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Abstract In warm glow models, an agent may prefer one alternative but aspire to
choose another. The agent chooses her aspiration if she gets a sufficiently large warm
glow payoff for acting as she aspires. This basic framework is widely used in models of
turnout in elections and contributions to public goods, but is often criticized for being
ad hoc. In this paper, we provide choice-theoretic foundations for warm glow theory.
We characterize the empirical content of warm glow theory, show how to infer the
core elements of the model from data and show that it is possible to predict behavior
even when preferences and aspirations are not revealed. Our results provide support
for assumptions often made in the literature and suggest new applications for warm
glow models.
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1 Introduction

In warm glow models an agent may prefer one alternative but aspire to choose another.
An agent’s aspiration is often understood as the alternative she thinks she ought to
choose on ethical grounds. The agent receives a warm glow payoff for acting in
accordance with her aspirations. If her warm glow payoff is sufficiently large, the agent
may act as she aspires even if the action taken is costly and near inconsequential.

Warm glow models are used to accommodate a wide range of behavior including
voting in large elections where the impact of a single vote is negligible. Agents moti-
vated by warm glow payoffs vote because they think they should and not because
they think a single vote may plausibly change the outcome. Warm glow models have
also been used extensively in public good provision models. The model captures the
idea that people may be motivated to act in socially beneficial ways (such as helping
others, making philanthropic contributions, punishing socially undesirable behavior)
at a private cost to themselves.

While warm glow models are used widely, they remain unaxiomatized. The contri-
bution of this paper is to provide choice-theoretic foundations for warm glow theory,
to show how to identify core elements of the model from data and to suggest new
applications for the theory.

The standard formulation of warm glow theory combines instrumental and warm
glow payoffs. For example, the overall payoff for choosing x is

U (x) =
{

u(x) + D if x is an aspiration
u(x) otherwise

(1)

where u (x) is the instrumental payoff associated with the choice of x and D > 0 is
the warm glow payoff received when the agent aspires to choose x .

A well-known example of this basic structure is found in Riker and Ordeshook
(1968). Their model reduces to a payoff for voting given by the formula

p�u − c + D

where p is the probability an agent’s vote is pivotal, �u is the difference in payoff
between the favored candidate and his opponent being elected, c is the cost of voting
and D is the warm glow payoff received by voting for the favored candidate.1 An
agent votes if and only if the payoff for voting is positive. Riker and Ordeshook find
some empirical support for their model, but left open the question of how to identify
the core elements of the theory from data. In particular, it remains unclear whether
votes reflects preferences or aspirations.

1 Andreoni 1989 writes a more complex warm glow utility function as follows:

U = U (y, Y, g)

where y is the agent’s consumption of private goods, Y is the total supply of the public good, and g is the
warm glow the agent experiences by virtue of giving.
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Revealed preferences and aspirations 503

The need for choice-theoretic foundations for warm glow theory may be easily seen
in the context of contribution to public goods problems. Consider a decision maker
who aspires to donate as much as solicited. She is asked to make a small donation (s)
and she does so. That is, s is chosen over n (no donation). However, when she is asked
to make either a small donation or a large donation (l), then she chooses not to donate
at all. So, n is chosen over s and l.

In effect, the introduction of the option to donate at a higher level reduces dona-
tions. Similar behavior is observed in the field study of Berger and Smith (1997).
More important from the perspective of standard economic theory such choices violate
WARP (the weak axiom of revealed preference). Warm glow theory easily accommo-
dates this behavior. It suffices to assume that warm glow payoffs are large enough to
compensate for the cost of the small donation but not for the cost of a large one.2

This example illustrates that the standard choice-theoretic foundations for utility
functions do not apply either to overall payoff functions (U ) or to instrumental payoffs
(u). To see this, note that U is not a cardinal representation of an order over alternatives
and u is not equated with choice (because u(x) greater than u(y) is not equivalent to
x chosen over y).

One objective of this paper is to provide proper choice-theoretic foundations for
warm glow theory. We axiomatize the warm glow model and show how to make suit-
able inferences about agents’ preferences under the warm glow framework. Because
the standard approach equating choice with preferences does not apply in warm glow
models, there is a need to show how to deduce preferences from choice in these mod-
els. It should be noted that we consider the simple warm glow model in (1) and not
more complex ones (e.g., Feddersen and Sandroni 2006 and Andreoni 1989). While
the model in (1) is a simplification, it allows us to get directly at the crucial feature of
warm glow models: the idea that aspiration is chosen only when the required sacrifice
in utility is not too large. We want to demonstrate that this central feature of warm
glow models is observationally meaningful.

It will be helpful for our purposes to define an ordinal warm glow model in the tra-
dition of the revealed preference literature. In this model, an agent makes choices from
subsets of alternatives called issues. The agent’s choice is determined by a preference
relation (associated with the utility u), an aspiration function and a tolerance function.
The aspiration function determines which actions deliver the warm glow payoff (i.e.,
the aspiration). The tolerance function determines which actions, within each issue,
are sufficiently costly so that they will not be chosen even if they are an aspiration. So,
the agent chooses her aspiration if and only if she can tolerate it. This ordinal model of
warm glow is observationally equivalent to warm glow model in (1). In cardinal warm
glow models, Dee is willing to sacrifice utility in order to act as she aspires, provided
that this sacrifice is not too large (i.e., smaller than D utiles). The ordinal model of
warm glow is a first step in the determination of choice-theoretic foundations to this
idea of preference intensity and sacrifice of a limited quantity of utility in order to
satisfy an aspiration.

2 It is critical here that the action that Dee aspires may be issue dependent. Thus, Dee may get a warm glow
payoff D for different actions in different issues. In this example, Dee gets a warm glow payoff for a small
donation only when this is the highest solicited donation.
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If no structure is imposed on a nonobservable aspiration function, then any choice
function can be accommodated by warm glow models. It suffices to assume that all
actions are tolerable and the decision maker’ choice is her aspiration. Clearly, such
a model has no empirical content. To make progress, we must assume either that
aspirations are observed or that they have some logical structure (or both).

Let us start with the assumption that aspirations are observed. Here, the main
difficulty is that if the decision maker chooses her aspiration, then there is no direct
way to make inferences about preferences (because it is unclear whether her choices
are motivated by her preferences, by her aspirations or by both). However, if an agent
aspires to y but chooses x , then we can directly infer that y is not tolerated when x
is available. This reveals an intolerance relation. That is, Dee’s utility for x is greater
than her utility for y plus D and so x is so much better than y that y will never be
chosen when x is available (even if y is an aspiration). In addition, x must be preferred
to all other alternative she might have chosen instead (i.e., if the chosen x is not her
aspiration, then it must be her preferred choice). This reveals a preference. These
are simple inferences over intolerances and preferences that can be made directly. A
key point in this paper is that there are more complex and indirect inferences that
can be made by chaining together direct inferences. These indirect inferences can, in
turn, be chained together to produce even further inferences. In spite of this difficulty,
we provide an explicit formula that takes, as input, data in the form of arbitrary
choices and aspirations and returns, as output, (1) a way to determine whether the
warm glow model can accommodate the data, and (2) all possible inferences over
preferences and tolerances. In addition, if aspirations are ordered, then the empirical
content of warm glow theory can be fully characterized by two simple and elegant
axioms.

So far, our results characterize the inferences of warm glow theory when both
choices and aspirations are used as input. This is the traditional approach in applied
warm glow models where aspirations are typically assumed to be commonly perceived
ethical actions such as voting, contributing to public goods and performing activities
often deemed to be praiseworthy. Our results can also be used to make predictions on
observable behavior that follow under the null hypothesis that the warm glow model
holds and aspirations are exogenously determined. Naturally, these predictions may
not come about. This shows a combined test of the warm glow model and assumptions
about aspirations.

In several situations, there may be doubts about whether it is possible to make
legitimate assumptions about aspirations. In this case, aspirations must be assumed to
be unobserved. Then, as argued above, it is necessary to assume some logical structure
on aspirations: We assume that they are ordered and show that, in this case, the model
is falsifiable and must satisfy (at least) the following property: If there is a set of issues
that each contain an alternative x that is never chosen, then x cannot be chosen in the
union of those issues. For example, if x is not chosen in the sets {x, y} and {x, z}, then
x cannot be chosen in the set {x, y, z}. We can make this prediction even though it is
not possible to determine why x is rejected: It might be, for example, that x is most
preferred but tolerates aspirations y and z, or it might be that x is the aspiration but
it is not tolerated. Therefore, if aspirations are assumed to be ordered, it is possible
to make predictions over behavior without being able to infer motivations. A full
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characterization of the empirical content of the warm glow model when aspirations
are ordered and unobserved is still an open (and, we believe, hard) question.

The paper proceeds as follows. In Sect. 2, we provide a literature review that links
our approach to the literature on warm glow decision making and a broader class of
behavioral decision models. In Sect. 3, we present the formal model and prove that it
is observationally equivalent to the standard warm glow model. In Sect. 4, we state the
formal results in the case when aspirations are observable. In Sect. 5, we explore the
model when aspirations are not observable. Section 6 considers possible extensions
of our model. Section 7 concludes.

2 Literature review

In political science, the leading example of warm glow theory is Riker and Ordeshook
(1968). Feddersen and Sandroni (2006) build upon their model. They endogenize
aspirations and exploit the predictability of aspirations to generate comparative statics.
Coate and Conlin (2004) find support for the Feddersen and Sandroni model in the
field. Feddersen et al. (2009) find support for a particular form of the ethical voter
model in laboratory experiments (see also Shayo and Harel 2012).

Andreoni (1989) surveys the literature on warm glow giving and develops a warm
glow model where agents may aspire to contribute to public good. He shows that
the warm glow payoff may help explain why government spending does not crowd
out private donations as predicted in standard economic models. Andreoni (2006, pp.
1222–1223) argues that putting a warm glow motive is “an admittedly ad hoc fix,” but
“the experimental data is overwhelming in its support of warm glow.” Most notably,
Andreoni (1993), Andreoni (1995), Palfrey and Prisbrey (1996), Palfrey and Prisbrey
(1997) and Andreoni and Miller (2002) find clear evidence of warm glow motives.

Recent work by Levine and Palfrey (2007) finds that ethical voter models are unnec-
essary to explain behavior in some laboratory voting experiments. Given the large set
of models that are consistent with the same behavior it is important to develop an
empirically grounded methodology that will not only allow selection among alterna-
tive functional forms of warm glow but also allow an assessment of whether warm
glow is a useful theory compared to, say, standard economic models.

The warm glow model can be understood as a dual-self model and, therefore, is
related to a growing literature in decision theory on multiple selves. Kalai et al. (2002)
consider a basic model of multiple selves, where choice is optimal according to one of
the selves. A literature review on multiple-self models can also be found in Cherepanov
et al. (2012) and Ambrus and Rozen (2008).

Our approach is closely related to a few lines of research. First, consider models
on status quo bias (see, among many contributions, Masatlioglu and Ok 2005; Sagi
2006; Salant and Rubinstein 2008). Under the assumption of observed but possibly
unordered aspirations, our warm glow model could be reinterpreted as a model of status
quo bias. For a given issue, one need only relabel an aspiration as the status quo. Dee
departs from the status quo only if the utility gain is sufficiently large. We consider the
case of unobserved aspirations and impose the logical structure of ordered aspirations
to obtain empirical content. Under the reinterpretation of aspiration as status quo, the
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assumption of ordered aspirations is problematic because there is no reason for status
quos to be ordered.

In our warm glow model, the most that can be observed for a given issue is a choice
and an aspiration. Aspirations are an idiosyncratic feature of a decision maker and not
an object that might be subject to experimental manipulation. In contrast, it is entirely
sensible in status quo models to assume that one can observe, for a given issue, different
choices as a result of different status quos. That is, unlike our model, the status quo
literature assumes that the choice C(B, x) may be observed for every issue B and every
conceivable status quo x ∈ B. So, the input used in this paper to infer the core elements
of warm glow theory is far more limited than the data used in status quo models. A
variation of the Limited WARP axiom also holds in status quo models, but we are not
aware of any clear counterpart to our warm glow axiom or to our main results.

Our model could also be reinterpreted as a model of temptation and self-control (see,
among many contributions, Dillenberger and Sadowski 2012; Gul and Pesendorfer
2001, and Noor and Takeoka 2010). In this reinterpretation, Dee is tempted to take the
action she prefers, but she receives a penalty D unless she takes the action she aspires
(e.g., Dee may aspire to eat healthy foods, but prefers to eat unhealthy foods. So, she
is tempted to eat unhealthy foods, but receives a psychological penalty D unless she
eats as she aspires). This simple model of temptation would differ significantly from
the existing literature. Even though one can find similarities between the warm glow
payoff and the utility function in Gul and Pesendorfer (2001), the connection between
these two models is more apparent than real. To see this, it may suffice to note that the
Gul and Pesendorfer (2001) does not accommodate violations of WARP. The model
of Dillenberger and Sadowski (2012) can accommodate behavioral anomalies at the
level of menu choices, and the general temptation model of Noor and Takeoka (2010)
does not accommodate violations of WARP once the choice of menu is fixed. Unlike
most models of temptation, we do not use choices over menus as input, and, hence,
one possible way to interpret our model is as model of choice with a fixed menu.
The nonuse of choices over menus as data also leads to an axiomatic foundation that
is mostly unrelated to the existing literature. Moreover, a critical contribution in this
paper is the methodology showing how to identify Dee’s preferences and tolerances
from data. This methodology is both novel and significant given that all multiple-self
models are prone to identification problems because it is unclear which self produced
the choice. Finally, we point out that the model of Segal and Sobel (2007) can be
construed as a warm glow model, although they do not describe it this way, which
does not accommodate violations of WARP. Shayo and Harel (2012) apply the Segal
and Sobel (2007) model to turnout problems. A general equilibrium model with warm
glow preferences can be found in Allouch (2012).

