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Abstract Using order-theoretic methods, we derive sufficient conditions for the exis-
tence, characterization, and computation of minimal state space recursive equilibrium
(RE), as well as Stationary Markov equilibrium (SME) for various classes of stochas-
tic overlapping generations models. In contrast to previous work, our methods focus
on constructive methods. Our existence results are obtained for models that include
public policy (e.g., social security policies, transfers, taxes, etc), production noncon-
vexities, elastic labor supply, non-monotone income processes, and long-lived agents.
We distinguish conditions under which there exist various subclasses of minimal state
space RE, including bounded, monotone, non-monotone, semicontinuous, Lipschitz
continuous RE. Finally, we provide monotone equilibrium comparative statics results
on the space of economies for some RE.
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1 Introduction

Since its introduction in the seminal work of Samuelson (1958) and Diamond (1965),
the overlapping generations (OLG) model has been a workhorse in many areas of
applied dynamic general equilibrium theory, including various models in macroeco-
nomics, public finance with intergenerational risk sharing and social security, human
capital formation and public education, labor economics, optimal taxation, economic
growth, infrastructure and/or environmental degradation, and monetary economics.
With a few exceptions, much of this applied work has focused on either numeri-
cal characterizations of minimal state space equilibrium using “direct” methods that
construct approximate solutions in equilibrium versions of household Euler equations
(e.g., projection methods as in Judd 1992) or more “indirect” methods for constructing
Generalized Markov equilibrium (GME) using correspondence-based methods such
“Euler equation APS methods” ala Feng et al. (2012), where approximate Markovian
equilibria are computed on enlarged state spaces as selections from an equilibrium
correspondence.!

In their current form, an important limitation of all these approaches is they pro-
vide little characterization of the structural properties of any recursive equilibrium
(RE). Such structural characterizations prove useful if one wants to characterize rigor-
ously the properties of both actual and particular approximate RE solutions. They are,
of course, also of independent theoretical interest for questions such as equilibrium
comparative statics, stochastic stability, as well as for understanding other important
properties of RE. Perhaps most importantly, these methods say little about the state
spaces where RE exist. For example, do minimal state space RE exist (i.e., defined
on state spaces consisting only of current period endogenous and exogenous states),
and, if so, can they be computed by successive approximation?? Further, how do RE

! These correspondence-based methods for computing Generalized Markov equilibrium are generalizations
of the seminal work of Kydland and Prescott (1980) and Abreu et al. (1990) adapted to dynamic competitive
economies. Typically, in macroeconomic applications with state variables and Euler equations, they are
“dual” methods, constructing Markovian equilibrium on enlarged state spaces directly from the sequential
equilibrium. These enlarged state variables often include Karash—-Kuhn—Tucker (KKT) multipliers and/or
envelope theorems. Such Generalized Markov equilibria are very different than “Prescott-Mehra” recursive
equilibrium as they generally cannot be associated with dynamic programming representations of household
decision problems in equilibrium, for example.

2 In this paper, all references to “RE” will be to minimal state space Markovian equilibrium in the sense
of Lucas—Prescott—Mehra (e.g., see Lucas and Prescott 1971; Prescott and Mehra 1980). This notation of
“RE” is very different than that used in the literature on Generalized Markov Equilibrium, where one first
constructs a sequential equilibrium and then asks whether there exists a set of state variables such that the
sequential equilibrium admits a recursive representation. See Citanna and Siconolfi (2007, 2008, 2010) for
a very nice discussion of memory and minimal state space RE and in particular the importance of short
memory in the study of RE.
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vary with the deep parameters of the economy? This latter question is actually of great
interest for numerical methods, and not just of theoretical interest.

In this paper, we present an new collection of order-theoretic methods operating
in function spaces for constructing Recursive Equilibria (RE) for interesting classes
of stochastic OLG models that often appear in applied work. As our focus is on
short-memory or minimal state space RE, our approach complements many of the
existing methods found in the literature (e.g., especially, the correspondence-based
methods of Feng et al. 2012). Further, our methods are constructive, and we provide
iterative procedures for constructing least and greatest minimal state space RE in all
the cases we study. Additionally, we show how equilibrium comparative statics results
on the space of economies can be easily be obtained using our monotone methods
and computed. We also provide constructive arguments for characterizing the set of
equilibrium limiting distributions [or Stationary Markov equilibrium (SME)], and we
provide situation where we can conduct equilibrium comparative statics for then set
of SME.

Finally, in the last section of the paper, we extend our monotone map methods to
economies where RE are not monotone.? That is, a common misconception in the
literature when discussing so-called “monotone map methods” is that they do not
work for models with (i) many state variables, and (ii) non-monotone RE (e.g, see
Feng et al. 2012 for such remarks relative to the work of Coleman 1991; Datta et al.
2002; Mirman et al. 2008). To answer this criticism, we present three key extensions
of the monotone map approach to models with (i) two-period lived agents, and general
Lipschitzian income processes (i.e., not monotone); (ii) two-period lived agents and
elastic labor supply, and (iii) long-lived agents, and with general local Lipschitzian
income processes. Aside from addressing conditions for existing of minimal state space
RE in these economies, in case (i), we also show how delicate uniqueness results are
in even simple versions of these models. To obtain these extensions, in this last section
of the paper, we propose a new monotone decomposition method, which we discuss
in detail in the last section of the paper.

Our approach is complementary to the powerful new collection of direct methods
that have been proposed in the important series of recent papers Citanna and Siconolfi
(2007, 2008, 2010), where the authors develop an elegant approach to verifying the
existence of minimal state space RE equilibrium in a very general class of stochastic
OLG models based upon a generalized transversality theory. A key limitation of the
Citanna—Siconolfi method concerns the weak nature of the characterization of global
structural properties of any RE that one is able to obtain, as well as the difficulty one
faces relating their results to approximation methods. In the end, aside from verifying
the existence minimal state space RE, their method is unable to characterize such
properties such as the continuity, monotonicity, etc. Of course, if existence issues
(which is their focus) is one’s sole concern, such issues are not critical, but if one
is seeking to relate theoretical constructions to rigorous methods for constructing
approximation solutions of particular RE (as is needed, for example, in applied work),
this limitation can be a serious issue. We address all of these issues here.

3 Our monotone methods are often referred to as “monotone map” methods in the literature. The term was
coined in the seminal paper of Coleman (1991), where these sorts of methods were first discussed.
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We provide the first results in this paper in the literature (of which we are aware)
for computing OLG models with elastic labor supply, which is important as in applied
work using stochastic OLG models, researchers often allow for endogenous labor
supply decisions. Given the recent plethora of negative results associated with sta-
bility of Markovian equilibrium dynamics for OLG models reported in the work by
Lloyd-Braga et al. (2007), our positive results provided here should be of interest to
researchers attempting to compute RE in lifecycle models. We should note we only
have results for the two-period lived agent case, so this is a limitation of our results.

Finally, in the last section of the paper, we consider existence of RE for the case
of long-lived agents with borrowing constraints (i.e., an OLG version of a finite type
Bewley model) and provide a constructive existence result using monotone operators
for such economies. These results are also somewhat limited as we rule out the case of
many assets. In all case, an important aspect of our approach is we work exclusively
with operators defined in function spaces. This allows us to unify issues of topology and
order when characterizing convergence structures for monotone iterative procedures.
This means when our methods apply, we are able to improve a great deal upon the
characterizations of RE obtained via correspondence-based methods recently proposed
in the literature (e.g., Feng et al. 2012).* Also, we provide conditions for structural
properties on RE (e.g., conditions for continuous or locally Lipschitz continuous RE),
which are very important in approximation issues (e.g., for discretization procedures).

Our methodology to construct RE and SME is an direct extension of the approach
outlined in the seminal papers of Lucas and Prescott (1971) and Prescott and Mehra
(1980). That is, we partition state spaces for household decision problems into a “little
k, big K” form, which allows us to restrict the parameterization of the continuation
structure for the aggregate economy implied by collection of candidate RE functions.
This formalization proves to be very important, as it avoids most (if not all) of the
important technical problems that arise with multiplicities and dynamic indetermina-
cies that make studying the set of “self-fulfilling expectations equilibria” intractible
in our enviroments. These latter issues are very elegantly discussed in, for example,
Wang (1994). That is, unfortunately in situations where RE and/or sequential equilib-
ria are not unique, self-fulfilling expectations equilibria (e.g., GME) are known to be
very complicated to characterize. Using our methods, even with multiplicities of RE,
this is not the case. That is, in the presence of multiplicities of our RE are present, the
Lucas-Prescott-Mehra RE construction works as a equilibrium selection device, which
amounts to a particular parametrization of an equilibrium selection in the expectations
equilibrium correspondence (or Markovian equilibrium correspondence in the liter-
ature on GME using Euler equation APS type methods). This allows us to associate
minimal state RE with particular SME without ever appealing to arguments in Duffie
et al. (1994) (which focus only on SME, not the structure of the RE that actually gen-
erates them). Further, we can allow SME to only be an invariant measure, as opposed

4 Of course, the correspondence-based methods of Feng et al. (2012) apply in more general settings than
ours. This comes at a cost of not guaranteeing existence of minimal state space RE. Still, that cost might be
acceptable to relax the conditions we need (especially, our restrictions on the set of assets in our models).
So its best to think of our work as a selection device in Feng et al. (2012) that focuses on minimal state RE.
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to Duffie et al. (1994) which must generate an ergodic measure as a SME.} Finally,
unlike these correspondence-based methods for GME, we obtain sharp characteriza-
tions of particular minimal state space RE and its associated SME (as opposed to
weak characterizations of some and/or all SME equilibria on enlarged state spaces).

More recently, Morand and Reffett (2007) extended the work of Wang (1994) to
studying RE in models non-classical production and Markov shocks using monotone
methods, providing successive approximation algorithms for computing extremal
Markovian equilibria. Although we follow a similar approach, this paper differs from
that work in several important ways. First, as Morand and Reffett (2007) study the
Markov shock case, so they require very strong conditions on primitives (e.g., time
separable utility and a limiting condition on capital income) to prove even existence
of isotone RE (let alone to construct SME). Further, their results of existence of SME
are very weak, providing, for example, no results on stochastic stability. In this paper,
many of these conditions are relaxed, and given strong assumptions on the shocks
(iid shocks), stronger results on SME are possible. Second, for the Markov shock
case, they only show least and greatest RE that are measurable, whereas in this paper,
we are able to construct a new space of measurable functions that actually forms a
complete lattice (so our existence result here is much stronger, namely a complete
lattice of measurable RE in a number of different subclasses of functions). Third, we
give a context for the uniqueness results in Wang (1993) and Morand and Reffett
(2007) (namely, we prove uniqueness in a space of continuous functions under capital
income monotonicity is robust to a space of bounded increasing functions). Finally,
in the last section of the paper, we provide a extensions of monotone methods to OLG
models with non-monotone RE via monotone decompositions, as well as discuss the
limitations of our methods, none of which are discussed in this previous work.

Finally, OLG models have found extensive application in the recent literature. For
example, per a few recent applications, Constantinides et al. (2007) examine the role
of overlapping generations in the study of bequest. In their model, the finite horizon
for household decisions plays a key role in their results. In a related paper, Pestieau
and Thibault (2012) examine the role of estate taxes in lifecycle model. De la Croix
and Michel (2007) study the role of education and debt constraints in an simple OLG’s
model. Also, Prieur (2009) examines environmental policy in the context of a OLG
model and is able to study the structure of the environmental Kuznet’s curve in such
amodel. A final interesting recent paper on OLG models and bequest is the paper by
(Barnett et al., 2012, Barnett, Bhattacharya, and Bunzel (2012)).

The paper has a very simple structure. In the next section, we discuss the economic
environment. Section 3 addresses existence questions associated with the computation
of RE. Section 4 studies existence of SME. Section 5 extends the results to economies
continuous, but not monotone RE. The last section contains most of the proofs.

5 In the construction of a SME in the sense of Duffie et al. (1994), given their existence argument, one must
generate equilibrium ergodic measures and then select SME consistent with this equilibrium. Our argument
for constructing SME works the other direction, i.e., we first compute explicitly a minimal state space RE
and then show how to compute a corresponding non-trivial extremal invariant measure which is implied by
this RE.
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2 The economic environment

The baseline model has a large number of identical agents born each period who live
for two periods. In their first period of life, they are endowed with a unit of time
which they supply inelastically to the firm at the prevailing wage, and they consume
and/or save. In their second period of life, they simply consume their savings which are
subjected to a stochastic return. Preferences are represented by a non-time separable
utility function. Utility is assumed to satisfy a standard intertemporal complementarity
condition between consumption when young (denoted c;) and consumption when old

(c2):
Assumption 1 The utility functionu : X x X — R, for X C Riis:

I twice continuously differentiable;
II' strictly increasing in each of its arguments and jointly concave;
III satisfies Vcp > 0, lim,, o+ u1(c1, c2) = +00 and Yey > 0, lim,,_, o+ uz(cy, c2)
= +00;
IV is supermodular in (cy, ¢3) (i.e., in this context, u1> > 0).

As in Wang (1993) and Hausenchild (2002), we assume iid production shocks with
compact support.

Assumption 2 The random variable z, follows an iid process characterized by the
probability measure denoted y . The support of y is the compactset Z = [Zmin, Zmax] C
R with zmax > Zmin > 0.

Following recent work on the existence of RE in economies with public policy
and non-classical production (e.g., Greenwood and Huffman 1995; Mirman et al.
2008), we consider equilibrium distortions that can be represented as a reduced-form
production function with a non-classical specification. We denote this technology by
F(k,n, K, N, z), where we assume F' is constant returns to scale in private inputs
(k, n) for each level of aggregate inputs (K, N). The following assumptions on F,
adapted from the literature on nonoptimal stochastic growth, are completely standard.
Anticipating n = 1 = N in any equilibrium with inelastic labor supply, we state our
assumptions as follows:

Assumption 3 The production function F(k,n, K, N,z) : X x [0, 1] x X x [0, 1] x
Z — Ry is:

I twice continuously differentiable in its first two arguments, and continuous in all

arguments;

IT isotone in all its arguments, strictly increasing and strictly concave in its first two
arguments;

Illa such that r(k,z) = Fi(k, 1,k,1,z) is decreasing and continuous in k, and

limg_or(k, 7) = 400;
IIIb such that w(k,z) = F>(k, 1,k,1,z) is increasing and continuous in k, and
limy_, o+ w(k, z) = 0;
IV such that there exists a maximal sustainable capital stock kpyax (i.€., Yk > kmax
andVz € Z, F(k, 1,k, 1, z) < kmax), and with F(0,1,0,1,z) =0.
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It is well known that Assumption 3 IV implies that the set of feasible capital stocks
can be restricted to be in the compact interval X = [0, kpmax] as long as we place
the initial capital stocks in X. This condition, along with (Illa and IIIb), also place
restrictions on the amount of nonconvexity we can allow. The following two additional
assumptions will help establish sharper properties of the RE, the latter being sufficient
to exclude economies in which 0 may be the only RE (and will lead to the construction
of minimal RE by successive approximations).

Assumption 3’ Both r(k, z) and w(k, z) are continuous and isotone in z for all k.

Assumption 4 limy_, o+ 7 (k, Zmax)k = 0.

3 Computing minimal state space RE

This section addresses the issues of existence, characterization and construction of
extremal minimal state space RE. Our proofs rely on the Euler equation methods
(see, for instance, Coleman 1991; Datta et al. 2002; Mirman et al. 2008).6 As a direct
consequence of Tarski’s fixed point theorem, the set of fixed points of this operator
will be a non-empty complete lattice, and by construction all fixed points but the trivial
0 are RE. As is well known, Tarski’s theorem is not constructive; therefore, we shall
then show we can construct lower bounds in some cases appealing to order continuity
conditions. We will also remove the problem of trivial RE by finding least elements
of our function spaces that map up under our operator.

