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Abstract We introduce spaces of discontinuous games in which games having essen-
tial Nash equilibria are the generic case. In order to prove the existence of essential Nash
equilibria in such spaces, we provide new results on the Ky Fan minimax inequality.
In the setting of potential games, we show that games with essential Nash equilib-
ria are the generic case when their potentials satisfy a condition called weak upper
pseudocontinuity that is weaker than upper semicontinuity.
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1 Introduction

Let G be a strategic form game. In this paper, we are interested in the existence of
Nash equilibria of G which satisfy the additional property that any game close to G
has Nash equilibria close to them. Such equilibria were introduced and called essential
Nash equilibria by Wu and Jiang (1962).

We consider games where the payoffs are not necessarily continuous functions
(henceforth discontinuous games). Remarkable examples of such games are the
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28 V. Scalzo

Bertrand oligopoly (see Bertrand 1883) and the Hotelling linear city model (see
Hotelling 1929; D’Aspemont et al. 1979), which have been a source of inspiration
for a wide body of the literature on equilibrium existence in games with discontinuous
payoffs. In an early paper, Dasgupta and Maskin (1986) studied the existence of Nash
equilibria in pure strategies under a condition more general than the lower semiconti-
nuity of the payoff functions with respect to the other players’ strategies. Afterward,
both upper and lower semicontinuity of payoffs have been relaxed in several ways.
Baye et al. (1993) showed that a compact game has a Nash equilibrium if its aggregator
function is diagonally transfer continuous and diagonally transfer quasi-concave; see
also Tian and Zhou (1995).1 Reny (1999) introduced the better-reply secure games
and proved that every compact, quasi-concave, and better-reply secure game has a
Nash equilibrium. Some related results and generalizations can be found in Carmona
(2009), Bich (2009), Carmona (2011a,b), De Castro (2011), Prokopovych (2011),
Reny (2011). Morgan and Scalzo (2007) introduced the class of pseudocontinuous
functions and showed that a compact and quasi-concave game has a Nash equilibrium
whether the payoffs are pseudocontinuous functions. Moreover, see Lebrun (1995) for
the existence of equilibria in discontinuous games with imperfect information.

In the present paper, we study essential Nash equilibria of discontinuous games;
in particular, we are interested in spaces g of discontinuous games which have the
following property: there exists a dense subset q of g such that every game which
belongs to q has essential Nash equilibria. If a space g satisfies the property, we say
that games with essential Nash equilibria are the generic case in g. Some spaces of
discontinuous games with this property were described by Yu (1999) and by Carbonell-
Nicolau (2010); their results rely on a theorem of Fort (1949) on continuity points of
set-valued functions.

In addition to Fort’s theorem, we also rely on the Ky Fan minimax inequality (Fan
1972): find z ∈ X such that Φ(x, z) ≤ 0 for any x ∈ X . In particular, we introduce
the class of generalized positively quasi-transfer continuous functions and prove that
the space, denoted by f1, of generalized positively quasi-transfer continuous functions
Φ such that the Ky Fan inequality has solutions is a non-empty and complete metric
space (equipped with the sup-norm metric). When X is a convex and compact subset
of a metrizable and locally convex topological vector space, a non-empty and com-
plete subset of f1, denoted by f2, is given by the generalized positively quasi-transfer
continuous functions Φ which are 0-diagonally quasi-concave.

Since the set of Nash equilibria of a game coincides with the solution set of the Ky
Fan minimax inequality corresponding to a suitable function Φ, using the properties
of f1 and f2, we give new spaces of discontinuous games where games having essential
Nash equilibria are the generic case. In the setting of potential games (Monderer and
Shapley 1996), we use a condition called weak upper pseudocontinuity (Morgan and
Scalzo 2006; Scalzo 2009) that is weaker than upper semicontinuity.

The outline of the paper is as follows. In Sect. 2, we recall some definitions and
introduce the class of generalized positively quasi-transfer continuous functions. In
Sect. 3, we give new results on the Ky Fan minimax inequality. Sufficient conditions

1 See Scalzo (2010) for an application of transfer continuity to the existence of efficient Nash equilibria.
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Essential equilibria of discontinuous games 29

for the existence of essential Nash equilibria are provided in Sect. 4. Section 5 deals
with potential games. Concluding remarks are given in Sect. 6.