3 Warm glow theory

3.1 Basic concepts

A decision maker, Dee, faces a set of choices over subsets of a finite set of alternatives
X . A nonempty subset of alternatives B ⊆ X is called an issue. Let B be the set of all
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issues with at least two alternatives. Achoice function is a mapping C : B → X such
that C(B) ∈ B for every B ∈ B.

An aspiration function is a mapping A : B → X such that A(B) ∈ B for every
B ∈ B. Dee’s actual choice may differ from her aspiration, so we call the choice
function C Dee’s actual choice function. Given an issue B and aspiration function A,
let 1A,B : B → {0, 1} be an indicator function such that 1A,B(x) = 1 iff x = A(B).
That is, 1A,B indicates Dee’s aspiration in B.

We consider utility functions u : X → � such that u(x) �= u(y) if x �= y. So,
indifference is ruled out. Given an issue B and aspiration function A, let

U A,B(x) = u(x) + D · 1A,B(x)

be Dee’s utility function plus a warm glow payoff D for acting as she aspires.

Definition 1 A choice and aspiration function (C, A) : B → X × X is a warm glow
(choice and aspiration) function if there exists a utility function u and a scalar D ≥ 0
such that for every issue B ∈ B,

U A,B(C(B)) > U A,B(x) for every x ∈ B, x �= C(B). (2)

That is, warm glow choice functions are produced by optimization of utility plus
a warm glow payoff for acting as aspired. In the context of choice with an ethical
component, the main assumption is that Dee aspires to act ethically and receives a
payoff D if she does so. That is, as long as Dee’s aspirations do not require her to
sacrifice utility greater than D, she acts as she aspires. These sacrifices are not random
or arbitrary. They are motivated by Dee’s desire to act in harmony with her aspirations.

While (2) is the most basic model of warm glow, it is easy to think of general-
izations. For example, perhaps in some issues, Dee has no aspirations or more than
one aspiration. It would be useful to produce choice-theoretic foundations in a variety
of models of warm glow, but the natural starting point is the benchmark model in
(2) because this is the simplest and the most common model of warm glow used in
the literature. Some generalizations (e.g., nonconstant warm glow payoffs and issues
without aspirations) are considered, below, in this paper.

3.2 Warm glow theory and preferences

In this section, we introduce an ordinal model of choice as a first step in the deter-
mination of choice-theoretic foundations of warm glow theory. Below we show that
this model is observationally equivalent to the cardinal warm glow model. Hence, the
model in this subsection can be seen not as a new model, but rather as a convenient
(for our purposes) reformulation of the warm glow model in (2).

As above, Dee is endowed with an aspiration function A. Dee is also endowed
with a preference order R which is an asymmetric, transitive and complete binary
relation. By standard convention, x R y denotes that x is R-preferred to y. We say that
x R-optimizes B and denote this by x = R(B), if x R b for every b ∈ B, b �= x . If
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C(B) = R(B), then issue B is resolved by preference order R. The preference order
R can be seen as the ordinal counterpart of the utility function u.

For any given issue, Dee acts as she aspires only if her aspirations are not too
costly. So, Dee compares her aspiration to her preference and chooses her aspiration
if and only if her aspiration is tolerable to her. If her aspiration is intolerable, then she
chooses as she prefers. In the cardinal model of warm glow in (2), tolerance means a
sacrifice of utility no greater than D. However, to formalize the idea of tolerance in
an ordinal sense, we endow Dee with a tolerance function τ : X → X that maps
every alternative a into another alternative τ(a) that we call Dee’s tolerance limit. The
alternative τ(a) itself and every other alternative that Dee prefers to τ(a) are tolerable
when a is preferred, but any alternative that is R-worse than τ(a) is intolerable.

For any binary relation R, let R= be the binary relation such that x R= y if and
only if either x R y or x = y. So, if

A(B) R= τ(R(B))

then Dee’s aspiration is tolerable. If

τ(R(B)) R A(B)

then Dee’s aspiration is intolerable.
The tolerance limit τ(a) of an alternative a cannot be R-preferred to a because τ(a)

marks the least attractive option that Dee can tolerate when a is available. In addition,
if b is intolerable in the presence of a, then it should remain intolerable in the presence
of an even better alternative. Therefore, Dee’s tolerance function τ must satisfy

(a) a R= τ(a), and
(b) if a′ R a then τ(a′) R= τ(a) (weak monotonicity)

(3)

Weak monotonicity is a restrictive condition that is maintained because it is critical
to equate this model with the basic warm glow model in (2). We now define a warm
glow choice and aspiration function in terms of a preference order and tolerance
function.

Definition 2 A choice and aspiration function (C, A) : B → X × X is a warm glow
(choice and aspiration) function if there exists a preference order R, and a tolerance
function τ that satisfies (3) such that for any issue B ∈ B,

C(B) = A(B) if A(B) R= τ(R(B)) (4)

C(B) = R(B) if τ(R(B)) R A(B) (5)

That is, Dee chooses as she aspires when her aspiration is tolerable and chooses
as she prefers otherwise. We now show that this new definition is observationally
equivalent to Definition 1.

Preliminary result 1 A choice and aspiration function (C, A) satisfies Definition 1
if and only if it also satisfies Definition 2.
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The intuition underlying the preliminary result is simple. In the warm glow model
of Definition 1, Dee maximizes u(x) + D · 1A,B(x). If the utility of Dee’s preferred
choice exceeds, by D, the utility of her aspiration A(B), then her aspiration is too
costly and she chooses her most preferred alternative. On the other hand, if Dee’s
preferred choice does not exceed, by D, the utility of her aspiration A(B), then her
aspiration is tolerable and she chooses as she aspires. All formal proofs are found in
the “Appendix.”

The preliminary result demonstrates that warm glow theory can be defined using
the ordinal concept of preference (and aspiration and tolerance functions). The utility
function u is associated with the preference order R in the usual manner: High R-
ranking is associated with higher utility from u. While D is assumed to be constant
in the cardinal model of Definition 1, it should be noted that this assumption can be
relaxed. The preliminary result shows that warm glow models with nonconstant warm
glow payoffs may also be observationally equivalent to our ordinal model of warm
glow. Our focus now shifts to delivering choice-theoretic foundation to warm glow
theory.

4 Observed aspirations

In this section, we analyze the basic model under the assumptions that choices and
aspirations are observable. The general case is notationally involved, and so, we start
with the special case where aspirations are also assumed to be ordered to convey
intuitions in a simple and direct way.

4.1 Ordered and observed aspirations

An aspiration function A is ordered if for any two pairs of issues B and B ′ such that
B ⊆ B ′, A(B ′) ∈ B implies A(B) = A(B ′). So, an ordered aspiration function must
satisfy WARP.

We now characterize the empirical content of warm glow theory under the assump-
tion of ordered and observed aspirations.

Definition 3 Let Bs be a set of issues such that choice and aspiration differ: Bs =
{B ∈ B s.t. C (B) �= A (B)}.

By definition, if an issue is in Bs , then choice differs from aspiration. As an example,
consider the fact while the majority of respondents in surveys say that they intend to
buy carbon-offsets, few actually do it. Thus, under the assumption that people aspire
to buy carbon-offsets, the choice not to buy offsets reveals that respondents prefer not
to buy offsets (because if Dee prefers to act as she aspires then she would). Formally,
if B ∈ Bs , then Dee must prefer her choice C(B) to all feasible alternatives in B.

Thus, we can define the directly observed preference relation 	d as follows:

x 	d y ⇔ x �= y and there is an issue B ∈ Bs s.t. y ∈ B, x = C (B) . (6)

So, warm glow theory is falsifiable and must satisfy at least the following axiom.
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Limited WARP: Let B ∈ Bs and B ′ ∈ Bs be a pair of issues such that B ⊆ B ′.
Then,

C(B ′) ∈ B �⇒ C(B) = C(B ′). (7)

The Limited WARP (LWARP) axiom requires that WARP holds on Bs . It holds
under warm glow theory because, for all issues in Bs , Dee’s chooses as she prefers.
However, Limited WARP does not fully characterize the empirical content of warm
glow theory because, as the example below shows, indirect inferences about prefer-
ences can also be made.

Consider the example mentioned in the introduction. Suppose that Dee must decide
how much money to donate to a charity. Suppose that Dee aspires to contribute as much
as requested, but she only makes small contributions. So, given the choice between a
small donation (s) and no donation (n), Dee aspires to a small donation and chooses it.
However, between no donation and a large donation (l), Dee aspires to a large donation
but chooses no donation. It follows that Dee prefers a small donation over a large one.
Too see this assume, by contradiction, that Dee prefers l over s. Dee’s choice of a
small donation implies that Dee can tolerate choosing her aspiration s over n. So, Dee
must be able to tolerate choosing l (as an aspiration) over n. But this contradicts the
choice of n when l is the aspiration. Thus, Dee prefers s to l. This inference is indirect
(i.e., beyond 	d ) because it is not based on any issue in Bs such that l is available and
s is the choice.3

In general, we can indirectly infer that Dee prefers y to z (y 	ind z) if there exists
an alternative x and issues B ′ ∈ B, B ∈ Bs such that

x ∈ B ′, y = C
(
B ′) and x = C (B) , z = A (B) . (8)

The indirect revealed preference 	ind follows by the same argument given in the
example above. If Dee prefers z to y, then whenever z is her aspiration she can tolerate
it in the presence of x (because her choice in B ′ shows that she can tolerate y when x is
available, and so she can also tolerate an even better alternative z when x is available).
But this contradicts her choice of x in B when z was her aspiration. This indirect way
to infer Dee’s preferences leads to the following axiom.

Warm Glow Axiom: If B ∈ Bs, C (B) ∈ B ′ and either A (B) 	d A
(
B ′) or

A (B) = A
(
B ′), then B ′ ∈ Bs .

The warm glow (WG) axiom states that if her aspiration in B is too costly (so that
she cannot tolerate it), then her aspiration in B ′ must remain too costly provided that
(1) the choice in B is available B ′ and (2) her aspiration in B ′ is either the same as in
B or directly revealed to be less preferred. The intuition behind the warm glow axiom
is simple: If Dee’s aspiration A(B) is too costly when C(B) is available, then an even
more costly aspiration A

(
B ′) should remain too costly when C(B) is still available.

3 An alternative way to see this is as follows: The choice of n over l when l is as aspiration implies that
u(n) ≥ u(l) + D. The choice of s over n when s is as aspiration implies that u(s) + D ≥ u(n). So,
u(s) ≥ u(l).
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The warm glow axiom is stated in terms of observable data (because the relation
	d is defined from choices and aspirations alone). This axiom ensures that revealed
preferences obtained directly and indirectly do not contradict each other. To see this,
consider a violation of the warm glow axiom. Let x = C(B), z = A(B), y =
C(B ′) = A(B ′). By 8, y 	ind z. So, we can indirectly infer that Dee prefers y to z.
By assumption, either y = z or z 	d y. So, we can directly infer that Dee prefers z
to y.

The following result states that the empirical content of the warm glow model with
ordered aspirations is fully characterized by these two axioms.

Theorem 1 Let (C, A) be a choice and aspiration function such that A is ordered.
(C, A) is a warm glow function if and only if the LWARP and WG axioms are satisfied.

Theorem 1 demarcates the empirical scope of the warm glow model with observed
and ordered aspiration functions. This characterization provides choice-theoretic foun-
dations for the warm glow model.

4.2 Predicting behavior

Theorem 1 provides a general characterization of the predictions that follow from
warm glow models with observed and ordered aspirations (i.e., violations of Limited
WARP and the warm glow axiom will not be observed). However, special cases of
these predictions are also of interest.

Suppose there are two issues B and B ′ such that x and y are available in both issues
and Dee chooses x in B and y in B ′. Now assume that Dee is given the choice between
x and y. Standard theory makes no prediction about what Dee will choose because
her previous choices of x and y violate WARP. In contrast, warm glow theory predicts
that Dee will choose as she aspires. To see this, assume that Dee does not choose her
aspiration (e.g., assume that her aspiration is x and her choice is y). Then, she cannot
tolerate x in the presence of y. This contradicts her choice of x in B. So, warm glow
theory not only accommodates some violations of WARP but can exploit behavioral
anomalies to predict behavior.

Now suppose that x = C(B) is the choice in B. Consider a subissue B ′ ⊂ B such
that x is the aspiration in B ′ (i.e., x = A(B ′)). Then, we can predict that x will also
be chosen in B ′. This is another simple prediction that follows from the warm glow
model. To see this, suppose that another alternative y �= x is chosen in B ′. Then, Dee
cannot tolerate choosing x rather than y. But then Dee could not have chosen x in B
since y was also available in B. Thus, if Dee does not choose x in B ′, we must reject
either the warm glow model or the assumption that she aspires to x in B ′.

Two points of interest emerge. First, even though we can predict Dee’s choice of
x in B ′, we may not be able to determine her motivations for that choice. That is, we
may not be able to say whether Dee prefers x over alternatives in B ′ or she chooses x
because she aspires to and can tolerate it.