3.1 Some useful complete lattices

We begin by defining the classes of complete lattices where we shall prove existence
of RE.” First, given any bounded function w : § — RY, definetheset W = {h : S —
R*,0 < h < w} (the set of “bounded functions”) endowed with the pointwise partial
order < is a complete lattice under the pointwise partial order. If w is isotone (i.e.,
non-decreasing in its arguments), the set H = {h € W, h isotone} is subcomplete in
W. If in addition, w is continuous in k for each z € Z (in the usual topology on R),
define the set H* = {h € H, h upper semicontinuous in k € X for each z € Z} (resp.,
H' = {h € H, h lower semicontinuous in k € X for each z € Z}), which are each
subcomplete in H, as established in the following Proposition.

Proposition 1 The poset (H", <) and (H L <)are complete lattices. In addition, any
h € H* and h € H' is measurable.

Proof Given any B C H", denote g(s) = infuecp h(s). Clearly 0 < g < w, g is
isotone, and g(., z) is usc for any given z. Thus g is an upper bound of B, and it is
easy to see that it is the least upper bound. Since w is the top element of HY, it is a
complete lattice (e.g., Davey and Priestley 2002, Theorem 2.31). Next, since X is a

6 The nonlinear operator in this paper differs from the one in the infinitely lived agent models cited above.

7 The order-theoretic terminology we use in the paper is not standard in the literature. Useful references
for such terminology include Veinott (1992), Topkis (1998), and Davey and Priestley (2002).
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compact interval of R, denote by {xo, x1, . ...} a countable dense subset of X. Given
any « € R, we claim that:

seShe) <at= () J@n—1/nxu] % {z € Z h(xpn.2) <+ 1/n}.

n=1m=0

This property implies that / is measurable (in the sense of jointly measurable): Indeed,
since h is isotone in z for each k, it is B(Z)-measurable for each k which implies that
{z€ Z,h(xp,2) <a+1/n} € B(Z),and that {s € S, h(s) < a} € B(S). We prove
now the stated claim. First, consider (k, z) such that h(k, z7) < «. Such h being usc
and isotone in k (for each z), it is necessarily right continuous at k, and we have that:

Vn € N,3Im such that x,,, — 1/n < k < x;,, and h(xp,, 2) < ¢ + 1/n.
Thus:
Vn € N, dm such that (k,z) € (x;, — 1/n, xp] x {z € Z, h(xp, 2) < @ + 1/n},

which implies that:

oo
Vn e N, (k.2) € | m = 1/ xm] x {z € Z, hxm. 2) < a + 1/n),

m=0

and therefore that:

k,2) e () Jdlom —1/n xul x {2 € Z, h(xm,2) < @+ 1/n).

n=1m=0

Reciprocally, suppose that forall n € N, (k, z) belongs to |5 (X — 1/n, xu] x {z €
Z,h(xpm,z) < o+ 1/n}. This implies that for all n, there exists m(n) such that
k € (Xmm) — 1/n, Xm@y] and h(xy ), 2) < o + 1/n. By construction the sequence
{Xm(1), Xm@), .. .} converges to k and x,,(;y > k, so by continuity from the right at
k of h(., z), h(xm(n), 2) converges to h(k, z) and necessarily h(k, z) < o. We note a
similar result holds for the subset of H' of Isc functions, as:

{(,2) € S, hk,2) = @) = () | Doms X + 1/0) X {z € Z, h(xm, 2) > @ = 1/n}.

n=1m=0
O

This space of functions is very important (as it is a complete lattice of measurable
functions). It will allow us to extend the results on existence of Morand and Reffett
(2007) a great deal.
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3.2 An Euler equation method for computing RE

Earning the competitive wage w in the labor to the market, in a candidate RE 7 € W,
a typical young agent of any generation must decide what amount y to save for next
period consumption. To make this decision, given 1 € W, the agent computes the
expected continuation returns on her capital investment, as well as future competitive
wages and returns on capital use the firms profit maximization problem with w(k, z) =
Fr(k,1,k,1,2) and r(k,z) = Fi(k,1,k,1,z). Thus, given s € S*and h € W, a
young agent seeks to solve:

max /M(W(S)—y,r(h(S),Z’)y))/(dz/),

yE[0,w(s)]
z

Let y*(s; h(s)) be the optimal solution to this household problem. A RE therefore
can be defined as follows:

Definition 1 A Recursive Equilibrium (RE) is a bounded function 2*(s) € W and a
policy function y*(s; h*(s)) such that (i) for all s € S*, h*(s) > 0, we have y* =
y*(s; h*(s)) = h*(s), and h*(s) = 0, else, and (ii)

/ ur(w(s) — y*, r(h*(s), 2Hh*(s))y (dz)
z
= / uz(w(s) — y*, r(h*(s), 2Hy*(s)rh*(s), 2y (dz). (B)
4
Notice, in our definition, we restrict our attention to the case of RE that have memory
only consisting of the current states of the economy.

To construct such RE, we introduce the nonlinear operator A defined implicitly in
the HH equilibrium Euler equation follows:

Definition 2 Given any & € W, define the operator A as follows: If A(s) > 0, then
Ah(s) is the unique solution for y to:

/ ui(w(s) — v, r(h(s), 2)y)y (d2)

V4

=/uz(w(S) — v, r(h(s), 2Hy)r(y, 2)ydz), (E")

V4

and Ah(s) = 0 whenever h(s) = 0.8

A function i € W is a RE if and only if it is a nonzero fixed point of the operator A,
and the issues of existence, characterization, and construction of extremal RE simply
follow from the study of the set of non-trivial fixed points of Ah.

8 Itis easy to verify the existence of a unique solution under Assumption 1.
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We now prove our main existence result of this section. To do this, we first mention
three lemmata. Understanding the importance of the first two lemmas well allows us to
make our application of Tarski’s theorem constructive via order continuity conditions
(in the interval topology) for the operator Ak (which allows use to make our methods
constructive. e.g., see Dugundji and Granas 2003, Theorem 4.2, p. 15).

Lemma 1 Under Assumptions 1, 2, 3, A is an isotone self map on (W, <). Under
Assumptions 1, 2, 3, 3, A is an isotone self map on (H, <) and on (H", <).

Proof By construction A maps W into itself, and it is easy to verify that Ah > Ah/
whenever & > h’. Clearly Ah is isotone in k whenever % is, and Assumption 3’
is sufficient for preservation of isotonicity in z, thus making A an isotone map on
(H, <). Consider h € H" and therefore right continuous at every k € [0, kmax[ given
any z. Since the unique solution to (E’) can be expressed as a continuous function of
h, w, and r, Assumption 1, 2, 3, 3’ imply that A# is right continuous in k as well and
therefore also usc in k since isotone in k. Thus A is an isotone self map on H*.° O

We now define order continuity.

Definition 3 A function F' : (P, <) — (P, <) isorder continuous if for any countable
chain C C P such that VC and AC both exist,

V{F(C)} = F(VC) and A {F(C)} = F(AC).

It is important to note that the hypothesis of order continuity in our computa-
tional fixed point results can be weakened to that isotonicity of F' and order continu-
ity along monotone recursive generated F-sequences, that is, sequences of the form
{x, F(x),..., F"(x), ...} where either x < F(x) or x > F(x).19 In that case, the
partially ordered set need only be chain complete for the existence of a non-empty set
of fixed points with minimal and maximal elements

We now show under pointwise partial orders, our operator A# is order continuous
along recursively generated countable chains, so many cases, extremal RE can be
computed.

Lemma 2 (i) Under Assumptions 1, 2, 3 the set of fixed points of A in (W, <) is a
non-empty complete lattice and A is order continuous along any monotone sequence
in (W, <). (ii) Under Assumptions 1, 2, 3, 3'the set of fixed points of A in (H, <) (resp.
(H*, <), (H ! <)) is anon-empty complete lattice and A is order continuous along any
monotone (resp. decreasing, increasing) sequence in (H, <) (resp. (H", <), (H!, <)).

Proof The complete lattice structure of these sets of fixed points follows from Tarski’s
fixed point theorem. Next, we prove order continuity along increasing sequences by

9 Note that the same argument applies for semicontinuity in z given any k. As a result, under Assumptions
1,2,3,3’ Aisanincreasing self map on the set of isotone and (jointly) continuous functions. Unfortunately,
as noted before, that set (with the pointwise partial order) is not a complete lattice.

10 Order continuity along monotone F-sequences does not imply that F is isotone though. Consider for
instance F : [0, 1] — [0, 1] such that F(x) = 1 — x. F is clearly continuous along the (only) monotone
recursive F-sequence {1/2,1/2,1/2, ...}, but F is not isotone.
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showing that for an increasing sequence {g,} in (W, <) or in (H, <):

sup({Agn(s)}) = A(sup{g,(s)}).

For such a sequence and for all s € S, the sequence of real numbers {g,(s)} is
increasing and bounded above (by w(s)), thus lim,_  g,(s) = sup{g,(s)}. For the
same reason lim,_, ., Ag,(s) = sup{Ag,(s)}. By definition, for all n» € N, and all
s e S*

/ul(w(S) — Agn(s), 7(8n(s), 2)Agn(s))y (d2)

z

=/u2(w(S) — Agn(5), 7 (8n(5). 2)Agn(5))r (Agn(s), 2)y (dz)
V4

The functions u#| and u» are continuous (Assumption 1), r is continuous in its first
argument (Assumption 3), hence taking limits when n goes to infinity, we have:

/ up(w(s) — sup{Ag,(s)}, r(sup{gn(s)}, 2') sup{Agy (s)})y (dz’)
V4

= /uz(w(S) — sup{Agx(s)}, r(sup{gn ()}, ) sup{Agn(s)})
V4
xr(sup{Agn(s)}, 2)y (d2),

which implies that A(sup{g,(s)}) = sup{Ag,(s)}. A symmetric argument can easily
be made for any decreasing sequence {g,} in (W, <) orin (H, <). This establishes (i)
and (ii). Finally, note that the proof also holds for a decreasing sequence in (H*, <)
(since, as we have noted before, Ay and Agu coincide).11 O

Our final lemma is particularly important for verifying the existence of non-trivial
minimal RE. As is clear from the definition of A#, in all cases of subsets of W, h* =0
is a trivial fixed point. Therefore, the next lemma find a minimal element of H ! that
maps up. Note, we construct this lower bound % to be Isc so that the iterations { A" g}
will be an increasing sequence of Isc functions, which therefore converge in order a
Isc function V{A"hy}.

Proposition 2 Under assumptions 1, 2, 3, 4, there exists a function hg € (H l, <) that
is lower semicontinuous in k and continuous in z such that (i) Vs € S*, Ahy(s) >
ho(s) > 0, and (ii) Vh € (0, ho], Ah > h on S*.

Proof See “Appendix A”. O

We are now prepared to prove our first theorem on the existence of RE in the class
of bounded functions W, as well as characterize the structure of the set of RE. In the
Theorem, & is the function constructed in Proposition 2.

n Similarly, A is order continuous along any increasing sequence in the set of bounded isotone Isc functions.
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Theorem 1 Under Assumptions 1, 2, 3, 3',4: (i) there exist a non-empty complete
lattice of non-trivial RE in W N [hg, w], (ii) The minimal RE in (W N [hg, w], <) (in
(H N [hg, w], <)) is an isotone lsc and measurable function hyin, and the maximal
RE in (W, <) (in (H, <)) is an isotone usc and measurable function huyax. Further,
both extremal RE can be constructed by successive approximations, (iii) there exists
a countable set {h"},eN of bounded measurable functions such that any bounded RE
h € W satisfies h(s) € cl{h'(s), h*>(s), ...} for each s.

Proof (i) From Proposition 2, Ah transforms the subcomplete set of bounded functions
[hg, w] C W. By Lemma 1, A# is isotone. The result then follows from Tarski’s
theorem (e.g.,Tarski 1955, Theorem 1). (i) When restricted to the subcomplete order
interval H' N [hg, w], we have 0 < hpin = V{A"ho} when k > 0 with

hmin(s) = V{A"ho}(s) = lim A"ho(s) = sup{A"ho(s)}.

Notice hmin is Isc as it is the upper envelope of a family of elements of Isc functions.
It is therefore the minimal bounded isotone and Isc RE in W N [k, w]. It is also the
minimal RE in H with the addition of Assumption 3’. Similarly, the maximal RE in
(W, <) is obtained as the inf (pointwise limit) of a decreasing sequence beginning at
w. That is, is:

hmax(s) = A{A"w)(s) = lim A"w(s) = inf{A"w(s)},

which implies that hpax € HY since it is the lower envelope of a family of elements
of (H", <). (ii) Note that the function p : §* x X — R defined as:

pls,y) = — /[ul(w(S) —y.r(y,2)y) —ua(w(s) — y, r(y, 2Hy)r(y. 2Hlydz)
4

is continuous, and the correspondence ¥ : S — R defined as ¥ (s) = [0, w(s)] is
non-empty, compact valued and measurable (the RE are constructed has the nonzero
maximizers of p). As a consequence of the measurable maximum theorem (see for
instance, Aliprantis and Border 1999, corollary 17.8), the correspondence @ defined
as @ (s) = argmaxyey (s) p(s, y) is measurable, non-empty and compact valued. By
Castaing’s theorem (see Aliprantis and Border 1999, Corollary 18.14), this implies
that there exists a countable sequence {h"},cn of measurable selectors from @ satis-

fying:
Vs €S, @(s) = clih' (s), h%(s), ...}

O

We now prove a second existence theorem concerning the existence and compu-
tation of non-trivial least and greatest RE within the subclass of function H" and
H!:
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Theorem 2 Under Assumptions 1, 2, 3, 3°, 4 the set of RE in (H", <) is a non-
empty complete lattice with minimal gmin and maximal elements hmax, and both can
be constructed by successive approximations. All the RE in (H", <) are measurable.
Further, when restricted to H"* N[hg, w), the set of RE is a non-empty complete lattice,
with least and greatest fixed points constructed by successive approximations.

Proof (i) Following the same argument as in Theorem 1, itis only a matter of correcting
hmin at most at a countable number of points to obtain the minimal bounded isotone
and usc RE. Specifically, the minimal RE in (H", <) is the function gpi, : S — X
defined as:

gmin(s) = ki,r;fk{sup{A"ho(k', D}

= inf (V{A"ho} (K', )}V = (k. 2) € [0, kmax) X Z

and gmin (kmax, 2) = V{A"ho}(kmax, z). Indeed, by construction gmin € HY,
gmin(., 2) and g (., z) = V{A"ho}(., z) differ at most at the discontinuity points of
V{A"ho}(., z), and gmin(., z) is the smallest usc function greater than V{A"ho}(., ).
In addition, since V{A"hg} is Isc, for any s € S, gmin(s) = limp_ .+ V{A"ho} (K, 2).
For any s = (k, z) € [0, kmax) X Z, and for all k¥’ > k, by definition of g (., z):

/ul(w(k’, 2)—qk',2),r(qk',2),2Hq k', 2))yd2)
V4

=/u2(w(k’,z)—q(k/, 2),r(qk’,2),2)qk', D))r(qk’, z), 2y dD).
V4

Both functions u; and u» are continuous and r is continuous in its first argument,
taking limits when k" — k™ on both sides of the previous equality implies:

/u1 (W(s) — gmin(s), 7 (gmin(5), 2)gmin(s))y (d2")

V4

=/uz(w(S) — &min(8), 7 (gmin(5), 2) gmin ($))r (gmin (), 2y (d2)),
V4

which proves that Agmin(s) = gmin(s). The set of RE in (H”, <) is then the set of fixed
point of A that is bounded, isotone, and usc. For (ii), there are a non-empty complete
lattice of RE follows from Tarski’s theorem, noting the fact that H ' [ho, w]is a
complete lattice, and A# is isotone. The successive approximation result follows from
a similar construction to part (ii) noting that as a consequence of the Theorem 8(ii), (a)
A must have a fixed point greater hg, and (b) Ah is order continuous when restricted
to H' N [hg, w], we must have 0 < Apin = V{A"ho} when k > 0. o

Finally, note that it is easy to modify the usc function A at most at a countable
number of points to construct the maximal bounded isotone and Isc RE.
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3.3 Uniqueness of RE under capital income monotonicity

Under the additional assumption of capital income monotonicity (the only case dis-
cussed in Wang 1993), we prove the existence of a single Lipschitzian #* that is
unique relative to a very large set of functions (namely, the set of bounded increasing
functions (H, <). The argument is direct: as under capital income monotonicity, any
RE for investment that is semicontinuous must both be usc and Isc (and, therefore
continuous). This turns out to imply the RE equilibrium consumption decision policy
is also isotone (i.e., we have both w — A* and h* are jointly isotone). As under our
assumptions, w is also Lipschitz continuous in its arguments, both consumption and
investment must Lipschitz continuous)

Theorem 3 Under Assumption 1, 2, 3, 3, and 4, if r(y, z)y is isotone in y for all
z € Z (an hypothesis we call “capital income monotonicity” (i) there exists a unique
bounded isotone RE h* in H. Further, the corresponding (Markovian) equilibrium
consumption policy, w — h* is also isotone, which implies that both h* and w — h* are
Lipschitz continuous. Finally, (ii) the uniqueness result is robust relative to the space
(H N [ho, w], <).