2 Setting and preliminaries

We recall that a strategic form game (in short: game) is a set of data G = 〈Xi , ui 〉i∈I

where, for any player i ∈ I, Xi is a non-empty set of strategies and the payoff ui is a
real-valued function defined on X = ∏

j∈I X j . We assume that the set of players I is
finite. The elements of X are called strategy profiles; if x is a strategy profile, we use
the notation x = (xi , x−i ), where xi ∈ Xi and x−i ∈ X−i = ∏

i �= j∈I X j . Assume that
any player wishes to maximize his/her own payoff. We recall that a strategy profile
x∗ is a Nash equilibrium—Nash (1950)—if ui (x∗) ≥ ui (xi , x∗−i ) for any xi ∈ Xi and
any i ∈ I .

Throughout the paper, we assume that X is a non-empty and compact subset of a
metrizable topological space (the metric is denoted by d) and we consider games such
that X is the set of their strategy profiles. Moreover, we assume that the payoffs of any
game are bounded functions on X . Let gb be the space of such games and let ρ be the
metric defined on gb as below (see Wu and Jiang 1962; Yu 1999):

ρ(G, G ′) =
∑

i∈I

sup
x∈X

|ui (x) − u′
i (x)| . (1)

It is easy to see that gb is a complete metric space.

Definition 1 Let g ⊆ gb and G ∈ g. A strategy profile x is said to be an essential
Nash equilibrium of G relative to g if it is a Nash equilibrium of G and for any ε > 0,
there exists δ > 0 such that any game G ′ ∈ g with ρ(G, G ′) < δ has at least one Nash
equilibrium x ′ such that d(x, x ′) < ε.

Our aim is to introduce classes of discontinuous games where games having essen-
tial Nash equilibria are the generic case, that is, if g is a class of games, there exists a
dense subset q of g such that every game belonging to q has essential Nash equilibria
relative to g. We use the Ky Fan minimax inequality (Fan 1972):

find z ∈ X such that Φ(x, z) ≤ 0 for any x ∈ X , (2)

where Φ is a real-valued function defined on X × X . It is easy to see that x∗ is a Nash
equilibrium of a game G = 〈Xi , ui 〉i∈I if and only if Φ(x, x∗) ≤ 0 for any x ∈ X ,
where Φ is defined on X × X as below:

Φ(x, z) =
∑

i∈I

[
ui (xi , z−i ) − ui (z)

]
. (3)

We consider games G where the functions Φ defined by (3) are generalized positively
quasi-transfer continuous (see the definition below). First, let us recall that a corre-
spondence (set-valued function) T : Y ⇒ Z , where Y and Z are topological spaces,
is said to be upper semicontinuous if, for any y ∈ Y and for any open set O which
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30 V. Scalzo

includes T(y), there exists an open neighborhood U of y such that T(y′) ⊆ O for
any y′ ∈ U (see, for example, Aliprantis and Border 1999). A correspondence is said
to be well-behaved if it is upper semicontinuous and non-empty, convex and compact
valued.

Definition 2 We say that a function Φ : X × X −→ R is generalized t-quasi-transfer
continuous2 if, whenever Φ(x, z) > t for some (x, z) ∈ X × X , there exists a
neighborhood Uz of z and a well-behaved correspondence ξ : Uz ⇒ X such that
Φ(ξ(z′), z′) > t for any z′ ∈ Uz . We say that Φ is generalized positively quasi-
transfer continuous if it is generalized t-quasi-transfer continuous for any t > 0.3

Definition 3 We say that a function Φ : X × X −→ R is positively quasi-transfer
continuous if, whenever Φ(x, z) > t for some (x, z) ∈ X × X and t > 0, there exists
a neighborhood Uz of z and x ′ ∈ X such that Φ(x ′, z′) > t for any z′ ∈ Uz .

Obviously, any positively quasi-transfer continuous function is generalized positively
quasi-transfer continuous. Example 5 shows that the converse is not true. The next
proposition shows that, if Φ is the function defined by (3) for a generalized payoff
secure game where the sum of the payoff functions is upper semicontinuous, then
Φ is generalized positively quasi-transfer continuous. We recall that a game G =
〈Xi , ui 〉i∈I is generalized payoff secure (see, for example, Carbonell-Nicolau 2010)
if for any x ∈ X , any ε > 0 and any player i , there exists a neighborhood Ui of x and
a well-behaved correspondence ξi : Ui ⇒ Xi such that ui (ξi (x ′), x ′−i ) > ui (x) − ε

for all x ′ ∈ Ui . When the correspondence ξi is constant and single-valued on Ui for
any x , any ε > 0 and any i , then G is said to be payoff secure (see Reny 1999).