Second, suppose that the behavior predicted above is not satisfied (i.e., x = C(B) =
A(B ′), B ′ ⊂ B and x �= C(B ′)). If x �= A(B), then we have a violation of LWARP,
and if x = A(B), then we have a violation of the WG axiom. However, these choices
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(i.e., x = C(B) = A(B ′), B ′ ⊂ B and x �= C(B ′)) violate warm glow theory even if
aspirations are not required to be orders. To see this, simply note that in the argument
above, we did not use the assumption of ordered aspirations. Therefore, warm glow
theory is falsifiable even if aspirations are observed but not necessarily ordered.

However, the LWARP and WG axioms are not sufficient to characterize warm glow
theory if aspirations are not necessarily ordered. We illustrate this point with Example 2
(in the “Appendix”). This example provides a choice and unordered aspiration function
satisfying the LWARP and WG axioms, but is not a warm glow function. We now turn
to the general case of observed aspirations.

4.3 Observed aspirations: the general case

In this subsection, we eliminate the assumption that aspirations are ordered and work
out the choice-theoretic foundation of warm glow theory. We provide two results.
Our first result generalizes Theorem 1 and characterizes the empirical scope of the
warm glow model with arbitrary (but observed) aspiration functions. Our second result
determines all inferences that can be made about preferences and tolerances from data.

As mentioned in Sect. 2, all multiple-self models are prone to identification prob-
lems. As we show below, if Dee always acts as she aspires then, it is impossible to
determine whether her choices reflect her preferences or aspirations. However, we
deliver a closed-form formula that, given any choice and aspiration function, charac-
terizes all valid inferences about preferences and tolerances in warm glow theory.

4.3.1 Definition of revealed preferences and tolerance relations

In this subsection, we formally define revealed preferences, tolerances and intoler-
ances. A warm glow pair (R, τ ) is a preference order R and a tolerance function τ

that satisfies (3). A warm glow pair underlies a choice and aspiration function (C, A)

if (4) and (5) hold for every issue B ∈ B. Given a choice and aspiration function
(C, A), let PC,A be the set of all warm glow pairs that underlie (C, A), and let RC,A

be the set of all orders R such that (R, τ ) ∈ PC,A for some tolerance function τ .
The binary relation 	rev captures the revealed preferences implied by the observed

choice and aspiration functions.

Definition 4 Given a choice and aspiration function (C, A), let 	rev be the binary
relation such that for any two alternatives x and y,

x 	rev y ⇔ x R y foreveryorder R ∈ RC,A. (9)

We say x is revealed to be preferred to y if x is R -preferred to y in every warm
glow pair that underlies the choice and aspiration function. If x is not revealed to be
preferred to y, then there is a warm glow pair that underlies the observed choice and
aspiration function such that y R x . We also define revealed intolerance ( 	rev+ ) and
revealed tolerance (�rev) relations.
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Definition 5 Given a choice and aspiration function (C, A), let 	rev+ be the binary
relation such that for any two alternatives x and y,

x 	rev+ y ⇔ τ (x) R y foreverywarmglowpair (R, τ ) ∈ PC,A. (10)

We say x is revealed to not tolerate y if y is R-ranked below the tolerance threshold
for x in every warm glow pair that underlies the choice and aspiration function.

Definition 6 Let �rev be the binary relation such that for any two alternatives x and
y,

x �rev y ⇔ x R= τ (y) foreverywarmglowpair (R, τ ) ∈ PC,A. (11)

We say x is revealed to be tolerated by y if x is equal to or R-ranked above
the tolerance threshold for y in every warm glow pair that underlies the choice and
aspiration function.

These three revealed relations capture all binary relations (preference, intolerance
and tolerance) that must hold. An intuitive descriptions of these concepts may help. If
x is revealed to not tolerate y, then we know that Dee finds x to be “much better” than
y (i.e., u(x) must exceed u(y) by at least D utiles). So, even if y is an aspiration, Dee
finds it to costly to chose y in the presence of x . If x is revealed preferred to y, then we
know that Dee finds x to be better than y (i.e., u(x) must exceed u(y)). If x is revealed
to be tolerated by y, then we know that Dee does not find x to be “much worse” than y
(i.e., u(x) must exceed u(y)− D). Hence, we have an hierarchy from “much better” to
“better” to “not much worse” which reflects what we can infer about Dee’s preference
relations and some features of the intensities of her preferences. This can be easily
seen formally. By definition and (3), x 	rev+ y �⇒ x 	rev y �⇒ x �rev y. Note
also that 	rev+ and 	rev are necessarily transitive while �rev is not.

By assumption, preference and tolerance relations persist across issues or when
new alternatives are introduced. This allows predictions on behavior. As we mentioned
above, if x is revealed to not tolerate y, x 	rev+ y, then y will never be chosen in the
presence of x . If x is revealed to be tolerated by y, x �rev y, and x is the aspiration
in some issue B such that y ∈ B, then y will not be chosen in B. Furthermore, if x is
revealed to be tolerated by every alternative in B, then x will be chosen in B.

4.3.2 Directly revealed preference and tolerance relations

We now show relations directly revealed from choice. First note that Dee’s actual
choice is tolerated by every other feasible alternative. To see this, observe that if her
actual choice is not her aspiration, then it must be most preferred and, hence, tolerable.
On the other hand, if her actual choice is her aspiration, then her aspiration must be
tolerated. We define the directly observed tolerance relation � as follows:

x � y ⇔ x = y or there is an issue B such that x, y ∈ B, x = C (B) (12)

When Dee’s actual choice differs from her aspiration, she must prefer her actual
choice to all other alternatives in the issue and find her aspiration intolerable. We recall
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Table 1 Revealed relations
implied by three alternatives

y �rev z y 	rev z y 	rev+ z

x �rev y x �rev z x 	rev z

x 	rev y x �rev z x 	rev z x 	rev+ z

x 	rev+ y x 	rev z x 	rev+ z x 	rev+ z

that the directly observed preference relation 	d is defined in 6. We also define the
directly observed intolerance relation 	+ as follows:

x 	+ y ⇔ x �= y and there is an issue B s.t. x, y ∈ B, x =C (B) , y = A (B) (13)

Lemma 1 Suppose (C, A) is a warm glow choice and aspiration function, then:
x � y �⇒ x �rev y; x 	d y �⇒ x 	rev y; and x 	+ y �⇒ x 	rev+ y.

The lemma follows almost immediately from the definitions. If, for example, x
is directly observed to not tolerate y, then there is an issue B s.t. x, y ∈ B, x =
C (B) , y = A (B), and for any warm glow pair (R, τ ) that underlies (C, A), it must
be that x = R(B) and τ (x) R y; otherwise, x cannot be chosen. Lemma 1 shows that
we can (partially) reveal preferences and tolerances by making direct inferences from
observed choice and aspirations.

A simple application of these results is as follows: Consider the example of Riker
and Ordeshook (1968) discussed in the introduction. Sigelman (1982) found that 13 %
of survey respondents said they voted when they actually abstained while 1 % said they
abstained when they actually voted. So, assuming that those who said they voted, but
did not, aspire to vote, we can reveal preferences for 14 % of the respondents. We find
support for Riker and Ordeshook: 93 % (i.e., 13/14) of directly revealed preferences
are consistent with their assumption that people prefer to abstain over voting. This
result supports the long-held intuition that voting is largely a product of a sense of
civic duty.

4.3.3 Indirectly revealed preference and tolerance relations

We have shown, in the previous subsection, that directly observed relations may reveal
additional relations indirectly. Table 1 below summarizes the revealed relations that
must hold between two alternatives x and z on the basis of their revealed relations
to a third alternative y. These relations are extremely intuitive. For example, if Dee
finds x to be better than y and y to be much better than z, then Dee must find x to be
much better than z. This is very easy to prove. If x 	rev y and y 	rev+ z, then x R y
and τ (y) R z. By (3), τ (x) R= τ (y) R z, and, by transitivity of R, it follows that
τ (x) R z. Thus, x 	rev+ z.4

Using Table 1, we can reveal new relations as a consequence of the relations directly
revealed by Lemma 1. More generally, we may arrange alternatives into chains in
which every pair of successive alternatives are connected by a directly revealed rela-
tion. We can then use the rules in Table 1 to reveal new relations. Revealed tolerance

4 A complete proof of all relations is given as a part of the proof of Lemma 2 in the “Appendix.”
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and intolerance relations imply a revealed preference relation. Similarly, revealed
preference relations can be combined with revealed tolerance or intolerance relations.
Depending upon the number of intolerance and tolerance relations the chain includes,
this process will either imply a new relation between the initial and terminal alternative
or be indeterminate. Formally,

Definition 7 A chain (x, ρ) is an ordered sequence of alternatives x = (x0, . . . , xn)

and directly observed relations ρ = (ρ1, . . . , ρn) with n ≥ 1 such that ρi ∈ {	+,

	d ,�} and xi−1 ρi xi holds for every i = 1 . . . n. Alternative x0 (xn) is the initial
(terminal) alternative.

So, a chain is a sequence of alternatives that links the initial and the terminal alter-
native. Each link in the chain consists of a direct revelation relation such a directly
revealed preference relation, a directly tolerance relation or a directly revealed intol-
erance relation. We now define the central property of chains.

Definition 8 The characteristic χ(x, ρ) of the chain (x, ρ) is the difference between
the number of times ρi = 	+ and the number of times ρi = � for i = 1 . . . n.

The significance of the characteristic of the chain may not be clear at first. However,
it captures a straightforward idea. Consider a chain from x0 to xn . Each link with a
	+ intuitively indicates an utility increase of at least D utiles, whereas each link with
a � intuitively indicates that if utility is reduced at all, the reduction is no greater than
D utiles (and 	d implies no reduction in utility). So, if we add how many times in
the chain D utiles were gained and how many times D utiles were not lost, we can
determine whether x0 is much better, better or merely not much worse than xn . The
remaining subsection delivers a demonstration that this intuitive way of adding and
subtracting utiles makes formal sense and is observationally meaningful. As pointed
out, we must start by determining whether the chain has characteristic greater or equal
to minus 1, zero or 1.

Definition 9 The following relations �i , 	i and 	i+ are implied by chains:

x �i y ⇔ x = y or there is a chain (x, ρ) s.t.x0 = x, xn = y and χ(x, ρ) ≥ −1,

x 	i y ⇔ there is a chain (x, ρ) s.t. x0 = x, xn = y and χ(x, ρ) ≥ 0, and

x 	i+ y ⇔ there is a chain (x, ρ) s.t. x0 = x, xn = y and χ(x, ρ) ≥ 1. (14)

That is, by definition, x 	i y iff x can be linked to y with a chain of character-
istic greater or equal to 0, x �i y iff x can be linked to y with a chain of charac-
teristic greater or equal to −1, and x 	i+ y iff x can be linked to y with a chain of
characteristic greater or equal to 1. Our central result in this section (Theorem 2 below)
equates the observable relations implied by chains �i , 	i and 	i+ with all revealed
tolerance, preference, and intolerance relations �rev, 	revand 	rev+ . To obtain some
additional intuition, note that all directly observed relations are also implied by chains.
For example, if x 	d y, then the chain ((x, y), (	d)) has the characteristic 0 and so,
x 	i y. The same applies to directly revealed tolerances and intolerances. That is, by
definition, x � y �⇒ x �i y and x 	+ y �⇒ x 	i+ y. But there are many more
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relations implied by chains including those that can be inferred indirectly using Table
1. In the following lemma, we show that all relations implied by chains are revealed.

Lemma 2 Suppose (C, A) is a warm glow choice and aspiration function, then:
x �i y �⇒ x �rev y; x 	i y �⇒ x 	rev y; and x 	i+ y �⇒ x 	rev+ y.

This lemma is based upon the fact that, by Lemma 1, all directly observed relations
are revealed relations. The proof shows that the relations implied by chains are relations
implied by the iterative application of rules in Table 1.

In order to obtain even more intuition for the use of chains, recall the simple
indirectly revealed preference relation 	ind defined in Sect. 4.1. By definition, y 	ind z
iff there exists an alternative x such that y � x 	+ z. So, y 	ind z implies that a
chain of characteristic zero links y to z. Thus, y 	ind z �⇒ y 	i z. Intuitively, if y
is not much worse than x and x is much better than z, then y is better than z (because
much better means gaining D utiles and not much worse means not loosing D utiles).

Besides the fact that all relations implied by chains are revealed, Lemma 2 also
tells us that if (C, A) is a warm glow function, then the preference relations implied
by chains, 	i , must be irreflexive. This follows immediately from the lemma and the
fact that the preference relation R in any warm glow pair (R, τ ) underlying (C, A) is
irreflexive. In the following theorem, we characterize warm glow theory with observed
aspirations. We show that (C, A) is a warm glow function if and only if the preference
relation implied by chains 	i is irreflexive. We also show that all revealed relations
are implied by chains. That is, the deeper part of the theorem tells us that everything
we can learn about the agent’s motivations (preferences and tolerances) on the basis
of data is obtained through chains. Because chains are defined in terms of directly
observed relations, the theorem provides a simple and direct way to infer motivations
and predict behavior.

Theorem 2 (C, A) is a warm glow function if and only if there is no x such that
x 	i x . If (C, A) is a warm glow function then

x �rev y ⇔ x �i y,

x 	rev y ⇔ x 	i y and

x 	rev+ y ⇔ x 	i+ y.