Proof (i) Under capital income monotonicity, for all s € S$* the following equation in
y:
/ul(w(S) =y, (v, Hyydd) = /uz(w(S) =y, r (3, 2Hr(y, 2y d).

VA VA

has a unique solution, denoted 4*(s). The function ~* is thus the maximal and minimal
RE and therefore usc and Isc in k, i.e., continuous in k. By definition, for all s € S*:

/ w1 (ws) — h*(s), r(h*(s), 2 )h*(5))y (&)

z

=/uz(U)(S)—h*(S),r(h*(S),Z/)h*(S))r(h*(S),Z’)V(dZ’). (E™)

V4

Suppose there exists s = (k, z) € X* x Z such that w(k, z) — h*(k, z) decreases with
an increase in k. Then, for all 7/ € Z, the expression:

ur(wik, 2) — h*(k, 2), r(h*(k, 2), 2™ (k, 2))

increases with k£ under the assumption of capital income monotonicity, and given that
h*(k, z) is isotone in k, ujp > 0 and u; < 0. However, for all 7’ € Z, the expression:

ur(wk, z) — h*(k, z), r(h*(k, z), 2Yh* (k, 2))r(h*(k, 2), Z')

necessarily decreases with an increase in k. Thus, right-hand side and the left-hand
side in equation (E”) above move in opposite direction when k increases, which is
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impossible. As a result, w(k, z) — h*(k, z) must be increasing in k. The same argu-
ment works to show that w(k, z) — h*(k, z) must be isotone in z. Finally, under the
assumption that w is continuous, if both the equilibrium investment and the equilib-
rium consumption policies are isotone, they both necessarily must be continuous. (ii)
To see the uniqueness result in (i) is robust to the space (H N [hg, w], <), notice in the
above argument, if 1*(k, z) € (H, <) is a fixed point, Ah*(k, z) has w(k, z) —h*(k, 2)
increasing when k > 0. As the set of fixed points in (H N [hg, w], <) is a complete
lattice, wlog say we have two ordered fixed points, 79 < k] < k3. When k > 0, by
the definition of Ah at A3, we have

2 k2, ) = —/u1(w B r (i3, 23y (d2)
V4

+/u2(w — hy, r(hy, 25 rhs, 2)ydz) =0
z

As by hypothesis, h] # h3 for some k> 0, h’f(l%, 7)< h;(l@, 7), by capital income
isotonicity, this implies Z(h7, 12, z,h}) > 0, which is a contradicts i} being a fixed
point at k. O

Finally, we stress three important facts relative to the claims made in the existing
literature. First, our uniqueness under capital income isotonicity works on relative to
the space (H N [ho, w], <). In particular, we cannot rule out other RE in the interval
[0, hg), where hq is the lower positive solution (strictly positive when £ > 0, all
z) constructed Proposition 2. It remains an open question if any such uniqueness
holds relative to larger sets of functions (even bounded increasing functions, let alone
bounded functions) in the interval [0, /(). Second, our uniqueness result per RE is not
implied by the uniqueness argument in Wang (1993) (Lemma 3.1) for “self-fulfilling
equilibria” (even under capital income monotonicity). This, therefore, implies that our
uniqueness result does not imply the “self-fulfilling expectations correspondence’ for
our models is a function even under capital income isotonicity (as our uniqueness result
is relative only to the space (H N [hg, w], <) as discussed above).!? Third, capital
income isotonicity is not necessary for uniqueness of RE within the class of bounded
increasing functions (as shown by the following example shows).

Example 1 Consider the utility function:
In(c;) + In(er41),
in which case the maximization problem of an agent is:
max A in(we) =+ [ 000s). ) |

YE[0,w(s)]
V4

12 This correspondence is defined in Wang (1994), Lemma 3.1.
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and the associated first-order condition is:

(w(s) —y) =1y,

so that the unique RE is the function 7 = .Sw.

4 Computing Stationary Markov equilibrium

We define a SME as a “non-trivial” (i.e., not all mass is concentrated at 0) invariant
distribution, in line with the work of Hopenhayn and Prescott (1992) and Futia (1982),
and in contrast to Wang (1993) and Wang (1994) who follows the path of Duffie et al.
(1994) and focuses on ergodic distributions. Our main contribution in this section is to
provide explicit iterative algorithms that converge in order (and topology) to extremal
invariant probability measures corresponding to any isotone and measurable RE 4.
When the RE is also continuous (which is the case under capital income monotonicity),
the stochastic operator has the Feller property and is thus an order continuous operator
mapping the complete lattice A(X, B(X)) into itself. Applying Theorem 6 of Sect. 2,
we prove that the set of SME is a non-empty complete lattice. When the isotone RE is
only semicontinuous, the stochastic operator is at least order continuous along some
recursive sequences, and this is sufficient for establishing the existence of minimal
and maximal SME by Corollary 7 of Sect. 2. We treat the case of & continuous first
before proceeding with the general case.

4.1 SME associated with a continuous isotone RE

Any measurable bounded RE % induces a Markov process for the capital stock repre-
sented by the transition function Py defined as:

VA € B(X), Py(k, A) = Pr{h(k.2) € A} = y({z € Z, h(k.z) € A})

= / xa(h(k, 2))y(dz).

z

and an associated operator Th* (AX, B(X)), >5) — (A(X, B(X)), >;) defined as:

VB € B(X), pi+1(B) = T) i1 (B) = / Py(k, B)p (dk). MI)

That is, ;41 (B) is the probability that k; lies in the set B if k; is drawn according
to the probability measure ;. We define a Stationary Markov equilibria (SME) as a
non-trivial fixed point of 7;".
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Definition 4 Given a measurable RE 4, a SME is a probability measure u €
A(X, B(X)) distinct from 8¢ such that:

VB € B(X), u(B) = Ty n(B) = / Py (k, B)p(dk).

It is easy to verify that if / is isotone and continuous, the Markov operator 7, is an
isotone self map on (A(X, B(X)), >;) and P, has the Feller property or, equivalently,
that 7,7 is a weakly continuous and isotone operator (see, for instance, Exercises
8.10 and 12.7 in Stokey et al. 1989). These two properties imply that 7" is order
continuous along any monotone sequence. Indeed, if the sequence {1, } is increasing,
then u, = p = V{u,}, so that T, (u,) = T, (V{u,}) by weak continuity. Since
Th* is an isotone operator, the sequence {T};k (mn)} 1s also increasing and therefore
T (un) = VAT, (jun)}. By uniqueness of the limit, 7, (V{u,}) = V{T; (u,)}, which
proves continuity along any increasing sequence. The existence and computational
results below follow directly from Theorem 6 of Sect. 2.

Theorem 4 For any continuous and isotone RE h, the set of fixed points of T, is a non-
empty complete lattice with maximal and minimal elements, respectively N{T;" 5. }
and V{T;5p}.

Since our definition of SME excludes &g, the previous result does not necessarily
imply the existence of a SME. Indeed, suppose for instance that:

V(k,z) € S*,0 < h*(k, 2) < k.

It is then easy to see that given any initial distribution of capital stock, in the long run,
the capital stock will be 0. The only fixed point of 7}% is &o, and the set of SME is
therefore empty, a case taking place for instance when w(k, z) < k forall (k, z) in S*.
Thus, one needs sufficient conditions under which the set of SME is non-empty, and it
is most useful to express any such condition in terms of restrictions on the primitives
of the problem (unlike in Wang 1993).

While condition (I) in Assumption 5 below is necessary, condition (II) is sufficient
for the existence of a specific element iy of H to be mapped up strictly by A. It implies
that the isotone operator A maps the order interval [hg, w] C H (a complete lattice
when endowed with the pointwise order) into itself, so that A must have a fixed point
in this interval. Since under the assumption of capital income monotonicity, the fixed
point 2* of A in H is unique, it must be that:

Yk € [0, ko] and Vz € Z, h*(k, 2) > ho(k, 2)(> k).

Given this property of 2*, we show that there exists a fixed point of 7}% that is distinct
from 8p. The argument is the following: Consider any measure (o with support in
[0, ko] and distinct from 8y (we write o >¢ o). Since A™ maps up strictly every
pointin [0, ko], o is mapped up strictly by the operator 7}%. By isotonicity of 7, the
sequence {7} j1o} is increasing, and by order continuity along monotone sequences
of T}, it weakly converges to a fixed point of 7}%. Clearly, by construction, this fixed
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point is strictly greater than §o. We spend the rest of this subsection of the paper to
formalize this argument.

Assumption 5 Assume that:

(I) There exists a right neighborhood A of 0 such that for all k € A and all z € Z,
w(k, z) > k.
(I) The following inequality holds:

lim uy(w(k, Zmin) — &, 7(k, Zmax)k)
k—0t

< klirg+ uz(w(k, Zmin) — k, (K, Zmax)k)r (K, Zmin)-

Note that for log separable utility, condition (IT) in Assumption 5 is equivalent to:
lim (w(k, zmin)/ k) > 2,
k—0t

and under a Cobb-Douglas production function with multiplicative shocks, itis trivially
satisfied (and so is condition (I)). For a polynomial utility of the form u(cy, c2) =
(c1)™ (c2)™, the condition is equivalent to:

lim, (w(k. Zmin)/K) > [1 SRUIAGEILY Zma*’} ,
k=0 n2r (k, Zmin)
also trivially satisfied with Cobb-Douglas production and multiplicative shocks.

We can prove a key proposition that extends the uniqueness result in Datta et al.
(2002) and Mirman et al. (2008) obtained for infinite horizon economies to the present
class of OLG models under Assumption 5. In particular, we show existence of minimal
and maximal SME.

Theorem S Under Assumption 5, the set of SME associated with an isotone contin-
uous RE h is a non-empty complete lattice. The maximal SME is NT; 8y, ), and
there exists ko € X such that the minimal SME is V{T,\'8:} for any 0 < k" < k.

Proof The proofisin two parts. Part 1 establishes the existence of /¢ that is mapped up
strictly by the operator A, and Part 2 shows the existence of a probability measure 1t
that is mapped up T}, where 4" is the unique RE. Part 1. By continuity of all functions
in k, the inequality in Assumption 5 must be satisfied in a right neighborhood of 0.
That is, there exists & = (0, ko] C A such that, Vk € ® :

up(w(k, zmin) — k, 7 (k, Zmax)k)
< up(w(k, Zmin) — k, r(k, Zmax)k)r (k, Zmin)-
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Consequently, Vk € ©® = (0, ko]:

/ul(w(k,z) —k,r(k,2)k)G(dZ)

Z
< ur(wk, Zmin) — k, 7 (k, Zmax)k)
< up(w(k, zZmin) — k, r(k, Zmax)k)7 (k, Zmin)

< /uz(w(k, 7) =k, r(k, 2)k)rk, 2)G(dZ).
Z

Next, consider the function /g : X x Z — X defined as:

0 if k=0,zeZ
hotk,z2) =k if O0<k<kopzeZ.
ko if k>ky,z€eZ

We prove now that Ahg > hy. First, consider 0 < k < kg, z € Z, and suppose that
Ahgo(k, z) < ho(k, z) = k. Then:

/ul(w(k,z) —k,r(k, 2)k)G(dZ)

z

< /uz(w(k, 2) =k, rk, 2)k)rk, 2)YG(dZ)

z

S/uz(w(k, z) — Aho(k, 2), r(k, 2 ) Aho(k, 2))r (Aho(k, 2), 2)G (dZ)),
V4

where the first inequality stems from the result just above, and the second from uy; <

0,u12 > 0 and r decreasing in its first argument. By definition of Ahy, this last
expression is equal to:

/ul(w(k, 2) — Aho(k, 2), r(k, 2)Aho(k, 2))G(dZ)).
z
Thus, we have Ahg(k, z) < k and:

/ul(w(k, 7) —k,r(k, k)G (dzZ)

z

< /ul(w(k,z) — Ahg(k, 2), r(k, 2)YAho(k, 2))G(dZ).
Z

which contradicts the hypothesis that #1; < 0 and u12 > 0. It must therefore be that
for all k € (0, ko] and all z € Z, Aho(k, z) > ho(k,z) = k, i.e., A maps hq strictly
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up at least in the interval ]0, ko]. Finally, for k > ko, since Ahg is isotone in its first
argument:

Ahg(k,z) = Ahg(ko, 2) > ho(ko, 2) = ko = ho(k, 2).

We have thus established that A maps kg up (strictly). Since the order interval [/, w]in
(H, <)isacomplete lattice when endowed with the pointwise order, then by isotonicity
of A there must exist a fixed point of A in that interval. Under capital income isotonicity,
h* € [hg, w]. Part 2. Consider any probability measure in (A(X, B(X)), >;) with
support in the compactinterval [0, ko] and distinct from 89. We show that 7%\ 1o > po.
Consider any f : X — R, measurable, isotone and bounded, we have:

/ [ / f(k’)Ph*(k,dk’)} po(dk) = / [ / £k, z))k(dz)} o(dk)

=/ / FU* k. 2)(dz) | po(dk) + / [/ f(h*(k,z))k(dz)}uo(dk)

[Oka] V4 [k()’kmax]
> / FRpo(dk)
[0,ko]

since h*(k, z) > k on [0, kg]. Note that if f is strictly positive on [0, ko] then the last
inequality is strict. We have just demonstrated that Th**,u,o >; Mo and that Th**ll«o is
distinct from wg, so we write Thﬁ wo >s Ho(>s 80). By order continuity along any
monotone sequence of 7%, necessarily the increasing sequence {7} 1o} converges
weakly to a fixed point of T} strictly greater than §y. In addition, it is easy to see that
there cannot be any fixed point of Th** with support in [0, ko] other than &g so that the
minimal non-trivial (i.e., distinct from &) fixed point of 7}%, which is by definition
the minimal SME, can be constructed as the limit of the sequence {7} 110}, where
wo = 8 forany 0 < k’ < ko. This completes the proof that the set of SME is the
non-empty complete lattice of fixed points of 7%, minus 8¢ and that the maximal SME
and minimal SME can be obtained as claimed. O

4.2 Constructing extremal SME for semicontinuous RE

Continuity of 72, however, is not necessary for 7, to be order continuous along recursive
monotone Th*-sequences. Indeed, consider iid shocks as a special case of Markov
shocks for which the transition function is defined as Q(z, B) = G(B), and recall
that a Markov transition function Q satisfies Doeblin’s condition is there exists § €
A(Z,B(Z))and # < 1 and n > 0 such that:

VB € B(Z),5(B) >0 impliesthatVz € Z, Q(z, B) > n.

In particular, since Q(z, B) = y(B),thenany 8 = n < 1 and § = y show that iid
shocks trivially satisfy Doeblin’s condition. Clearly, if Q satisfies Doeblin’s condition,
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then the transition function Pj, corresponds to any measurable RE £ and is defined by:

Q@ B) if h(x,z) €A

VYA x B € B(S), P,(x,z; A, B) = {0 otherwise.

also satisfies Doeblin’s condition. Consequently, by Theorem 11.9 in Stokey et al.
(1989), the n-average of any recursive T;-sequence converges in the total variation
norm and therefore weakly converges to a fixed point of 7;" (which is isotone). This
implies that any monotone recursive 7}-sequence weakly converges and that the limit
is a fixed point of 7. This precisely proves that 7" is order continuous along recursive
monotone 7}’-sequences. Notice, this is basically the argument followed in Morand
and Reffett (2007) to prove that in an OLG model with Markov shocks associated
with the transition function Q. That is, if Q is increasing and satisfies Doeblin’s
condition, then the measurability of any isotone RE £ is sufficient for 7" to be order
continuous along recursive monotone 7);-sequences. By a standard argument (i.e., the
Tarski-Kantorovich theorem), this type of order continuity permits the construction of
extremal SME by successive approximations, as stated in the following result:

Theorem 6 Under Assumptions 1, 2, 3, 3', 4, and 5, for any measurable RE h in H,
there exists a non-empty set of SME with maximal and minimal elements respec-
tively given by Ymax(h) = AT} 8(kmar.zma)} @A Vmin(h) = V{T;" o}, where
1o = 8k 2 JOr any O < k' < ko, ko constructed from Assumption 5.

