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Abstract We develop a model of games with awareness that allows for differential
levels of awareness. We show that, for the standard modal-logical interpretations of
belief and awareness, a player cannot believe there exist propositions of which he is
unaware. Nevertheless, we argue that a boundedly rational individual may regard the
possibility that there exist propositions of which she is unaware as being supported
by inductive reasoning, based on past experience and consideration of the limited
awareness of others. In this paper, we provide a formal representation of inductive
reasoning in the context of a dynamic game with differential awareness. We show
that, given differential awareness over time and between players, individuals can derive
inductive support for propositions expressing their own unawareness. We consider the
ecological rationality of heuristics to guide decisions in problems involving differential
awareness.
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1 Introduction

As former US Secretary Rumsfeld (2002) famously observed, the problem of unknown
unknowns (things we do not know we do not know) is one of the most difficult
facing any decision maker. In standard decision-theoretic frameworks, the set of pos-
sible states of nature is known at the beginning of the problem. Learning consists of
observing signals that restrict the set of possible states. Probabilities are then updated
according to Bayes’ rule. In reality, however, decision makers are frequently presented
with “surprises,” that is, events they had not previously considered. So, a realistic model
of choice under uncertainty must incorporate the fact that individuals are unaware
of some relevant possibilities. Similarly, in a game-theoretic context, at any given
stage in an extensive-form game, some players may be unaware of possible moves of
which other players are aware. Furthermore, sophisticated individuals will understand
that there may be possibilities of which they are unaware, even though they cannot
express this understanding within the state-space model of the world available to
them.

The argument of this paper is twofold. First, we show that, even when standard
game-theoretic and decision-theoretic models are extended to include unawareness and
differential unawareness, these standard concepts of belief, knowledge and awareness
cannot encompass the idea that individuals understand their own bounded awareness.
This lack of self-awareness persists even in a dynamic and interactive setting, where
individuals are aware of both their own past unawareness and the bounded aware-
ness of other individuals. We conclude that a reasonable model of individuals with a
sophisticated understanding of their own bounded awareness must incorporate modes
of reasoning other than deductive inference based on a fully specified state space or
dynamic game tree.

Second, we argue that, in a dynamic interactive setting, it is natural to employ
inductive reasoning to justify inferences about one’s own awareness and unawareness.
In particular, since everyone has the experience of becoming aware of propositions
and possibilities they have not previously considered, standard principles of historical
induction suggest that similar experiences will occur in the future and therefore that
there exist propositions of which we are currently unaware. Similarly, in a game
with awareness, described by a syntactic structure, individuals believe that others are
unaware of at least some possible histories and the associated propositions. Inductive
reasoning suggests that the same will be true of all individuals, including the person
drawing the inference.

It follows that reasonable, but boundedly rational, individuals should not rely solely
on standard Bayes-Nash reasoning to guide their decisions, whether these decisions
involve games with Nature or interactions with other individuals. Rather, individuals
may improve their welfare by adopting inductively justified heuristics that are, in the
terminology of Goldstein and Gigerenzer (2002), ecologically rational.

The paper is organized as follows:
Section 2 presents semantic and syntactic representations of differential awareness

in terms of extensive games. The syntactic representation is constructed by associ-
ating with any given extensive-form game a propositional language rich enough to
specify all histories and sets of histories that arise in that game. The crucial idea in our
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Inductive reasoning about unawareness 719

representation of games with awareness is that players may be unaware of some pos-
sible histories of the game and may therefore have access only to a restricted version
of the game. This leads to an important modification of the standard modal-logical
approach, in which a proposition is known to be true by a player if it is true in all
histories considered possible by that player, given the information she has observed.
In a game with awareness, a proposition may be false in the actual history, but true
in all histories considered possible by a player, given their limited awareness. From
the perspective of the full game (or, more generally, from the perspective of a player
with greater awareness), it makes sense to characterize the player’s attitude to such
propositions as “belief” rather than “knowledge.” We show how knowledge and belief
operators may be defined in a game with differential awareness, in a way that allows
for false belief but not false knowledge. These ideas are illustrated with reference to
an example first presented by Heifetz et al. (2006).

In Sect. 3 we consider the question of how individuals can reason about their
own awareness and unawareness. First, the language is extended to include existen-
tial propositions of the general form “there exists a proposition q, such that . . ..”
This development enables us to consider the process of reasoning about awareness
and unawareness. Within the model of games with awareness developed in Sect. 2,
we show that an individual cannot believe that there exist propositions of which
he is unaware. Nevertheless, this proposition can be formulated in the richer lan-
guage we consider. Moreover, in the context of games with awareness, it will be
true, in general, that there exist propositions of which players are unaware. Further-
more, players in games will, in general, experience the discovery of propositions of
which they were previously unaware and observe the bounded awareness of other
players.

These observations lead us to consider modes of reasoning other than the Bayesian
inference that characterizes standard extensive-form games. We show how inductive
modes of reasoning may be used by individuals to assess existential propositions
about awareness. Inductive support may be derived from past experience or from the
observation of others. We say that a proposition is supported by historical induction
if it has been (believed) true in the past and never been (believed) false. In particular,
since everyone has the experience of becoming aware of propositions and possibilities
they have not previously considered, the proposition that they will continue to do so is
supported by historical induction. Similarly, a proposition that holds true for at least
some individuals and is not false for any individual is supported by induction over
individuals. In a game with awareness, players believe that others are unaware of at
least some propositions. Inductive reasoning suggests that the same will be true for all
players, including the person undertaking the induction.

Finally, we consider the implications of inductive reasoning about unawareness
of decisions, represented in general by the choice of strategy in an extensive-form
game. In Sect. 5, we argue that decision makers may reasonably choose strategies
subject to heuristic constraints that rule out actions if the proposition that these
actions will have unforeseen consequences is supported by induction. We provide
criteria under which the adoption of heuristic constraints may be ecologically ratio-
nal from the perspective of the full game. The analysis is illustrated by a no-trade
result for the speculative trade example developed previously. We discuss possible
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applications to decisions regarding research and discovery and to the precautionary
principle, often advocated as a basis for regulatory decisions regarding environmental
risks.

Finally, we offer some concluding comments.

2 Games with awareness

2.1 Extensive-form games and languages: notation

In this section, we describe the notation for games and the associated languages. We
will use the term “semantic” to refer to the representation of the problem in terms of
possible game histories, and “syntactic” to refer to the language associated with the
game in terms of the truth values of propositions. We begin with a(n almost) standard
definition of an extensive-form game, as in Osborne and Rubinstein (1994).

Definition 1 A finite extensive game is � = (N ∪ {c}, A, H, P, f c, I, {vi : i ∈ N })
where:

G1 (Player Set): N = {1, . . . , n} is a finite set of players, and c denotes Nature (the
‘chance’ player);

G2 (Actions):A is a finite non-empty set of actions;
G3 (Histories): H is a set of histories, defined as sequences of actions undertaken by

the players. H is partially ordered by the subhistory relationship � . The set of
terminal histories is denoted by Z . The set of actions available at h is denoted by
A (h) ⊆ A.

G4 (Player Function): P : H → N ∪ {c} assigns to each history a player making a
decision after that history;

G5 (Chance Assignment): f c associates with every history h such that P(h) = c a
probability distribution over A drawn from some set �, and with support A (h) .

G6 I : H → 2H is the information set assignment function whose range forms a
partition of H and exhibits the properties that h ∈ I (h) for all h ∈ H , and for
any h′ ∈ I (h), P (h) = P

(
h′) and A (h) = A

(
h′).

G7 (Payoffs): For each player i ∈ N , vi : Z → R is the payoff function for player
i , representing expected-utility preferences for lotteries over Z .

So, the set of histories h is the set of all sequences of the form 〈α1, α2, . . . , αk〉,
where α j ∈ A

(〈α1, α2, . . . , α j−1〉
)
, j = 1, . . . , k, including the trivial sequence 〈·〉.

The extensive structure of the game � is represented by the subhistory relationship
〈α1, . . . , αk〉 � 〈α1, α2, . . . , αk, .., αl〉. If h = 〈α1, α2, . . . , αk〉, we denote h ·αk+1 =
〈α1, α2, . . . , αk, αk+1〉 and observe h � h · αk+1.

The process of Bayesian learning in an extensive-form game works by exclusion.
That is, as the game is played out, players learn that some histories in the game are
no longer possible and update their probabilities on the remaining possible histories
using Bayes’ rule. The information set I (h) describes the set of histories that have
not been ruled out by the information available to player P (h) at h.

Following Osborne and Rubinstein (1994) we denote by X P(h) (h) the record
of player P (h)’s experience along the history h, that is, the sequence consist-
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Inductive reasoning about unawareness 721

ing of the information sets she encountered in the history h and the actions that
she took at them, in the order they were encountered. Formally, for any history
h = 〈α1, α2, . . . , αk〉, let i = P (h), let h0 = 〈·〉 (the trivial sequence), let
hr = 〈α1, α2, . . . , αr 〉, for r ∈ {1, . . . , k − 1} and let R (i) = {r : P (hr ) = i}. Then
Xi (h) = (I (hr1) , ar1+1, . . . , I (hr� ) , ar�+1

)
, where r j is the j th smallest member

of R (i) and � = |R (i)|.
We restrict attention to games of perfect recall.

Definition 2 A finite extensive game � = (N ∪ {c}, A, H, P, f c, I, {vi : i ∈ N })
exhibits perfect recall if for each history h in H , X P(h) (h) = X P(h)

(
h′), for all

h′ ∈ I (h).

A behavioral strategy β i for player i is a collection of independent probability
measures

(
β i (h) : P (h) = i

)
where the support of each such β i (h) is a subset of

A (h), and where for any h′ ∈ I (h), β i
(
h′) = β i (h). That is, there is an independent

probability measure over actions specified for each history at which player i is called
upon to play, and this probability measure is the same for all histories residing in the
same information set. A behavioral strategy profile β is a set of behavioral strategies,
one for each i .

We define a subjective probability μi = (
μi (h) : P (h) = i

)
for player i to be an

assignment to each history h in H for which P (h) = i , a probability measure on the
set of histories in I (h) in which for any h′ ∈ I (h), μi

(
h′) = μi (h).1 A subjective

probability system μ is a set of subjective measures, one for each i . An assessment is
a pair (β, μ), where β is a behavioral strategy profile and μ is a subjective probability
system.

Given a strategy profile β, for each h in H we denote by τ (β|h) the probability
distribution over terminal histories induced by β, conditional on history h having
been reached. Let τ (β) denote the unconditional probability distribution over terminal
histories induced by β.

Hence, given the assessment (β, μ), the continuation value of player i = P (h) at h
(i.e., the continuation value conditional on information set I (h) having been reached)
is

V i
� (h;β,μ) =

∑

h′∈I(h)

μi (h)
[
h′]

(
∑

h′′∈Z

τ
(
β|h′) [

h′′] vi (
h′′)

)

,

and we denote the expected value of the (entire) game for player i by V i
� (β) =∑

h∈Z τ (β) [h] vi (h).
An assessment (β, μ) is sequentially rational if each player’s strategy is a best

response at every information set at which she is called upon to play. That is, we
require, for each player i ∈ N and every h, such that P (h) = i ,

V i
� (h;β,μ) ≥ V i

�

(
h;

(
β̂ i , β−i

)
, μ

)
, for every strategy β̂ i of player i .

1 Osborne and Rubinstein use the term ‘belief system’. Our terminology has been chosen to avoid confusion
with the belief operator to be defined below.
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We refer to a behavioral strategy profile that assigns positive probability to every
information set as completely mixed. An assessment is consistent if it is the limit of a
sequence ((βm, μm))∞m=1 in which each strategy profile βm is completely mixed and
each belief system μm is derived from βm using Bayes’ rule. A sequential equilibrium
is a consistent and sequentially rational assessment. As in Osborne and Rubinstein, it
is straightforward to demonstrate for a finite extensive-form game with perfect recall
the existence of a sequential equilibrium.

We now consider a syntactic rendition of the same structure. With each game �,
we associate a language L� . The language must be rich enough to encompass the
sequential structure of H , the information in I and the valuations vi . The relationship
between the properties of the language L� and of the game � may be formalized using
the semantic approach to modal logic first presented by Kripke (1963) and developed
in relation to the logic of knowledge by Fagin and Halpern (1988).

Space does not permit a detailed exposition here, but a brief outline will be useful.
The central idea is to use properties of the game � to define (in Kripke’s terminol-
ogy) accessibility relations between histories h ∈ H . More precisely, the property of
common membership of an information set defines an equivalence relation, while the
temporal structure defines a partial ordering. These relations define a class of Kripke
frames for which an appropriate axiomatization of the language L� can be shown to
be complete (permitting derivation of all theorems applicable to games �) and sound
(ensuring that every proposition derivable in L� is valid in �).