Proposition 1 Let G = 〈Xi , ui 〉i∈I be a generalized payoff secure game where the
sum of the payoff functions is upper semicontinuous. Then, the function Φ defined by
(3) is generalized positively quasi-transfer continuous.

Proof Assume that Φ(x, z) > t > 0 and let ε > 0 such that Φ(x, z) > ε(1+|I |)+ t ,
where |I | denotes the number of players. So, we have :

∑

i∈I

ui (xi , z−i ) − |I |ε > ε +
∑

i∈I

ui (z) + t . (4)

Since G is generalized payoff secure, for any player i , there exists a neighborhood
Ui = Ui

xi
× ∏

l �=i U i
zl

of (xi , z−i ) and a well-behaved correspondence ξi : Ui ⇒ Xi

such that4

ui
(
ξi (z

′), z′−i

)
> ui (xi , z−i ) − ε ∀ z′ ∈ Ui .

2 Another possible name, suggested by a referee, is generalized t-transfer lower semicontinuous.
3 Φ(ξ(z′), z′) > t denotes that Φ(s, z′) > t for each s ∈ ξ(z′).
4 ui (ξi (z

′), z′−i ) > ui (xi , z−i ) − ε denotes that ui (s
′
i , z′−i ) > ui (xi , z−i ) − ε for any s′

i ∈ ξi (z
′).
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For any l ∈ I , we set Uzl = ⋂
j �=l U j

zl and U
′
z = ∏

l∈I Uzl . So, one gets:

∑

i∈I

ui
(
ξi (xi , z′−i ), z′−i

)
>

∑

i∈I

ui (xi , z−i ) − |I |ε ∀ z′ ∈ U
′
z . (5)

On the other hand, since the sum of the payoff functions is upper semicontinuous,
there exists a neighborhood U

′′
z of z such that:

ε +
∑

i∈I

ui (z) >
∑

i∈I

ui (z
′) ∀ z′ ∈ U

′′
z . (6)

Let Uz = U
′
z ∩ U

′′
z and ξ : Uz ⇒ X be the correspondence defined by ξ(z′) =∏

i∈I ξi (xi , z′−i ) for any z′ ∈ Uz—we recall that ξi (xi , z′−i ) ⊆ Xi for any i ∈ I . It is
clear that ξ is well-behaved. From (4), (5), and (6), we obtain:

Φ
(
ξ(z′), z′) =

∑

i∈I

[
ui

(
ξi (xi , z′−i ), z′−i

) − ui (z
′)
]

> t ∀ z′ ∈ Uz ,

which concludes the proof. ��
Remark 1 In light of Proposition 1, the class of games gX considered in Theorem 2
by Carbonell-Nicolau (2010) is included in the class of games where the functions
Φ defined according to (3) are generalized positively quasi-transfer continuous. We
recall that gX is the set of generalized payoff secure games G = 〈Xi , ui 〉i∈I such that
the sum of the payoff functions is upper semicontinuous and, for any i ∈ I , Xi is a
convex and compact subset of a metric space, ui is bounded and ui (·, x−i ) is quasi-
concave for any x−i . Let g1 be the space of games where any game has Nash equilibria
and the function Φ defined by (3) is generalized positively quasi-transfer continuous.
Since any game belonging to gX has Nash equilibria, in light of Proposition 1, we
have that g1 is non-empty and includes gX . The following Example 1 shows that this
inclusion is strict. In Sect. 4, we prove that games having essential Nash equilibria are
the generic case in g1.