Since all elements of H" are measurable (see “Appendix B”), the following result
also holds:

Corollary 1 Under Assumptions 1, 2, 3, 3", 4, and 5, to any RE in H" corresponds
a non-empty set of SME with maximal and minimal elements.

Finally, for economies satisfying Assumption 4, by our results in the previous
section of the paper, there exist minimal and maximal RE A, and hpax in H, and
both are measurable. Necessarily, any other RE 4 in H satisfies hmin < h < hmax,
and therefore:

Ty, b0 < Tp 1o,
and recursively,
Ymin (fimin) = V{T;,:inMO}neN = V{T;nMO}neN = Ymin(h).

By a similar argument:

Vmax (hmax) = /\{Th*r:ﬂx(s(kmax,Zmax) }nGN

v

/\{T;na(kmax,Zmax)}l’lEN = Vmax(h),

and this proves that ymax (hmax) and Ymin (Amin) are the greatest and least SME, respec-
tively. We state this very general result in the last proposition of the paper.
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Theorem 7 Under Assumptions 1, 2, 3, 3, 4 and 5, the set of SME is non-
empty and there exist maximal and minimal SME, respectively VYmax(hmax) =
/\{Th*rgax‘s(kmax,Zmax)}neN and Ymin (Mmin) = V{Th*:nlinMO}neN where o = 3/, zin) JOT

any 0 < k' < ko, ko constructed from Assumption 5.

4.3 Uniqueness of SME under capital income monotonicity

Significant progress has been made in proving uniqueness of SME in stochastic opti-
mal growth economies, with distinct (but not unrelated) methods of proof showing
some success. One line of proof uses a Liapunov function constructed from the Euler
equation (see for instance, Nishimura and Stachurski 2005, among others). Another
approach is presented in Mirman (1972, 1973), Brock and Mirman (1972) and Zhang
(2007). This method rests on the stability properties of the “reverse Markov process”
associated with the inverse of the optimal policy. Finally, a third alternative to stochas-
tic stability is to prove directly the existence of a monotone mixing condition under
a RE policy function (e.g., using the equilibrium Euler equation), as in Hopenhayn
and Prescott (1992).1t turns out all of these results are straightforward to apply to
models with infinitely lived agents, where there is a set of stationary equilibrium Euler
equations describing the stochastic dynamics in the model. This is not the case for
stochastic OLG models, unfortunately.

One problem that immediately arises, for example, when applying the stochastic
stability approach of Nishimura and Stachurski (2005) is finding the appropriate Lia-
punov function (or “norm-like function) for the problem. In a model with infinitely
lived agents, one can use the equilibrium Euler equation (which is stationary in poli-
cies). Unfortunately, such a construction is far from obvious in stochastic OLG models
(as consumption and investment, for example, are not stationary and depend on the
age of cohorts (e.g., in a two-period model, consumption in first and second period are
distinct functions, and knowing investment in the first period is not sufficient to build
the L-function). This same exact issue also makes it difficult to pursue the monotone
mixing condition approach in Hopenhayn and Prescott (1992).

It turn out, though, the approach of Mirman (1972, 1973), Brock and Mirman (1972)
and Zhang (2007) does apply to stochastic OLG models under the assumption of capital
income monotonicity. That is, the model just works on the properties of the policy
directly (perhaps along with the equilibrium Euler equation where they are defined)
and studies the stochastic structure of inverse Markov processes. We, therefore, just
apply the results in this literature to verify conditions for stochastic stability. One nice
feature with these techniques is one does not need to assume the shock process admits
a density.

For this application, we must an assumption on multiplicative shocks.

Assumption 6 The production function F(k,n,K,N,z) : X x [0,1] x X X
[0, 1] x Z — R4 has positive multiplicative shocks (that is, F(k,n, K, N,z) =
F(ksl/t’ KvN)'Z

We now have the following Proposition.
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Proposition 3 Under assumptions 1,2,3,3°,4,5, 6, if r(y, 2)y is isotone in y for all
z € Z (capital income monotonicity), there is a unique SME, precisely equal to
AT Sty }-

Proof The proof follows as an application of Zhang (2007) for the special case of
bounded shocks (e.g., see also Brock and Mirman 1972). We sketch the outline of the
proof. By Theorem 3, the optimal consumption and optimal investment are monotone
under capital income monotonicity under Assumptions 1,2,3,3’,4 and capital income
monotonicity. By Theorems 6 and Corollary 1, we have the existence of non-trivial
probability measures mapped up and down and the existence of a non-trivial fixed
point in Theorem 7 under Assumption 5 (as, for example, in Zhang 2007, Lemmas
5, 7 and Proposition 1). Assumptions 4 and 5 of Zhang (2007) are satisfied in the
case of bounded strictly positive multiplicative shocks (our Assumptions 2 and 6).
The uniqueness of a non-trivial fixed point, then, relies on the properties of the reverse
Markov process introduced by Brock and Mirman (1972) and Zhang (2007), which
are easily verified for the unique minimal state RE in Theorem 3. Then, the stability
result in the Proposition follows exactly as in the proof of Zhang (2007) (Proposition
3 of Sect. 5.3).13 o

One remark on Proposition 3. This uniqueness result of SME relies on the stochastic
stability of any continuous RE (as in Theorem 3), the monotonicity of RE, as well
as the uniqueness of minimal state space RE. As we shall show in the next section,
if we “perturb” these space of economies in Sect. 2 to include production functions
that imply income processes for households that are not increasing in states, we will
lose existence of (i) monotone RE and (ii) uniqueness of continuous RE. In this case,
Proposition 3 will fail. See Sect. 5.1.

5 Non-monotone minimal state space RE via isotone decompositions

We now extend our methods to economies where RE are not monotone. We study three
cases: (i) models with two-period lived agents, but more general income processes,
(i1) models with elastic labor supply, and (iii) models where agents of each generation
live N + 1 periods for oo > N > 1. To study RE in these economies, we embed
the actual system of RE functional equations (which, in general, neither defines an
obvious monotone operator nor transforms a space of functions that are monotone)
into a new system of functional equations defined on a enlarged state space. This new
set of functional equations has very sharp monotone structure (namely it defines a
monotone operator that transforms a space of functions defined on an enlarged set of
aggregate state variables). Exploiting this monotone structure, we compute the fixed
points of this new operator and then recover the actual set of minimal state space RE
for our OLG economy as a restriction of these solutions along a particular subspace
of this enlarged system of functional equation. We refer to this procedure as a isofone
decomposition method.

13 See also Brock and Mirman (1972), Sect. 4.
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We begin with some definitions. Let (X, <) be a poset, f(x, y) a function. We say
f 1 X x X — X is mixed monotone if (i) the partial map f,(x) is isotone in x, each
y € X; (ii) fy(y) is antitone (i.e., monotone decreasing) in y, each x € X. We denote
by (X d fd) the space of (X, <) endowed with its dual partial order <4 Then, a mixed
monotone function f(x, y) is actually isotone (in each argument, not jointly) in the
product space X x X“. We say a function g(x) admits an isotone decomposition if g (x)
can be embedded into partially ordered space X x Y (with the product order where both
X and Y are posets) as a diagonal of the function f (x, y) suchthat f (x, y) has (i) fy(x)
isotone x, each y € X, and (ii) f;(y) isotone in y, each X, with (iii) g(x) = f(x, x),
where Y could either be X or X¢. Notice, for an isotone decomposition, f(x, y) is not
jointly isotone. Similarly, a function g(x) admits a mixed-monotone decomposition
if we change condition (ii) for an isotone decomposition to the following condition:
(ii)’ fx (y) antitone in y, each x € X. So a function that admits a mixed-monotone
decomposition admits an isotone decomposition on X x X¢.

In the next section, we first provide a simple class of economies closely related to
those in Sects. 2—4 but where (i) the minimal state space RE exist, (ii) capital income
monotonicity holds, but (iii) the uniqueness result in Theorem 3 fails.

5.1 Failure of uniqueness of RE in simple models

We now consider a simple modification of economy in Sect. 2, but with primitive data
for production that implies non-monotone lifecycle income processes. To make our
point as simply as possible, we modify Assumption 3, so lifecycle income processes
admit a mixed-monotone representation on an enlarged state space.

Thatis, recalling X C Ris the space for the endogenous aggregate capital (endowed
as before with the standard pointwise partial order), let X be the space X endowed with
its dual partial order, and define X¢ = X x X¢, with typical elementk, = (k, k%) € X¢.
So the expanded aggregate state variable will be s, = (k°, z) € S = X° x Z . Assume
the (reduced-form) production function F is consistent with wages w and rental prices
of capital r from profit maximization both admit a mixed-monotone decomposition
w®: S, > Ry and r¢ : S, — Ry, respectively. The new version of Assumption A3
is therefore:

Assumption 3" The function F(k,n, K,n, K% n,z) : X x [0,1] x X x [0, 1] x
X% x[0,11 x Z — Ry is:

I twice continuously differentiable in its first two arguments;
II isotone in all its arguments, strictly increasing and strictly concave in k and n;
Illa r¢(k, kd, z) = Fi(k, 1,k, 1, k4, 1, z) isotone and continuous in k, antitone and
continuous in k9, isotone and continuous in z, with limg_or(k, k, z) = +00;
IIb we(k, k4, 7)) = F(k,1,k, 1, k1, z) isotone and continuous in k, antitone and
continuous in k¢, isotone and continuous in z, with limy_, o+ w(k, k, z) = 0.

Examples of models that satisfy Assumption 3" are easily produced. For exam-
ple, consider OLG models with production nonconvexities (e.g., the non-classical
model of growth described in Romer 1986). Other natural examples include mod-
els with taxes on current and future income are regressive with lump-sum transfers
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(e.g., Santos 2002).'* Under Assumption 3”, first period income can be written as
m‘i’ (se) = we(s.), which is mixed-monotone decomposition of w, while second period
income is m5(s,) = re(s;)k’, where r¢ is a mixed-monotone decomposition of r that
depends on tomorrow’s expanded state variable s;.

Define the sets H¢ = {h¢|h¢ : S, — Ry, 0 < h® < w¢, h® Borel measurable s.t.
he is isotone on X¢}, and HC = {h¢ € H¢|w® — h® isotone on X¢}. Give each set
the uniform topology and the pointwise partial order (noting the dual order on X%).
Then, the set H¢ is a countably chain complete when endowed the product order on
X¢ x Z, while HC is countably chain subcomplete in H ¢ 15 For the economies, under
Assumptions 1, 2, 3", 4, if households use the law of motion 4¢ € H* to calculate the
continuation of the aggregate economy in their first period of life in a candidate RE,
and solve a standard optimization problem, letting initial states all be positive (i.e, for
§* = X* x X% x Z, have initial state s, € S¥), then the young agents at h¢ € H¢
solve:

max /u(mf(se) — ¥, 7(h(se), 1 (se)), 2) )y (d2),
yE[qul] 7

Notice, this decision problem coincides with the household’s decision problem in a
minimal state space RE along the restriction to the subpace of the enlarged state space
where k = k9, each z (i.e., the actual household’s problem is embedded in a decision
problem with a larger set of state variables).

To compute RE, we modify our previous Euler equation method to accommodate
this more general framework as follows: for k¢ >> 0, any h¢ € H®, define Ah¢ as
follows: if h¢ € W€ (resp, h® € H®), h® >> 0, define Ah°(s,) as the unique solution
for y in:

14 Fora very simple and important example, consider the case of nonconvexities in production ala Romer
(1986). Assume f(k, K) = k% KP, withoo > & + B > 1 (a, B both positive). Here, we could take

ek k) z = )P - 2

s0 in equilibrium we have increasing returns socially.

An example where this issue arises because of taxes is the following. Say the production function F is
concave, CRS, and supermodular in all arguments (e.g., Cobb-Douglas). If we also had a regressive tax on
capital income as in Santos (2002), the return on capital would admit a mixed-monotone decomposition as
follows:

reke) -z =rtk? - z- (1 — 1 (k, 2)).

where r = f/ k), and the tax 7). is decreasing in k. Alternatively, if the tax was progressive for labor
income (i.e, increasing in k), we would have

wé (k) = wk)(1 — T (k%))

Notice, of these would be isotone on X¢ = X x x4,

15 Neither are complete lattices because of the measurability conditions in the definitions of the spaces.
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Z(y, 0. h) = / [y (S (s0) — v, r(y, hE(s9), 2))
Z

—uz(mf(se) =y, r(y, h*(s*), Hy)r(y, h*(s°), 2H1y (dz) = 0

and Ah®(s.) = 0 whenever h¢(s.) = 0 elsewhere.
Noting the dual order on X¢, we have Z: (i) strictly increasing in y for each (s, h¢);
(ii) antitone in (s,, h¢) for each y € R . As a result:

Lemma 3 Under Assumptions 1, 2, 3", the operator A is an isotone self map on
(H¢, ).

Proof For fixed (se, h¢), h® > 0, h® € H®, Z is well defined. Further, as Z is
continuous and strictly increasing in y, Ah¢(s.) is also well defined (i.e., non-empty
and single valued) and bounded. Further, by comparative statics in (i) and (ii) above
imply when h¢ € H¢, h® > 0, we have Ah® € H°. Finally, if h¢ € H¢, h¢ > 0,
Z is Caratheodory function (continuous in y and measurable in s., each h¢). By
Fillipov’s measurable selection theorem (e.g., Aliprantis and Border 1999, Theorem
18.17), Ah®(s.) admits a measurable selection. As Ah°(s.) is single valued, it is the
measurable selection. Noting the definition of Ah° elsewhere, if i € H€ (respectively,
H¢), Ah¢ is measurable. All these facts together imply Ah¢ € H¢. Also, that for fixed
s¢, Ah® is an isotone operator on H¢ that follows from the comparative statics in (i)
and (ii), noting the definition of Ah¢ when h¢ % 0. O

Of course, the actual state variable for the economyiss € S = X x Z (not, s, € S,);
but, by construction, S is embedded in S, as the product of (a) the diagonal of X x X d
and (b) the shocks Z. Let H¢ be the of functions h € H° restricted to s € S, and HE
be the space of functions & € H € restricted to S, and note wék,k,z) =w e HSC by
construction. Before we proceed to our main result, consider the following version of
Assumption A4, which we shall refer to as capital income mixed-monotonicity:'®

Assumption A4’ Assume F is such limy_, o+ 7 (k, k¢, zmax)k — 0, with r(k, k¢, 2)k
increasing in k and r (k, kd, z) falling in k9.

We now prove the main theorem in this section:

Theorem 8 (i) Under Assumptions 1, 2, 3", the set of fixed points of A in (H¢, <)
is a non-empty countable chain complete poset, such that inf, A" (w®) — h¢ € H°.
Further, a minimal state space RE for this economy is h* = h¢(k,k,z) € HE, with
h*(k,z) > 0 when k > 0. Finally, under generalized capital income monotonicity in
Assumption 4, the RE h*(k, z) is continuous in k, and measurable in z.

Proof (H®, <) is a countably chain complete poset.!” That the operator Ah¢ is order
continuous in W¢ (resp, H¢) follows from an argument similar to Lemma 2, noting

16 Fora simple example, again take the production function in Romer (1986), with
F(k,K,z) = k*KPz

but now for e, B > 0, 0 < e + B < 1. Then, we could take r¢(k, k9, ) = a(k9)*~1 KBz, which is both
falling when k = k4, and has r(k, k, 2)k increasing in k, with the limiting condition also holding.