Definition 3 For a game �, the game language L� is a set of sentences closed under
the logical operators ∧ and ¬ and derived from:

L1 (Player terms): Terms N = {pi : i ∈ N } representing players, with c denoting
Nature (the “chance” player), where pi is read as “i is a player in the game”;

L2 (Actions): A set of elementary propositions A = {: α ∈ A} where pα is read as
“action α has just been taken”;

L3 (Histories): A set of elementary propositions H = {ph : h ∈ H} read as “the
current history is h”;

L4 (Player Assignment) A set of elementary propositions P = {
ph,i : h ∈ H, i ∈ N

}

where ph,i is read as “player i moves at h”;
L5 (Knowledge operators): {ki p : i ∈ N } read as “i knows p”;
L6 (Payoffs): For each player i ∈ N , and each feasible payoff v for player i in the

game �, an elementary proposition pv,i is read as “player i receives payoff v”.
We will assume, without details, that the language is rich enough to allow players
to do standard arithmetic, for example, to express propositions like “my expected
payoff is less than v”;

L7 (Temporal structure) The temporal structure of the game is given by an operator
w (where wp is read as “p was true in the past”).

Given an appropriate semantic interpretation, the languageL� represents a syntactic
rendition of a class of games including �. That is, for any given play of a game from
this class,2 the truth value of any proposition p ∈ L� can be inferred.

2 This includes the action of nature governed by the probabilities f c and the resolution of any randomization
over actions by the players.
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The semantic interpretation works as follows. For any p ∈ L� , the statement “p is
true at h” is written h |
� p. Conversely, the truth set � (p) = {h : h |
� p} is the
set of histories at which p is true. The relation |
� can be derived using the standard
rules of logic and the interpretation rules given below:

Definition 4 A semantic-syntactic game representation (�,L�, |
�) consists of an
extensive-form game �, the associated language L� and a relation |
� such that for
all p, h, either h |
� p or h |
� ¬p, and:

S1 (Players):h |
� pi ,∀h ∈ H, i ∈ N
S2 (Actions):h |
� pα ⇔ ∃h′, s.t. h = h′ · α

S3 (History):∀h, h′ ∈ H , (i) h |
� ph , (ii) h′ �= h ⇔ h′ |
� ¬ph , (iii) h |
�

wph′ ⇔ h′ � h
S4 (Player Assignment) h |
� ph,i ⇔ P (h) = i
S5 (Knowledge ): h |
� ki p, if and only if P (h) = i and h′ |
� p for all h′ ∈ I (h) ;
S6 (Payoffs )): h |
� pv,i ⇔ h ∈ Z ∧ vi (h) = v

S7 (Temporal structure) h |
� wp ⇔ ∃h′ ≺ h, h′ |
� p

Of these rules, S6 (which deals with the knowledge operator ki ) is the only one that
requires special attention. It states that, at the history h in the game, player i knows
the proposition p is true if and only if p is true in all histories considered possible
by player i at h. Thus, the semantic interpretation of the language relates knowledge
directly to the information sets of players in the game.

It is straightforward to show that the knowledge operator satisfies the standard set of
axioms referred to in the literature on modal logic as S5. The most important of these are
Distribution ki (p ⇒ q) ⇒ (ki p ⇒ ki q), commonly denoted by K, Truth (ki p ⇒ p),
commonly denoted by T, Positive Introspection (ki p ⇒ ki ki p), commonly denoted
by 4, negative introspection (¬ki p ⇒ ki¬ki p), commonly denoted by 5, and Knowl-
edge Generalization, which requires that if p is true in all states, we can infer ki p.
Fagin et al. (1995) (p. 56) show that, in a “possible worlds” representation of knowl-
edge, S5 is a complete and sound axiomatization for the knowledge operator defined
as above (see also Halpern 2003, pp. 249–250). However, this result does not encom-
pass the temporal structure of knowledge in an extensive-form game, where the notion
corresponding to the set of worlds is the set of partial histories at which a given player
is to move. In particular, we do not address issues that may arise in the absence of
perfect recall.

We can now consider syntactic notions of awareness and unawareness. The stan-
dard definition of awareness is that an individual is aware of a proposition if they
know its truth value or know that they do not know its truth value. That is, ai p ⇔
ki p ∨ ki¬p ∨ ki (¬ki p ∧ ¬ki¬p) with unawareness being the negation of awareness,
that is, ui p is a synonym for ¬ai p. (Notice that ki p ∨ ki¬p ∨ ki (¬ki p ∧ ¬ki¬p)

may be stated more compactly as ki p ∨ ki (¬ki p).)
As observed by Modica and Rustichini (1994), for a partitional information struc-

ture (which we have assumed), ai p is true for all p ∈ L� . Also, we have a j ai p and
so forth. Because of this property, we refer to a standard extensive-form game as a
game of full common awareness. Since ui p is trivially false in a game of full com-
mon awareness, we will not use the definition above, but will define awareness and
unawareness in the context of a game with awareness, which we now construct.
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2.2 Restrictions

Under the standard assumptions of unbounded rationality and common knowledge, all
players in a game are aware of the structure of the game, of each other’s awareness, of
others’ awareness of their own awareness, and so on. With boundedly rational players,
however, it is necessary to consider the possibility that, at some given history h, player
i = P (h), who must choose an action, may not be aware of all possible histories in the
game. For example, player i may be unaware of possible future moves available to other
players, to the chance player or to herself. Player i may even be unaware of the existence
of some other players. We formalize the less than full awareness of the player P (h) at
h by ascribing to her a game that is a restriction of the full awareness game. Essentially,
the restriction is obtained by deleting some of the terminal histories and all partial histo-
ries of those terminal histories of the original game and then constructing the restricted
game to be consistent with the original game in terms of its information structure.

Definition 5 Fix a game � = (N ∪{c}, A, H, P, f c, I, {vi : i ∈ N }), where Z ⊂ H
denotes the set of terminal histories in �. A non-empty subset of terminal histories
Z̃ ⊂ Z is deemed admissible, if �Z̃ = (NZ̃ ∪{c}, AZ̃ , HZ̃ , PZ̃ , f c

Z̃
, IZ̃ , {vi

Z̃
: i ∈ NZ̃ })

constitutes a restriction of the game � in which:

HZ̃ =
{

h ∈ H : ∃z ∈ Z̃ , h � z
}

;

NZ̃ = {
n ∈ N : ∃h ∈ HZ̃ , P (h) = n

}
;

for each h ∈ HZ̃ :

IZ̃ (h) = HZ̃ ∩ I (h) ;

AZ̃ (h) = {a ∈ A (h) : h · a ∈ HZ̃ };
PZ̃ (h) = P (h) ;

f c
Z̃

(h) (a) = f c (h) (a)
∑

ã∈AZ̃ (h) f c (h) (ã)
,

and,

for each i ∈ NZ̃ and z ∈ Z̃ , vi
Z̃

(z) = vi (z) .

We denote the relation that �Z̃ is a restriction of the game � by �Z̃ � �.
Furthermore, in a slight abuse of notation, we shall also extend the domains of AZ̃ ,

PZ̃ , f c
Z̃

, IZ̃ to H , by setting for each h in H − HZ̃ :

IZ̃ (h) := HZ̃ ∩ I (h) ; AZ̃ (h) := {
a ∈ A (h) : ∃h′ ∈ IZ̃ (h) s.t. h′ · a ∈ HZ̃

} ;
PZ̃ (h) := P (h) ; and,

f c
Z̃

(h) (a) :=
{

f c (h) (a)
/ ∑

ã∈AZ̃ (h) f c (h) (ã) if AZ̃ (h) �= ∅

0 if AZ̃ (h) = ∅

.
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By construction, the subhistories and the subhistory ordering are preserved in the
sense that, for any h, h̃ ∈ H , such that h̃ �� h, if h is in the restricted set of histories HZ̃
then h̃ must also be in HZ̃ and furthermore, we retain h̃ ��Z̃

h in the restricted game. In
addition, no new terminal nodes are created in the restricted game, allowing us to obtain
the payoff function from the restriction of vi to Z̃ . The definition of the chance assign-
ment function f c

Z̃
ensures that if an action by nature is excluded from consideration at h,

the relative probabilities of the remaining actions α ∈ AZ̃ (h) are unchanged. Notice it
also follows from the definition that a restricted game does not add information or lose
information with respect to the histories in the restricted game. Moreover, if the original
game is one of perfect recall, then this property is inherited by the restricted game.

Lemma 1 Fix a game � with perfect recall and an admissible subset of terminal
histories Z̃ ⊆ Z. The associated restricted game �Z̃ satisfies perfect recall.

Proof Recall perfect recall for � requires for any history h in H , X P(h) (h) =
X P(h)

(
h′), for all h′ ∈ I (h). Now suppose h = 〈α1, α2, . . . , αr 〉 is in HZ̃ , and

denote by X̃ P(h) (h) the record of player P (h)’s experience along the history h in the
restricted game �Z̃ . Let hr = 〈α1, α2, . . . , αr 〉 for r ∈ {1, . . . , k − 1} and let R (i) =
{r : P (hr ) = i}. By construction X̃ P(h) (h) = (I (hr1) ∩ HZ̃ , ar1+1, . . . , I (hr� )

∩HZ̃ , ar�+1
) = X̃ P(h)

(
h′), for all h′ ∈ IZ̃ (h) = I (h) ∩ HZ̃ . ��

The partial relation of set inclusion for terminal histories generates a partial ordering
over the set of restricted games that can be generated from a given extensive-form game.

Definition 6 The relation � is a partial ordering on the set of games, corresponding
to the subset ordering on sets of terminal histories. In particular, if ˜̃Z ⊆ Z̃ ⊆ Z , then
�˜̃Z � �Z̃ � �.

A parallel definition applies to the associated language L� and to the interpretation
|
� . If �Z̃ � �, then L�Z̃

� L� . For elementary propositions p ∈ L�Z̃
(those incor-

porating only terms about players, actions and histories in the restricted game �Z̃ ),
we have, whenever h ∈ H̃ ⊆ H , h |
�Z̃

p if and only if h |
� p. Things are different
when we come to consider knowledge and belief. It is possible to have a situation
where h′ |
�Z̃

p for all h′ ∈ IZ̃ (h), but nevertheless, h |
� ¬p. That is, p is true
for all the histories considered possible by player i = P (h) at IZ̃ (h)in the restricted
game �Z̃ , but that the restricted information set does not include the actual history h,
at which p is false.

Thus, in a restricted game, players may hold false beliefs about propositions p.
More generally, what appears to the player as reliable knowledge about a proposition
p may be an unreliable belief if there are histories h′′ that cannot be ruled out on the
basis of the information available at h, of which the player is unaware and at which
p is false. We write “bi p” read as “i believes p” and define what it means, from the
viewpoint of the unrestricted game, for a player to believe a proposition is true in the
game they perceive themselves to be playing.

Definition 7 Fix a game � and an admissible subset of terminal histories Z̃ ⊆ Z with
associated restricted game �Z̃ � �. For any proposition p ∈ L�Z̃

, any history h ∈ H
and i = P (h), h |


�,Z̃ bi p iff h′ |
�Z̃
p for all h′ ∈ IZ̃ (h) .
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Remark 1 Since the restricted game �Z̃ is itself a game, it remains true that, for any
h′ ∈ HZ̃ , j = PZ̃

(
h′), and any p ∈ L�Z̃

, h′ |
�Z̃
k j p if and only if h′′ |
�Z̃

p for all
h′′ ∈ IZ̃

(
h′). That is, within any game, the knowledge operator is defined as usual.

However, when considering a restriction of a game from the viewpoint of that game,
we use the belief operator bi . To sum this up

h |

�,Z̃ bi p ⇔ h′ |
�Z̃

ki p for any (and hence all) h′ ∈ IZ̃ (h) .

Note that bi p is a proposition in � referring to the restriction �Z̃ , while the proposition
ki p is well defined within each of � and �Z̃ , but has different meanings. In particular,
it is possible that h |
� ¬ki p while h′ |
�Z̃

ki p for all h′ ∈ IZ̃ (h) (and in the latter
case if h /∈ IZ̃ (h) it may be, but need not be, true that h |
� ¬p). That is, from the
perspective of � “knowledge” in �Z̃ may be unreliable or false, which is why we call
it belief. Only if IZ̃ (h) = I (h) will knowledge and belief coincide.