We argued above that (C, A) is a warm glow function only if preferences implied
by chains are irreflexive. In the first part of the theorem, we show that this condition
is also sufficient. We also show that all revealed preference relations are implied by
chains. The proof is by construction (see Lemma 3 in the “Appendix”). Suppose that
	i is irreflexive, and no preference relation between x and y is implied. We show that
it is possible to construct warm glow pairs (R, τ ) and (R′, τ ′) underlying (C, A) such
that x R y and y R′ x . We take all preferences implied by chains and add a single new
relation, for example x R y. The addition of the new relation generates a new set of
chains implying additional relations. We show that the resulting preference relations
are still irreflexive, and the process can be repeated until a complete preference order
has been defined. We then demonstrate that we can pair this complete order with a
tolerance function τ such that (R, τ ) is a warm glow pair underlying (C, A).
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In the second part of the proof, we show that the only tolerance and intolerance rela-
tions that can be revealed are those that are implied by chains. Suppose, for example,
that for a given warm glow function (C, A), x is revealed not to tolerate y (x 	rev+ y).
Then, for every warm glow pair (R, τ ) underlying (C, A) it is the case that τ(x) R y.
We show that there is a warm glow pair (R, τ ) underlying (C, A) with a set of some
technical properties. We use these properties in the main part of the proof to show that
there must be an issue B for which an intolerance relation between C(B) and A(B)

is directly observed and x 	i C(B), A(B) 	i y. We then construct a chain (x, ρ)

with initial alternative x and terminal alternative y such that χ(x, ρ) > 0. That is, any
revealed intolerance relation must be implied by chains. Using a similar procedure,
we show the same is true for tolerance relations.

The main theorem also implies that if there are no issues such that aspiration and
choice are different, that is, C (B) = A (B) for every issue B, then (C, A) is a warm
glow function, and there are no revealed preference (or intolerance) relations. This is
stated formally in the following corollary.

Corollary 1 For any choice and aspiration function (C, A) such that C = A,

(a) (C, A) is a warm glow function;
(b) PC,A contains all orders, that is, for every order R on X, there exists a tolerance

function τ s.t. (R, τ ) ∈ RC,A;5

(c) the sets of revealed preference and intolerance relations are both empty.

The proof is simple. If A=C , then there are no directly observed preference or
intolerance relations. Any indirectly revealed relation would require a chain with at
least three alternatives and characteristic greater or equal to −1. No such chains exist.

So, even if aspirations are observed, we may not reveal preferences and tolerances
(even if the choices violate WARP). There must be at least one instance in which
the agent is observed to aspire to one thing and choose another. On the other hand,
even a single observation of intolerance can reveal a great deal of information about
preferences and allow a variety of predictions. In some examples, a single issue in
which Dee does not act as she aspires implies a complete revelation of her preference
and tolerance relations (see Example 1 in the “Appendix”).

So far, we have considered a model in which Dee’s aspirations are observed. In the
next section, we consider the case in which it is legitimate to make assumptions about
Dee’s aspirations in some issues but not in others.

4.4 Partially observed aspirations

Let an observed aspiration function be a function Ã : B̃ −→ X, B̃ ⊆ B, such that
Ã (B) ∈ B for every B ∈ B̃. We say the aspiration function A extends Ã if A(B) =
Ã(B) for every issue B ∈ B̃.

Definition 10 (C, Ã) is a warm glow (choice and observed aspiration) function if
there exists an aspiration function A such that A extends Ã and (C, A) is a warm glow
function.

5 Just take τ (x) = a s.t. z R=a for all z ∈ X .

123



518 V. Cherepanov et al.

Now we define revealed preferences and tolerance relations for the case with par-
tially known aspirations. Let AC, Ã be a set of all aspiration functions A such that

A extends Ã and (C, A) is a warm glow function. Then, we may define revealed
preference and tolerance relations for (C, Ã) as follows:

x 	rev y by (C, Ã) iff x 	rev y by (C, A) for every A ∈ AC, Ã,

x 	rev+ y by (C, Ã) iff x 	rev+ y by (C, A) for every A ∈ AC, Ã, and

x �rev y by (C, Ã) iff x �rev y by (C, A) for every A ∈ AC, Ã.

In other words, x is revealed to be preferred to y if and only if it is revealed to be
preferred for any possible extension of the observed aspirations.

Definition 11 For a given observed aspiration function Ã and choice function C let
A∗ be an aspiration function that extends Ã and A∗(B) = C(B) for all those issues
such that an aspiration is not observed.

The following proposition shows that whenever aspirations are unknown and not
necessarily ordered we may assume without loss of generality that they are identical
to the actual choice.

Proposition 1 (C, Ã) is a warm glow function if and only if (C, A∗) is a warm glow
function. Moreover, the revealed preference and tolerance relations for (C, Ã) and
(C, A∗) are the same, that is,

x 	rev y by (C, Ã) i f f x 	rev y by (C, A∗),
x 	rev+ y by (C, Ã) i f f x 	rev+ y by (C, A∗), and

x �rev y by (C, Ã) i f f x �rev y by (C, A∗).

The result follows directly from Theorem 2. We first show that if the preferences
revealed by the extension A∗ are not irreflexive, then the preferences revealed by any
other extension A ∈ AC, Ã are not irreflexive either and (C, Ã) cannot be a warm
glow function. The particular extension A∗ assumes that every unobserved aspiration
is the same as observed choice. Thus, A∗ implies no additional directly observed
intolerance or preference relations beyond those directly observed in Ã. Intuitively,
we get a minimum number of new relations implied by chains. Therefore, if the
preferences revealed by A∗ are reflexive, then preferences generated by any extension
in AC, Ã are as well. In addition, since relations revealed for (C, Ã) must hold for any
extension including A∗, it follows that these are the only relations that are revealed.

The key implication of the proposition is that if we make an incorrect assumption
that Dee’s aspiration in an issue B is, say, alternative x (her actual aspiration is y) and
her choice is also x , then we will not make incorrect inferences about her preferences
and tolerances, and all our predictions about her behavior are still valid. However, if we
make an incorrect assumption that Dee’s aspiration in an issue B is x and her choice is
z �= x , then we will make some incorrect inferences about her motivations and we also
make incorrect predictions about her behavior. This emphasizes the fact that observed
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aspirations are important only when they differ from choice. In particular, the case
where Dee has no aspirations in some, but not all, issues can be accommodated by our
simpler model.

We can now formally state an important result. Warm glow theory has no empirical
content when aspirations are unknown and unordered.

Corollary 2 For any choice function C, there is an aspiration function A such that
(C, A) is a warm glow function.

The proof follows immediately from Proposition 1 and Theorem 2. Proposition 1
tells us that if no aspirations are observed, then there is a function (C, A) that is a
warm glow function if and only if (C, A=C) is a warm glow function. From Theorem
2, it follows that no preferences are revealed for the function (C, A=C) and, since no
alternative is revealed to be preferred to itself, it is a warm glow function.

5 Unobserved and ordered aspirations

In Sect. 4, we show that warm glow theory has no empirical content when aspirations
are unobserved and not necessarily ordered. In this section, we show that if aspira-
tions are unknown but ordered, then warm glow model has empirical content. A full
characterization of empirical content of warm glow theory in this case is still an open
question.

When aspirations are ordered, an alternative x may be chosen in the union of a set
of issues containing x only if it is chosen in at least one of the issues. We call this
property the negative expansion axiom.

Negative expansion axiom: If for every i ∈ 1, n it is the case that x ∈ Bi , x �=
C (Bi ) then x �= C (∪i Bi ).6

To see that the negative expansion axiom (NE) must hold under warm glow theory
with ordered aspirations, observe that x can be chosen in the union of a set of issues
containing it only if it is either the most preferred choice or the aspiration. If x is the
aspiration (i.e., x = A (∪i Bi )), then, under the assumption of ordered aspirations,
x = A (Bi ) for every i . Moreover, x must be tolerable by every other alternative
in ∪i Bi , and, therefore, x must be chosen in every issue Bi . On the other hand, if
x �= A (∪i Bi ), then x must be the most preferred alternative (i.e., R (∪i Bi )) and x
must not tolerate A (∪i Bi ). Since A (∪i Bi ) is also the aspiration choice for every B j

that contains it, x must be chosen in every B j that contains A (∪i Bi ).
The NE axiom demonstrates that warm glow theory has empirical content when

aspirations are unknown but ordered. Suppose Dee makes a small donation s in {n, s}
but chooses not to donate n in {n, s, l}. Since {n, s, l} = {n, s} ∪ {n, l} , n ∈ {n, s} ∩
{n, l} and n is chosen in {n, s, l} but not in {n, s} ,, the NE axiom implies that n must
be chosen in {n, l}. We can also infer motivations. Dee’s choice of n in {n, s, l} must
be motivated by her preference (if n is her aspiration in {n, s, l}, then she must choose

6 The expansion axiom (see Manzini and Mariotti 2007) requires that if for every i ∈ 1, n it is the case that
x ∈ Bi , x = C (Bi ), then x = C (∪i Bi ).
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n in {n, s} as well). Therefore, her choice of s in {n, s} must be motivated by her
aspiration.

In some situations, it is possible to predict behavior even when it is not possible
to infer motivations. For example, if we observe that y is chosen in {x, y} and z is
chosen in {x, z}, we cannot tell whether these choices are motivated by preferences or
aspirations. However, NEA implies that x cannot be chosen in {x, y, z}.

6 Extensions

The main purpose of this paper is to provide choice-theoretic foundations for warm
glow theory. The need for choice-theoretic foundations can be easily seen by the fact
that even simple warm glow models can accommodate violations of WARP (e.g.,
the contribution to public goods example mentioned in the introduction). The ability
of warm glow theory to accommodate behavioral anomalies comes from the fact that
aspirations are issue dependent. This shows that standard choice-theoretic foundations
do not apply to warm glow models. However, the traditional motivation for warm glow
theory in applied work was not to accommodate violations of WARP. For example, the
motivation of Riker and Ordeshook for introducing warm glow is that, without it, we
would draw the unreasonable inference that people prefer voting to abstention even
though the only real difference between the two alternatives is that voting is costly
(in addition, in standard economics, agents would only vote if their utility for voting
were arbitrarily large to compensate for vanishing pivot probabilities).

The difficulties in applying standard theory of choice to political science can also
seen in the following example. Suppose that given the issue {a, h} Dee’s hypothetical
choice is h (i.e., Dee is merely asked in a survey whether she would choose a or h
and her answer is h), but her actual choice between a and h is a. If we apply standard
theory, we infer a preference for a over h because standard theory disregards hypo-
thetical choice as relevant for inferences over preferences. Now, if expected utility
theory applies and Dee is given the choice between two lotteries La = (pa, (1− p)z)
and Lh = (ph, (1 − p)z) such that p ∈ (0, 1), Dee must choose La. However, if the
probability p is small, the choice between La and Lh becomes a near-hypothetical
choice between a and h because z is implemented with high probability in both lot-
teries. In the context of a voting experiment, Feddersen et al. (2009) show that Dee
may choose Lh, when h is morally appealing and a is monetarily appealing for Dee
(see also Shayo and Harel 2012). This behavior is not a violation of WARP, but it
violates expected utility theory and several related models of choice ordinarily used
in economics and political science. This provides prima facie evidence that standard
theory is not applicable when hypothetical and actual choice differs.

If lottery La is interpreted as “voting for a” and lottery Lh is interpreted as “voting
for h” and z is the event where Dee’s vote is not pivotal, then the question is why
does Dee vote for the alternative she prefers the least (and why does, in a hypotheti-
cal situation, Dee select h over a). Warm glow theory provides a simple, logical and
therefore compelling interpretation. Dee indeed prefers a over h because a is instru-
mentally beneficial. However, we assume that she aspires to choose h (or Lh in the
case of lotteries) because these choices are commonly perceived to be ethical. As the
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probability p decreases, the chances that her choice is consequential decreases, and at
some point, she can tolerate her aspiration and, hence, chooses it. Our simple model
of warm glow can only accommodate lotteries if probabilities are restricted to take
finitely many values. This is often analytically inconvenient and so extending warm
glow theory to accommodate lotteries may be a valuable exercise (see Shayo and Harel
2012 for results in this direction).

7 Conclusion

In warm glow theory, an agent may prefer one alternative but aspire to choose another.
She chooses her aspiration only if she can tolerate choosing it instead of her preferred
choice. We provide choice-theoretic foundation for warm glow theory and a charac-
terization of how to infer motivations. Our findings show that ad hoc assumptions used
in the warm glow literature can be tested. In addition, warm glow theory generates
predictions on behavior even when motivations cannot be inferred and standard theory
does not apply.

Warm glow theory may be appropriate in settings where aspirations and actual
choice may differ. This setting may be problematic for standard theory, but it is pre-
cisely the choices that differ from aspirations that deliver the critical data required to
estimate the core elements of warm glow models.

8 Appendix

8.1 Examples

Our first example shows that a single issue where Dee does not act as she aspires can
deliver a complete revelation of her preference and tolerance relations.

Example 1 There are three alternatives, x, y and z. Assume that C(x, y) =
x A(x, y) = y; A(x, z) = C(x, z) = z; A(y, z) = C(y, z) = y.

In this example, except for the binary choice between x and y, Dee acts as she
aspires. Yet, her preference order is completely revealed from pairs of directly observed
relations: z � x 	+ y � z, and she must prefer x to z to y. It also follows that
τ(x) = z, τ (z) = y and τ(y) = y.