17 1., complete only with respect to arbitrary sequences.
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the pointwise convergence of ¥ in y and h¢. Then, the set of fixed points of Ah° is
countably chain complete from a theorem in Balbus, Reffett, and Wozny (?, Theorem
2.1). Noting further that w® € H¢, wehaveinf, A" (w®) — h¢ € H° the greatest fixed
point follows from the Tarski-Kantorovich theorem. In particular, as w(k, k, z) € H ¢
we have h*(k,z) = hS(k, k% 2) € HSC the greatest fixed point in HSC. The fact that
we have h*(k, z) > 0 when k > 0 follows from the Inada condition in A1, and hence
inf,, A"(w®) — hS(k, k,z) = h*(k,z) > 0 when k > 0. This all implies 2*(k, z) is a
(non-trivial) RE for this economy. Finally, that h*(k, z) € H* is continuous follows
the continuity part of the argument in Theorem 3 (i.e., as at any fixed point 4}, when
k{ > k5, under the generalized capital income monotonicity Assumption in A4, the
second term of Z is falling in k¢ at h¢. Hence, we must have Ah¢(k°, z) such that
(m{ — Ah$)(k¢, z) must be rising (so that the first term of Z is falling). O

One key remark needs to be made. As h¢ (k, k, z) = h*(k, z) is not monotone neces-
sarily under capital income mixed-monotonicity, the uniqueness part of the argument
for RE in Theorem 3 fails. That is, one can perturb the vector (k, k4 ) in a manner such
that the monotone comparative statics needed for the uniqueness part of the proof of
Theorem 3 fails (as comparative statics of two terms in Z under that perturbation at
h&(k, k¢, z) are ambiguous). That is true, in particular, when k = k4 (as h*(k,k, 2)
is not required to be monotone in k). So, many zeros of this equation are now possi-
ble in any RE at (k, k, z), and this is true even under a version of the capital income
mixed-monotonicity condition (e.g., OLG models with Romer technologies).

5.2 RE in models with elastic labor

We new use our isotone decomposition method to compute RE in two-period stochas-
tic OLG models with elastic labor supply. For this section, we adopt the following
variation of our original assumptions in Sect. 2:

Assumption 1’ The utility function is U(c, 1) = u(c) + v(l), where u:K — Ry or
u(c) =1Inc, v :[0,1] — R, where U(c, 1),

I twice continuously differentiable;

IT strictly increasing in each of its arguments and jointly concave;
I lim,_, g+ v'(I) = +00; lim_ou'(c) = +00
IV u/(rx)r is increasing in r, each x > 0

Also, for the next two subsections of this paper, we shall assume:

Assumption 2’ The random variable z is iid with probability measure denoted y with
support a countable subset set Z = [Zmin, Zmax] C R With Zmax > Zmin > 0.

Finally, we need a slightly modified version of Assumption 3 to accommodate
elastic labor in the production decisions (i.e., we need a notion of “labor income
monotonicity”):

Assumption 3" The production function F(k, n, K, N, z) : X x[0, 11x X x [0, 1]x
Z — R, in constant returns to scale in its first 4 arguments and has f>(k.n, k,n,z)-n
increasing in n, each k.
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Assumption 1’ is the only assumption we need to discuss. It is standard in applied
work using lifecycle models, as the condition is satisfied, for example, for u(c) and
v(l) power utility (while the separability condition in assumption A1’(i) is typical in
applied work lifecycle models). We also remark, assumption 2/, for this section, is
just a simplifying assumption and is used to remove non-essential technical issues
in this section associated with measurability.'® It is worth mentioning that although
A2’ is restrictive, it is also typical in the theoretical literature on existence of RE in
stochastic OLG models (e.g., Citanna and Siconolfi 2010). Assumption 3" places
restrictions on the class of production functions and equilibrium distortions that we
allow. It is satisfied for OLG models with nonconvexities in production (e.g., models
with production externalities ala Romer 1986), as well as the class of tax structures
considered in the infinite horizon case with elastic labor (e.g., Datta et al. 2002).

Let N (k, z) be a continuous feasible aggregate labor supply decision (where feasi-
bility requires 0 < N < 1 for all (k, z)). Then, when N > 0, s € S*, for an aggregate
law of capital & € W (where now the function space W is defined using the upper
bound wy (s) = w(k, N(k, z), z) for the elastic labor case), a young agent solves the
following problem:

h(s)

max - -
yel[0,wy (s)],nel0, N(h(s), 7))

1]u(wzv(S)n—y)ﬁLv(l—n)+/u(r( ),Z’) - y)y(dz)

ey
where, under Assumption 2/, the integral is just a sum. When ¢ > 0, imposing n* =

N* = N, using the first-order condition on labor supply, we can define an equilibrium
labor supply function to be the n*(c, k, z) the solves:

V(1 —n*(c, k, 2)) =w(k,n*(c, k, 2))
u'(c)

If we additionally let n*(0, k, z) = 1, under Assumptions Al” and A3", n*(c, k, z)
is increasing in k, decreasing in ¢, and continuous in all its arguments. Also, define
nr(k, z) as the solution to

vVl —nygk, 2)
u'(wk,ny(k,z),2)

= w(k, n sk 2),2)

where 7 r is the lower bound for labor supply and is positive when k£ > 0 by the Inada
conditions.!® Then, the household’s income process when young at n* can be written

18 We shall remark when discussin g the existence theorem how this assumption can be relaxed to continuous
shock spaces. Basically, we lose the complete lattice structure of the set of RE, but the least/greatest fixed
points still exist, and the set of RE is a countably chain complete poset.

19 By a global version of the implicit function theorem, one can show both n*(c, k, z) and n f(k, z) are
¢!, and hence locally Lipschitz. We use this fact in our arguments below.
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in equilibrium as
m=mk,n*(c, k,z),z2) =wk,n"(c, k,2),2))  -n*(ck, 2))

which under Assumption 3" is increasing in k, and decreasing in c¢. Therefore, in a RE
equilibrium, the next period’s capital stock for any given current level of consumption
¢ for the young must be given by

k'=mk,n*(c,k,2),2) —c
= mc(k’ Z)

which is also increasing in &, and decreasing in c.

As in the previous section, enlarge the aggregate state variable to be p¢ = (k, k%) €
P¢ = X x X9, where X is again just the original state space X, but endowed with
its dual partial order. Define the new state variable as s, = (k, k%, z) € S, = P¢ x Z.
Consider the following collection of functions:

HE(S.) = {c]0 < c(sp) <m(se) < my(s.) all s, c(s,) increasing in p°
= (k, k%), each z
such that (m — ¢)(s.) is increasing p°, each z}

with my = w(k,ny(k, z),2)) - ny(k,z)). By the Arzela-Ascoli Theorem, HE€ is
compact in each argument (as its closed, pointwise bounded, and equicontinuous).
For ¢ € H(S,.), the law of motion for capital in equilibrium is

K =mk,n*(c,k,2),z) —c¢
= mc(k, Z)

which increasing in (k, z).20 Also, it is convenient to define
my(k» Z) = m(kv n*(yﬂ kv Z)v Z) -y
which is increasing in (k, z), and decreasing in y.
We now are ready to compute RE in two steps. For a pair of functions (c, ¢) €
HE x H¢, k > 0, ¢ < m for all states, noting the CRS assumption on Assumption

3", define the marginal return on investment tomorrow (the second term of the Euler
equation) to be

Ur(y, Se; ¢, C) = /u’(R*(y, Se.25¢,8) -mak?,2)) - R*(y, 0, 23 ¢, &)y (dZ))

20 Notice, we shall use this law of motion for both k" and kd/.

@ Springer



652 J. McGovern et al.

where tomorrow’s price of capital is

k/
()

_ my (k. 2) ) e
- (n*(C(my(k, ) me k. 2). ) mak? 2). ) @

R*(y,5¢,75¢,¢)

The following lemma describes the comparative statics of ¥»(y, s.; ¢, €):

Lemma 4 Under assumptions Al1”', A2”, A3", we have (i) for fixed (c,¢) € HE x
HC k>0,¢ < mygandz € Z, Yi(y, se; ¢, C) is increasing in y, and decreasing in
p¢ = (k, k%); (ii) for fixed (y, s.), when ¢ < my, ¥2(y, Se; ¢, ) decreasing in (c, ¢).

Proof See “Appendix B”. O

For fixed ¢ € HC with ¢ < m, k > 0, the Euler equation associated with the
household’s problem in equilibrium can be rewritten as the following:

(Y, Se, €3 &) = ¥2(Y, 8¢, 2, ¢; €) — U (y)
Consider an operator A(c; ¢)(s.) defined implicitly using ¥ for ¢ < m,

A(c; O)(se) = x* st. W (y*, 50, ¢;¢) =0whenk > 0,0 <c <m,

= 0else

As(c)(se) is our “first step” operator (i.e., A(c; ¢)(s.) parameterized at fixed ¢ € H €y
when ¢ < m. Let @4 (&) be the set of fixed points of A at ¢ € H¢, ¢ < m. We have
the following Lemma about the fixed points of operator A(c)(s,) at such ¢:%!
Lemma 5 Under Assumptions Al', A2, A3" for 0 < ¢ < my, (i) Pa(C)(se) is a
non-empty complete lattice,(ii) the successive approximations inf, Ag‘ (mg)(se) —
V@4 (¢)(s.) converges in order (and uniformly (k, kM) 10 v @4(8)(s,), with v
D@ A(C)(se) > 0 when k > 0; and (iii) VP 4(C)(s,) is increasing in C.

Proof See “Appendix B”. O

Using the greatest fixed point of the “first step” operator, consider a “second step”
operator B(¢) defined as follows

B(¢) = Vv®,(C) forc <m

= m else

Let @ be the set of fixed points of the operator B(¢). We now prove the main theorem
of this section.

21 It is here where Assumption A2’ is used in the argument, namely to get a non-empty complete lattice
of fixed points for A(c; ¢) (and, similarly for the second stage operator in the next theorem below). If we
relax A2 to A2, we have a countably chain complete set of fixed points at each stage. Aside from this
detail, nothing else changes in the arguments (as least and greatest fixed points remain isotone selections).
In particular, the definition of B(¢) does not change.
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Theorem 9 UnderAl’', A2', A3", there exists a RE. Further; this RE can be computed
as sup, B"(0) = lim,_,o B"(0) > ADp.

Proof Let @ g be the fixed points of B(¢). As H¢ is acomplete lattice, and by Lemma 5,
we have B(¢) is isotone in ¢, then by Tarski’s theorem, @5 C H€ is a non-empty
complete lattice (with trivial maximal fixed point y). Consider ¢ = 0. Then, for all s,
when k = k¢, k > 0, the iterations {B"(0)(s¢)}, when k = k% > 0 must satisfy the
functional equation

W(Bn+l (0),S; Bn+1’ Bn(o)) — !1/2(Bn+1(0), s: Bn+l, Bn(o)) _ u/(Bn(O)) =0

Therefore, for all such s,, by the Inada condition in A1”, the iterations lim, B"(0) <
m(s,) for all such s,. By the monotonicity of B(¢) for each fixed s,, the sequence
{B"(0)} is an increasing sequence pointwise, and therefore has lim, B"(0)(s.) —
c*(s.) < m(s,) for each s,. Further, as {B"(0)(s.)} is a countable chain in H¢, we
have sup,, B"(0)(s.) = B"(0)(s.) (where the sup here is with respect to the pointwise
order on H®). By equicontinuity in each argument, we have sup,_, ., B"(0)(s.) =
lim,, B"(0)(s.) — c¢*(s.) < m(s,). Further, as each element of {B"(0)(s.)} € H¢,
the convergence for lim, B"(0) — c*(k, k%, 7) is uniform in (k, k%), when k = k9,
each z € Z. Additionally, as c¢*(s,) is bounded in z, each (k, kD, k= k4 > 0, we
have sup,,_, oo B"(0)(s.) = lim, B"(0) — ¢* € ®p C H¢, with c*(s.) < m(s,)
when k = k9, k > 0. Finally, as the iterations B"(0) have initial element 0 = AH€,
by monotonicity of B(¢), there does not exist another fixed point, say ¢* € @p,
such that ¢* < c¢*. Therefore, ¢* = A®p for such s¢. Noting the definition of
B(¢)(s.) when k = k% = 0, each z, ¢* is then the least fixed point of B(¢) in @p. As
0 <c*(k,k,2) <my(k, k,z) forall s., such that k > 0, ¢*(k, k, z) = c*(k, z) is the
least RE in the set @p. O

5.3 RE in models with long-lived agents

We finally consider models where each generation born is long lived (i.e., they live
N + 1 periods, for co > N > 2). We assume no borrowing (i.e., an OLG version of a
“Bewley” model with aggregate risk).?> The assumption of long-lived agents greatly
complicates matters, but our monotone decomposition method still can be used to
compute a minimal state RE. For this section, assume now there are a continuum
of infinitely lived household/firm agents born each period, but each living N + 1
periods. Their lifetimes can be divided into three stages: initial period (n = 1), midlife
(n € {2,...,N}) and retirement (# = N + 1). In all but the terminal period, agents
each period will be given a unit of time which they supply inelastically, consume
and save, and in the terminal period they retire (hence, do not work). When born,
they possess no capital, and there is no bequest. We shall also limit our attention
to RE where agents of the same generation are treated identically in a RE. Let the

22 As the household live a finite number of periods, and we do not allow default, the borrowing constraint
case is actually more difficult than the case with no borrowing constraints. We can easily adapt of methods
to the case of borrowing.
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subscript j € J = {1,2,..., N 4+ 1} denote the period of the agent’s lifecycle, and
for convenience (and without loss of generality), we normalize the mass of agents to
be the unit interval, with n; = ﬁ > 0, of each type j, and there is no population
growth.

For this section, we assume time separable utility with constant discounting. For
households of age j, they have period preferences represented by a utility index u ; (c)

and discount future utilities at rate 8 € (0, 1). Therefore, household lifetime utility is

N+1

/Zﬂt_luj(cj)
=1

where the integral is again a sum under Assumptions A2,

The assumptions on the period utility function are as follows:>3

Assumption 1" u; : Ry — Ry oru;(c) =Inc?  forj € {1,2,..., N + 1} where

(1) u;(c) is twice continuously differentiable, strictly increasing, strictly concave;
(i1) u/j (c) satisfies Inada conditions, i.e.,

lim u;(c) = coand lim u’;(c) = 0.
c—0 7 c—o0

We remark that in this section, the assumption of time separability is needed (as
without it, we cannot transform the space of functions under our current operator).
Also, unlike the last section, we also need assumption A2’ (i.e., countable shocks) to
avoid a technical problems when defining our operator associated with measurability.
We make a more specific remarks per the need for these two assumptions after our
existence argument.

For production technology, given a continuous function F'(k, n, K,,, N, z), where
F is constant returns to scale in (k, n, k, n) € X x [0, 1] x X x [0, 1], where X C R
is a compact. The mean capital stock will be denoted by K,,, = Z;V:; Kj,and N =1
is the average per capital stock of labor, which is unity by assumption in equilibrium.
Denote the cross-sectional distribution (by age) of individual capital stocks by k =
(ka, k3, ... ky+1) € XV, and their aggregate per capita counterparts by K € XV, We
make the following assumptions on the production function F':

Assumption 3”7 F : Xx[0, 1] x Xx[0, 1] x Z — R4 is CRS in (k, n, K;;, N) such
that:

(i) F(k,n,K;;, N,z) > Oforallk > 0,z € Z wheneverk = K, > 0,n = N
=1,and F(0,1,K,,, N,z) = F(k,0,K,,, N,z) =0;

(i) F(k,n, Ky, N, z) is continuous, strictly increasing, twice continuously differ-
entiable, and strictly concave in (k, n) for each (K,,, N, 2);

23 A careful examination of our arguments for the existence of RE will show that we can also allow for
different discount rates in each period of life also, but we abstract from this to keep notation at a minimum.

24 For the logarithmic case, obviously take the domain to be R4 4.
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(iii) there exists k > 0 such that F(k,n, k. N.z) = k and F(k.n.k, N.,z) < k for
allk > k(z)forallze Z,k=Kandn=N = 1.