It follows from the above remark that the belief operator does not satisfy the Truth
Axiom T. Even more importantly, the belief operator does not satisfy negative intro-
spection (Axiom 5 in S5). Consider any history h′ ∈ I (h), such that h′ /∈ HZ̃ and
therefore h′ /∈ IZ̃ (h). Then, h |


�,Z̃ ¬bi ph but also (since ¬ph is not a proposition
in L� Z̃ ) h �

�,Z̃ bi¬ph and h �
�,Z̃ bi bi¬ph .

The remaining properties of S5 are satisfied by the belief operator as is shown in
the following lemma.

Lemma 2 The belief operator satisfies the properties of the system KD4, namely:

Distribution (K) bi (p ⇒ q) ⇒ (bi p ⇒ bi q);
Consistency (D) ¬bi f alse; and,
Positive Introspection (4) bi p ⇒ bi bi p.

Proof (K) If h |
�Z̃
bi (p ⇒ q), then ∀ h′ ∈ IZ̃ (h), h′ |
�Z̃

¬p ∨ q. Now suppose
∀ h′ ∈ IZ̃ (h) , h′ |
�Z̃

p (i.e., h |
�Z̃
bi p), then it follows ∀ h′ ∈ IZ̃ (h) h′ |
�Z̃

q,
that is, h |
�Z̃

bi q, as required.
(D) Choose some h′ ∈ IZ̃ (h). Since h′ �|
�Z̃

f alse, it follows h �|
�Z̃
bi f alse,

as required.
(4) Suppose ∀h′ ∈ IZ̃ (h), h′ |
�Z̃

p, then also ∀ h′ ∈ IZ̃ (h), h′ |
�Z̃
bi p, so

h |
�Z̃
bi bi p, as required. ��

The absence of negative introspection means that the belief operator displays non-
trivial unawareness. We write ai p, read as “i is aware of p,” and write ui p, read as
“i is unaware of p,” and define what it means, from the viewpoint of the unrestricted
game, for a player to be aware (respectively, unaware) of a proposition in the game
they perceive themselves to be playing.

Definition 8 Fix a game � and an admissible subset of terminal histories Z̃ ⊆ Z ,
with associated restricted game �Z̃ � �. For any proposition p ∈ L� , any history
h ∈ H and i = P (h),

(i) h |

�,Z̃ ai p iff h |


�,Z̃ bi p ∨ bi (¬ki p)

(ii) h |

�,Z̃ ui p iff h |


�,Z̃ ¬ai p
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In words, we say at a history h in the game �, player i = P (h) who perceives
to be playing the game �Z̃ , is aware of a proposition if from the perspective of the
unrestricted game �, he either believes the proposition is true or believes he does not
know the proposition is true.

The fact that the belief operator does not satisfy negative introspection has the
important consequence that, for any given proposition p, the fact that player i is
unaware of p does not imply that she believes she is unaware of p. Indeed, the oppo-
site is true.

Lemma 3 For any proposition p ∈ L� , any history h ∈ H and i = P(h),

h �
�,Z̃ bi ui p

Proof Notice either

(i) p ∈ L�Z̃(h)
in which case h |


�,Z̃ ai p, and hence h |

�,Z̃ bi ai p ⇔ h |


�,Z̃
bi¬ui p

(ii) p /∈ L�Z̃(h)
in which case ui p /∈ L�Z̃(h)

and hence h �
�,Z̃ bi ui p ��

2.3 Perception mapping

We are concerned with games with awareness, in which players, at any given history
where they are called on to play, may be unaware of some possible histories. To rep-
resent this, we need to relate the game actually being played to the game as perceived
by the players. We shall define the evolution of awareness of the players through the
game by the perception mapping:

Definition 9 Fix a game �. A perception mapping is a function Z̃ : H → 2Z\∅,
where with each history h ∈ H , the set Z̃ (h) ⊆ Z is an admissible set of terminal
histories considered by player P (h) at history h. Denote by

�Z̃(h)
=

(
NZ̃(h)

∪ {c}, AZ̃(h)
, HZ̃(h)

, PZ̃(h)
, f c

Z̃(h)
, IZ̃(h)

,
{
vi

Z̃(h)
: i ∈ NZ̃(h)

})
,

the restricted game associated with the set of terminal histories Z̃ (h) that is imputed
to player P (h) at h.

We impose the following requirements on the perception mapping.
IN: (Information Neutrality): For all h, h′ in H , h′ ∈ I (h) ⇒ Z̃

(
h′) = Z̃ (h) .

IA: (Increasing Awareness): If h′ � h and P (h) = P
(
h′) then Z̃

(
h′) ⊆ Z̃ (h).

NI: (No Impossibility): For all h, IZ̃(h) (h) �= ∅.
The Information Neutrality property requires a player’s level of awareness be con-

gruent with the information structure of the full awareness game. More precisely, at
any two histories in the same information set, the player’s knowledge, beliefs and
awareness are the same. This is consistent with the standard treatment of information
sets in decision theory and game theory.

The Increasing Awareness property ensures that once a player considers a (terminal)
history, she does not forget it. We will say the game displays non-trivial increasing
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awareness for i at h if there exists some h′ � h such that the inclusion is strict, that
is, Z̃

(
h′) ⊂ Z̃ (h) .

The No Impossibility property ensures that the player who is to move always con-
siders some history possible.

For interactive awareness, we suppose for any pair of histories h and h′ in H , such
that there exists h′′ ∈ IZ̃(h)

(h) for which h′′ � h′, and with i = P (h) and j = P
(
h′),

we can define the second-order imputation in which i at h imputes to j at h′ consider-
ation of the set of terminal histories Z̃ (h)∩ Z̃

(
h′). That is, player i at h cannot impute

to j at h′ consideration of histories which i at h herself has not also considered. On the
other hand, there is no reason to suppose that player i at h should incorrectly impute to
j at h′ failure to consider histories that are in fact considered by both i at h and j at h′.

Higher-order imputations may be similarly constructed. However, given the prop-
erties of the perception mapping defined above, it turns out we need only consider
second-order imputations.

To avoid the possibility that a player at the end of a second-order imputation is
perceived to have reached an empty information set, we extend the No Impossibility
condition as follows.3

NI∗:(No impossibility): For any for any pair of histories h and h′ in H , such that
there exists h′′ ∈ IZ̃(h)

(h) for which h′′ � h′, and with i = P (h) and j = P
(
h′),

the set of histories IZ̃(h)

(
h′) ∩ IZ̃(h′)

(
h′) is not empty.

The concept of a second-order imputation is also useful in considering a player’s
anticipation of her own future awareness. If P (h) = P

(
h′), then it follows that the

awareness imputed by player P (h) at h to herself at h′ is given by Z̃ (h) ∩ Z̃
(
h′). By

properties IN (Information Neutrality) and IA (increasing awareness) of the percep-
tion mapping, h � h′ ⇒ Z̃ (h) ∩ Z̃

(
h′) = Z̃ (h). That is, a player cannot anticipate

her own future increasing awareness.
We now have all the elements needed to define a game with awareness.

Definition 10 A game with awareness G is characterized by the tuple
(
�, Z̃ (·)

)
where

� = (N ∪ {c}, A, H, P, f c, I, {vi : i ∈ N }) is the full (maximally aware) extensive-
form game the players with perfect recall are actually playing and Z̃ (·) is the associated
perception mapping to admissible sets of terminal histories, that satisfies IN, IA and
NI∗ and encodes the evolution of interactive awareness of the players i in N . That is,
for each history h in H , player P (h) is aware of the game �Z̃(h)

. Furthermore, for
any pair of histories h and h′ in H , such that there exists h′′ ∈ IZ̃(h)

(h) for which

h′′ � h′, and with i = P (h) and j = P
(
h′), i at h imputes to j at h′ consideration

of the set of terminal histories Z̃ (h) ∩ Z̃
(
h′).

3 As one referee points out, this is not an innocuous existential assumption as it rules out what some may
view as naturally conceivable situations of unawareness in strategic settings. However, by imposing it, we
ensure the decision problem facing any individual and the decision problems they impute for any other player
(including themselves at a later stage of the game) are always well defined. We acknowledge the limitations
inherent with such an existential requirement, but as we shall see below, the simplification it affords us in
characterizing “equilibrium” behavior allows us to turn our attention to what we view is the main focus of
the paper, namely the inductive reasoning that these players may engage in when contemplating their own
past and possibly future limited awareness.
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In a game with awareness
(
�, Z̃ (·)

)
, at the actual history h in the “play” of the

game �, player P (h) is aware of the game �Z̃(h)
. Her information set IZ̃(h)

(h) is
determined by the set of terminal histories of which she is aware, and which have
not been ruled out by the information available to her at h. In a standard extensive-
form game, the set of terminal histories consistent with available information grows
monotonically smaller until a unique terminal history is reached. By contrast, in a
game with awareness, players may become aware of new possibilities. Nevertheless,
it follows from Lemma 1 that the game a player perceives herself to be playing at
each of her information sets is one of perfect recall, even though becoming aware of
new possibilities will in general require her to revise what she had thought was the
record of her experience.4 Ultimately, the information set must contract as the game
approaches the terminal history.

This treatment of differential awareness may be compared to the standard common
knowledge assumptions in a game of full awareness. In this case, Z̃ (h) = Z for all h,
and the associated game � = �Z̃(h)

, for all h in H , is a standard extensive-form game.
Obviously, this assumption greatly simplifies the analysis for the external modeler and
the computational problem facing the players. However, the assumption of common
knowledge of the game is exceptionally strong. The approach adopted here represents
the most limited possible modification of the full awareness case.

Remark 2 In a slight abuse of notation, for any proposition p and history h, and
where i = P (h), we will write h |
� bi p instead of h |


�.Z̃(h)
bi p. This simplifi-

cation reflects the fact that since the restriction Z̃ (h) applicable at h in � is entirely
determined by h and G, it is redundant to spell it out.

2.4 Behavior rules, strategies, subjective probabilities and equilibrium in games
with awareness

In a game with awareness G =
(
�, Z̃ (·)

)
, at each history h in the game, the player

P (h) who is called upon to play at that history selects a randomization defined over
AZ̃(h)

(h), the actions she thinks are available. A collection of these randomizations

constitutes a “rule” for determining the “play” of the game �.5

Definition 11 Let G =
(
�, Z̃ (·)

)
be a game with awareness. A behavioral rule

r for the players in the game � is a collection of randomizations over actions

4 In particular, it may require her to add histories of which she has become newly aware to the information
sets she had encountered in the play of the game. However, given that � is a game of perfect recall and
hence any restriction of that game she perceives herself to be playing is also a game of perfect recall, she
will never forget the action choice she made from any information set she had previously encountered.
5 If the players are all aware of the game �, then the behavioral rule corresponds to what we referred to
in Sect. 2.1 as a behavioral strategy profile. In the setting we consider below, however, one or more of the
players may not be fully aware of the game � that they are actually playing. Although a less than fully aware
player might adopt a “rule of play” that will determine her choice at ever information set she may encounter
in the game �, in general she will not have access to the behavioral rule generated by the way she and her
opponents decide on their choice of actions during the course of play. Hence, we feel it inappropriate to
refer to such a behavioral rule as a strategy profile.
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(r (h) : h ∈ H , s.t. P (h) �= c), where each r (h) is a probability distribution whose
support is a subset of AZ̃(h) (h), the set of actions player P (h) perceives to be avail-
able at her information set IZ̃(h)

(h). Denote by τ (r) the probability distribution over
terminal histories induced by r and the chance assignment f c of nature. The (ex ante)
expected value for player i of the play of the game � associated with the rule r is given
by:

V i
� (r) =

∑

h∈Z

τ (r) [h] vi (h) . (1)

To determine at each history h in the game � what the player P (h) will select,
we shall impute to that player a “theory” of how she thinks the game will be played,
in the form of a strategy profile for the continuation of the game she perceives she is
playing at that history. We assume her theory of how the game is being played at that
history is the same for any player at any history that goes through that information set
who perceives himself to be playing the same game. In particular, this implies that the
strategy profile ascribed to a player remains unchanged if her level of awareness at a
subsequent information set is unchanged. In addition, we require the strategy a player’s
theory ascribes to another player must be consistent with the awareness imputed to that
player. Formally, we define a strategy profile for a game with awareness as follows.

Definition 12 Let G =
(
�, Z̃ (·)

)
be a game with awareness. A strategy profile

β = (βh : h ∈ H) for G assigns to each history h a behavioral strategy profile βh for
the continuation of the game �Z̃(h)

from the information set IZ̃(h)
with the consistency

properties: for any history h′ ∈ IZ̃(h)
(h) and any history h′′ for which h′ � h′′:

1. if Z̃
(
h′) = Z̃

(
h′′), then the continuation of βh′ from IZ̃(h′)

(
h′′) coincides with

βh′′ ;

2. for player P
(
h′′) = j , the support of βh

(
IZ̃(h)

(
h′′)

)
is a subset of AZ̃(h)

(
h′′) ∩

AZ̃(h′′)
(
h′′).