Example 1 Let G = 〈X1, X2, u1, u2〉 be the game where X1 = X2 = [0, 1] and the
payoffs are defined as follows:

u1(x1, x2) =
{

2 −x2 if (x1, x2) ∈ [0, 1] × [0, 1[
0 if (x1, x2) ∈ [0, 1] × {1} ;

u2(x1, x2) = 0 for each (x1, x2) ∈ [0, 1] × [0, 1]. Note that such functions are
bounded and ui (·, x−i ) is quasi-concave for any x−i and any i . The sum u1 +u2 is not
upper semicontinuous; for instance, u1(1, 1) = 0 but u1(1, xn

2 ) converges to 1 for any
sequence xn

2 −→ 1 where xn
2 < 1 for n sufficiently large. So, G �∈ gX . On the other

hand, it is easy to see that Φ(x, z) = 0 for any x and z which belong to X = X1 × X2.
Hence, Φ is generalized positively quasi-transfer continuous. Moreover, the set of
Nash equilibria of G coincides with X .
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In the setting of discontinuous potential games, we use a generalization of upper
semicontinuity that is called weak upper pseudocontinuity (see the definition below
by Morgan and Scalzo 2006; Scalzo 2009). We recall that a game G = 〈Xi , ui 〉i∈I is
said to be a potential game (Monderer and Shapley 1996) if there exists a function P
such that, for each player i :

ui (xi , x−i ) − ui (x ′
i , x−i ) = P(xi , x−i ) − P(x ′

i , x−i )

for any xi and x ′
i belonging to Xi and for any x−i ∈ X−i . The function P is the

potential of G. Examples of potential games are the congestion games (see Rosenthal
1973; Monderer and Shapley 1996) and the quasi-Cournot competition (see Monderer
and Shapley 1996). Let us note that if G is a potential game, any maximizer of its
potential is a Nash equilibrium of G, but the converse is not true (see Example 3).

Definition 4 A real-valued function F defined on a metric space X is said to be weakly
upper pseudocontinuous if, for any x and x ′ belonging to X such that F(x) < F(x ′),
we have:

lim sup F(xn) ≤ F(x ′) for any sequence xn −→ x .

Remark 2 If X is a compact metric space and F is weakly upper pseudocontinuous,
then the set of maximum points of F is non-empty: see Scalzo (2009).

Any upper semicontinuous function is weakly upper pseudocontinuous, but the
converse is not true. In fact, the Dirichlet’s function F , defined on the set of real
numbers by F(x) = 0 if x is a rational number and F(x) = 1 otherwise, is weakly
upper pseudocontinuous, but it is not upper semicontinuous. We note that the utility
functions representing weakly lower continuous preferences (see Campbell and Walker
1990) are not necessarily upper semicontinuous, but weakly upper pseudocontinuous.
A potential game where the potential is weakly upper pseudocontinuous but not upper
semicontinuous, as well as the sum of the payoff functions is not upper semicontinuous,
is given by the example below.

Example 2 Let G = 〈X1, X2, u1, u2〉 be the game where X1 = [0, 1], X2 = [0, 2]
and

u1(x1, x2) =
⎧
⎨

⎩

1 if (x1, x2) ∈ [0, 1[×[0, 1]
2 if (x1, x2) ∈ [0, 1[×]1, 2]
1 if (x1, x2) ∈ {1} × [0, 2]

,

u2(x1, x2) =
⎧
⎨

⎩

1 −x2 if (x1, x2) ∈ [0, 1] × [0, 1[∪{(1, 1)}
0 if (x1, x2) ∈ [0, 1[×[1, 2]

−1 if (x1, x2) ∈ {1}×]1, 2]
.

The sum u1 + u2 is not upper semicontinuous: consider (1, x2) with x2 ∈ ]1, 2] and
(xn

1 , xn
2 ) −→ (1, x2) where xn

1 < 1 for any n. So, we have (u1 + u2)(1, x2) = 0 and
(u1 + u2)(xn

1 , xn
2 ) = 2 for any n. Moreover, the functions u1 and u2 are not upper

semicontinuous, but weakly upper pseudocontinuous. In fact, for the function u1, one
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has u1(1, 1) = 1 but, for any (xn
1 , xn

2 ) −→ (1, 1) where xn
1 < 1 and xn

2 > 1, we have
u1(xn

1 , xn
2 ) = 2 for each n. It is easy to prove that u1 is weakly upper pseudocontinuous.