Define XV = xi.vjzl [0, k ;1 with sup, lg(z) <k j < oo and choose the initial
capital stocks as elements of Xiv =XV \0 where 0 is zero vector on R” (i.e., assume
(ko, Ko) € XV x XY). Denote the aggregate state space for the economy as § =
[K,z] =[K2. Kn+1,2] € Ss = X" x Z , with S = XV x Z. Finally, for household
of age j > 1 entering the period with capital stock k;, the state of an individual
household is s; = [k}, S]. Given the CRS assumptions on technologies, the prices of
capital and labor are now evaluated in equilibrium using k,, = K,

r= Fl(kl’rh Z) = Fl(kl’f’ls 17 kms 17 Z)
w = FZ(kma Z) = FZ(kma 1, kma 1, Z)
along equilibrium paths.
We now describe agent decision problems in a RE. At age j € J, the household

enters the period in state (k ;, K, z), faces feasibility constraints given by a well-defined
correspondence,

Ti(s;) ={(cj. k) cj +K; =m!(kj, K. 2). cj. K; = 0}
where the income process at each age is given by:

m'(K,2) = w(K,z)
m'(ki, K, z) = r(K, 2k + w(K,2),i ={2,3,..., N}
m" T ky 41, K. 2) = r(K, k1
where the index i indicates the “midlife” stages of life i = 2, ..., N. Under Assump-
tion 3””, when K # 0, 7 (s;) is a non-empty, compact, convex-valued, and (locally
Lipschitz) continuous correspondence in (k;, S).
To define a recursive representation of the households decision problem, let the

aggregate laws of motion on the distribution of capital be described by a vector of
functions for k = K

K' =h(k,z) e H =1{h|0 < hjlkj, k,z) <m’(kj, k,2)}

where are the set of feasible aggregate laws of motion. The terminal value function
for any generation is

vnt1tkyy, K, 2) = un1(r (K, 2)ky 1)

so we have recursively for i € H/, when at least one & j >0, K #0, the following:

vj(k.,‘,K,z):x_e[or‘p?/}_m)]u(mj —xj)+ﬂ/vj+1(x/~,h,z)y(dz’)
JEWL YK, RS2
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Conjugating this sequence of primal problems with the obvious Lagrangian dual
formulation (noting we have strong duality under our assumptions for the resulting
sequence of decision problems with strict concavity in x;), we arrive at the following
system of necessary and sufficient of RE functional equations via the dual®

ukm‘(sl)—x;“(sl))—ﬂ/ u' (m* =) (x} (1), b, 2) - r(h, 2y (d2) +¢F =0
u/(zni(sl)—xi*(sl))—ﬂ/u/((miH —his) (), b, 2)) - r(h, 2y () +¢f =0; i=2,...,N

u/(mN(SN)—xfi/(SN))—ﬂ/u§v+1(r(h,z/)x;§z(31v)) r(h, 2y (d)+¢y =0

plus the standard complementarity slackness conditions determining the vector of
Karash—Kuhn-Tucker (KKT) multipliers ¢ = (¢1, ¢, ..., ¢>,1).26 As the household’s
problem has a constraint system for its sequential problem that trivially satisfies a
linear independence constraint qualification, and the feasible correspondence is locally
Lipschitzian (hence, uniformly compact), by Kyparisis’ Theorem (Kyparisis 1985,
Theorem 1), the set of KKT points are compact. As the problem is also strictly concave,
this set of KKT points are bounded and unique and given by ¢* = (¢, ..., ;) at
each s. Let the range of ¢ (s) € @(s) C R,

To study the existence of RE, we proceed as before. That is, let k4 e X9 be
the space XN given its dual componentwise Euclidean order, p¢ = (k, kd), with
sj. = (kj, p®,2) € Sj =X x XV x X4 x Z.27 Under our assumptions on production,
the income process for a household of age j can be rewritten on Sj. as

! (s§) = r(kd, Dk; + w(k, 2)

where for j = 1, we just delete the first term of m! (sj.), and for j = N + 1, we just
delete the second term of iV 1 (sf). Notice, viewing each these income processes from
the vantage point of the standard Euclidean partial order on Sj’., M/ is increasing in
(kj, k, z) for each k4, and decreasing in k9 for each (kj, k, z) (i.e, “mixed monotone”
in (kk; k) on $¢ =X x XN x X4 x 7).

Let R% = [0, o], @ = R"* with product order, and S, = X" x X" x X¢ x Z and
define the exponential space Q@5 of all nonnegative mappings z : S, — . Give QS
its pointwise partial order (hence, Q% isa complete lattice). Let S* = {s¢ € S.|s¢ has
k4 = 0}, and define by C*(S.) C @5 the space of functions 4 (s¢) that are (i) continu-
ous and (ii) bounded on S,\ S}, with typical element 2 (s¢) = (hy, ..., hn)(s®). Equip
C™(S.) with the topology of uniform convergence on compacta (i.e., the compact-
open topology), and its pointwise partial order. Under this partial order, C*(S,) is

25 In this problem, we cannot guarantee interiority of savings decision for every age of life. Our envelope
theorems are simple applications of the results in Rincon-Zapatero and Santos (2009).

0 eg., dfxf =0.9f 0.

27 Inthis section, we use s¢ for the expanded state variable (so we can subscripton age cohorti = 1,2, .. .n).
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lattice. Finally, consider a subset HE c C*(S,) of functions to be:

HE = {h € C|h;(k;, p°, z) is increasing in s{ = (ki, p®), each z,

such that m; — h; is increasing in (k;, p¢), eachz,i =1,2,...,n}

HC is an equicontinuous subcollection in C*(S,) that is also pointwise subcomplete
for all s¢; hence, H is a subcomplete lattice in C*(S¢) in the pointwise partial order.
So it is compact in its interval topology and hence a complete lattice. Further, by
a version of Arzela-Ascoli’s theorem (e.g., Kelley 1955, Theorem 18, p. 234), the
subclass H¢ < HC is compact in C* on any compact subset ST C Se\ 5.2 We
summarize these observations in Lemma 6.

Lemma 6 Under Assumption A3"", H is a subcomplete order interval in C*(S°).
Further, H¢ (8%) is also a compact in C* (S§) on any compact subset S§ C S°\S**such
that each h € HC | h; is locally Lipschitz in (k;, p¢) on this compact covering ST

Define an operator in the system of household Euler inequalities as follows: Let
i (-) =’ (-) — hi(-), and define the extended real-valued mapping ¥ XN x @ x
Se\SS x HS x HC — RM* = RV + {—o00, 00}V 30 where each component of ¥ is
given as:

1 (y, d, s, h, by =u' (' — y1) + b1

—ﬂ/u’(ﬁtiz(yl,y,ﬁ,z’) -1 (y, )y (d2)
e
Wi (y, . s hoh) = u' (i () = x2) + 2
- B / O iy, b, 2) e (. 2))y (d2)
@]

Oy (y, ¢, 5% h) =u' (" (s¢) — yn) + bw

—ﬂ/”/(r(fl,z/)yzv)~r(y,Z/))x(9,d9’)

(]

or more compactly,

Gy, ¢,5% h, h) = W1(y,5%) + ¢ — ¥a(y, s h, )

28 PFor a discussion of the compact-open topology, see Kelley (1955), Chapter 6.

29 That is, we have order convergence in the interval topology coinciding with uniform convergence on
any compact subset of the space S¢\S*. For a discussion of local uniform convergence, see Amann and
Escher (2005), Corollary 2.9, p. 374.

30 Given that ¥ is extended real valued, notice we are careful to avoid any comparison of co and —oo in
the definition of our operators. Also, the partial order on RN* is the product order, and RM*isa complete
lattice under this order.

@ Springer



658 J. McGovern et al.

where ¥ (resp, ¥>) denotes the first term (resp., second term) in the HH’s system of
Euler inequalities in equilibrium, but only embedded into our larger system of func-
tional equations ¥. In addition, we denote the complementarity slackness conditions
on ¢ as:

Ve (v, $) (s hh) : iyi = 0.6 =0

with ¥¢ = (Ef/, lf/qf ) the systems of Euler inequalities that we shall solve, where ¥;

(resp, ¥>) denotes the first term (resp., second term) in the system 7. .
LetthgVectorofincomeprocgssesbenﬁ =@, ..., mNtY.For(h, h) € I:IC < HE,
h <im,h <m, k%> 0, when h < 71, define the correspondence Y*(s¢, h, h) by

Y*(sC by = (y*, ¥ W (v*, ¢*. 5% b, h) = 0)
Then, for fixed h < m, define our first step operator A (h; fz)(se) as follows:

Ah; h)(s€) = y(s®, h, h) € Y*(s¢, h,h) : (h,h) e HC x HE, h < m, , k¢ > 0;
y(p®, z; h, ﬁ) isotone in p¢, = md for hj= m, any state s°

=0, else

We first verify the required order continuity properties of the operator A (/; h)inh
when i < m:

Proposition 4 Under Assumption Al”, A2', and A3"", we have for fixed h < m,
h € HE, (i) A(h; h) : HE x HE — HC is well defined, with A(h; h) C HE, and
isotone on HE; and (ii) A(h; h) is order continuous on HE.

Proof See “Appendix C”.

With Proposition 4 in place, we can now prove our final existence theorem for the
paper.
Theorem 10 Under Assumptions A1”, A2', and A3"", there exists a RE. Further; it

can be computed by successive approximations from the minimal element NHC .

Proof Fix h € HS, h < i, and let @ A (fz)(s") denote the set of fixed points of
A(h; ﬁ)(s") at any such h. First, by Lemma 6, HE is a complete lattice. Further, by
Proposition 4, A(h; fl)(se) is isotone on HE for each such /. Therefore, by Tarski’s
theorem, the fixed point correspondence @ 4 (h)(s°) is a non-empty complete lattice
for each i < 7. Define B(fz)(se) as follows

B(h)(s¢) = A® 4 (h)(s¢) for h < 1

_A. A.—A< e
=mj; when hj = m; for any s

By Veinott’s Fixed point comparative statics theorem (e.g., Veinott 1992, Chapter 4,
Theorem 14 or Topkis 1998, Theorem 2.5.2), as the operator A(h; h)(s€) is jointly
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increasing in (h h(p ), p¢) € HE x H¢ x XV x X? with respect to the product
order when h < m,3! the least selection AD 4 (h)(se) is an 1ncreasmg selection
jointly in (h(pe) P°) when h < . Noting the definition of B(h)(se) elsewhere,
B(h)(se) is isotone in (h(p )) on HE. Also, HC is a ‘non-empty complete lattice.
Therefore, denoting by @p the set of fixed point of B(h)(s%), again by Tarski’s the-
orem, we conclude @p is a non-empty complete lattice. Finally, consider the itera-
tions {B"(0)(s)} = {(B/")(s°));}, with associated dual variables {(¢](s¢));}, with
¢i'(s¢) = 0 when B}'(0)(s®) = 0. For each 5¢ € §°, the iterations {B"(0)(s¢)} form
an increasing chain that satisfies the system of Euler inequalities

W= (&, W) (B"(0)(s), 4" (s), 5, B"~'(0), B"'(0) = 0
with

& (B"(0), ", s¢, B"~1(0), B"~1(0))
= W1 (B"(0), s°) + ¢" (s°) — ¥2(B"(0), s*; B"~1(0), B"~1(0))
=0

Under the differentiability assumptions in A1” and A3"”, iterations converge in
order (and pointwise) with (B"(0), (¢7')(s¢) — (h*, ¢*)(s¢) for each s¢ € 8¢, with
h*(s°) < m(s®) by the Inada condition in assumption A1”. This verifies that B(h) is
order continuous along the chain {B"(0)(s¢)}, and we have h* € ®p. Further, given
the equicontinuity of the collection HE, we have {B"(0)(s¢)} — h*(s¢) uniformly on
every compact subset S{ C S°\S¢*. As 0 = AHC, by the monotonicity of B(h)(s9),
there does not exist any other fixed point 2* such that 7* < h*. As @ is a non-empty
complete lattice, we must have h* = A@p. Finally, let h*(k, k, z) = h*(k, z) be the
fixed point ~A*(k, ke, z) defined on the diagonal k = k4. By the Inada conditions, we
must have 0 < h*(k, z) < m, such that when k > 0, the vector of consumptions
c*(s) = (m — h*)(k, k,z) > 0 when k > 0. Therefore, h*(k, z) is the (non-trivial)
minimal state space RE. O

A few remarks on this theorem. First, although in principle, this result is “construc-
tive”, our proof of existence uses an operator defined as any monotone selection in the
correspondence Y*(s¢, h, fz). That monotone selection exists by Smithson’s theorem
(e.g., see Smithson 1971), but Smithson’s theorem is actually proven using Zorn’s
lemma. As Zorn’s Lemma is well known to be equivalent to the Axiom of choice, this
step of the argument is actually not constructive in the sense of the rest of the paper.

Second, our existence result in Theorem 10 is different than one that can be obtained
using the Euler equation APS methods as in Feng et al. (2012). In particular, we
verify the existence of minimal state space RE (as opposed to Generalized Markov-
ian equilibrium). As mentioned before, correspondence-based APS methods could
be used to compute RE in versions of our economies with many assets (albeit at

31 We make explicit that the monotonicity in is the joint variables (h(p®), p¢) on HE x XV x X in the
notation to make clear that we can raise either & for fixed p¢, or p for fixed h.
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the expense of the minimality of the equilibrium state space). Also notice, a care-
ful reading of the proof of this claim reveals also that our RE are continuous in
each argument (but, necessarily jointly continuous). In principle, a similar issue could
arise in the results for elastic labor in Sect. 5.2. What is different is that in the elas-
tic labor case, as the operator is the unique interior root when k > 0 of an sin-
gle Euler equation, joint continuity can be established it turns out by application of
Clarke’s Implicit function theorem (e.g., Clarke 1983, Corollary, p. 256). Unfortu-
nately, in this section, no similar nonsmooth implicit function theorem can be applied
because of the presence of the KKT system and non interior investment decision
rules in a RE for some generations (hence, it is not clear how to improve upon this
result).

Third, unlike the previous section, we cannot relax Assumption A2’ in this
argument. The problem is although if (h,h) € HE x HC are additionally mea-
surable, Y *(se,h,fz) can be shown to be a measurable correspondence on S¢
(and, hence, measurable selections exist), the monotone selection that exists in
Y*(s¢, h, ﬁ) by Lemmas 10 and 12 not be the measurable selection. So, unlike
the situation in the previous section for elastic labor supply, we actually need
Assumption A2’ to eliminate the measurability issues associated with this selec-
tion.

5.4 Equilibrium comparative statics for RE

We conclude the paper with a simple example of equilibrium comparative statics
(many others exist by a similar argument). For this example, we take a version of the
model of Hausenchild (2002) incorporating a social security system in the overlapping
generation model of Wang (1993) and prove an equilibrium comparative statics result
for the set of both minimal state space RE and SME. Recall that in Hausenchild (2002),
a RE equilibrium investment policy is a function % satisfying:

/ul((l —Dw(k, z) — hk,2), r(hk, 2), 2 Yk, z) + Tw(h(k, 2), 7))y )
Z

= /uz((l —Dw(k, 2) — h(k, 2), r(h(k, 2), 2Hh(k, 2) + Tw(h(k, 2),2))
V4
x r(h(k, 2), 2y (dz). (B

Consider the following equation in y :

/Ml((l — 1wk, 2) =y, r(h(k,2), 2)y + Tw(y, 2)))ydz)
z

= / ur (1 = yw(k, 2) = y, r(h(k, 2),2)y + Tw(y, 2Nr(y, 2y d2).
z
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For any (k,z) € X x Z and h € E, denote Ah(k, z) the unique solution to this
equation. Itis easy to see that, in addition to being an order continuous isotone operator
mapping E intoitself, A is also isotone in —7. Consequently, an increase in T generates
adecrease (in the pointwise order) of the extremal RE equilibrium investment policies
ht,max and hr,min-32

Next, any equilibrium investment policy / induces a Markov process for the capital
stock defined by the following transition function Pj:

Forall A € B(X), Py(k, A) = Pr{h(k,z) € A} = A({z € Z, h(k, z) € A}).
Consider two RE equilibrium policies 2" > & and their respective transition functions

Py and Py. For any k € X and any function f : X — Ry bounded, measurable and
isotone:

/f(k’)Ph/(k, dk')=/f(h’(k, Z))k(dZ)Z/f(h(k,Z)))\(dZ)=/f(k')Ph(k, dk").