Remark 3 Recall the property NI∗ (No impossibility) of the perception mapping
ensures that a player at the end of any second-order imputation is not imputed to
have reached an empty information set. Hence, it is always possible for a player to
ascribe how another player is playing in a way that is consistent with the game she
imputes to her opponent. The property IN (Information Neutrality) in conjunction
with the first part of the consistency property for a strategy profile ensures that the
“theory” a player holds about how the game is being played at a particular history is
the same for all other histories in the same information set.

For a game of common awareness, the strategy profile conforming to the consis-
tency property defines a strategy profile for a standard game. Conversely, any standard
behavioral strategy profile for a standard game defines a behavioral strategy profile
for the associated game of common awareness.

Next consider a game with awareness G =
(
�, Z̃ (·)

)
, in which, for each h in H ,

either Z̃ (h) = Z or Z̃ (h) = Z̃ ⊂ Z , and with �Z̃ a game of common awareness.
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Then, whenever Z̃ (h) = Z , the strategy profile defines at information set I (h) a
probability measure on A (h). On the other hand, if Z̃ (h) = Z̃ with �Z̃ a game of
common awareness, then βh is a strategy profile for the continuation of the standard
game �Z̃ and therefore for each h′ in HZ̃ that follows from IZ̃ (h), βh

(I (
h′)) defines

a probability measure on AZ̃ (h) ⊆ A (h). That is, the randomization over actions
imputed by player P (h) at history h to another player P

(
h′) at his information set

I (
h′) must be consistent with the game �Z̃ that the game with awareness at h imputes

that player P (h) imputes to player P
(
h′) at history h′.

More generally, in any game with awareness G =
(
�, Z̃ (·)

)
, any strategy pro-

file β = (βh : h ∈ H) generates a behavioral rule r for the game � given by

r (h) = βh

(
IZ̃(h) (h)

)
.

Analogous to standard games (i.e., games of common awareness), given a strategy
profile, in order for a player to be able to evaluate her expected continuation payoff from
an information set that she would be called upon to play, we also need to specify her
subjective beliefs about where in her information set she thinks she is. Thus, we extend
the definition of a subjective probability system for a game with awareness as follows.

Definition 13 Let G =
(
�, Z̃ (·)

)
be a game with awareness. A subjective proba-

bility system μ = (μh : h ∈ H) for G assigns to each history h in H , a probability
measure on the set of histories in IZ̃(h) (h) with the consistency property: for any

h′, h′′ in H , if h′′ ∈ I (
h′) then μh′ = μh′′ .

The interpretation of the subjective probability measure μh is that at history h,
the probability that player i = P (h) assigns to being at the history h′ ∈ IZ̃(h) (h)

is μh (h). Thus, the consistency condition ensures that subjective probabilities are
common across all elements of an information set.

Definition 14 Let G =
(
�, Z̃ (·)

)
be a game with awareness. An assessment for G

is a pair (β,μ) where β is strategy profile for G and μ is a belief system for G.

Given a strategy profile β for G, for each h in H and each h′ ∈ IZ̃(h)
(h) denote

by τ�Z̃(h)

(
βh |h′) the probability distribution over terminal histories induced by the

strategy profile βh , conditional on being at history h′ in the information set IZ̃(h) (h).
Given the assessment (β,μ), we thus have at each h in H , player i = P (h) to whom
the perception mapping imputes the game �Z̃(h)

perceives the continuation value from
her information set IZ̃(h) (h) from the play of the game according to the continuation
strategy profile βh to be:

V i
�Z̃(h)

(βh, μh) =
∑

h′∈IZ̃(h)
(h)

μh
[
h′]

⎛

⎝
∑

h′′∈Z̃(h)

τ�Z̃(h′)
(
βh |h′) [

h′′] vi (
h′′)

⎞

⎠ (2)

Definition 15 Let G be a game with awareness. An assessment (β,μ) is sequen-
tially rational for player i , if i is playing a “best response” at each of her information

123



732 S. Grant, J. Quiggin

sets. That is, for every h in H , such that i = P (h) :

V i
�Z̃(h)

(βh, μh) ≥ V i
�Z̃(h)

((
β̂ i

h, β−i
h

)
, μh

)
,

for every continuation strategy β̂ i
h of i in the continuation of the game �Z̃(h)

from the
information set IZ̃(h) (h).

The assessment (β,μ) is sequentially rational if it is sequentially rational for all i .

We shall refer to a behavioral strategy profile β for the game with awareness

G =
(
�, Z̃ (·)

)
as being completely mixed as can be done consistently if for any

three histories h, h′ and h′′, such that h′ ∈ IZ̃(h) (h) and h′ � h′′, βh

(
IZ̃(h)

(
h′)

)

assigns positive probability to every action in AZ̃(h)

(
h′′) ∩ AZ̃(h′′)

(
h′′). That is, if

player P (h) at h perceives herself to be at the information set IZ̃(h)
(h) in the game

�Z̃(h)
and imputes to player P

(
h′′) at his information set IZ̃(h)

(
h′′) in that game

that he will perceive himself to be at the information set IZ̃(h)∩Z̃(h′′)
(
h′′) in the game

�Z̃(h)∩Z̃(h′′), then each action available in the game �Z̃(h)∩Z̃(h′′) at the information

set IZ̃(h)∩Z̃(h′′)
(
h′′) (i.e., each action in AZ̃(h)

(
h′′) ∩ AZ̃(h′′)

(
h′′)) is assigned strictly

positive weight by the strategy profile.

Definition 16 Let G be a game with awareness. An assessment (β,μ) is consistent
if there exists a sequence of

((
βn,μn

))∞
n=1 that converges pointwise to (β,μ) and

has the property that each strategy profile βn is as completely mixed as can be done
consistently and that each belief system μn is derived from βn using Bayes’ rule.

Thus, we have all the elements to extend the concept of a sequential equilibrium to
a game with awareness.

Definition 17 Let G be a game with awareness. An assessment (β,μ) is a sequential
equilibrium if it is sequentially rational and consistent.

We prove in the Appendix the following.

Proposition 1 A sequential equilibrium exists for any game with awareness.

Sequential equilibrium is not the only equilibrium concept that might be consid-
ered for games with awareness. However, we view it as is a sensible choice because
in a game with awareness players will, in general, have the experience of reaching
information sets that they previously considered as off-equilibrium. This experience
can arise because other players were acting on the basis of a different perception of the
game from the one imputed to them. It therefore makes sense for players to confine
attention to strategies that prescribe reasonable behavior at every information set at
which they may move, and not merely at those that occur with positive probability in
the equilibrium of the game they perceive themselves to be playing.

Proposition 1 demonstrates existence, but not uniqueness of sequential equilibrium.
This limitation is not specific to games with awareness. To the best of our knowledge,
there is no general characterization of uniqueness conditions for sequential equilib-
rium. For simplicity, however, we will confine our attention to the case of games in
which there exists a unique equilibrium for the maximal game � and for all restrictions
of �.
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2.5 Example

To illustrate the structure of a game with awareness, we adapt the speculative trade
example of Heifetz et al. (2006). In this example, a buyer (player 1) and an owner
(player 2) may contract the sale of the owner’s firm at a price of 1. The value of the
firm depends on two contingencies: the possibility of a lawsuit which would reduce
the value by L and a business opportunity which would increase the value by G. If
neither occurs, the value remains unchanged at 1. We represent the maximal game �

as follows. Nature has two initial moves determining whether the lawsuit and business
opportunity arise. Before learning about Nature’s moves, the buyer chooses whether
to make an offer of 1. If an offer is made, the owner chooses whether to accept it, also
before learning about Nature’s moves. At the terminal nodes, players receive their net
payoffs, and Nature’s moves are revealed.

We first describe the full or maximal awareness game. The initial history is 〈〉.
Nature’s first move is a choice from the set {αn, α0} (innovation or null action). Let p ∈
(0, 1) denote the probability Nature chooses αn . Nature’s second move is a choice from
the set {α�, α0} (lawsuit or null action). Let q ∈ (0, 1) denote the probability Nature
chooses α�. There are now four histories 〈αn, α�〉, 〈αn, α0〉, 〈α0, α�〉, 〈α0, α0〉, form-
ing an information set which we shall denote I1. At I1, player 1 chooses from the set
{α1, α0} (offer 1 or null action). If 1 chooses α0, the game terminates. If 1 chooses α1 the
information set becomes I2 = {〈αn, α�, α1〉 , 〈αn, α0, α1〉 , 〈α0, α�, α1〉 , 〈α0, α0, α1〉}
and 2 chooses from the set {αA, αR} (accept or reject the offer). The maximal game
is illustrated in Fig. 1.

As in Heifetz et al. (2006), we suppose that the buyer is unaware of the possibility of
a lawsuit while the seller is unaware of the possibility of an innovation. Thus, at each
history h in I1, the buyer only considers the terminal histories in which the lawsuit

Fig. 1 The maximal game � which starts at the chance node in the center
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Fig. 2 �1, the game the buyer perceives he is playing, which starts at the chance node in the middle

does not arise. That is,

Z̃ (h) = Z̃1 = {〈αn, α0, α0〉 , 〈αn, α0, α1, αA〉 , 〈αn, α0, α1, αR〉 , 〈α0, α0, α0〉 ,

〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} ,

for all h in I1.
Denoting the game of which the buyer is aware at any history h in I1 by �1, we

see that it is obtained from the fully aware game � by deleting all histories containing
nature’s second move α�.

Similarly, at each history h in I2, the owner only considers the terminal histories in
which the business opportunity does not arise. That is,

Z̃ (h) = Z̃2 = {〈α0, α�, α0〉 , 〈α0, α�, α1, αA〉 , 〈α0, α�, α1, αR〉 , 〈α0, α0, α0〉 ,

〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} ,

for all h in I2.
Denoting the game of which the owner is aware at any history h in I2 by �2, we

see that it is obtained from the fully aware game � by deleting all histories containing
nature’s first move αn . The games are illustrated in Figs. 2 and 3, respectively.

Both parties impute to the other a restriction of their own game. The buyer is
unaware of the possible lawsuit and assumes the owner to be unaware of the possible
innovation (at all non-terminal histories), while the converse is true for the owner.
Hence, each imputes the other only considers the terminal histories

Z̃1 ∩ Z̃2 = {〈α0, α0, α0〉 , 〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} .

These lead to the same game �3, as illustrated in Fig. 4 and which is a game of common
awareness.

Heifetz et al. (2006) propose a dominance principle that is sufficient to ensure
that trade takes place in this model. In our model this corresponds to a sequential
equilibrium

(
β∗,μ∗), in which
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Fig. 3 �2, the game the owner
perceives she is playing, which
starts at the chance node on the
left

Fig. 4 �3, the game of
common awareness for the two
players, which starts at the
chance node on the left

β∗
<> (I1) [α1] = 1, β∗

<> (I2) [αA] = 1

β∗
h

(
I1

1

)
[α1] = 1, β∗

h

(
I1

2

)
[αA] = 1, for all h in I1

β∗
h

(
I2

2

)
[αA] = 1, for all h in I2.

μ∗
<>[<>] = 1

μ∗
h [〈αn, α0〉] = p, μ∗

h [〈α0, α0〉] = 1 − p, for all h in I1

μ∗
h [〈α0, α�〉] = q, μ∗

h [〈α0, α0〉] = 1 − q, for all h in I2
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To check sequential rationality, notice that at I1
1 = I1 ∩ H�1 (in �1) the action α0

(no offer) leads to a payoff of zero for the buyer in all histories. The action α1 yields
a net payoff of G in the history 〈αn, α0, α1, αA〉 and a net payoff of zero in all other
histories (those where the innovation is not realized or the owner rejects the offer).

For the owner at I2
2 = I2 ∩ H�2 (in �2) the action αA yields a sure net payoff

of 0, while αR yields a net payoff of −L for the history 〈α0, α�, α1, αR〉 and 0 for
〈α0, α0, α1, αR〉.6

3 Inductive reasoning about unawareness

We now address the central question for any account of limited awareness: In what
sense can an individual reason, from experience or observation, about the proposition
that there exist propositions of which she is unaware?

We begin by extending the language to include existential propositions of the gen-
eral form “there exists a proposition p with property θ .” Our primary interest is on
existential propositions related to awareness, most notably, “there exists a proposi-
tion p of which I am unaware.” Our first result, Proposition 2, is negative. We show
that, within the modal-logical representation of knowledge developed above, an indi-
vidual can never believe that there exist propositions of which she is unaware. In
view of Proposition 2, we must consider whether a boundedly rational, but neverthe-
less sophisticated, individual might be able to reason about their own limited aware-
ness, using methods outside the scope of the modal-logical framework considered
thus far.