The function u2 is not upper semicontinuous at (1, x2) for any x2 ∈ ]1, 2]. In fact, if
x2 ∈ ]1, 2] and (xn

1 , xn
2 ) −→ (1, x2) with xn

1 < 1 for each n, one gets u2(xn
1 , xn

2 ) = 0
for each n and u2(1, x2) = −1. Besides, if u2(1, x2) < u2(x̄1, x̄2) and {(xn

1 , xn
2 )}n is

a sequence converging to (1, x2), we have u2(x̄1, x̄2) ≥ 0 and u2(xn
1 , xn

2 ) ∈ {−1, 0}
for each n. Hence, u2 is weakly upper pseudocontinuous at (1, x2) for all x2 ∈]1, 2].
Similarly, one can prove that u2 is weakly upper pseudocontinuous on [0, 1[×[0, 2] ∪
{1} × [0, 1]. Finally, one can prove that G is a potential game with potential P = u2.

The class of potential games having weakly upper pseudocontinuous potentials is
not included in the class of games where the functions Φ defined by (3) are generalized
positively quasi-transfer continuous. In fact, we have:

Example 3 Let G = 〈X1, X2, v1, v2〉 be the game such that X1 = [0, 1], X2 = [0, 2]
and v1 = v2 = u1, where u1 is the function considered in Example 2. Obviously,
P = u1 is a potential of G. Let z = (1, z2) with z2 ∈]1, 2] and x ∈ [0, 1[×[0, 2]. We
have:

Φ(x, z) = P(x1, z2) + P(z1, x2) − 2P(z) = 1 .

If U is a neighborhood of z, for any z′ ∈ U ∩ [0, 1[×]1, 2] and for any x ′ ∈ [0, 1] ×
[0, 2], we get P(z′) = 2 and Φ(x ′, z′) ≤ 0. Therefore, Φ is not generalized positively
quasi-transfer continuous. Note that the set of Nash equilibria of G is [0, 1[×]1, 2] ∪
{(1, x2) : x2 ∈ [0, 1]}, while the set of maximum points of the potential is [0, 1[×]1, 2].
Remark 3 Let P : X −→ R and Υ be the function defined on X × X by Υ (x, z) =
P(x)−P(z). The weak upper pseudocontinuity is equivalent to the following condition
a): Υ (x, z) > 0 implies that for any ε > 0, there exists a neighborhood U of z such
that Υ (x, z′) + ε ≥ 0 for any z′ ∈ U . Assume by way of contradiction that P is
weakly upper pseudocontinuous and condition a) does not hold. So, for at least one
(x, z) ∈ X × X and ε > 0, we have Υ (x, z) > 0 and, for any neighborhood Un of z in
a countable local base decreasing with respect to inclusion, there exists zn ∈ Un such
that Υ (x, zn) + ε = P(x) − P(zn) + ε < 0. Since the sequence (zn)n converges to z,
we get the contradiction P(x) + ε ≤ lim sup P(zn) ≤ P(x). Finally, assume that Υ

satisfies a). Let P(z) < P(x) and zn −→ z. So, Υ (x, z) > 0 and, for any ε > 0, we
have P(zn) ≤ P(x)+ε for n sufficiently large, which gives lim sup P(zn) ≤ P(x)+ε

for any ε > 0. So lim sup P(zn) ≤ P(x).5

In the next sections, we prove that games having essential Nash equilibria are the
generic case in the spaces of discontinuous games g1, g2 and g

p
1 , that are defined

below. First, let us recall that a function Φ : X × X −→ R is said to be 0-diagonally
quasi-concave in the first argument if for any F = {x1, . . . , xk} ⊂ X and for any
z ∈ coF (we denote by coA the convex hull of a set A) such that z = ∑l

j=1 λi j xi j

and λi j > 0 for j = 1, . . . , l, we have min{Φ(xi j , z) : j = 1, . . . , l} ≤ 0 (see Zhou

5 The author thanks a referee that pointed out the equivalence between weakly upper pseudocontinuity and
condition a).
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and Chen 1988; Tian 1992). Assume that X is the compact set of strategy profiles of
any game:

g1 is the space of games where, for any game, the payoffs are bounded, the func-
tion Φ defined by (3) is generalized positively quasi-transfer continuous, and the
solution set of inequality (2) is non-empty.
g2 is the space of games such that: X is a convex subset of a metrizable and locally
convex topological vector space; for any game, the payoffs are bounded and the
function Φ defined by (3) is generalized positively quasi-transfer continuous and
0-diagonally quasi-concave in the first argument.
g

p
1 is the space of potential games where, for any game, the payoffs are bounded

and the potential is weakly upper pseudocontinuous.