Our second example shows observed choices and nonordered aspirations that vio-
late the warm glow model of Definition 2 without violating the LWARP and the WG
axiom.

Example 2 There are four different alternatives x, y, z andw. Assume that C(x, y, w)

= x A(x, y, w) = w; C(x, y, z) = y A(x, y, z) = z; and for all other issues, both
aspirations and actual choices are resolved by order R̄ such that x R̄ y R̄ z R̄ w.

Note that {x, y, w} ∈ Bs and {x, y, z} ∈ Bs , and all other issues do not belong to Bs .
LWARP is satisfied: There is no pair of nested issues in Bs . WG is also satisfied because
there is no issue B such that A(B) = w or w 	d A(B) (apart from {x, y, w} ∈ Bs)
and the only issue B such that A(B) = z or z 	d A(B) (apart from {x, y, z} ∈ Bs)
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is {z, w}. However, C(x, y, z) = y /∈ {z, w}. At the same time, {x, y, w} ∈ Bs and
C(x, y, w) = x implies that x 	d y, while {x, y, z} ∈ Bs and C(x, y, z) = y implies
that y 	d x .

8.2 Proof of the preliminary result

We show that Definition 1 of warm glow function is equivalent to Definition 2.
Let (C, A) be a warm glow choice and aspiration function. Let utility function u

and scalar D ≥ 0 be such that property (2) of Definition 1 holds. Let R be a preference
order associated with u. For any given alternative a ∈ X , let τ(a) ∈ X be the lowest
R-ranked alternative such that u(a) − D ≤ u(τ (a)). So, u(a) − D > u(b) for any
alternative b ∈ X such that u(b) < u(τ (a)). We show that property (3) holds for
(R, τ ), and (R, τ ) underlies (C, A) , that is, properties (4) and (5) of Definition 2
hold.

u(a) ≥ u(τ (a)) because u(a) − D ≤ u(a). In addition, if u(a′) > u(a), then
u(τ (a′)) ≥ u

(
a′) − D > u (a) − D, and, therefore, u

(
τ

(
a′)) ≥ u (τ (a)). Hence,

(3) holds. Suppose for some issue B, C (B) = A (B). Then, by (2), U A,B(C(B)) =
u(A(B)) + D ≥ U A,B(R(B)) ≥ u(R(B)), and, therefore, A (B) R= τ (R (B)).
Now suppose that C(B) �= A(B). Then, C(B) = R(B) because otherwise, by the
definition of R(B), U A,B(C(B)) = u(C(B)) < u(R(B)) ≤ U A,B(R(B)) contra-
dicting (2). Hence, by (2), u(C(B)) = u (R (B)) > u(A(B)) + D, and, therefore,
τ (R (B)) R A (B). So, (4) and (5) hold.

Now, let (C, A) be a choice and aspiration function that satisfies (4) and (5) for
some preference order R and tolerance function τ that satisfies (3). Let D = 1. We
now show that there exists a utility function u such that (2) holds, and, in addition, u
is associated with preference R, and for all a ∈ X : u (a) < u (τ (a)) + 1. The proof
is by induction on the size of X .

Assume that X has only two alternatives, that is, |X | = 2. So, let X = {x, y} , x �=
y, and x = R (X), that is, x R y. We define u (y) = 0, and u(x) = 0.5 if τ(x) = y and
u(x) = 2 if τ(x) = x . By definition, u is associated with R and u(a) < u(τ (a)) + 1
for a ∈ X (note that, by (3), τ(y) = y). In addition, (2) holds because, if A (X) =
x = R (X) , then C (X) = x , and U A,X (x) = u (x) + 1 > 0 = u (y) = U A,X (y). If
A (X) = y �= R (X) = x , then C (X) = x if τ (x) = x , and U A,X (x) = u (x) = 2 >

1 = u (y) + 1 = U A,X (y), and C (X) = y if τ (x) = y, and U A,X (x) = u (x) =
0.5 < 1 = u (y) + 1 = U A,X (y).

The induction assumption is that whenever |X | = n, there exists a utility function
u associated with R such that u(a) < u(τ (a)) + 1 for all a ∈ X and (2) holds. Now
assume that |X | = n + 1. Let ā ∈ X be the highest R-ranked alternative. So, ā R a for
every a �= ā. Let a ∈ X be the second highest R-ranked alternative. So, a R a for every
a /∈ {ā, a}. Let X̃ be X\{ā}. |X̃ | = n and, by the induction assumption, there exists a
utility function ũ : X̃ −→ � associated with R on X̃ such that ũ(a) < ũ(τ (a)) + 1
for all a ∈ X̃ and (2) holds for any issue B ⊆ X̃ . If τ(ā) is not R-ranked lowest, then
let â ∈ X be the highest R-ranked option such that τ(ā) R â.

Let u : X −→ � be such that u(a) = ũ(a) for any a ∈ X̃ , and u(ā) ∈
(max{ũ(a), ũ

(
â
) + 1}, ũ(τ (ā)) + 1) if τ(ā) �= ā and τ(ā) is not R-ranked low-
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est, u(ā) > ũ(a)+ 1 if τ(ā) = ā, and u(ā) ∈ (ũ(a), ũ(τ (ā))+ 1) if τ(ā) is R-ranked
lowest.

We first show that u is well defined. If τ(ā) �= ā then, by (3), τ(ā) R= τ(a), and,
by induction assumption, ũ(a) < ũ(τ (a)) + 1 ≤ ũ(τ (ā)) + 1. In addition, if τ (ā)

is not R-ranked lowest, then, by definition, τ(ā) R â, and, by induction assumption,
ũ

(
â
)

< ũ(τ (ā)). Hence, u is well defined.
By definition, u(ā) < u(τ (ā)) + 1 and u(ā) > u(a). So, by induction assumption,

u (a) < u(τ (a)) + 1 for all a ∈ X and u is associated with R.
We now show that (2) holds. Let B be an issue such that ā ∈ B. So, by definition,

R(B) = ā. Assume that A(B) R= τ(ā). Then, by (4), C(B) = A(B). It follows
that U A,B(C(B)) = u(C(B)) + 1 ≥ u(τ (ā)) + 1 > u(ā) ≥ u(x) = U A,B(x) for
every x ∈ B, x �= C(B). Now assume that τ(ā) R A(B). Then, by (5), C(B) =
R(B) = ā R A (B) (and τ(ā) is not R-ranked lowest). If τ(ā) �= ā, then U A,B(C(B))

= u(ā) > u
(
â
) + 1 ≥ u(A(B)) + 1 = U A,B(A(B)). In addition, U A,B(C(B)) =

u(ā) > u (x) = U A,B(x) for all x ∈ B, x /∈ {A(B), C (B)}. If τ(ā) = ā, then
U A,B(C(B)) = u(ā) > ũ(a) + 1 ≥ u (x) + 1 ≥ U A,B(x) for all x �= ā. ��

8.3 Proof of Lemma 1

Let (C, A) be a warm glow choice and aspiration function, and suppose for x and y,
there exists issue B such that x, y ∈ B, x = C (B), that is, x � y. If x �= y and
x �= A (B), then x 	d y, and if, in addition, y = A (B), then x 	+ y. Let (R, τ )

be any warm glow pair that underlies (C, A). In what follows, we use transitivity
of R and properties (3) of warm glow pair (R, τ ). Since (R, τ ) underlies (C, A)

either x = R (B) , τ (x) R A (B) or x = A (B) R= τ (R (B)) must hold. If x =
A (B) R= τ (R (B)), then R (B) R= y implies τ (R (B)) R= τ (y), and x R= τ (y)

must hold. If x �= A (B), then x = R (B) R= y R= τ (y). In either case, x R= τ (y)

holds, and since (R, τ ) was chosen arbitrarily, x �rev y. Now, if x �= y and x �= A (B)

then x = R (B) R y and x 	rev y. If, in addition, y = A (B), then τ (x) R y and
x 	rev+ y. ��

8.4 Proof of Lemma 2

Let (R, τ ) be any warm glow pair underlying (C, A).
Step 1. We, first, prove that a 	i b implies a 	rev b. For a given integer k, we

define binary relations 	k as follows:

– if k = 0, let x 	0 y iff x R y;
– if k > 0, let x 	k y iff there exists a sequence of alternatives x = x0, x1,…,

xk−1, xk = y such that for all i = 1, k : τ (xi−1) R xi ;
– if k < 0, let x 	k y iff there exists a sequence of alternatives x = x0, x1,…,

x−k−1, x−k = y such that for all j = 1,−k : x j−1 R= τ
(
x j

)
.

We show now that x 	m y 	n z implies x 	m+n z.

(1) x 	0 y 	k z implies x 	k z. If k = 0, then, by transitivity of R, x R y R z
implies x R z. If k > 0, then, by (3 ), x R y implies τ (x) R= τ (y), and
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τ (x) R= τ (y) R y1 implies τ (x) R y1. If k < 0, then x R y R= τ (y1) implies
x R= τ (y1).

(2) x 	k y 	0 z implies x 	k z. If k > 0, then τ (xk−1) R y R z implies τ (xk−1) R z.
If k < 0, then, by (3), y R z implies τ (y) R= τ (z), and x−k−1 R= τ (y) R= τ (z)
implies x−k−1 R= τ (z).

(3) x 	m y 	n z, m · n > 0, implies x 	m+n z. The types of both sequences are the
same, and the combined sequence implies x 	m+n z.

(4) x 	1 y 	−1 z implies x 	0 z. τ (x) R y R= τ (z) implies τ (x) R τ (z), and,
therefore, by (3), x R z.

(5) x 	−1 y 	1 z implies x 	0 z. x R= τ (y) R z implies x R z.
(6) x 	m y 	n z, m · n < 0, |m| > 1 or |n| > 1, implies x 	m+n z. Note,

that relation 	k, k �= 0, is equivalent to a sequence of |k| relations 	sign(k).
Therefore, using 4), 5), and 1), 2), we eliminate terms of both sequences until we
get a sequence with all binary relations of the same type. For example, x 	−2

y 	4 z implies x 	−1 x1 	−1 y 	1 y1 	1 y2 	2 z, implies, by 5),
x 	−1 x1 	0 y1 	1 y2 	2 z, implies, by 1), x 	−1 x1 	1 y2 	2 z,
implies x 	0 y2 	2 z, and, hence, by 1), x 	2 z.

Let (x, ρ) be a chain such that x0 = a, xn = b and χ ((x, ρ)) ≥ 0. By Lemma 1, if
x 	+ y, then τ (x) R y, and, therefore, x 	1 y. Similarly, if x 	 y then x 	0 y, and
if x � y then x 	−1 y. Hence, for a pair of successive alternatives xi−1 ρi xi of the
chain x, xi−1 	χ((xi−1,xi ),(ρi )) xi . Moreover, χ (x, ρ) = ∑n

i=1 χ ((xi−1, xi ), (ρi )).
Therefore, x0 	χ((x0,x1),(ρ1)) x1 . . . 	χ((xn−1,xn),(ρn)) xn implies x0 	χ((x,ρ)) xn . If
χ ((x, ρ)) ≥ 0 then either χ ((x, ρ)) = 0, and, by definition of 	0, x0 R xn , or
χ ((x, ρ)) > 0, and, by definition of 	k and (3), x0 R= τ (x0) R x1 R= τ (x1) R
. . . xn−1 R= τ (xn−1) R xn implying x0 R xn . In either case, a R b holds.

Step 2. We now show that a 	i+ b implies a 	rev+ b. There exists a chain (x, ρ)

such that x0 = a, xn = b, χ (x) > 0. Let x(k), k = 1, n, be the chain (x(k), ρ(k)) =
((x0, . . . , xk) , (ρ1, . . . , ρk)), and, for convenience, let (x(0), ρ(0)) = (x0,∅),
χ

(
x(0), ρ(0)

) = 0. Then, for every k = 1, n,
∣∣χ (

x(k), ρ(k)
) − χ

(
x(k−1), ρ(k−1)

)∣∣ ≤
1. Since χ

(
x(0), ρ(0)

) = 0, χ
(
x(n), ρ(n)

)
> 0, there exists K ∈ 1, n such that

χ
(
x(K ), ρ(K )

) = 1, χ
(
x(K−1), ρ(K−1)

) = 0. Let u = xK−1 and v = xK . It follows
that u 	+ v, and, by Lemma 1, τ (u) R v. If K = 1, then u = a. If K > 1, then(
x(K−1), ρ(K−1)

)
is a chain with zero characteristic connecting a and u, that is, a 	i u,

and, by Step 1, a R u. In either case a R= u holds. Similarly, if K = n, then v = b,
and if K < n, then

(
(xK , . . . , xn), (ρ(K+1), . . . , ρ(n))

)
is a chain with nonnegative

characteristic, that is, v 	i b, and, by Step 1, v R b. In either case v R= b. Now, by (3)
and transitivity of R, a R= u, τ (u) R v, and v R= b imply τ (a) R b. Since (R, τ )

was chosen arbitrary, a 	rev+ b.
In a similar way, we can prove that a �i b implies a �rev b. Indeed, if a = b,

then, by (3), a R= τ (a) holds for every (R, τ ) ∈ PC,A; otherwise, there exists a chain
(x, ρ) such that x0 = a, xn = b, and χ (x, ρ) ≥ −1. If χ (x, ρ) ≥ 0, then a 	i b,
and, by Step 1, a R b. Therefore, by (3), a R τ (b). If χ (x, ρ) = −1, then we define
(x(k), ρ(k)), k = 0, n, as before, and let K ∈ 1, n be such that χ

(
x(K ), ρ(K )

) =
−1, χ

(
x(K−1), ρ(K−1)

) = 0. For u and v defined as before, a R= u, u � v, and
v R= b, by Lemma 1 and (3), imply a R= τ (b). ��

123



Revealed preferences and aspirations 525

8.5 Proof of Theorem 2

Definition 12 Let (C, A) be a choice and aspiration function, and 	∗ be a binary rela-
tion on X such that 	∗ extends 	d . An extended chain (	∗-chain) (x, ρ) is an ordered
sequence of alternatives x = (x0, . . . , xn) and binary relations ρ = (ρ1, . . . , ρn) with
n ≥ 1 such that ρi ∈ {	+,	∗,�} and xi−1 ρi xi holds for every i = 1 . . . n. A char-
acteristic of the extended chain χ (x, ρ) is the number of times ρi =	+, i = 1 . . . n,
minus the number of times ρ j =�, j = 1 . . . n.7

Definition 13 Let (C, A) be a choice and aspiration function, and 	∗ be a binary
relation on X such that 	∗ extends 	d . We define binary relation R	∗

as follows:
x R	∗

y if and only if there exists an extended chain (x, ρ) such that x0 = x, xn = y,
and χ (x, ρ) ≥ 0.

