilities bear the relationship

¢1MUK (k=1 + ¢CM0K (k) = _¢’MUK k+1)>0
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(Because B is fixed, we suppress it in the notation.) Therefore, My, (k) > TT‘f”

My, (k — 1). By induction,

—or\* ( B )k
Moy O > (—22 ) w1, 0
¢c) O =302 7208 ©

Because ¢ My (0) = (1 —v)pb — ¢ My (1) > (1 —v)pb + (1 — v)pc, we have

My, (k) > (

My, (0) > (1 —v)pb _ B b+c
be 20-8)+2p8 B
Therefore,
0B K1 4 ¢
My, (k 39
()>(2(1—/3)+2pﬁ) 5 o

Because Ik is assumed to be an equilibrium protocol, we must have My, (K) <
c/pB. Moreover, we must also have

( 0B )K+1b+c<£
2(1 =) +2p8 B B

because otherwise M, (K) > c/B. Therefore,

K zmax{log 0B —1,0} (40)

2-p128 b+ ¢

This provides the lower bound K ~.
We now derive the upper bound K . Rewriting the relation between consecutive
marginal utilities, we obtain

0=¢iMgy (k= 1) + ¢ Moy (k) + Mgy (k + 1)
> QiMoy (k — 1) + (P + ¢r) Mgy (k)

Therefore, My, (k) < @%%Mok (k — 1). By induction,

-¢ \* PP ¢
oct < (505, ) wox < (=555) W

Because ¢ My (0) = (1 —v)pb — ¢ Mg (1) < (1 —=v)pb —¢pb/B =2(1 —v)pb,
we have,

0B 2b

My (0) < —————
1—=p+pop B
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Therefore,

k+1
PP ) 2b @1

My, (k) < (— —
(—p+08) B

Because I1k is assumed to be an equilibrium protocol, we must have My, (K —1) >

c/pB. Moreover,
( pb )K§>5
L=p+pB) B B

because otherwise M, (K — 1) < c¢/B. Therefore,

c
< —
K 105.::1_;;,_3;”j b 42)

This provides the upper bound K /.

Combining the two estimates yields the range containing all integers K for which
[Tk is an equilibrium protocol. The estimate for efficiency follows immediately since
Eff(Tlg) > Eff(IMge) it K > KL, so the proof is complete. O
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