Thus, for any u € A(X, B(X)) :

[ st = [ [ [ rwrp dk’)} (k)
- [ [ / f(k/)Ph(k,dk/)}M(dk): [ s,

which establishes that Th*,/,L > Th* . Thus, the natural ordering on the set of taxes t
induces an ordering by stochastic dominance of the corresponding extremal Stationary
Markov equilibria in the following way:

7' > 7 implies hr max > Ay’ max implies lim T8 max >5 lim T3 8¢ max-
’ ’ n— 00 n—oo

In particular, we obtain Proposition 2 in Hausenchild (2002) by taking T = 0 (a “pure
economy”) and t/ > 0.

Appendix
Appendix A: Proof of Proposition 2

We prove Proposition 2 in three steps.

Lemma 7 Under Assumption 4, for all k € X *, there exists a right neighborhood
2 = (0,k]with0 < k < w(k, zZmin) and M > 0 such that, for all x € 2,

ur(w(k, Zmin) — X, 7 (X, Zmax)x) > M.

32 Notice, we need Theorems 8 and 9 in this example to obtain equilibrium comparative statics in Veinott’s
strong set order (i.e., to avoid the least RE in (H*, <) and (Hl, <) from being trivial.
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Proof If lim,_, g+ r(x, Zmax)x = O then for all k € X*:
im up(w(k, Zmin) — X, 7 (X, Zmax)X) = u2(w(k, Zmin), im 7 (x, Zmax)x) = 00.
x—0t x—071

The expression uz (w(k, Zmin) —X, 7 (X, Zmax)X) can therefore be made arbitrarily large
in a right neighborhood of 0, and the existence of £2 thus follows. O

Lemma 8 Forall s = (k,z) € S*, there exists ho(s) € (0, w(s)) such that:

/ul(w(S) — ho(s), r(ho(s), 2)ho(s))G (dZ)

VA

< /uz(w(S) — ho(s), r(ho(s), 2)ho(s)r(ho(s), 2 )G (dZ). (E0)
V4

In addition, ho can be chosen isotone in k for each z, constant in z (and therefore
continuous and isotone in z) for each k.

Proof Fix k € X*. Forall 7 € Z:

lirg+ up(wk, z) —x, r(x, 2)x)G(dz")
X—> %
_ /ul(w(k, 2).0)G(dZ)
VA
< ur(w(k, Zmin), 0).

Thus, there exists a right neighborhood of 0, denoted ¥ = (0, X], such that, for all
X ev:

/ul(w(k, 2) —x,r(x, 2)x)GdZ)
Z
< Sup(wk, Zmin), 0).

Next, forx € £2 :

/ ur(wik, z) — x, r(x, 2)x)r(x, 2)Gd7)

Z

> / ua Wk, Zmin) — X, (6, Zma) 0 (s 2)G(d2)
Z

> / Mr(x,7)G(d7),
Z
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where the first inequality stems from #1> > 0 and u; antitone, and the second from
the Lemma above. This last expression can be made arbitrarily large, independently
of z, by choosing x in §2 sufficiently close to 0. That is, it is always possible to choose
x* sufficiently small in £2 N ¥ so that:

/Mr(x*, ZVF(dZ") = Sui(w(k, zmin), 0). (EL)
z

Pick such an x™* and set 8¢ (k, z) = x* forall z € Z. By construction, any x €]0, §o(s)]
satisfies:

/m (w(s) — x, r(x, 2)x)Gd7)
Z
< .Sui(w(k, Zmin), 0)

< /Mr(x, )G (dZ)
zZ

S/Mz(w(S)—x,r(x,z')X)r(x,Z/)G(dz’)

VA

That is, for all x € (0, d9(s)]:

/ u(w(s) — x, r(x, 2)x)Gd7)

z

< /uz(w(s) —x,r(x, 2)x)rx, 2)GdZ). (E2)

V4

We repeat the same operation for each k in X*, thus constructing a function §g : S —
X, setting 8p(0, z) = 0. By construction, for each k € X, §g(k, z) is constant in z,
and therefore isotone in z. In addition, any function smaller (pointwise) than &y also
satisfies (E2). In particular, the function pg : X x Z — X defined as:

potk,z2) = kH}iII:{(So(k/, 2)}.

satisfies (E2), which is isotone in k for all z and constant in z for all k£ (and thus
continuous in z for all k). Finally, the function /¢ defined as follows:

| supg_prx Po(K', 2) for (k,z) € X* x Z
ho(k,z)—[o fork = 0.2¢ Z

is smaller than pg (and, therefore, than §¢, hence it satisfies (E2)), isotone in k for all
z, constant in z for all k£, and lower semicontinuous in k for all z. O
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Proposition 5 Vs € S*, ho(s) > h(s) > 0 implies that Ah(s) > h(s) > 0.

Proof Suppose that there exists s € S* such that Ah(s) < h(s). Then:

/ul(w(S) — h(s), r(h(s), 2)h(s))G(dZ)

V4

< /uz(w(S) — h(s), r(h(s), 2)h(s))r (h(s), 2)G(dZ)
z

=< /uz(w(S) — Ah(s), r(h(s), ) Ah(s))r (Ah(s), 2)G(dZ),
V4

where the first inequality stems from (E2) (since 0 < x = h(s) < ho(s) < do(s)) and
the second from uy; < 0, u12 > 0 and r antitone in its first argument. By definition
of Ah, this last expression is equal to:

/ul(w(s) — Ah(s), r(h(s), 7)Ah(s))G(dZ).

z

Summarizing, we have:

/ul(w(S) — h(s), r(h(s), 2)h(s)G(dZ)

V4

< /ul(w(s) — Ah(s), r(h(s), 2)Ah(s))G(dZ).

VA

which is contradicted by the hypothesis that u1; < 0 and u > > 0. Thus, necessarily,
Ah(s) > h(s). In particular, A maps hy strictly up. O

Appendix B: Proofs for elastic labor section

Proof of Lemma 4

Proof To prove the lemma, given assumption A1’(IV),it suffices to show for each
(c,&) € HE x HC )k > 0, ¢ < myg, z € Z, that R* is (i.a) increasing y and
(i.b) decreasing in p¢ for fixed (c,¢) € HC x HC, ¢ < my, and z € Z, and (i.c)
decreasing in (c, &) € HC x H®, when ¢ < m ¢, for each (y, s¢). To see (i.a), fix
(c,&) e HC x H , k > 0, ¢ < my. As my(k, z) is falling in y, the numerator in
the first argument of R* is falling in y. Further, as for c € H C cis increasing in k,
and m, is falling in y, c(my, -, -) is falling in y, so n*(c(my, -.-), -.-) is rising in y.
So the first argument of R* is falling in y. Therefore, under A3"”, R* is increasing in
y. To see (i.b), as m(k, -) is rising in k, the numerator in the first argument of r is
rising in k. As for the denominator, as c(k, -, -) € H is rising in k, c(m (k, -), -, -)
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is rising in k. Further, as n* is falling in ¢, we have n*(c(my(k, -), -, -), -, -) falling
in k. Also, as c(-, k4, -) is rising in kd, noting the dual order on Kd, mc(kd, -) 18
falling in k4. so c(-, mc(kd, -), +) is rising in k9: therefore, as n* is again falling in
c,n*(c(-, mg(kd, ), +), -, -) falling in k4, Finally, as n* is rising in k, again noting the
dual order on K9, as mg(kd, -) is falling in k9, n*(c(-, -, ), mc(kd, -), -) is falling in
k?. So, we conclude the denominator is falling in p¢ = (k, k%). Therefore, we have
the ratio

my(k, z)
n*(c(my(k, 2)), ma(k?, 2),2'), ma(k?, 2), 2')

rising in p¢, so R* is decreasing in p€. (i.c) Fix (y, s¢). As n is falling in ¢, n*(c, -, -)
is falling in c. So the ratio is rising in ¢, and R* is falling in c. Further, as ma(-, -) is
falling in ¢, ¢ increasing in k¢ in the dual order on K (hence, falling in the natural
order), we have n*(c(-, mg, -), -, -) falling in ¢ through this term. Further, as n* is rising
in k, we have n*(c(-, -, -), mg, -) also falling in ¢. So in both case, the denominate is
falling (c, ¢) failing, so first argument is of R* is rising, and therefore, R* is falling in
(c, ¢). Then, as (i.a)—(i.c) are true, noting that mg(-, -) is also falling in ¢, R* is falling
in (c, ¢) is preserved to ¥ (y, se, 7; ¢, ¢) by under Assumption A1'(IV). O

Proof of Lemma 5

Proof (i) We first show Ax(c)(s.) € H. We first show foreach¢ <my, ¢ € HS, ¢ <
my, whenc € H, k > 0, As(c)(se) € H c. Noting the comparative statics proven
in Lemma 4 for ¥, (y, s.; ¢, ¢), itis clear that ¥ (y, s.; ¢, ¢) has the same comparative
statics. For ¢ € H¢,as c is continuous in its first argument, and ¥ is increasing in
v, Az(c)(se) is well defined (i.e., exists and is single valued), and increasing in p¢,
each (c, ¢). Further, as for ¢ € H¢, and é(s.) fixed (so mg(s,) is fixed),?® letting
ot = MA(p)(Se) = (m — Ag(€))(se),when (k1, k%) > (ka, k), we have to
have

W (X oo » Ser 25 €2 €) — / (Ag(0) (k1 K5, 2)

< U (X o0 Sei €. 8) — 1 (Ap(c) (ka. kS, 2))

by the monotonicity of Az(c)(s.) in p¢,where

AN / leno A d
wz(x:(;(r)(p)s Se; C, C) = /M (R*(x;:é(c)(.re)v Se, 25 C, C) : mE(k ) Z))

’ A ’
'R*(x:g_(c)(p)s Se, 25 ¢, C)y(dz)

33 Notice, in this argument, mz(p) fixed means both the argument p and ¢.
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where tomorrow’s price of capital is

k/
K% /oA
R (xAE‘(C)(Se)s Se, 25 C, C) =r (W’ Z

k
Xaz@p ,
=r B Z
n*(xjé(c)(se)f m@(kdv Z)v Z/)s m@(kdv Z)v Z/)
3)

where by a similar argument to Lemma 4, as R* is falling in xjg(ﬂ)(p), the term
V2 (X} 0y s Ses €, €) is falling in x7 ), by Assumption A3. Therefore, the oper-
ator Az(c)(s.) must be such that that ¥ fails when (k, k9) rises, i.e., x}g@(m =
M A (c)(se) (ks 7) = (m — Ag(c))(s,) increasing in (k, kd), each z € Z. Therefore,
As(c)(se) € HE at all such points. Noting the definition Az(c)(se) elsewhere for
¢ and s., we conclude Az(c)(s,) € H¢ foreach 0 < ¢ < m f. Further, noting
the comparative statics in Lemma 4 (again, noting the definition of Az(c)(s.) when
c £ myork =0,Asc)(se) is isotone in ¢ for each 0 < ¢ < m . Therefore, by
Tarski’s theorem, the set of first step fixed points is @ 4(¢)(s.), which is a non-empty
complete lattice for each 0 < ¢ < my. (ii) Under Al” and A3"”, u'(c) and r(k)
are both continuous in their arguments, and n*(c, k, z) is continuous in ¢, we have
U (Y, Se; Cn, €) — W2(y, se; ¢, €) pointwise (hence, ¥ (y, s¢; ¢y, €) = ¥ (y, Se; C, C)
pointwise). Therefore, noting the definition of Az(c)(se) elsewhere, by an argument
similar to that in Lemma 2, A;(c)(s.) is order continuous in ¢ when ¢ < m s. Then,
by the Tarski-Kantorovich theorem, we have

iry}f Ap(c)(se) = VD 4(C)(se)

Noting the equicontinuity of H¢ in p¢ = (k, k%) for each z € Z, this convergence
is uniform in p¢ in each argument. Finally, the fact that the greatest fixed point Vv
®@4(¢)(se) > 0 when k > 0 follows now from a standard argument for infinite
horizon problems adapted to our operator (e.g., Greenwood and Huffman 1995, Main
theorem), noting the Inada condition on assumption A1’. (iii). Noting the comparative
statics result in Lemma 4, under the assumptions of the lemma, Az(c)(s,) is isotone in
¢ for each (s,; ¢(se)) when ¢ € HC. Then that V® 4 (¢)(s) is increasing in ¢ follows
from Veinott’s fixed point monotone comparative statics theorem (e.g., Veinott 1992,
Chapter 4, Theorem 14 or Topkis 1998, Theorem 2.5.2). O

Appendix C: Proofs for long-lived agent case

We first prove Proposition 4. To do this, we need to prove number of lemmas.

Lemma 9 Under assumptions Al”, A2, and A3"", for (h, fz) c HE x H, h < m,
h < m, p¢ # 0, the mapping lIA/(y,(;S,se;h,fz) is (i) decreasing in (h,fz), each
(y, @, s°), (ii) strictly decreasing in p°, each (z, h, ft(se)); and (iii) increasing and
continuous in 'y, strictly increasing in y; for each i when y; > 0, each (s€, h, h).
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Proof (i) Fix (v, ¢, s¢), p¢ # 0. and let (hy, hy) > (ha, hy), (hi, hi) < (i, ).
Under A1”, ¥, is increasing in & (as the vector u(c) is concave). Further, as h € H¢,
m — h is increasing in k4 (with the dual order for x4 ), hence n%,]I y (-, -, h) is falling in
h, so as u/(m{lj(~, -, h)) rising in fz, U, is rising in h. That is, lIA/(y, ¢, s hy, le) >
lIA/(y,qS,se;hz,l;z). (ii) Fix (y,z,h,fz(se)),h < i, h < i, and let p¢ # 0, and
take p{ > p5. Noting the dual order for k9, for fixed h = fz(s“) the second term
¥, is independent of p¢. As mf (p¢,2)is 1ncreasmg in p¢, and u (c) is falhng, Yy is
falling in pe. (iii) Fix (z, h, h), with (h, h) € HE x HC,h < i, h < m, p¢ # 0,
and consider y; > y>. As h € HC, by assumptions A1” and A3"”, ¥, is falling. Fur-
ther, under A1”, ¥ increases in y; therefore lIA/(yl, ¢, 5% h, ﬁ) > lIA/(yg, b, 5% h, fz).
Continuity of lIAf(y, ¢, s h, fz) in y follows from the fact that (a) under Assumption
A1”,u'(c) is continuous, (b) A3"”” implies r (-, z) is continuous, and (c) ; € H, under
A3 u’ (n%;l/ (kj, k,-))is (locally Lipschitz) continuous in (k;, k). Finally, the fact that

lf/(y, ¢, 5% h, h) is strictly increasing in y; when y; > 0 follows from Assumption
Al”. O

The operator A (h, fz) (s¢) is defined to be an isotone selection in the correspondence
Y*(s¢, h, fz) when h < i, h < i, and k¢ > 0. We need to show this operator is
well defined. First, a few definitions. Let (X, >x) and (Y, >y) be a partially ordered
sets. We say a correspondence or multifunction is ascending in the set relation >g
to P(Y) c 2"\@ if Y(x') =5 Y(x), when x’ >x x. If a set relation >y induces
a partial order on P(Y), we refer Y (x) as an isotone correspondence. An antitone
correspondence is isotone in the dual order in its domain X.

To study the properties of ascending and/or isotone correspondences, Smithson
(1971) and Veinott (1992) have developed set relations for correspondences that guar-
antee the existence of isotone selections. In this paper, we focus on two such set
relations. Then the first set relation we define is (i) the Weak Induced Set relation
>yion 2Y\@ : By >, B>, By, B, € 2Y\@, if (C1) (ascending upward) V b € Bs,
there exists an a € Bj such that a > b; and (C2) (ascending downward) V a € By,
there exists a b € Bj such that a > b. Now, let Y also be a lattice. Then define (ii)
the Veinott-Strong Set Order >,on L(Y) = {A|A C Y, A a non-empty sublattice} :
for Ay and Ay in L(Y), Ay >, Ay, ifVa e A, Vb € Ay, wehavea A b € Ay and
avbeA >

We now provide a few key lemmas.