Lemma 3 Let (C, A) be a choice and aspiration function, and 	∗ be a binary relation
on X such that 	∗ extends 	d . If R	∗

is irreflexive8, then (C, A) is a warm glow
function, and there exists a warm glow pair (R, τ ) underlying (C, A) such that for
every pair of alternatives x and y, x R	∗

y implies x R y.

The proof is as follows. We first construct an order R that extends the binary relation
R	∗

. We then show that R can be paired with some tolerance function τ such that
(R, τ ) is a warm glow pair underlying (C, A).

We construct R by induction. Let k = 0 and let 	0=	∗. By assumption, R	0 is
irreflexive. If R	0 is complete, then let R = R	0 . Otherwise, we construct a series
of binary relations {	k} such that for every k > 0, 	k extends 	k−1 and R	k is
irreflexive.

So, assume that for a given k, R	k is irreflexive and not complete. There exist two
alternatives a and b such that a �= b, and neither a R	k b nor b R	k a holds. Let 	k+1
be a binary relation such that x 	k+1 y if and only if x 	k y or x = b, y = a. Note
that 	k+1 extends 	k , and, by definition, R	k+1 extends R	k (to see this, note that
every 	k-chain is a 	k+1-chain).

Suppose now that R	k+1 is not irreflexive: There exists an alternative x such that
x R	k+1 x . Therefore, there exists 	k+1-chain (x, ρ) such that x0 = xn = x and
χ (x, ρ) ≥ 0. If (x, ρ) does not contain new relation b 	k+1 a then (x, ρ) is 	k-chain
and x R	k x . This contradicts the assumption that R	k is irreflexive. Let M = {i ∈
1 . . . n s.t. xi−1 = b, xi = a, ρi =	k+1}. M is not empty, and suppose M consists of
the following indexes: M = {i1, . . . , im} , i1 < i2 < · · · < im . Now,

7 We may use χ (x) instead of χ (x, ρ) whenever it is clear what relations between x’s are assumed.
8 Note, that, by definition, every chain is an extended chain. Therefore, R	∗

extends 	i . Moreover, if
	∗=	 then R	∗ = R	 =	i .
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χ (x) = χ
(
x0 = x, . . . , xi1−1 = b

) + χ
(
xi1−1, xi1

) + χ
(
xi1 = a, . . . , xi2−1 = b

)
+χ

(
xi2−1, xi2

) + χ
(
xi2 = a, . . . , xi3−1 = b

) + · · · + χ
(
xim = a, . . . , xn = x

)
= χ

(
xim =a, . . . , xn =x0, . . . , xi1−1 =b

) + χ
(
xi1−1, xi1

) + χ
(
xi1 = a, . . . , xi2−1 = b

)
+χ

(
xi2−1, xi2

)+χ
(
xi2 =a, . . . , xi3−1 =b

)+· · ·+χ
(
xim−1, xim

)
= χ

(
xim = a, . . . , xn = x0, . . . , xi1−1 = b

) + 0 + χ
(
xi1 = a, . . . , xi2−1 = b

)
+0 + χ

(
xi2 = a, . . . , xi3−1 = b

) + · · · + 0 ≥ 0

There exists at least one nonnegative term in the sum; hence, there exists a 	k-chain
with nonnegative characteristic such that xit−1 = a and xit = b (i0 = im if t = 1). This
implies that a R	k b, and this contradicts the assumption that a R	k b does not hold.

We increase k by one and continue extending relations {	k} until R	k is complete.
Since X is finite and R	k+1 strictly extends R	k , this process is finite. When R	k is
complete we define binary relation R to be equal to R	k . Note that R is irreflexive,
and 	k extends 	∗, implying that R extends R	∗

.

(a) We show that R is an order. Constructed R is transitive. Indeed, if x R y and
y R z then x R	k y and y R	k z, and there exist two extended 	k-chains with
nonnegative characteristics connecting x to y and y to z. The combined chain
has nonnegative characteristic and connects x to z. Therefore, x R	k z implying
x R z. Now, R is irreflexive, complete and transitive. Therefore, R is a (complete)
order.

(b) We define τ as follows. For every alternative x , let

L (x) = {y s.t. there exist alternatives u and v s.t. x R= u, v R= y, and u 	+ v} .

L (x) is a set of all alternatives that must be intolerable by x given R and directly
observable intolerances. By definition, if y ∈ L (x) and y R= z for some alter-
native z, then z ∈ L (x). Therefore, if z /∈ L (x) and y R= z then y /∈ L (x).
Also, note that x /∈ L (x), and hence X\L (x) is not empty. Therefore, we define
τ (x) as R-minimal element of X\L (x). If z /∈ L (x) then z R= τ (x), and if
y ∈ L (x) then τ (x) R y (otherwise y R= τ (x) and τ (x) /∈ L (x) hold implying
y /∈ L (x)).

(c) We show that (3) holds for R and τ , and, therefore, it is a warm glow pair. For
every alternative x, x /∈ L (x), and, therefore, x R= τ (x). Suppose x R y. If
τ (x) ∈ L (y), then there exist two alternatives u and v such that x R y R= u 	+
v R= τ (x). By transitivity of R, this implies τ (x) ∈ L (x) contradicting the
definition of τ (x). Therefore, τ (x) /∈ L (y) and τ (x) R= τ (y).

(d) (R, τ ) underlies (C, A). Let B be an issue, B ∈ B, and C (B) = x . We want
to show that x must be selected by (R, τ ). If x �= A (B) = y, then x 	+ y,
and for every z ∈ B\ {x} : x 	d z. x 	d z is a chain with zero characteristic,
therefore, x R z, and, since this holds for every z ∈ B\ {x} , x = R (B). Now,
by definition, y = A (B) ∈ L (x) (u = x, v = y). Hence, τ (x) R y and (R, τ )

selects x . Suppose now that x = A (B). If R (B) = x , then x is selected by (R, τ ).
If w = R (B) �= x = C (B), then, by definition, x � w. Suppose x ∈ L (w).
There exist two alternatives u and v such that w R= u, v R= x and u 	+ v. If
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w R u then let (x, ρ) be a 	k-chain such that x = (w, . . . , u) and χ (x, ρ) ≥ 0.
If w = u then let (x, ρ) be (w,∅) and let χ(x, ρ) = 0.9 If v R x then let
(y, ρ′) be a 	k-chain such that y = (v, . . . , x) and χ(y, ρ′) ≥ 0. If v = x then
let (y, ρ′) = (x,∅) and let χ(y, ρ′) = 0. The characteristic of the combined 	k

chain χ (x, (u 	+ v) , y, (x � w)) = χ (x)+χ (u 	+ v)+χ (ζ )+χ (x � w) ≥
χ (u 	+ v) + χ (x � w) = 1 − 1 = 0. Thus, w R	k w. This contradicts the
irreflexivity of R	k . Therefore, x /∈ L (w) , x R= τ (w), and (R, τ ) selects x .

We have shown that if R	∗
is irreflexive, then there exists a warm glow pair (R, τ )

underlying (C, A) such that R extends R	∗
. Therefore, (C, A) is a warm glow function

and for every pair of alternatives x and y, x R	∗
y implies x R y. ��

Lemma 4 Let (C, A)be a choice and aspiration function and suppose	i is irreflexive.
For two alternatives x0 and y0, let Z be a set of alternatives such that x0, y0 /∈ Z,
and for every y ∈ Z , x0 	i y does not hold (Z can be empty), and let W be a set of
alternatives such that x0, y0 /∈ W , and for every x ∈ W, x 	i y0 does not hold (W
can be empty).
(a) If x0 	i y0 does not hold, and for every x ∈ W, y ∈ Z , x 	i+ y does not

hold, then there exists a warm glow pair (R, τ ) underlying (C, A) such that
y0 R x0, y0 R x for every x ∈ W , and y R x0 for every y ∈ Z.10

(b) If x0 	i y0 holds, but x0 	i+ y0 does not hold, and for every x ∈ W, y ∈ Z , x 	i

y does not hold, then there exists a warm glow pair (R, τ ) underlying (C, A) such
that y R x0 R y0 R x for every x ∈ W, y ∈ Z.

We define binary relation 	∗ as follows: x 	∗ y if and only if x 	d y or x ∈
Z , y = x0 or x = y0, y ∈ W or, for a) only, x = y0 and y = x0, and show that R	∗

is irreflexive.
Suppose it is not. Then, there exists 	∗-chain (x, ρ) such that x0 = xs = z

and χ (x, ρ) ≥ 0. Let 	new be a binary relation such that x 	new y if and
only if x 	∗ y holds, but x 	d y does not hold. Suppose that for every pair
of successive alternatives xk−1 and xk, xk−1 	new xk does not hold. In this case,
if xk−1 	∗ xk , then xk−1 	d xk , and if not xk−1 	∗ xk , then xk−1 ρk xk ,
where ρk ∈ {	d ,	+,�}. Thus, (x, ρ) is a chain with nonnegative characteristic,
and z 	i z, which contradicts the irreflexivity of 	i . Therefore, set of indexes
K = {k = 1, s s.t. xk−1 	new xk} is not empty. Let K = {k1, . . . , kt }, k1 <

. . . < kt , x′ = (xkt , . . . z, . . . , xk1−1, xk1 , . . . , xk2−1, xk2 , . . . , xkt −1, xkt ), ρ′ =
(ρkt +1, . . . ρs, ρ1, . . . , ρkt ) (k0 = kt ). (x′, ρ′) is 	∗-chain, and χ

(
x′, ρ′) =

χ (x, ρ) ≥ 0. Now, for every l ∈ 1, t, χ
(
(xkl−1, xkl ), (ρkt )

) = 0, and xkl−1

ρkl−1+1 . . . ρkl−1 xkl−1 is a chain connecting x0 or some element in W and y0 or
some element in Z .

χ
(
x′)=χ(xkt , . . . , xk1−1)+χ(xk1−1, xk1)+· · ·+χ(xkt−1 , . . . , xkt −1)+χ(xkt −1, xkt )

=χ(xkt , . . . , xk1−1) + 0 + · · ·+χ(xkt−1 , . . . , xkt −1) + 0 ≥ 0,

9 Strictly speaking, (x, ρ) = (w,∅) is not an extended chain, but we define it this way for convenience.
10 In a special case, when W and Z are empty, if 	i is irreflexive, and x 	i y does not hold for some
pair for alternatives x �= y, then (C, A) is a warm glow function and there exists (R, τ ) ∈ PC,A such that
y R x .
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(a) Let L = {l ∈ 1, t s.t. xkl−1 ∈ W and xkl−1 ∈ Z}. If l ∈ L , then
χ

(
xkl−1 , . . . , xkl−1

) ≤ 0, and xkl−1−1 = y0, xkl = x0. Therefore, there exists
at least one l /∈ L , and the sum of characteristics of chains

(
xkl−1 , . . . , xkl−1

)
for

all l /∈ L is nonnegative. Therefore, there exists chain
(
xkl−1 , . . . , xkl−1

)
such that

l /∈ L , and χ
(
xkl−1 , . . . , xkl−1

) ≥ 0. If l /∈ L , then xkl−1 = x0, or xkl−1 = y0.
Therefore, x0 	i y0, or x0 	i y for some y ∈ Z , or x 	i y0 for some x ∈ W .
This contradicts the assumption. Therefore, R	∗

is irreflexive.
(b) Let L = {l ∈ 1, t s.t. xkl−1 = x0 and xkl−1 = y0}. If l ∈ L , then

χ
(
xkl−1 , . . . , xkl−1

) ≤ 0, and xkl−1−1 ∈ Z , xkl ∈ W . Therefore, there exists
at least one l /∈ L , and the sum of characteristics of chains

(
xkl−1 , . . . , xkl−1

)
for

all l /∈ L is nonnegative. Therefore, there exists chain
(
xkl−1 , . . . , xkl−1

)
such that

l /∈ L , and χ
(
xkl−1 , . . . , xkl−1

) ≥ 0. If l /∈ L , then xkl−1 ∈ W , or xkl−1 ∈ Z .
Therefore, for some x ∈ W and for some y ∈ Z , x 	i y0, or x0 	i y, or x 	i y.
This contradicts the assumption. Therefore, R	∗

is irreflexive.