Let us remark that: g2 ⊂ g1 and the set of Nash equilibria of every game which belongs
to g2 is non-empty and compact (see the following Proposition 2); gX ⊂ g1 (see
Proposition 1 and Remark 1), where gX is the space of games considered in Theorem 2
by Carbonell-Nicolau (2010); gp

1 �⊆ g1 (see Example 3). Of course, neither g1 nor g2 is
included in g

p
1 . Moreover, gp

1 is included neither in the space of potential games where,
for any game, the sum of the payoff functions is upper semicontinuous nor in the space
of potential games where, for any game, the potential is upper semicontinuous (see
Example 2).

3 Generalized positive quasi-transfer continuity and Ky Fan minimax
inequality

Let f0 be the set of bounded and generalized positively quasi-transfer continuous
functions defined on X × X . We denote by f1 the subset of functions Φ ∈ f0 such
that the solution set of inequality (2) is non-empty. Note that if Φ is defined by (3)
for a game G ∈ gX , then Φ ∈ f1: see Remark 1. Moreover, in light of the following
Proposition 2, another class of functions included in f1 is given by the functions Φ that
are generalized positively quasi-transfer continuous and 0-diagonally quasi-concave
in the first argument.

Proposition 2 Assume that X is a convex and compact subset of a metrizable and
locally convex topological vector space. If Φ is generalized 0-quasi-transfer contin-
uous and 0-diagonally quasi-concave in the first argument, then the solution set of
inequality (2) is non-empty and compact.6

Proof Let S be the solution set of inequality (2). First, we prove that S �= ∅. By
contradiction, assume that for any z ∈ X , there exists x ∈ X such that Φ(x, z) > 0.
Since Φ is generalized 0-quasi-transfer continuous, for any z ∈ X , there exists a
neighborhood Uz of z and a well-behaved correspondence ξz : Uz ⇒ X such that
Φ

(
ξz(z′), z′) > 0 for any z′ ∈ Uz . By compactness of X , we have X = ⋃k

j=1 Uz j .

Let {β j }k
j=1 be a partition of the unity subordinate to {Uz j }k

j=1 (see, for example,

6 The author thanks P. Prokopovych for his hint about the existence of solutions to inequality (2) with
generalized 0-quasi-transfer continuous functions.
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Aliprantis and Border 1999) and let ξ : X ⇒ X be the correspondence defined by
ξ(x) = ∑

β j (x)>0 β j (x)ξz j (x). It is easy to see that ξ is upper semicontinuous with
non-empty, convex and compact values. So, in light of the Kakutani–Fan–Glicksberg
fixed point theorem (see, for example, Aliprantis and Border 1999), ξ has a fixed point
x∗. Assume that x∗ = ∑

β j (x∗)>0 β j (x∗)s∗
j , where s∗

j ∈ ξz j (x∗). Since x∗ ∈ Uz j for
any j ∈ {1, . . . , k} such that β j (x∗) > 0, we have min{Φ(s∗

j , x∗) : β j (x∗) > 0} > 0.
On the other hand, Φ is 0-diagonally quasi-concave in the first argument and we get
the following contradiction:

0 ≥ min
{
Φ(s∗

j , x∗) : β j (x∗) > 0
}

> 0 .

So, S is non-empty. Finally, it is easy to prove that S is a closed subset of X . ��
It is easy to see that a function Φ is 0-diagonally quasi-concave in the first argument

whether, for any z ∈ X ,Φ(·, z) is quasi-concave andΦ(z, z) ≤ 0. Hence, Proposition 2
implies:

Corollary 1 Assume that X is a convex and compact subset of a metrizable and locally
convex topological vector space. If Φ is generalized 0-quasi-transfer continuous and,
for any z ∈ X, Φ(·, z) is quasi-concave and Φ(z, z) ≤ 0, then the solution set of
inequality (2) is non-empty and compact.

In the following, we assume that f0 is endowed with the sup-norm metric ρ1:

ρ1(Φ,Φ ′) = sup
(x,z)∈X×X

∣
∣Φ(x, z) − Φ ′(x, z)

∣
∣ .

Proposition 3 f0 is a complete metric space.