As we have argued above, an individual’s understanding of their own unawareness
cannot be represented within the context of a semantic-syntactic game representation,
even when the game itself is extended to allow for differential awareness. The kind
of reasoning that can be represented in such a context may broadly be described as
“deductive.” That is, an initial set of premises (the game tree and prior probabilities
in the semantic rendition, the set of known propositions, tautologies and implications
in the syntactic rendition) is combined with new information (signals in the semantic
rendition, learning about the truth values of propositions in the syntactic rendition) to
yield a new and improved model. Given sufficient information, the realized history
of the game and the truth value of all propositions in the associated language may be
determined.

The deductive mode of reasoning associated with games of common awareness and
the associated modal logic of knowledge appear to offer the logical certainty of conclu-
sions derived, in accordance with stated axiomatic properties, from known premises.
In a game with awareness, however, this certainty is spurious. As we have seen, a
proposition may be true in all states an individual considers possible, but nevertheless

6 Note that, at a price of 1, both parties strictly prefer to trade, and each imputes to the other a game in
which they are indifferent between trading and no-trading. Further, all of this is common knowledge. This
example does not, however, allow for common knowledge of a strict preference for trade. Heifetz et al.
(2012) show that, in general, unawareness cannot produce common knowledge of mutual strict preference
for speculative trade.
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false in reality. Decision procedures that presume that logical certainty can be attained
are likely to yield poor outcomes.

To address this problem, we need to answer two questions.

* First, how can, or should, individuals reason about their own unawareness?
* Second, if this reasoning supports the conclusion that the individual is unaware of
some relevant contingencies, how should she act?

To address the first question, we need to consider how an individual might reach either
a positive or a negative answer to the question: “Do there exist relevant propositions of
which I am unaware?” One answer (though not the only one) is to consider inductive
reasoning, based on generalization of past experience.

Consider first the situation of an individual who is to move in an extensive-form
game with awareness. Under the assumption of increasing awareness (and assum-
ing it holds non-trivially), the individual’s previous experience includes a number of
“surprises,” that is, discoveries of possible terminal histories of the game she had pre-
viously not considered. Inductive reasoning supports the judgement “if I have been
surprised in the past, I may be surprised in the future.”

Taken to an extreme, such reasoning could be paralyzing (a point made by critics
of the precautionary principle, discussed below). Since decisions cannot be avoided,
decision makers must adopt some combination of heuristics and formal rules to guide
their choices.

In particular, individuals may use inductive criteria for identifying a “small world,”
in which it is reasonable for players to disregard the possible existence of relevant
unconsidered contingencies, and act on the basis of Bayesian decision theory applied
to the game they perceive.

Inductive reasoning about games with awareness may therefore lead individuals
to conjecture that either they are or they are not aware of all relevant contingencies.
As will be shown by Proposition 2 below, such reasoning cannot be encompassed by
the usual modal logic of awareness, if unawareness is represented, as it is here, by a
failure to consider some possible histories of the game.

However, it can be represented using a more general syntactic-semantic framework,
such as that put forward by Walker (2012), with precisely this kind of reasoning in
mind. Walker suggests a two-stage evaluation framework for propositions, with the
first “subjective” stage incorporating the decision maker’s inductively derived con-
jectures about their awareness and the second “objective” stage, incorporating the
objective evaluation of an external observer.

Walker develops this approach with reference to the Fagin and Halpern (1988)
approach in which unawareness is modelled in terms of a distinction between implicit
and explicit awareness, so that a decision maker may not be (explicitly) aware of
a proposition even though they are aware of semantically equivalent propositions.
However, no changes to the central idea are required to apply the idea in the present
context. The main difference is that whereas Walker’s syntax, developed in a static
setting, includes only the single string corresponding to the sentence “I am aware
of all propositions,” our dynamic, extensive-form approach would require subjective
evaluation of a larger class of sentences of the general form “at my current position
(in the game) I am aware of all relevant propositions.”
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4 The existential quantifier, existential propositions and unawareness

The representation of differential awareness developed thus far is fairly standard. The
central unresolved issue in the literature is how to deal with the fact that players may
be conscious of their own bounded awareness, and of the possibility that others may
be aware of histories (or propositions) of which they themselves are unaware. We
note that from the definition of the belief operator for the restricted game a player has
access to, that player cannot believe that they are unaware of particular propositions
p. On the other hand, players may believe (in fact, know) that other players are
unaware of some particular propositions and might conjecture that the same is true
for themselves. Thus, we must consider interpretations of the statement “there exist
propositions/histories of which I am unaware” that lie outside the syntactic-semantic
framework developed so far.

In a game with awareness G =
(
�, Z̃ (·)

)
although the language L�Z̃(h)

available to

player P (h) at the history h is sufficiently expressive to describe the restricted game
�Z̃(h)

she perceives to be playing, it is inadequate to describe propositions she might
reasonably entertain about the full awareness game � and its associated language L� .
The approach adopted here begins by extending the languages {L�Z̃(h)

: h ∈ H} to
allow for reasoning about the existence of propositions as follows. We include an
existential quantifier ∃, used in conjunction with a formula for substitution to produce
propositions of the form

∃q ∈ L� such that (θ (q)) , (3)

where θ (q)is a Boolean combination of the free proposition q and propositions in L� .
We denote by θ (q|p) the proposition obtained by replacing all instances of q with
p. For compactness, in the formal analysis to follow, the existential proposition in (3)
will be denoted by q∃θ . Then h |
� q∃θ if and only if there is some p ∈ L� such that
h |
� θ (q|p).

As is standard, we will define the derived universal operator ∀ by

p∀θ ⇔ ¬q∃¬θ

That is, property θ holds for all p if there does not exist q such that ¬θ (q) holds.

Example 1 As an illustration, fix a game with awareness G =
(
�, Z̃ (·)

)
and consider

a history h, for which Z̃ (h) ⊂ Z̃ . For a given p ∈ L�Z̃(h)
, the extended language

contains such propositions as,

∃q ∈ L� such that ((q ⇒ p) ∧ ¬ (p ⇒ q))

which we may interpret as saying that there is some (non-equivalent) proposition q in
the richer language L� that implies p. For example, in a criminal investigation, the fact
that a person is classed as a suspect typically means that if some additional evidence
were obtained, that person’s guilt could be inferred. However, investigators will not,

123



Inductive reasoning about unawareness 739

in general, know the exact nature of the evidence they are looking for. The evidence
could be either propositional (X was at the scene of the crime) or epistemological (X
knew that the gun was loaded).

We may therefore examine a players’ beliefs about her own awareness by consid-
ering the proposition bi (q∃ui q), read as “player i believes there exists a proposition
of which she is unaware.”

Proposition 2 Fix a game with awareness G =
(
�, Z̃ (·)

)
. For all h ∈ H, and

i = P(h),

h �
�,Z̃ bi (q∃ui q)

That is, players can never believe they are unaware of anything.

Proof By Lemma 3, for any particular choice of p ∈ L�, h �
�,Z̃ bi ui p

Observe that

q∃ui q ⇔
∨

p∈L�

ui p

Since the set L� is countable, it may be placed in 1–1 correspondence with the natural
numbers p1, . . . , pn . . .. Define

(q∃ui q)N ≡
∨

n=1..N

ui pn

and observe by induction on N that

h �
�,Z̃ bi (q∃ui q)N

Since

q∃ui q ⇔
∨

N

(q∃ui q)N

the desired result follows. ��
Proposition 2 shows that given the specification of L�Z̃(h)

, including the existential
quantifier ∃ which generates the set of existential propositions, the richer language
L� is not expressive enough to allow valid statements of the form “player i believes
that there exists some proposition q ∈ L� of which he is currently unaware.” This
is not surprising. To say that a player believes that there exist events of which he is
unaware suggests, in some sense, that he is aware of those events, which might be
seen as violating the spirit of what it means to be unaware of something.7 On the other
hand, to the extent that players understand the structure of a game with awareness, that
understanding must encompass the possibility that their own awareness is incomplete.

7 We owe this characterization of the result to an anonymous referee.
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This apparent contradiction suggests the need to consider modes of reasoning going
beyond the semantic-syntactic model considered thus far. We argue below that the
deductive reasoning characteristic of the semantic-syntactic model must be combined
with inductive reasoning about the structure of the model itself.

4.1 Historical induction and induction over players

The most commonly used alternative to deductive reasoning is reasoning based on
induction from experience or observation. The general principle of induction consid-
ered in the philosophical literature states that observations of members of some set
S, all of which satisfy some property φ, provide inductive support for the proposition
“All members of set S satisfy property φ.” For example, if a number of ravens are
observed to be black, and none are observed to be any other color, we derive inductive
support for the proposition “All ravens are black.”

As the famous example of black swans shows, inductive reasoning is never conclu-
sive. It is easy to define propositions that have always been true, but will cease to be true
at some point in the future, either because they inherently involve time dating (person
i , now aged 20, has always been younger than 21) or because the properties to which
they refer change over time (US population has always been less than 320 million).
Moreover, it is possible to derive inductive support for two or more propositions that
may be logically inconsistent. For example, it is common to use inductive arguments
to predict the outcomes of Presidential elections (e.g., that no incumbent president
has been reelected if his approval rating is below x , or that incumbents are always
reelected if the economy has improved during their term of office). It will often be the
case that two such inductive arguments will point in opposite directions.

Under conditions of bounded rationality, however, no system of reasoning is
absolutely reliable. Moreover, a judgement that it is appropriate to use deductive rea-
soning in some particular context must be based on some prior process of reasoning
that is not itself deductive. So, boundedly rational players may find it appropriate to
employ a mixture of inductive and deductive reasoning.

We begin by considering reasoning based on induction from experience (historical
induction). Informally, the principle of historical (or temporal) induction states that if a
proposition has been found to be true in many past instances, this fact provides support
for belief that it will hold true in the future. For example, the fact that the proposition
“the sun will rise tomorrow” was true yesterday, the day before and the day before
that and so on provides inductive support for the belief that the same proposition is
true today.

Formally, we state it as follows.

Definition 18 (support by historical induction) Fix a game with awareness G =(
�, Z̃ (·)

)
and a history h, and let i = P (h). Suppose that for some proposition

p ∈ L�Z̃(h)
,

h |
� biwp ∧ ¬biw¬p

then h |
� ti p [read as “at h player i regards p as supported by historical induction”].
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That is, suppose at history h that player i believes p to have been true at some past
history and does not believe p to have been false for any past history, then i regards
p as supported by historical induction.

In interactive games, the principle of induction may also be applied to reasoning
about other players. In the application here, the sets to which induction is to be applied
will consist of the set of players N . If player i believes that some proposition is true
for all other players, then induction suggests that the same proposition is true for i .

To formalize this idea in our notation, we define the following.

Definition 19 (support by induction over others) Fix a game with awareness G =(
�, Z̃ (·)

)
and a history h, and let i = P (h). Let θ

(
j̃
)

be a Boolean combination of

propositions in L�Z̃(h)
and a free variable j̃ , defined as an element of the set of players

N , such that θ
(

j̃
)

is the proposition in which each instance of j̃ in θ (·) is replaced

by j . Suppose that, for all j �= i

h |
� biθ ( j)

Then, h |
� niθ (i) [read as “at h player i regards θ (i) as supported by induction
over the set of players N − {i}”]

Thus, players can use their observations of others to draw conclusions about them-
selves that cannot necessarily be reached by deductive reasoning.

4.2 Inductive reasoning, awareness and unawareness

Our account of historical inductive reasoning about unawareness has a structure similar
to that of more familiar examples of historical induction. Over time, players become
aware of propositions that, previously, they have not considered. Thus, at any history
h, players know that there exist propositions of which they were unaware at some
previous information set. That is, they know that the existential proposition “there
exists a proposition of which I am unaware” was true at a previous information set.
Indeed, they know that this existential proposition has been true at all past histories,
except perhaps recent histories in a period in which no new propositions have been
discovered. Hence, the proposition that the future, like the past, will be characterized
by the discovery of new propositions is supported by induction.8

On the other hand, players also learn positive lessons about their ability to under-
stand particular subproblems in larger decision problems. So, they may become con-
fident, when they perceive a particular problem to be of limited complexity, that they

8 A closely related argument is prominent in philosophical debates over “realism,” namely the view that
the success of science reflects its correspondence to objective truth. Critics such as Laudan (1981) argue
on the basis of historical experience that, since successful theories have been proven false in the past, the
success of a theory cannot be regarded as evidence for its truth. Similarly, in our analysis, the fact that
models used with some success in decision making have nonetheless been discovered to be incomplete in
the past supports the view that the model currently held by any given decision maker is also unlikely to be
complete.
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will not be surprised by becoming aware of unconsidered propositions relevant to their
decision. The most important case, for our purposes, will be the choice of a strategy
in the continuation of a game from some information set.