If a 	∗ b or a 	i b then a R	∗
b. By lemma 3, (C, A) is a warm glow function

and there exists (R, τ ) ∈ PC,A such that if a R	∗
b then a R b. ��

Proof of Theorem 2 If for a given choice and aspiration function (C, A) , 	i is
irreflexive then, by Lemma 3, (C, A) is a warm glow function.

Now suppose (C, A) is a warm glow choice and aspiration function. We need to
show:

(a) 	i is irreflexive, and x 	rev y ⇔ x 	i y;
(b) x 	rev+ y ⇔ x 	i+ y, x �rev y ⇔ x �i y.

Proof of (a). By Lemma 2, x 	i y implies x 	rev y, and, therefore, 	i must
be irreflexive. Now, if x 	rev y, then x R y holds for every warm glow pair (R, τ )

underlying (C, A), and, by Lemma 4, this is possible only if x 	i y.
Proof of (b). By Lemma 2, x 	i+ y implies x 	rev+ y, and x �i y implies x �rev y.

What left to be proved is that x 	rev+ y implies x 	i+ y, and x �rev y implies x �i y.
We start with the tolerance relation � first. Assume that for every warm glow pair
(R, τ ) underlying (C, A) , x R= τ (y) holds. We need to show that if x �= y, then
there exists a chain (x, ρ) = ((x, . . . , y), ρ) such that χ (x, ρ) ≥ −1. If x 	i y, then
there exists a chain (x, ρ) = ((x, . . . , y), ρ) such that χ (x, ρ) ≥ 0. Suppose now that
x 	i y does not hold (and x �= y). Let Z = {z ∈ X\ {x, y} s.t. x 	i z does not hold}.
Let W = {z ∈ X\ {x, y} s.t. z 	i y does not hold, and for every u ∈ Z , z 	i+ u does
not hold}. By Lemma 4, there exists (R, τ ) ∈ PC,A such that z R x for all z ∈ Z , and
y R z for all z ∈ W . Also, by assumption, x R= τ (y).

Consider another pair
(
R, τ ′) such that τ ′ (y) is R-lowest alternative such that

τ ′ (y) R x , and if z R y then τ ′ (z) = R − max
{
τ (z) , τ ′ (y)

}
, if y R z, then τ ′ (z) =

τ (z). Note, that τ ′ (z) ∈ {
τ (z) , τ ′ (y)

}
, and τ ′ (z) R= τ (z) for every z ∈ X . We

show now that (3) holds for
(
R, τ ′). Since y R x , by definition of τ ′ (y) , y R= τ ′ (y).

If z R y, then z R y R= τ ′ (y), and, by (3), z R= τ (z), but τ ′ (z) ∈ {
τ (z) , τ ′ (y)

}
,

hence, z R= τ ′ (z). If y R z, then τ ′ (z) = τ (z), and, by (3), z R= τ ′ (z). Now
suppose u R v. By (3), τ (u) R= τ (v). If u R= y, then τ ′ (u) R= τ (u) R= τ (v) and
τ ′ (u) R= τ ′ (y), but τ ′ (v) ∈ {

τ (v) , τ ′ (y)
}
, hence, τ ′ (u) R= τ ′ (v). If y R u, then
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y R v, and τ ′ (u) = τ (u) R= τ (v) = τ ′ (v). Therefore,
(
R, τ ′) is a warm glow

pair.
Now, since τ ′ (y) R x , by assumption,

(
R, τ ′) does not underlie (C, A). There

exists issue B such that
(
R, τ ′) does not select C (B), while (R, τ ) does. Since

τ ′ (R (B)) R= τ (R (B)), it must be the case that τ ′ (R (B)) R A (B) R= τ (R (B)),
and C (B) = A (B). Now, if y R R (B), then τ ′ (R (B)) = τ (R (B)). Hence,
R (B) R= y. Also, τ ′ (R (B)) ∈ {

τ (R (B)) , τ ′ (y)
}
, τ ′ (R (B)) R τ (R (B)) imply

τ ′ (R (B)) = τ ′ (y) R τ (R (B)), and, therefore, x R= τ (R (B)). To sum up, we have
the following relations: R (B) R= y R= τ ′ (R (B))=τ ′ (y) R x R= A (B) R=τ (R (B))

R= τ (y).
Since x R= A (B) , A (B) /∈ Z , and A (B) �= y. Therefore, x 	i= A (B). Since

R (B) ∈ B, and A (B) = C (B), by definition, A (B) � R (B). Now, R (B) R= y
implies R (B) /∈ W . Suppose for some u ∈ Z , R (B) 	i+ u. Then, by Lemma
2, τ (R (B)) R u. But since u ∈ Z , u R x must hold, therefore, τ (R (B)) R x .
Contradiction. Therefore, R (B) /∈ W , but for every u ∈ Z , R (B) 	i+ u does not hold.
It follows that either R (B) ∈ {x, y} or R (B) 	i y. Since R (B) R x, R (B) �= x ,
and, therefore, R (B) 	i= y. The relations x 	i= A (B) � R (B) 	i= y imply that
there exists a chain (x, ρ) = ((x, . . . , y), ρ) such that χ (x, ρ) ≥ −1.

Now intolerance relation 	+. We show that if for every warm glow pair (R, τ )

underlying (C, A) , τ (x) R y, then there exists a chain (x, ρ) = ((x, . . . , y), ρ)

such that χ (x, ρ) ≥ 1. By (3), for every (R, τ ) ∈ PC,A, x R= τ (x), and, hence,
x R y. Therefore, x 	rev y and x 	i y. Suppose x 	i+ y does not hold. Let Z = {z ∈
X\ {x, y} s.t. x 	i z does not hold}. Let W = {z ∈ X\ {x, y} s.t. z 	i y does not hold,
and for every u ∈ Z , z 	i u does not hold}. By Lemma 4, there exists (R, τ ) ∈ PC,A

such that for all zx ∈ W, zy ∈ Z , zy R x R y R zx . Also, by assumption, τ (x) R y.
Consider another pair

(
R, τ ′) such that if x R= z, then τ ′ (z) = R−min({τ (z) , y}),

if z R x , then τ ′ (z) = τ (z). Note, that τ ′ (x) = y, τ ′ (z) ∈ {τ (z) , y} , τ (z) R= τ ′ (z)
for every z ∈ X , and if y R= z, then, by (3), y R= τ (y) R= τ (z), and τ ′ (z) =
τ (z). We show now that (3) holds for

(
R, τ ′). Since τ (z) R= τ ′ (z), and, by (3),

z R= τ (z) , z R= τ ′ (z) for every z ∈ X . Now suppose u R v. By (3), τ (u) R= τ (v). If
u R x or y R= u, then τ ′ (u) = τ (u) R= τ (v) R= τ ′ (v), and, hence, τ ′ (u) R= τ ′ (v).
If x R= u R y, then x R v, and τ ′ (u) = R−min({τ (u) , y}) R= R−min({τ (v) , y}) =
τ ′ (v). Therefore,

(
R, τ ′) is a warm glow pair.

Now, since τ ′ (x) = y, by assumption,
(
R, τ ′) does not underlie (C, A). There

exists issue B such that
(
R, τ ′) does not select C (B), while (R, τ ) does. Since

τ (R (B)) R= τ ′ (R (B)), it must be the case that τ (R (B)) R A (B) R= τ ′ (R (B)),
and C (B) = R (B). Moreover, since τ (R (B)) R τ ′ (R (B)) , τ (R (B)) �=
τ ′ (R (B)), and, therefore, x R= R (B) , τ (R (B)) R y, and τ ′ (R (B)) = y.
Also, by (3), R (B) R= τ (R (B)). We have the following relations: x R= R (B)

R=τ (R (B)) R A (B) R= τ ′ (R (B)) = y.
Since x R= R (B) , R (B) /∈ Z . Therefore, R (B) ∈ {x, y} or x 	i R (B). Since

R (B) R y, x 	i= R (B). Now, R (B) R A (B) implies C (B) = R (B) �= A (B),
and, hence, by definition, R (B) 	+ A (B). Also, A (B) R= y implies A (B) /∈ W .
Suppose for some u ∈ Z , A (B) 	i u . Then, by Lemma 2, A (B) R u. But since
u ∈ Z , u R x must hold, and A (B) R x . Contradiction. Therefore, A (B) /∈ W , but
for every u ∈ Z , A (B) 	i u does not hold. It follows that either A (B) ∈ {x, y} or
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A (B) 	i y. In either case, A (B) 	i= y. The relations x 	i= R (B) 	+ A (B) 	i= y
imply that there exists a chain (x, ρ) = ((x, . . . , y), ρ) such that χ (x, ρ) ≥ 1. ��

8.6 Proof of Theorem 1

Definition 14 Assume A is ordered. Let Ra be an order such that for any B ∈ B

A(B) = Ra(B).

Let 	′ be a binary relation such that x 	′ y if and only if there exists an alternative z
such that

x Ra z, y Ra z, C (x, z) = x, C (y, z) = z, (15)

and 	r be a binary relation such that

x 	r y if and only if x 	d y or x 	′ y. (16)

Lemma 5 If A is ordered, and the LWARP and WG axioms hold, then the following
statements are true:

Step 1. If B ∈ Bs, B ⊆ B̃ and A
(

B̃
)

∈ B, then B̃ ∈ Bs . Also, if B1, B2 ∈ Bs ,

then B1 ∪ B2 ∈ Bs .
Step 2. 	d is asymmetric and transitive, 	+ is transitive.
Step 3. 	′ is asymmetric.
Step 4. If x 	′ k, k 	′ j and j Ra k then x 	′ j .
Step 5. 	′ is acyclic.
Step 6. If x 	′ k, k 	d j and j Ra k then x 	′ j .
Step 7. 	r is asymmetric.
Step 8. If x 	d k, k 	′ j and x Ra k then x 	′ j .
Step 9. 	r is acyclic.

Step 1. Since B ⊆ B̃, A
(

B̃
)

∈ B and A is ordered, A
(

B̃
)

= A (B) and C (B) ∈
B̃. Therefore, by the WG axiom, B ∈ Bs implies B̃ ∈ Bs . Now, let B = B1 ∪ B2.
Then A (B) ∈ B1 or A (B) ∈ B2. Thus, B1 ∪ B2 ∈ Bs .
Step 2. Assume, by contradiction, that x 	d y and y 	d x . Then, there exist
B1 ∈ Bs and B2 ∈ Bs such that {x, y} ⊆ B1, {x, y} ⊆ B2, x = C(B1) and
y = C(B2). By Step 1, B = B1 ∪ B2 ∈ Bs . If C(B) ∈ B1, then, by LWARP,
C(B) = x . So, C(B) ∈ {x, y} ⊆ B2. Hence, by LWARP, C(B) = C(B2) = y. A
contradiction. The proof for the case C(B) ∈ B2 is analogous.
Now assume that x 	d y and y 	d z. There exist B1 ∈ Bs and B2 ∈ Bs

such that {x, y} ⊆ B1, {y, z} ⊆ B2, x = C(B1) and y = C(B2). By Step 1,
B = B1 ∪ B2 ∈ Bs . So, either C(B) ∈ B1 or C(B) ∈ B2. If C(B) ∈ B2, then,
by LWARP, C(B) = C(B2) = y. So, y 	d x (because x ∈ B). This contradicts
x 	d y and the proved asymmetry of 	d . Hence, C(B) ∈ B1. By LWARP,
C(B) = x . So, x 	d z (because z ∈ B).
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Step 3. Assume, by contradiction, that x 	′ j and j 	′ x . Then there are
alternatives y1 and y2 such that, for i = 1, 2, x Ra yi , j Ra yi , C (x, y1) =
x, C ( j, y1) = y1, C (x, y2) = y2, C ( j, y2) = j . In particular, A(y1, y2, j) =
j ∈ {y1, j} and {y1, j} ∈ Bs . By step 1, {y1, y2, j} ∈ Bs . If C(y1, y2, j) = y2
then, by WG axiom, {y2, j} ∈ Bs . This contradicts A (y2, j) = C(y2, j) = j . So,
C(y1, y2, j) = y1, and y1 	d y2. Analogously, A(y1, y2, x) = x ∈ {y2, x} and
{y2, x} ∈ Bs imply {y1, y2, x} ∈ Bs , and C(y1, y2, x) = y1 implies {y1, x} ∈ Bs .
This contradicts A (y1, x) = C(y1, x) = x . So, C (y1, y2, x) = y2, and y2 	d y1.
Contradiction to Step 2.
Step 4. By definition, there are alternatives y1 and y2 such that k Ra yi , x Ra y1, j
Ra y2, C(y1, x) = x, C(y1, k) = y1, C(y2, k) = k, and C(y2, j) = y2. So,
A(y1, y2, k) = k ∈ {y1, k} and {y1, k} ∈ Bs . By step 1, {y1, y2, k} ∈ Bs .
If C(y1, y2, k) = y2 then, by WG axiom, {y2, k} ∈ Bs . This contradicts
A (y2, k) = C(y2, k) = k. So, C(y1, y2, k) = y1. Thus, y1 	d y2. Given that
j Ra k, it follows that j Ra yi , and Ra(y1, y2, j) = j ∈ {y2, j} and {y2, j} ∈ Bs .