Lemma 10 Let (X, >x) and (Y, >y) be chain complete partially ordered sets,
Y*(x) : X — 2Y\@ be a non-empty and chain subcomplete valued for each x € X.
Say Y*(x) is ascending in the weak induced set order. Then, Y*(x) admits an isotone
selection.

Proof Follows from Smithson (1971, Theorem 1.7), noting Y*(x) is weak induced
order ascending (i.e., both (C1) and (C2) hold), and Y*(x) is also chain subcomplete
valued. O

34 We will only use Smithson’s relation in the next Proposition. Veinott’s strong set order is used all other
places in the paper.
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For the sake of 31mp11fy1ng notation, let t = (p¢, h, h) eT={r|t e KN x Kix
H x H, h < i, h < i, k9 > 0}. The operator A(h, h)(se) is defined at all ¢, each
z, as an isotone selection in 7, each z. In the next two lemmata, we prove (i) Y*(¢, z)
is non-empty for each (¢, z), and (ii) Y*(z, z) is ascending in the weak induced set
order in 7, each z (and hence by Smithson’s theorem in Lemma 10, the operator is well
defined for such t € T)

Lemma 11 Under Assumptions Al”, A2', and A3"", the correspondence Y*(t, 7) is
non-empty for each (t,z) € T x Z.

Proof For any (t,z) € T x Z, it suffices to check for the existence of solutions
lIA/(y, 0,5% h, h) (noting by the Inada conditions in A1”, when y;.‘ = 0 for any equa-
tion j, we have co > q‘);‘(se, h,h) = llllj(yfj, 0, p¢,2)— 'Ifz(yfj, 0, p¢,z; h, h) >0
by the complementary slackness conditions). By Lemma 9, we have ¥ is increas-
ing and continuous y, with lf/j = 0 with ¢; > 0 when y; = ;. Further, for
each (¢,z) € T xZ, by the Inada conditions in A1” and A3"”” on u’ and r, there
exists a pair of vectors (yA(t 0), y¥(t,0)) € [0, m(t, z)] x [0, m(t, z)] such that (a)
W (ya(t.2).1.2) < 0; (D) ¥ (y¥(t.2).1.2) = 0,and () 0 < ya(t,2) < y¥(t.2) <7
in the standard component product Euclidean order on RV, with yalt,z) # 0. As
¥ s strictly increasing and continuous jointly in y on [yA (¢, z), m(K, 0)), the map-
ping & ¥, t, z) satisfies the semi-continuity conditions in the generalized intermediate
value theorem on arbitrary product spaces of Guillerme (1995, Theorem 3) on the con-
nected interval [y (¢, z), y¥ (¢, z)], and we conclude the correspondence Y*(z, z) is
non-empty for each (¢,z) € T x Z. O

Lemma 12 Under Assumptions Al”, A2', and A3"", the correspondence Y*(t, z) is
ascending in t in the weak set induced set order >.;, for each z € Z , and chain
subcomplete valued for each (t, z).

Proof As v increasing in y on [0, m(z, z)], and strictly increasing when y; > 0,
we have the set of roots of Y*(z, z) = {y|¥°(y*(¢, 2), 0, t, z) = 0} antichain-valued
for each (¢,z) € T x Z relative to the componentwise order on R (Dacic 1979,
Proposition 1.1).3 To see Y*(¢, 7) is ascending in the weak induced set order in t,
each z, fix z € Z, and consider y(t,z) € Y*(¢, z) for any r € T. By the definition
Y*, for any element y(z, z) € Y*(¢, z), we have lf/e(y*(t, 2), ¢*(t, 2),t,z) = 0 with
¢*(t,7) > 0.Considert’ > 1,1 #1t',tand ' in T. By Lemma 9, as ¥ is antitone in 7,
we have —00 < 7 = lIA/(y(t, 2), ¢*(t,2),t’,z) < 0. Define the directed up-set (e.g.,
filter) G(y*(z, 2)) = {y|y = y*(t, 2), li/(y, o*(y),t,z) =z > 0 > Z, z finite}, where
¢i(y) > 0if y; = 0 by the complementary slackness conditions. Notice, G (y*(t, z))
is order-closed downward (i.e., chain subcomplete for all decreasing chains) as ¥ is
continuous in y. Compute the point yT = sup G(x(t,z)) € [0,m(z, z)], where the
existence of yT follows from [y(z, z), m(t, z)] as complete sublattice of RY, and the
strict bound yT =sup G(x(t, z)) < m follows from the Inada condition on the vector
of period utilities u(c) in A1” for each agent i. As ¥ is continuous and increasing in y

35 Let X bea partially ordered set. We say a subset X| C X is antichained if no two elements of X| are
ordered.
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on the connected order interval [y(¢, z), yT], we conclude by Guillerme’s intermediate
value theorem applied to ¥, 3 a y*(¢/, z) such that y(,z) < y*(t,z) € Y*(¢', z) in
the order interval [y(¢, z), yT] for all + < ¢/, each z. Therefore, as y(z,z) € Y*(¢, 2)
was arbitrary, we conclude Y*(z, z) is weak induced set order ascending upward (C1).
A similar argument proves Y*(z, z) is weak induced set order ascending downward
(C2). Therefore, Y*(¢, z) is weak induced set order ascending. O

Proof of Proposition 4

Proof For this proof, fix h € H¢, h < m, andrecall t € T = {r|t € S®*x H x H¢,
h <, h < m, k% > 0}, each z € Z. (i) By Lemma 11, Y*(z, z) is non-empty
for all (z, z). Further, by Lemma 12, Y*(¢, z) is weak set order ascending in ¢, each
z. Therefore, by Lemma 10, Y*(¢, z) admits an increasing selection on T x Z in ¢,
each z. Noting the definition of A (; ﬁ)(se) elsewhere, A (h; fl)(se) is well defined and
isotone in (p¢, k, h). We need to now verify A(h; l%)(p", z) € H¢ when i < . Fix
h € H, and let p§ = (k1, k‘f) > (ko, kg) = p5. Then as A(h; fz)(p", 7) is isotone in
p°, we have A(h; h)(p$,2) > A(h; h)(p5, z). Using the definition of A(h; h)(p®, z)
at these any two such p¢, we have when h=h( p) is fixed 3°

Wy (A(h; h)(p$, 2), 565 by h) = Wa(A(h; ) (pS, 2), s¢; b, h)

which implies by the definition of the operator,A(/; fz)(pe, z) must be such each
component of the vector

W' (m(p°, z) — A(h; h)(p©, 2), . 2)) + & (p°, 23 h, h)

is falling in p¢. When A;(h; h)(p$,2) = Ai(h; h)(pS,z) = 0, as m; € HE,
Ai(hy ) (p§, z) € HE, and ¢ (p, z; h, h) > O for both p¢ and pS . So, the inter-
esting case occurs when i (p{, z) — A(h; fz)(pf, 2), p{,2) = 0, such that for cohort
i,mi(ps,z) — Ai(h; fz)(ps, z) > 0. For this case, we must have

W' (m(p$, z) — A(h; ) (S, 2), p$. 2)) = m(ps, 2) — A(h; h)(pS, 2), PS5, 2)

Therefore, A(h; fl)(pe,z),pe,z) must be such that m;(p¢,z) — A;(h; fz)(pe,z)
is increasing in p°. Noting the definition of A(h; fz)(pe, z) elsewhere, we have
A(h; fz)(pe, z) € HE. (ii) That A(h; h)(s®) is isotone in 4 on HE follows from (i)
(as & is a component of ¢). Consider an increasing countable chain H = {h,} C HC,
h" = sup(H). The point A" is well defined as H is a complete lattice. By the
equicontinuity of the collection {A,} at any s¢ € S} for any S C S°\S¢*, S}
compact, h, — h = h", we have A(h;je;) — A(h"). Further, as H is equicon-
tinuous on any such S¢, we have VH = h = h" (see for example, Heikkila
and Reffett 2006, Lemma 4.1). Since A(h; ﬁ)(s“) isotone in h, and A(h,) is a

36 Notice, the claim is also true when we allow the arguments of h vary with pe As in the last section, we
compute the problem in two steps, so for this step of the argument, we fixed h= h( p) for this step.
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chain, we have lim, A(h,) = \/AA(hl-) = A(hi’) = A(VH) = A(limhy,). Fur-
ther, given the definition of A(h; h)(s®), A(h; h)(s®) is order continuous on HC.
m}

Appendix D: Mathematical tools and results

This is a brief exposition of some of the mathematical tools and results used in the
paper. Throughout the paper, we consider the compact intervals X = [0, kmax] C
R, Z = [Zmin, Zmax] With 0 < Zmin < Zmax (although many results can be generalized
to compact subsets of R’} ). Denote by X* = X \ {0}, S = X x Z,§* = X* x Z,
and let 3(S) be the Borel algebra associated with S. All compact subsets are endowed
with the pointwise partial order < and the usual topology on R”.

Given a partially ordered set, or poset, (Y, <), a chain C is a subset of X that
can be linearly ordered. The poset (Y, <) is a lattice if V(x, x’) € Y2, both the infi-
mum A(x, x’) and supremum V(x, x’) exist and belong to Y. If B C Y and (B, <)
is a lattice, then we say that B is a sublattice of Y. A lattice (Y, <) is complete
if VB and AB exist for any B C Y. If X| C Y is a sublattice, and X is com-
plete in its relative partial order, then X is subcomplete. If every chain C in Y is
complete, then Y is chain complete partially ordered set (or a CPO). If every chain
C. in Y is countable and complete, then Y is countable chain complete. Finally, a
countable chain {x,} with x; < x; order converges to x iff V{x,} = x. A func-
tion (mapping) f : (X, <x) — (¥, <y) is isotone if it is “order-preserving”,
that is if x* >x x implies f(x’) >y f(x), (this definition generalizes that of a
“non-decreasing function”). Similarly, a mapping f is antitone (i.e., order-reversing)
if x’ >x x implies f(x) >y f(x’). A mapping that is either isotone or anti-
tone is monotone. The mapping f is a self-mapping or transformation of X if
Y =X.

Proposition 6 The poset (H", <) is a complete lattice. In addition any h € H" is
measurable.

Proof Given any B C H", denote g(s) = infjcp h(s). Clearly 0 < g < w, g is
isotone, and g(., z) is usc for any given z. Thus, g is a lower bound of B, and it is
easy to see that g = AB. Since w is the top element of H", the first result follows the
theorem above. Next, since X is a compact interval of R, denote by {xg, x1,....} a
countable dense subset of X. Given any @ € R, we claim that:

seSh) <at= () {J@n—1/nx41 x{z € Z, h(xp.2) <+ 1/n}.

n=1m=0

This property implies that / is measurable (in the sense of jointly measurable): Indeed,
since h is isotone in z for each k, it is B(Z)-measurable for each k which implies that
{z€Z, h(xy,z2) <a+1/n} € B(Z),and that {s € S, h(s) < a} € B(S). We prove
now the stated claim. First, consider (k, z) such that h(k, z7) < «. Such h being usc
and isotone in k (for each z), it is necessarily right continuous at k, and we have that:

Vn € N,dm such thatx,,, — 1/n < k < x;,, and h(x,,2) < o + 1/n.
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Thus:
Vn € N, 3dm such that (k,z) € (x;, — 1/n, xp] X {z € Z, h(xp, 2) < @ + 1/n},

which implies that:

o0
Vn e N, (k,2) € | J G — 1/n.xm] x {2 € Z.h(im. 2) < @+ 1/n},

m=0

and therefore that:

(k,2) € ﬂ U (xm — 1/n,xp]l x{z€Z,h(xp,2) <o+ 1/n}.

n=1m=0

Reciprocally, suppose that forall n € N, (k, z) belongs to |y (xm — 1/n, xu 1 x {z €
Z, h(xm,z) < o + 1/n}. This implies that for all n, there exists m(n) such that
k € (xmm) — 1/n, Xm@y] and h(xym), 2) < @ 4+ 1/n. By construction the sequence
{Xm(1), Xm(), - . .} converges to k and x,,(,) > k, so by continuity from the right at k of
h(.,z), h(Xmm), 2) converges to h(k, z) and necessarily h(k, z) < «. Finally, we note
that a similar result holds for the subset of H of Isc functions, since it can be shown
that:

[o. e e

{(k,2) € S, htk,2) = a) = () |J oms xm + 1/n) x {z € Z, h(xp. 2) > & — 1/n).

n=1m=0
O

Remark Note that for any P C (H", <), Agu« P coincides with Ay P (the pointwise
inf) but that vV g« P and Vg P (the pointwise sup) may differ.

A second class of lattices of interest for this paper are the spaces of probabil-
ity measures, which we use to study the existence of Stationary Markov equilibria.
Denote by A(X, B(X)) the set of probability measures defined on the measurable
space (X, B(X)), and endow A(X, B(X)) with the partial order >; of stochastic
dominance:

T / FOORR) = / FlOw @),
X X

for every isotone, and bounded function f : X — R,.

Proposition 7 The poset (A(X, B(X)), >y) is a complete lattice with minimal and
maximal elements 8o and &, .

Proof 1Ttis easy to show that the set D(X) of functions F : X — [0, 1], that are isotone,
upper semicontinuous, and satisfy F(b) = 1, is a complete lattice when endowed
with the pointwise order. D(X) has maximal and minimal elements (respectively, the
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function F(k) = 1 for all k € X, and the function G(k) = 1 if k = b otherwise
G (k) = 0). D(X) is in fact the set of probability distributions over the compact set
X. It is well known that to any probability measure u € A(X, B(X)) corresponds a
unique distribution function F,, € ID(X) and vice versa, and u >; ' is equivalent
to F,, < F, (see, for instance, Stokey et al. 1989).37 (A(X, B(X)), >y) is thus
isomorphic to (ID(X), <), and is therefore a complete lattice with minimal element
the singular probability measure §p, and maximal element the singular probability
measure g, . O

When A(X, B(X)) is endowed with the weak topology, a sequence of probability
measures {u,} in A(X, B(X)) is said to weakly converge to u € A(X, B(X)) if for
all continuous functions f : X — R:

nli)rgo/f(k)un(dk) =/f(k)//(dk), (&)
X X

In this case, we write u, = 1, and we refer to u as the weak limit of the sequence
{n}. TItis easy to see that when X C R, increasing sequences {11, } in (A(X, B(X)), >5)
necessarily converges to their supremum, that is:

Mn = = V{n}.

Similarly, for a decreasing sequence to their infimum. O

Endowed with the stochastic dominance order, the set A(S, B(S)) of probability
measures defined on the measurable space (S, B(S)) fails to be a complete lattice,
although it is chain complete (see Hopenhayn and Prescott 1992).

Proposition 8 (A(S, B(S)), >y) is a chain complete lattice with minimal and maxi-
mal elements 50,7, ANA 8 (knax, zmax) -

Existence proofs in this paper are based on an extension of Tarski’s fixed point
theorem for order continuous operators related to Theorem 4.2 in Dugundji and Granas
(2003). Order continuity is defined as follows:

Definition 5 A function F : (P, <) — (P, <)isorder continuous if for any countable
chain C C P such that vC and AC both exist,

V{F(C)} = F(VC) and A {F(C)} = F(AC).

It is important to note that, in view of the above proof, the hypothesis of order
continuity in (b) and (c) can be weakened to that of isotonicity of F' and order
continuity along monotone recursive F-sequences, that is, sequences of the form
{x, F(x),..., F"(x), ...} where either x < F(x) orx > F(x).38 In that case, (P, <)

37 This is not true if X ¢ R! with [ > 2, and this is one fundamental reason why this argument does not
trivially generalize to economies with Markov shocks.
38 Order continuity along monotone F-sequences does not imply that F is isotone. Consider for instance
F :0,1] — [0, 1] such that F(x) = 1 — x. F is clearly continuous along the (only) monotone recursive
F-sequence {1/2, 1/2, 1/2, ...}, but F is not isotone.
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needs only be chain complete for the existence of a non-empty set of fixed points with
minimal and maximal elements. We shall exploit this property, which we state in the
following corollary:

Corollary 2 With F : (P,>) — (P, >) isotone and order continuous along
monotone F-sequences and (P, <) chain complete with maximal element pmax and
minimal element pmin, the set of fixed points of F is non-empty, and (b) and (c) in the
previous Theorem hold true.
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