Suppose that for h′ ≺ h, player i becomes aware of previously unconsidered
propositions in the course of the partial history from h′ to h, so that L�Z̃(h′) ⊂ L�Z̃(h)

where the inclusion ⊂ is strict. Then for propositions q ∈ L�Z̃(h)
− L�Z̃(h′) we have

h′ |
� ui q and h |
� ai q, so that h |
� wui q. Further, these evaluations hold for any
h̃ ∈ IZ̃(h)

(h), so that h |
� bi ai q and h |
� biwui q. That is, at history h, the player
(correctly) believes that there exist propositions of which she is now aware, but was
unaware in the past.

We have established that player i at h cannot express and therefore cannot believe (in
the modal-logical sense of bi ) propositions of the form ∃q ∈ L� : ui q. Nevertheless,
given past experience of discovery, it seems reasonable to suppose that the player may
judge such propositions to be an appropriate basis for actions and decisions. Given
the dynamic temporal structure of the model developed here, it is natural to consider
whether historical/temporal induction can be used as a basis for such judgements. Our
next result provides a positive answer to this question.

Proposition 3 Fix a game with awareness G =
(
�, Z̃ (·)

)
that displays non-trivial

increasing awareness for i at h. Then h |
� ti (q∃ui q).

Proof By non-trivial increasing awareness for i at h, there exists h′ ≺ h, in which
L�Z̃(h′) ⊂ L�Z̃(h)

. Hence, for a proposition p ∈ L�Z̃(h)
− L�Z̃(h′) we have h |
� ai p

and h′ |
� ui p, so that h |
� wui p. By IN (information neutrality) these evaluations
hold for all h̃ ∈ IZ̃(h)

(h), so that h |
� bi (q∃ui q) holds. From proposition 2 it follows
that q∃ui q can never known to be false at any h′ ≺ h; hence, h |
� ¬biw (¬ (q∃ui q))

holds as well, implying h |
� ti (q∃ui q) as required. ��
Informally, given non-trivial increasing awareness, the player believes at h that,

for at least some past history, the proposition q∃ui q was true. On the other hand, this
proposition can never be known false. Hence, the player judges the proposition that
her awareness is incomplete is supported by historical induction.

Proposition 4 Fix a two-player game with awareness G =
(
�, Z̃ (·)

)
such that the

restricted game �Z̃(h)
is not a game of common awareness. Then h |
� ni (q∃ui q)

Proof Let i = P (h), and denote the other player by j . Since �Z̃(h)
is not a game of

common awareness, ∃h′ ∈ HZ̃(h)
, with P

(
h′) = j , such that �Z̃(h′)∩Z̃(h)

� �Z̃(h)
.

Hence, h |
� ni
(
q∃u j q

)
. But as there are only two players, this means that h |
�

ni (q∃ukq) holds for (all) k �= i which in turn implies h |
� ni (q∃ui q) as required. ��
Proposition 4 is similar in its structure to Proposition 3. Given the belief on the

part of i that j is unaware of some propositions, inductive reasoning supports the
proposition that i is also unaware of some propositions.

If the future and past selves are considered as other agents, there is a natural linkage
between this idea and that of historical induction. The games perceived by the player
P (h) in the past were restrictions of the game she currently perceives to be playing,
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and this is known to her at h. Similarly, other players from player P (h) ’s perspective
at h must be imputed to perceive games that are restrictions of �Z̃(h)

.
In summary, although the representation of a game with awareness presented here

does not allow for knowledge of unawareness in the standard modal logical, inductive
reasoning and symmetry arguments can provide a basis for a judgement that there
exist unconsidered possibilities of which other players may be aware.

On the other hand, in a finite extensive game, players eventually reach a terminal
history, at which point they are aware of the full history of the game, at least insofar
as it is relevant to the payoff they receive. The fact that the game includes unrealized
histories of which the player may remain unaware is no longer relevant.

This point may be extended to suggest an inductive basis for identifying a “small
world,” in which it is reasonable for players to disregard the possible existence of
unconsidered contingencies, and acts on the basis of Bayesian decision theory applied
to the game they perceive. The crucial requirement for a small world is not that the
decision maker should be aware of all possible contingencies (this requirement can
never be met) but that she should be aware of all contingencies relevant to the outcome
of a particular decision. This condition is trivially (but unhelpfully) satisfied at any
terminal history of a game, since this is the point at which the outcome is actually
realized and players receive their payoffs.

More generally, given that unawareness arises from bounded rationality, it seems
reasonable to suppose that the more complex the game, the more likely it is that there
exist unconsidered contingencies. Further, for a history h, the more complex the con-
tinuation of the game from the information set the player perceives to be in at h, the
more likely it is that there exist unconsidered contingencies. Since games that have
reached a terminal history are minimally complex in this sense, it seems plausible to
argue that as a game (as perceived by the player) “approaches the end,” it becomes
easier for the player to consider all payoff-relevant contingencies.

Based on their past experience of the game (or, not modelled here, drawing on
experience of similar games), players may reason inductively as follows:

“In the past, I have found myself able to consider all relevant possibilities that
might arise in the next n moves. That is, previously unforeseen contingencies
have come to my attention at least n moves before they were actually realized.
Hence, if the continuation of the game I now perceive as relevant to my choices
will end in no more than n moves, induction supports the conclusion that I am
aware of all relevant contingencies.”

We begin by defining a proposition p as relevant (denoted ρi p) at some information
set I (h) if the truth or falsity of p affects the continuation value of the game at I (h).
We can now formalize the proposition that player i is aware of all relevant propositions
at h as

∀p (ρi p ⇒ ai p) (4)

If 4 holds at I (h) , the continuation of the game at I (h) may be regarded as a
“small world” in the sense of Savage.
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Next we need a measure of the complexity of the continuation of the game. There
is a large literature on the complexity of games, and a variety of measures have been
proposed (state-space complexity, game tree size, decision complexity and so on).
These measures are developed for games of full awareness (and mostly for games of
perfect information). Fortunately for our purposes, we require only that the complexity
measure should satisfy some elementary properties.

We will use ξ� (I) to describe a complexity measure of the continuation of the
game � from the information set I and impose the properties:

C.1. Zero property: The measure should take the value zero at terminal histories.
C.2. Declining with learning: For any pair of information sets I and I ′ in �, I �= I ′,

and P (h) = P
(
h′) = i for all h ∈ I, all h′ ∈ I ′ and some i ∈ N , if there exists

h ∈ I and h ∈ I ′ such that h � h′ then ξ� (I) > ξ�

(I ′).
C3. Increasing with awareness. If � � �′, then ξ�′

(I ′) ≥ ξ� (I) for any I ⊆ I ′.
Property C.1 requires that all terminal histories are of equal and minimal complex-

ity. Within a given game, property C.2 entails that the complexity of the continuation
game must decline whenever a player makes a move (thereby eliminating some possi-
ble histories for that player). Property C.3, on the other hand, requires that increasing
awareness will, in general, increase the complexity of the game.

We propose the following rule, which may be justified by historical induction over
previous games.

Consider the following inductive principle

Small World Principle: Treat the proposition ∀p (ρi p ⇒ ai p) as inductively

justified whenever ξ�Z̃(h)

(
IZ̃(h) (h)

)
≤ ξ∗ for some constant ξ∗.

The Small World Principle cannot be guaranteed to avoid surprises. Sophisticated
players will understand this by virtue of Proposition 3 on inductive justification of
unawareness. Nevertheless, use of the Small World Principle for appropriate choices
of ξ∗ may lead to the adoption of ecologically rational heuristics, in a sense that will
be made precise below.

A related approach may be applied to reasoning about the awareness of other play-
ers. In general, considerations of symmetry justify the conclusion that if i is aware
of possibilities of which j is unaware, the converse is also true. In the language of
complexity, we have no general reason to suppose that ξ∗

i is either greater than or less
than ξ∗

j . But in specific cases, i may indeed be more capable of reasoning about the
problem at hand, so that ξ∗

i > ξ∗
j . In this case, i may conclude that she is aware of all

relevant possibilities even though j is not.

4.3 Syntax and semantics of inductive reasoning about awareness

Space does not permit a full syntactic rendition of the model described above, in which
players hold inductively justified beliefs about their own awareness or lack of it. Such
a rendition has been developed by Walker (2012). In Walker’s rendition, the agent’s
beliefs about whether or not she is fully aware in any state (or history) depend on
a conjecture about awareness that does not require a comparison between her actual
awareness and the domain of “things to be aware of.” As Walker observes, a process
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of inductive reasoning such as that developed here provides a natural basis for beliefs
about whether or not the agent is fully aware of all relevant propositions, leaving beliefs
about particular propositions to be determined by the standard process of deduction
from what is true in states that are deemed possible given the available information set.

Walker develops this two-stage structure in detail and derives a semantic structure
corresponding to a language in which the string (in our notation) q∀ai q stands for
the claim “the agent is fully aware.”9 Walker shows that appropriate axiomatizations
for this language are sound and complete for semantic structures in which agents’
beliefs about their awareness may be supposed to be derived from inductively justified
conjectures.

Walker’s approach may be adapted to the extensive-form setting of the present
problem. In the context of an extensive-form game, what matters is not awareness
of all propositions, but awareness of all relevant propositions, as defined above. As
shown above, player i can reach a subjective judgement, based on inductive reasoning,
as to whether they are, or are not, aware of all relevant contingencies at any history h
where P (h) = i , that is, whether h |
 ∀p (ρi p ⇒ ai p). This enables us to define a
semantic structure incorporating reasoning about awareness.

Now following the approach of Walker (2012) (but with a change of notation to
fit our extensive-form game model), we define the subjective interpretation relation
|
∗

� which coincides with the objective relation |
� except for propositions regarding
beliefs about awareness. The critical change is that the interpretation relation h |
∗

�

bi (∀p (ρi p ⇒ ai p)) holds if and only if the proposition ∀p (ρi p ⇒ ai p) is supported
by inductive judgement for i at h, and more importantly, h |
∗

� bi¬ (∀p (ρi p ⇒ ai p))

if the proposition ¬ (∀p (ρi p ⇒ ai p)) is supported by inductive judgement for i at h.
Following Walker (2012) it would be possible to construct a characterization of

the semantic structures consistent with this interpretation relation. However, this is
beyond the scope of the present paper. Instead, our focus will be on the way in which
inductively derived subjective beliefs about awareness and unawareness may be used
to guide player decisions and strategic choices. The key idea is that of heuristics.

5 Games subject to heuristic constraints

We now develop a basis for making decisions that depend upon judgements about
propositions that cannot be expressed explicitly in the language of the game available
to that player but are nonetheless supported either on historical inductive grounds or
by induction over players. We refer to these as heuristic constraints. Conversely, we
consider heuristics that may be applied to justify the adoption of a best response for
the continuation of the game from an information set. Combining these heuristics, we
obtain a definition for a game subject to heuristic constraints.

A heuristic constraint for a particular player associated with the game they perceive
to be playing is an admissibility rule precluding the adoption by that player and her

9 A referee points out that the string q∀ai q is simply a propositional constant and could be replaced with an
arbitrary string, such as helloworld, without any effect on the logical validity of the axiomatizations. This
point is entirely consistent with the observation that, within a game of differential awareness, individuals
must always believe the proposition q∀ai q to be true, at least as regards themselves.
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opponents of certain strategies whenever a certain proposition that involves the player
or her opponents taking that action is supported either on historical inductive grounds
or by induction over players. For example, in the speculative trade example of Heifetz
et al. (2006), we can construct a heuristic constraint based on the proposition, “my
opponent is aware of something that I am not, and whatever it is, may result in me
incurring a loss from trading with him.” The corresponding heuristic constraint is not
to engage in trade if the aforementioned proposition is supported either on historical
inductive grounds or by induction over players.

Formally, we define a game with awareness subject to heuristic constraints as fol-
lows.

Definition 20 Fix a game with awareness G. An awareness-based heuristic H for
the game G is an admissibility rule such that, for each h in H in which P (h) �= c,
H (h) ⊆ Z̃ (h) is a subset of the terminal histories available in the game �Z̃(h)

from the
information set IZ̃(h)

(h). The restriction H (h) depends only on the perceived game
�Z̃(h)

and on the judgement of the player at h as to whether she and/or her opponents are
aware of all relevant possibilities and generates a restricted game �H(h) � �Z̃(h)

. We
denote by (G,H)the game with awareness G that is subject to the heuristic constraints
H. We denote by Hi the restriction of H to the set of histories {h : P (h) = i} .