By step 1, {y1, y2, j} ∈ Bs . If C(y1, y2, j) = y2 then y2 	d y1 contradicting
y1 	d y2. So, C(y1, y2, j) = y1. Thus, by WG axiom, (y1, j) ∈ Bs . In addition,
A(y1, j) = j . So, C(y1, j) = y1. Now, A(y1, j) = j, A (y1, x) = x, C(y1, j) =
y1, C(y1, x) = x imply x 	′ j .
Step 5. Step 3 shows that there are no cycles with 2 alternatives. Assume, by
induction, that there are no cycles with n − 1 (or less) alternatives. Also assume,
by contradiction, that {x1, . . . , xn} is a n-cycle, n ≥ 3. So, xi 	′ xi+1, i =
1, . . . , n − 1, and xn 	′ x1. If x2 Ra x1 then, by Step 4, xn 	′ x2. If x1 Ra xn

then, by Step 4, xn−1 	′ x1. If xi+1 Ra xi i = 2, . . . , n − 1 then, by step 4,
xi−1 	′ xi+1. Any of these cases produces a cycle with at most n−1 alternatives.
This violates the induction hypothesis. Hence, xn Ra x1, and xi Ra xi+1, i =
1, . . . , n − 1. Therefore, Ra is cyclic. A contradiction.
Step 6. By definition there is an alternative y1 such that k Ra y1, x Ra y1, C(y1, x)

= x, C(y1, k) = y1. So, {y1, k} ∈ Bs, y1 	d k and k Ra y1 . Now, given that
j Ra k then j Ra y1. By WG axiom and A(y1, k, j) = j, {y1, k} ∈ Bs, k 	d j ,
it follows that {y1, k, j} ∈ Bs . If C(y1, k, j) = k then k 	 y1 contradicting
y1 	d k. So, C(y1, k, j) = y1. In addition, A(y1, j) = A(y1, k, j) = j . Thus,
by WG axiom, (y1, j) ∈ Bs , and C(y1, j) = y1. Thus, A(y1, j) = j, C(y1, j) =
y1, A (y1, x) = x, C(y1, x) = x . So, x 	′ j .
Step 7. Assume, by contradiction, that k 	r j and j 	r k. Then, there are
four cases to consider. But if k 	d j and j 	d k or if k 	′ j and j 	′ k
then a contradiction is immediately obtained given that 	d and 	′are asymmetric.
So, assume, by contradiction, that k 	′ j and j 	d k. Then, there exists an
alternative y such that A (y, j) = j , A (y, k) = k, C(y, j) = y, C(y, k) = k.
So, {y, j} ∈ Bs . Hence, {y, k} ∈ Bs because C(y, j) = y ∈ {y, k} and A (y, j) =
j 	d k = A (y, k). This is a contradiction because A (y, k) = C(y, k) = k.
Step 8. From k 	′ j it follows that there exists y such that A (y, j) =
j, C(y, j) = y, A (y, k) = k, C(y, k) = k. From x Ra k and k Ra y it fol-
lows that A (y, x) = x . Now assume that C(y, x) = x . Then, by definition,
x 	′ j . Now assume that C(y, x) = y. Then, {y, x} ∈ Bs . It follows that
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{y, k} ∈ Bs (because C(y, x) ∈ {y, k} and A (y, x) = x 	 d A (y, k) = k). This
is a contradiction because A (y, k) = C(y, k) = k.
Step 9. Step 7 shows that there are no cycles with 2 alternatives. Assume, by
induction, that there are no cycles with n − 1 (or less) alternatives. Also assume,
by contradiction, that {x1, . . . , xn} is a n−cycle, n ≥ 3. So, xi 	r xi+1, i =
1, . . . , n − 1, and xn 	r x1. By Step 2, there cannot be i = 1, . . . , n − 1 such
that xi 	 d xi+1 	d xi+2. This would produce a cycle with n − 1 alternatives
which would violate the induction hypothesis. By Step 5, there must be some i∗
such that xi∗ 	d xi∗+1. Then, xi∗−1 	′ xi∗ and xi∗+1 	′ xi∗+2. By Step 6,
xi∗+1 Ra xi∗ implies xi∗−1 	′ xi∗+1. Now, by
step 8, xi∗ Ra xi∗+1 implies xi∗ 	′ xi∗+2. Either way, a cycle with n − 1 alterna-
tives is produced. A contradiction. ��

Proof of Theorem 1 The proof that the LWARP and WG axioms are satisfied under the
warm glow theory with ordered aspirations is as follows: By Theorem 2 if (C, A) is a
warm glow function then there is no chain with nonnegative characteristic connecting
any alternative to itself. Suppose that LWARP does not hold, that is, B, B ′ ∈ Bs, B ⊆
B ′, C

(
B ′) ∈ B, and C (B) �= C

(
B ′). It follows that there is a chain C (B) 	d

C
(
B ′) 	d C (B) with zero characteristic. Next, suppose that the WG axiom does not

hold. Then there exist two issues B ∈ Bs and B ′ such that C (B) ∈ B ′, A (B) 	=
A

(
B ′) but B ′ /∈ Bs , i.e. C

(
B ′) = A

(
B ′). Then the chain C (B) 	+ A (B) 	=

C
(
B ′) � C (B)has zero characteristic. So, necessity is demonstrated by contradiction.

The proof that LWARP and WG are sufficient conditions is as follows: Assume
now that a choice and aspiration function (C, A) is such that A is ordered and the
LWARP and WG axioms are satisfied. By Lemma 5, 	r is acyclical. An acyclical
binary relation may be extended (not necessarily uniquely) to an order. Let R be any
extension of 	r . So, R is a preference order such that

if w 	r y then w R y. (17)

Given x ∈ X , let Dx be the set of all alternatives z such that for some issue
B ∈ B, x = C(B) and z = A(B). Note that z ∈ Dx implies x 	d z. Let d(x) ∈ Dx

be the element d ∈ Dx such that d R= z for any z ∈ Dx . If Dx is empty then d(x) is
not defined. Let Lx be the set of all alternatives d(y) where y is any alternative such
that x R= y and d (y) is defined. Let τ(x) be the alternative such that τ(x) R z for any
z ∈ Lx , and if w �= τ(x) is such that w R z for any z ∈ Lx , then w R τ(x). If Lx is
empty then τ(x) is such that a R= τ(x) for every a ∈ X .

We now show that (R, τ ) is a warm glow model that produces choice functions C .

(a) If B ∈ Bs , then C(B) = R(B). If B /∈ Bs , then C(B) = A(B). So, C(B) ∈
{R(B), A(B)}. This follows immediately from (17).

(b) If z ∈ Dx , then {x, z} ∈ Bs, A (x, z) = z, C(x, z) = x and x 	d z. By
definition, there exists some issue B ∈ Bs such that x = C(B) and z = A(B) �=
x . So, by (17), x 	d z implies x R z. Let B̃ = {x, z}. C(B) = x ∈ B̃ and
A(B) = A(B̃) = z. By WG axiom, B̃ ∈ Bs , and C(B̃) = x .

(c) For any x ∈ X , and y such that x R= y: if Dy �= ∅, then x R d(y). If y = x , then
d (x) ∈ Dx and, by (17), x 	 d d(x) implies x R d(x). If x R y, then x R y R d(y)

implies, by transitivity of R, x R d(y).
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(d) If x R y, z ∈ Dy and z Ra x , then z ∈ Dx . By b), {y, z} ∈ Bs and A (y, z) = z. By
WG axiom, A (x, y, z) = A (y, z) implies {x, y, z} ∈ Bs . Thus, C(x, y, z) �= z.
If C(x, y, z) = y, then, y 	d x contradicting x R y and (17). So, C(x, y, z) = x
and z ∈ Dx .

(e) For any B ∈ B, if DR(B) is empty or A(B) R d(R(B)), then C(B) = A(B).
Assume, by contradiction, that A(B) �= C(B). Then, B ∈ Bs and, by a), C(B) =
R(B). Let x = C(B) and z = A(B). Note that z ∈ Dx and, hence, Dx is not
empty and d(x) R= z. This contradicts the assumption.

(f) For any B ∈ B, if d(R(B)) R= A(B) then C(B) = R(B). Let x = R(B), z =
A(B) and y = d(x). If x = z then, by a), C (B) = R (B). So, assume x �= z.
From x ∈ B it follows that A (x, z) = z. Now either C(x, z) = x or C(x, z) = z.
Assume that C(x, z) = z. By definition, y ∈ Dx . By b), A (x, y) = y, C(x, y) =
x . So, A (x, y) = y, C(x, y) = x, A (x, z) = z, C(x, z) = z implies z 	′ y.
This contradicts y R= z and (17). So, C(x, z) = x . Then, {x, z} ∈ Bs . Moreover,
A(x, z) = A(B) = z and C(x, z) ∈ B. By WG axiom, B ∈ Bs . By a), C(B) =
R(B).

(g) τ satisfies (3). Consider an element x ∈ X . If Lx is empty, then x R= τ (x). If
z ∈ Lx then z = d(y) for some alternative y such that x R= y and Dy �= ∅.
So, by c), if z ∈ Lx then x R z. So, if x �= τ(x) then, by definition, x R τ(x) .
Now assume that a′ R a. Then, La ⊆ La′

. This follows because if z ∈ La then
z = d(y) for some y such that a R= y. By the transitivity of R, a′ R y. So, z ∈ La′

.
If La′

is empty, then La is empty, and τ (a) = τ
(
a′). If La′

is not empty then, by

definition, τ(a′) R z for any z ∈ La′
. So, τ(a′) R z for any z ∈ La . Thus, if La

is not empty and τ(a′) �= τ(a) then, by definition, τ(a′) R τ(a). If La is empty,
then τ(a′) R= τ(a), by definition.

(h) If for some issue B, A(B) R= τ(R(B)) then C(B) = A(B). If DR(B) is not empty
then, by definition, τ(R(B)) R d(R(B)). The conclusion now follows from the
transitivity of R and step (e).

(i) If for some issue B, τ (R(B)) R A(B) then C(B) = R(B). Let z = A(B) and
x = R(B). We can assume x �= z and that Lx is not empty. Otherwise, τ(x) R z
cannot hold. It follows from τ(x) R z and Lx �= ∅ that there exists an alternative
y such that x R= y and d(y) R= z. If d(x) R= z then the conclusion follows from
( f ). So, we can assume, without loss of generality, that there exists an alternative
y such that x R y and d(y) R= z. If d(y) = z, then z ∈ Dy, x R y and z Ra x ,
by step (d), imply z ∈ Dx . The conclusion now follows from definition of d(x)

and (f). So, we can assume, without loss of generality, that exists an alternative
y such that x R y and d(y) R z. Now, either x Ra d(y) or d(y) Ra x . Let’s first
consider the case x Ra d(y). It follows that z Ra d(y) (because z Ra x). So, z Ra y
(because d(y) Ra y). Now, it follows that C(y, z) = y. To see this assume, by
contradiction, that C(y, z) = z. But, A(z, y) = z and, by (b), d(y) ∈ Dy implies
C(y, d(y)) = y, A(y, d(y)) = d(y). So, by (15 ), z 	′ d(y). This contradicts
d(y) R z. Now from C(y, z) = y and A(y, z) = z it follows that z ∈ Dy . Then, as
above, z ∈ Dy, x R y and z Ra x , by step (d), imply z ∈ Dx , and the conclusion
follows from definition of d(x) and (f). Now consider the remaining case in
which d(y) Ra x . Let B = {y, d(y)} and B̂ = {x, y, d(y)}. By (b), B ∈ Bs and
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A(B) = d(y) = A(B̂). This, combined with C(B) ∈ B̂, implies, by WG axiom,
that B̂ ∈ Bs . So, C(B̂) �= d(y). If C(B̂) = y, then y 	 x . This contradicts
x R y and (17). So, C(B̂) = x . Hence, d(y) ∈ Dx . It now follows that Dx is not
empty and d(x) R= d(y). But d(y) R z. So, d(x) R z. The conclusion now follows
from (f).

By steps (g), (h) and (i), (R, τ ) is a warm glow pair underlying (C, A). ��

8.7 Proof of Proposition 1

If (C, A∗) is a warm glow choice and aspiration function, then, by definition,
(

C, Ã
)

is a warm glow function. Now, suppose
(

C, Ã
)

is a warm glow choice and partial

aspiration function. In this case, AC, Ã is not empty, and there exists aspiration function

A ∈ AC, Ã such that A extends Ã, and (C, A) is a warm glow function. Suppose, by
contradiction, that (C, A∗) is not a warm glow function. There exists chain x =
(x0, . . . , xn) such that x0 = xn and χ (x) ≥ 0. For every issue Bi in the chain, if Ã is
defined on Bi , then A∗ (Bi ) = Ã (Bi ) = A (Bi ), and if not, then A∗ (Bi ) = C (Bi ). In
either case, the same cyclical chain with nonnegative characteristic can be constructed
for (C, A), which contradicts the assumption that (C, A) is a warm glow function.

To show that revealed preference and tolerance relations are the same, note that
every chain constructed for (C, A∗) is also a chain with the same characteristic for any
other warm glow function (C, A) such that A extends Ã. Therefore, the intersection of
all sets of revealed relations for all such models is equal to the set of revealed relations

for (C, A∗). Moreover, since A∗ extends Ã, all revealed relations for
(

C, Ã
)

must be

revealed for (C, A∗). ��
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