Imposing heuristic constraints on a game with differential awareness means that the
perceived game in which the heuristic constraints may apply is modified by removing
all histories that contain any actions that are precluded by the heuristic constraints.
As the modified game is a restriction of the original game, this means that its set of
terminal histories are a subset of those from the original game. This in turn implies that
at any information set in the original game for which a heuristic constraint precludes
the choice of at least one action, there is at least one other available action that is not
precluded by any of the heuristic constraints that may apply.

We revise the definition of a strategy profile, so that in the game with awareness
G subject to the heuristic H, at each h the continuation behavioral strategy profile is
defined for the game �H(h).

The definitions of subjective probabilities, assessments and sequential rationality
from Sect. 2.4 can be modified accordingly with each instance of the game �Z̃(h)

for
history h, being replaced by the (in general even more restricted) game �H(h) that
excludes all histories that are precluded by the adoption of the heuristic constraints.
Thus, we can extend the definition of a sequential equilibrium to apply to games
with awareness subject to heuristic constraints. This definition requires that players,
at each information set where they are called on to move, adopt a best response to the
equilibrium strategies of the continuation game they perceive at that information set,
excluding histories that are precluded by the adoption of their own heuristic constraints
and those of other players. This is a natural generalization of the standard assumption
of common knowledge of rationality, which applies to the game G.

As an immediate corollary to Proposition 1 we have:

Corollary 1 A sequential equilibrium exists for any game with differential awareness
subject to heuristic constraints.

As discussed above, we will confine attention here to the case when the equilibrium
is unique.
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5.1 Ecological rationality

A variety of criteria have been suggested for the adoption and evaluation of decision
heuristics. Goldstein and Gigerenzer (2002) propose a concept of ecological rationality
for heuristics, explained as “the capacity of the heuristic to exploit the structure of the
information in natural environments.” As an example, they consider the “recognition
heuristic” illustrated by the idea that a decision maker asked to estimate which of two
cities has a larger population should choose one they have heard of in preference to
one they have not heard of. In an environment where mentions of cities are positively
correlated with their population, this heuristic is ecologically rational.

In a game with awareness, the concept of ecological rationality may be seen as the
way a heuristic adopted by players with bounded awareness would be evaluated from
the perspective of a more aware player, or an external modeler aware of the maxi-
mal game. In a game with increasing awareness, a player may evaluate the ecological
rationality of their own heuristics, applied early in the game, from the more aware
perspective available later in the game.

It is not necessary to confine attention to the actual outcome realized subsequent
to the adoption of a heuristic. From the perspective of a more aware player (or from
the perspective of a player considering their own earlier state of awareness), it is pos-
sible to compare the decision recommended by a heuristic to the optimal decision
recommended by Bayesian decision theory for the full game, and also to the “naive”
Bayesian decision derived for the restricted game. Even if, by virtue of an unlucky
draw by nature, the heuristic yields a bad outcome in a particular play of the game,
it may nonetheless be judged to be superior, in expected payoff terms, to the naïve
Bayesian decision.

Consider a game with awareness G =
(
�, Z̃ (·)

)
, subject to heuristic constraints

H. Let H−i be the heuristic obtained from H by removing any constraints for infor-
mation sets controlled by player i . That is, H−i (h) = H (h), if P (h) �= i and
H−i (h) = Z̃ (h), if P (h) = i . We adopt the following definition.

Definition 21 Consider a game with awareness G =
(
�, Z̃ (·)

)
, subject to heuristic

constraints H. The heuristic constraints H are ecologically rational for player i if

V i
�

(
r ′) ≥ V i

� (r)

where r (respectively, r ′) is the behavioral rule generated by the sequential equilibrium
(β,μ) for (G,H) (respectively, sequential equilibrium

(
β ′,μ′) for (G,H−i )).

It is important to note that the ecological rationality of H cannot be determined from
within the �Z̃(h)

available to player i = P (h) at a particular history h. Ecological ratio-
nality can be determined, however, by an unboundedly rational external modeler with
access to the full awareness game �. More relevantly from the perspective of actual
players, the belief that a particular heuristic is ecologically rational in a given setting
may be justified inductively on the basis of its past performance in similar settings.
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5.2 Example Part 2:

We now return to the speculative trade example of Heifetz et al. (2006). By Propo-
sition 4, for each party i = 1, 2, the proposition ∃q ∈ L� : (

u j q ∧ ai q
)

is true for
j �= i . Moreover, in the given example, the proposition can be extended to

θ
(
qα j

) ≡ ∃q ∈ L�

(
u j q ∧ ai q ∧

(
q ⇒ q j

loss

))
, (5)

where α j is the action necessary for j to take in order to transact with i and q j
loss is

the proposition the transaction produces a loss for j .10

Now let party i consider the proposition ∃q ∈ L� : (
ui q ∧ a j q

)
, that is, that

there exists a proposition of which she is unaware, but the other party is aware. As
shown above, inductive reasoning, embodying the idea of symmetry, provides sup-
port by induction over the set of players for the existential proposition ∃q ∈ L� :(
ui q ∧ a j q ∧ (

q ⇒ qi
loss

))
, so we have for both h1 = 〈α0, α0〉 and h2 = 〈α0, α0, α1〉,

hi |
� niθ
(
qαi

)
.

Let us take R (h) ⊆ Z̃ (h) to be the set of terminal histories in the game �Z̃(h)
that

passes through IZ̃(h)
(h) and that includes an action α̂i ∈ AZ̃(h)

that leads to a loss in
the event that some unforeseen proposition q holds. We can then define the heuristic
Hi (h) = Z̃ (h)−R (h) that precludes the adoption of α̂i by party i . If either the buyer
adopts the heuristic H1 or the owner adopts the heuristic H2, then the transaction will
not take place.

Now compare the dominance principle proposed by Heifetz et al. (2006). Heifetz
et al. propose that if (i) in all histories h′ an agent considers possible at h, action α

leads to at least as good an outcome as α′, and (ii) in some possible history, action
α leads to a better outcome, then the agent should choose α. As shown above, this
principle leads the players to engage in trade, even though in the minimal game of
common awareness the trade generates zero surplus. Each party’s own perceived game
with awareness suggests a strictly positive surplus from trade for the player concerned,
coming at the expense of the other party.

In the given example, this principle does not appear compelling. Even though
this condition is satisfied for the modal-logical interpretation of “considers possi-
ble” (namely h′ ∈ I i (h)), observation of the limited awareness of other players,
combined with principles of symmetry between players, provides inductive support
for the proposition in expression (5). Notice that, evaluated in the fully aware game,
(5) is in fact true for both players.

A potential problem with this analysis is that it might lead to the conclusion that
players should never trade in the presence of differential awareness. However, this
conclusion only arises in the case where there are no gains from trade, as in the given

10 Recall in the specification of the game that for party 1 the buyer α1 corresponds to the action “make an
offer of 1” (action α1 in Figs. 1, 2, 3, 4) and for party 2, the owner α2 is the action “accept the offer of 1”
(action αA in Figs. 1, 2, 3, 4).
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example. If both parties evaluate the transaction as mutually beneficial on the basis
of their own awareness, there is, in general, no reason for them to conclude that this
mutual benefit would not persist under full awareness. In particular, the fact that party
2 is willing to engage in trade does not imply that she must be aware of a contingency
that would make the trade less appealing to party 1.

6 Applications

In this section, we sketch two applications, in which heuristics may be used as a
way of responding to unawareness. Both applications deal with problems that may
be addressed in terms of individual decisions (i.e., one-person games with Nature) or
in a multi-player context. For ease of exposition, we will focus here on the case of
individual decision.

6.1 Research and discovery

In some circumstances, unforeseen possibilities are both desirable and essential. The
allocation of funds for research and development (R&D) provides an example. As
discussed in Grant and Quiggin (2006), (Sect. 2.2), it is inherent in the concept of
pure research that investigators cannot predict what they may discover. By contrast,
the uncertainties associated with the development phase of R&D are well understood
in most cases and may reasonably be modelled in a Bayesian framework. The con-
trast between research and development raises obvious difficulties in the allocation of
funds. A common response is to require research proposals which purport to contain
accurate predictions of the path of research for which funding is supported.11 However,
this does not appear to be a satisfactory solution.

This problem may be addressed by modeling the situation as a game with aware-
ness. For simplicity, we will abstract from the interactive aspects of the problem and
consider a decision maker playing a one-person game against nature with awareness.
Let

(
β0,μ0

)
denote her (unique) sequentially rational and consistent assessment, and

let r0 denote the associated behavioral rule generated by β0.
At some history h she is considering whether to allocate funds to one of a

set of research projects, and if so which one. The alternative is to allocate the
funds to a development project, where we assume there are no unconsidered out-
comes. For ease of exposition (and without essential loss of generality), assume that
I (h) = IZ̃(h)

(h) = {h}. That is, the decision maker believes she is at history h (and
from the perspective of the fully aware game she actually is at history h).

At h, the decision maker faces the set of available actions A (h) = {a0, a1, . . . , aK },
leading to the set of histories {h0, h1, . . . , hK }, where hk = 〈h · ak〉. Here a0 denotes
the choice of the development project, while ak , k = 1, . . . , K are research projects.
We assume that the complexity of the subgame starting at h0 is less than ξ , while for
k > 0, the complexity of the subgame starting at hk is greater than ξ.

11 One common way of meeting this requirement is to seek funding for research that is effectively complete,
but has not yet been published.
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In the absence of unconsidered contingencies, let us suppose her unique best con-
tinuation strategy β0

h from the subgame starting at h entails selecting the development
option at h, that is, β0

h (h) = a0. We normalize by setting V�̃Z(h)

(
β0

h

) = V� (r0) = 0.
That is, resources used for any project are evaluated in terms of the opportunity cost
associated with the development option.

For each k = 1, . . . , K , let βk denote the continuation strategy that agrees with β0
h

at every information set in the subgame starting at h, except initially where βk (h) is
equal to ak . And let

(
β0−h, βk

)
denote the corresponding modified strategy profile for

the entire game with awareness.
Since β0

h is the unique best option for the subgame starting at h, it follows that
V i

�̃Z(h)
(βk) < 0, for all k = 1, . . . , K . That is, based on current awareness, the devel-

opment project yields higher expected returns than any of the research projects. Hence,
the unconstrained heuristic H−i (which may also be denoted by H0 in the context of
individual decision) will lead to the choice of a0 at h.

Now suppose she has sufficient experience to provide inductive support for some
proposition of the form:

For problems of complexity greater than ξ , there may exist contingencies of
which I am unaware.

Hence, the decision maker believes herself to be aware of all contingencies relevant
after a choice of a0 but not for any choice ak , k > 0.

Then, given a “research budget” of B, we may consider the heuristic HB :

Exclude a0 from consideration unless V i
�̃Z(h)

(βk) < −B, for all k = 1, . . . , K .

This leads to the behavioral rule that at h prescribes the following: “Choose ak (that
is, undertake the research project k) that maximizes V i

�̃Z(h)
(βk), provided V i

�̃Z(h)
(βk) ≥

−B. Otherwise choose a0.”
The heuristic allows for the choice of a research project rather than the “safe” devel-

opment option whenever the expected net cost, based on the possibilities already under
consideration, is less than the research budget B. The quantity B might be considered
as a value at risk constraint.

In addition to the benefits that may be evaluated in advance, the research project may
generate valuable discoveries, associated with awareness of previously unconsidered
possibilities. If we denote by rk the behavioral rule generated by the strategy profile(
β0−h, βk

)
, then the full value of a project, which may be estimated by a fully aware

outside observer, but not by the decision maker, is V� (rk) . In this context, we assume
that, for all k, the benefits of discovery are nonnegative, so that V i

� (rk) ≥ V i
�̃Z(h)

(βk).

Proposition 5 The following conditions are sufficient for HB to be ecologically ratio-
nal:

(a) 1
K

∑K
k=1

(
V i

� (rk) − V i
�̃Z(h)

(βk)

)
≥ B; and

(b)

(
V i

� (rk) − V i
�̃Z(h)

(βk)

)
is positively correlated with V i

�̃Z(h)
(βk).
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The first condition states that on average, the value of unanticipated discoveries
exceeds the research budget B. Given this condition, the second condition ensures
that the expected return from choosing the project with maximal expected net value
(as perceived by the decision maker) will exceed B and therefore be preferable to the
development option.

As already noted, a crucial feature of ecological rationality is that it cannot be eval-
uated within the perspective available to a decision maker at h who perceives the game
�Z̃(h)

. Conversely, the heuristic HB which may be judged as ecologically rational by
an outside observer under the given conditions can be implemented by the decision
maker without requiring awareness of the full game �.

Thus, one interpretation of the heuristic is that it represents the advice that would be
given by an unboundedly aware expert to a decision maker who must make decisions
under conditions of bounded awareness.

6.2 The precautionary principle

The precautionary principle, presented as a guide to environmental policy decisions
in the presence of uncertainty, has been the subject of vigorous debate (Wingspread
1998). However, discussion of the principle as a decision-theoretic rule has mostly
relied on the (normally implicit) assumption that decision makers are unboundedly
rational and aware of all possible contingencies. In this context, the precautionary prin-
ciple has been criticized as involving inconsistency (Marchant and Mossman 2005;
Sunstein 2005) or excessive risk aversion (Miller and Conko 2005) and defended as
a way of capturing option value (Gollier et al. 2000). It is evident, however, that in a
fully specified decision-theoretic model, with all contingencies taken into account, and
an appropriately specified objective function, there should be no need for additional
heuristic rules such as those of the precautionary principle.

When the limited awareness of participants in decision processes is taken into
account, however, the precautionary principle seems more appealing. Given the
bounded rationality of human agents, it is impossible to enumerate all relevant pos-
sibilities. This point is sometimes expressed with reference to “unknown unknowns,”
that is, relevant possibilities of which we are unaware.

The case for the precautionary principle arises when a decision maker, such as a
regulator, is faced with a choice between alternatives, one of which leads to conse-
quences for which the relevant elements of the state space are well understood and the
other which leads to consequences that depend to a significant extent on “unknown
unknowns.” If most surprises are unpleasant, a risk analysis based only on known
risks will underestimate the costs of choices of the second kind. That is, standard risk
analysis leads to a bias in favor of taking chances on poorly understood risks. The
precautionary principle may be seen as a rule designed to offset such biases.

Grant and Quiggin (2012) consider the case of a decision maker, faced with an
uncertain choice, who has available a “safe option,” yielding a return that can be nor-
malized to zero, and conditional on which the decision maker judges (by induction)
that there are no relevant propositions of which she is unaware. Grant and Quiggin say
that a behavioral rule other than the safe option is “subject to unfavorable surprises,”
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and there exist unconsidered moves by Nature, against which the payoff from the
behavioral rule r is less than zero. They define the Strong Form of the Precautionary
Principle as the heuristic that excludes behavioral rules subject to unfavorable sur-
prises and show that the Strong Version of the Precautionary Principle is ecologically
rational if and only if V (r0) < 0, where r0 is the behavioral rule associated with
the unconstrained heuristic H−i (which, in the context of individual decision, may be
denoted by H0). Grant and Quiggin also define a weaker form of the Precautionary
Principle and derive conditions for ecological rationality.

In a multi-agent context, regulatory decisions typically involved assessment of pro-
posed actions seen as raising possible risks. In this context, the precautionary principle
may be understood, as a procedural constraint, putting the burden of proof on to pro-
ponents of decisions involving poorly understood risks. If the proponent can provide
sufficient information to satisfy the regulator that all relevant contingencies have been
considered, standard principles of decision analysis may be applied to justify a pro-
posal. If not, the regulator may choose to apply the precautionary principle and reject
the project even in the absence of a negative benefit–cost evaluation.

7 Concluding comments

The model presented in this paper has incorporated the minimal deviations from the
standard case of an extensive-form game necessary to allow a representation of induc-
tive reasoning about differential awareness and to model possible behavioral responses.
The analysis presented here could be extended in a number of ways.

First, the model presented here allows players to become aware of previously uncon-
sidered possibilities, but not to forget about possibilities they have previously consid-
ered. To the extent that unawareness reflects bounded rationality, this seems unrea-
sonable, since the model accessible to players becomes steadily more complex. A
desirable property for a representation of bounded awareness is that the bound should
be determined by limits on reasoning capacity which should be constant over time or
at least should not increase monotonically

It would be desirable, therefore, to extend the analysis to allow for imperfect recall.
The simplest version of imperfect recall is to suppose that individual i at (perceived)
information set IZ̃(h) (h) forgets about some or all histories that do not pass through
IZ̃(h)

(h) , since these histories involve actions (by player i, some other player j, or
Nature) known by i not to have been taken. In the context of individual decision,
such histories are strictly irrelevant, but in a game-theoretic context, the fact that they
have not been chosen may inform reasoning about the other players. More generally,
individuals may forget the details of their past history.

In the present paper, the perception mapping is taken to be exogenous, subject only
to the restriction that players must always consider some history possible. A natural
extension would be to consider games in which awareness is derived naturally from
the tree structure of the game. For example, we might impose the requirement that
players are always aware of actions when they become available.

Finally, the relationship between equilibrium and awareness could be explored
further. As we have argued, differential awareness means that players will, in gen-
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eral, arrive at information sets they previously regarded as being off-equilibrium. This
would appear to rule out equilibrium concepts that admit arbitrary actions at off-
equilibrium information sets and therefore to mitigate the problem of multiplicity of
equilibria. On the other hand, since changes in awareness imply, in general, changes in
the perceived set of equilibria, difficulties may arise for notions such as forward induc-
tion, to the extent that they rely on the use of apparent deviations from equilibrium to
make inferences about other players.

Much work remains to be done. However, the model presented in this paper allows
for a coherent account of behavior in games where players are not, in general, aware
of all possibilities and understand this fact. This seems likely to yield a more plausible
account of actual behavior than a framework based on the assumption that all players
are unboundedly rational and that this is a matter of common awareness.

Appendix A

Proof of Proposition 1 By standard arguments (e.g., Osborne & Rubinstein [1994, p
227]), it follows that an assessment in a game of perfect recall is sequentially rational
(β,μ) if and only if it satisfies the one-shot deviation property. That is, at each h, for
the behavioral strategy β

P(h)
h of player P (h) in the continuation of the game �Z̃(h)

,

there is no subsequent information set IZ̃(h)

(
h′), with P

(
h′) = P (h) in the continu-

ation of the game at which a change in β
P(h)
h

(
h′) increases his payoff conditional on

reaching IZ̃(h)

(
h′).

Therefore, we will first establish the existence of a trembling-hand equilibrium for
the agent-normal form of G, which by the one-shot deviation property also constitutes
a trembling-hand equilibrium of G. It will then suffice to show that for any trembling-
hand equilibrium strategy profile β, there exists a subjective probability system μ such
that (β,μ) is a sequential equilibrium.

We take the agent-normal form of the game with awareness
(
�, Z̃ (·)

)
, to be the

game with awareness
(
�an, Z̃ (·)

)
, where �an is the agent-normal form �, in which

there is one player for each information set in the extensive-form game and where
player h is imputed to be playing �an

Z̃(h)
the agent-normal form of �Z̃(h)

. For each h,

denote the perturbation of the game �an
Z̃(h)

by first fixing the strategies of all players

h′′, such that there exists h′ ∈ IZ̃(h) (h) and h′′ � h′ and h′′ �= h′ (i.e., player h′′ is a
player has already moved by the time the game reaches the information set IZ̃(h)

(h))
and then letting the set of actions of each player h′′, such that there exists history
h′ ∈ IZ̃(h)

(h) and h′ � h′′ (i.e., player h′′ is a player who moves in the continuation
of the game �an

Z̃(h)
after information set IZ̃(h)

(h)) be the set of mixed strategies in

AZ̃(h)

(
h′′) ∩ AZ̃(h′′)

(
h′′) that assign probability of at least εa

h′′ (h) to each action that

player h (at h) imputes to player h′′ at her information set IZ̃(h)

(
h′′). That is, this

constrains h and every player who follows h to use every strategy h imputes that they
have available with some minimal probability. Consider a sequence of such perturbed
games in which εa

h′′ (h) → 0, for all h, for all h′′ and a; by the compactness of the
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set of strategy profiles, some sequence of selections
(
βk) from the sets of strategy

profiles that are sequentially rational for all i , of the games {�an
Z̃(h)

: h ∈ H} converges

to say β. It is straightforward to show from its construction that β corresponds to a
trembling-hand perfect equilibrium of the game with awareness.

Now, take the sequence
(
βk). At each information set I (h) define the belief μh′

for each h′ in I (h), to be the limit of the beliefs defined from
(
βk) using Bayes

rule. The assessment (β, μ) is then by construction consistent. Since the strategies are
completely mixed as can be done consistently, each information set consistent with
each player’s level of awareness is reached with positive probability and each agent’s
strategy is a best response when the beliefs at each information set are defined by μ.
Thus, (β,μ) is a sequential equilibrium. ��

References

Fagin, R., Halpern, J.: Belief, awareness and limited reasoning. Artif. Intell. 34, 39–76 (1988)
Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)
Gilboa, I., Schmeidler, D.: Case-based knowledge and induction. IEEE Trans. Syst., 173–190 (2000)
Goldstein, D., Gigerenzer, G.: Models of ecological rationality: the recognition heuristic. Psychol. Rev.

109(1), 75–90 (2002)
Gollier, C., Jullien, B., Treich, N.: Scientific progress and irreversibility: an economic interpretation of the

‘precautionary principle’. J. Public Econ. 75, 229–253 (2000)
Grant, S., Quiggin, J.: Learning and Discovery. Working Paper: R05_7, Risk and Sustainable Management

Group, University of Queensland (2006)
Grant, S., Quiggin, J.: Bounded awareness, Heuristics and the Precautionary Principle. Working Paper WP

R12_3, Risk and Sustainable Management Group, University of Queensland (2012)
Halpern, J.: Reasoning About Uncertainty. The MIT Press, Cambridge (2003)
Halpern, J., Rego, L.: Extensive games with possibly unaware players. In: Proceedings of the Fifth

International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, pp.
8–12 (2006)

Halpern, J., Rêgo, L.: Interactive unawareness revisited. Games Econ. Behav. 62(1), 232–262 (2008)
Halpern, J., Rêgo, L.: Reasoning about knowledge of unawareness. Games Econ. Behav. 67(2), 503–525

(2009)
Halpern, J., Rêgo, L.: Generalized solution concepts in games with possibly unaware players. Int. J. Game

Theory 41(1), 131–155 (2012)
Heifetz, A., Meier, M., Schipper, B.: Interactive unawareness. J. Econ. Theory 130(1), 78–94 (2006)
Heifetz, A., Meier, M., Schipper, B.: Dynamic Unawareness and Rationalizable Behavior. Working Paper,

UC Davis (2009)
Heifetz, A., Meier, M., Schipper, B.: Unawareness, Beliefs, and Speculative Trade. Working Paper, UC

Davis (2012)
Kripke, S.: A semantical analysis of modal logic I: normal modal propositional calculi. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963)
Laudan, L.: A confutation of convergent realism. Philos. Sci. 48(1), 19–49 (1981)
Li, J.: A Note on Unawareness and Zero Probability. PIER Working Paper No. 08–022. Available at SSRN,

http://ssrn.com/abstract=1152281 (2008)
Marchant, G.E., Mossman, K.L.: Arbitrary and Capricious: The Precautionary Principle in the European

Union Courts. International Policy Press a division of International Policy Network, London (2005)
Miller, H., Conko, G.: The UN, biotechnology, and the poorest of the poor. Hoover Digest, 2. http://www.

hoover.org/publications/digest/2993011.html (2005)
Modica, S., Rustichini, A.: Awareness and partitional information structures. Theory Decis. 37, 107–124

(1994)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
Rumsfeld, D.: Statement to Press. Washington (2002)

123

http://ssrn.com/abstract=1152281
http://www.hoover.org/publications/digest/2993011.html
http://www.hoover.org/publications/digest/2993011.html


Inductive reasoning about unawareness 755

Sunstein, C.R.: Laws of Fear: Beyond the Precautionary Principle (the Seeley Lectures). Cambridge
University Press, Cambridge (2005)

Walker O.: Unawareness with Possible Possible Worlds. Math. Soc. Sci. (forthcoming, 2012)
Wingspread Conference: Wingspread Statement on the Precautionary Principle. Press release, Racine,

Washington (1998)

123


	Inductive reasoning about unawareness
	Abstract
	1 Introduction
	2 Games with awareness
	2.1 Extensive-form games and languages: notation
	2.2 Restrictions
	2.3 Perception mapping
	2.4 Behavior rules, strategies, subjective probabilities and equilibrium in games  with awareness
	2.5 Example

	3 Inductive reasoning about unawareness
	4 The existential quantifier, existential propositions and unawareness 
	4.1 Historical induction and induction over players
	4.2 Inductive reasoning, awareness and unawareness
	4.3 Syntax and semantics of inductive reasoning about awareness

	5 Games subject to heuristic constraints
	5.1 Ecological rationality
	5.2 Example Part 2:

	6 Applications
	6.1 Research and discovery
	6.2 The precautionary principle

	7 Concluding comments
	Appendix A
	References