Proof Since the space of bounded functions is complete in the metric ρ1 (see, for
example, Aliprantis and Border 1999), it is sufficient to prove that if a sequence
(Φn)n ⊆ f0 is converging to a function Φ, then Φ ∈ f0. Assume that Φ(x, z) >

t > 0. Let t1 such that Φ(x, z) > t1 > t . Since ρ1(Φn, Φ) converges to 0, we have
ρ1(Φn, Φ) < t1 − t for any n greater than some no. On the other hand, Φ(x, z) > t1
implies Φn(x, z) > t1 for any n ≥ n1, where n1 ≥ no. Let n ≥ n1. Because Φn is
generalized positively quasi-transfer continuous, there exists a neighborhood Uz of
z and a well-behaved correspondence ξ : Uz ⇒ X such that Φn(s, z′) > t1 for any
s ∈ ξ(z′) and for any z′ ∈ Uz , which implies:

Φn(s, z′) − t > t1 − t > ρ1(Φn, Φ) ≥ Φn(s, z′) − Φ(s, z′) .

So, Φ
(
ξ(z′), z′) > t for any z′ ∈ Uz , that is: Φ is generalized positively quasi-transfer

continuous.7 ��

7 The author thanks G. Carmona and P. Prokopovych for streamlining the proof.
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Remark 4 Baye et al. (1993) have obtained the existence of solutions to inequality
(2) with functions Φ that are diagonally transfer quasi-concave and diagonally trans-
fer continuous.8 Note that any diagonally transfer continuous function is generalized
0-quasi-transfer continuous, but the converse is not true. However, neither the class of
generalized 0-quasi-transfer continuous functions nor the class of diagonally transfer
continuous functions are complete spaces in the sup-norm metric: see Example 4. A
function which is generalized positively quasi-transfer continuous but not diagonally
transfer continuous is given in Example 5. We remark that the existence of solutions
to inequality (2) can be obtained in several ways and under quasi-concavity-like con-
ditions weaker than that considered in Proposition 2: see Chang (2010) and references
therein. Nevertheless, for the purposes of the present paper, we need to consider a
property that is robust with respect to the convergence in the sup-norm metric (the
space of 0-diagonally quasi-concave in the first argument functions is complete: see
Lemma 1). Finally, see Yannelis (1991) for an in-depth discussion on the classical
existence results of solutions to the Ky Fan minimax inequality.

Example 4 For any n ∈ N, let Φn be the function defined on [0, 1] × [0, 1] by
Φn(x, z) = un(x) − un(z), where un is as below:

un(x) =
⎧
⎨

⎩

x if x ∈ [
0, 1 − 1

n

]

2
(
1 − 1

n

) − x if x ∈ ]
1 − 1

n , 1
[

0 if x = 1
.

The function Φn is diagonally transfer continuous because un is transfer upper contin-
uous9. Since (un)n converges to the function u defined by u(x) = x for each x ∈ [0, 1[
and u(1) = 0, the sequence (Φn)n converges to the function Φ(x, z) = u(x)−u(z) in
the metric ρ1, but Φ is not generalized 0-quasi-transfer continuous at any point (x, 1)

with x > 0.

Example 5 Let f : [0, 1] −→ [0, 1] be a continuous and strictly increasing function
such that f (0) = 0. We denote by X the set [0, 1] × [0, 1] and define the function
u : X −→ R as below:

u(x1, x2) =
{

x1 if x1 = f (x2)

0 otherwise
.

Let Φ(x, z) = u(x1, z2)− u(z) for all (x, z) ∈ X × X . Assume that Φ(x, z) > t > 0:
this is possible only in the case where x1 = f (z2) > 0 and z1 �= f (z2), and we have
Φ(x, z) = x1 > t . Since z1 �= f (z2) and x1 = f (z2) > t , in light of the continuity
of f , there exists a neighborhood Uz of z such that z′

1 �= f (z′
2) and f (z′

2) > t for any

8 A function Φ is said to be: diagonally transfer quasi-concave if for any finite subset F ⊂ X there exists
a finite subset F ′ ⊂ X such that to any xi j ∈ F corresponds an element x ′

i j
∈ F ′ and min{Φ(xi j , z) :

j = 1, . . . , l} ≤ 0 for any z ∈ co{x ′
i1

, . . . , x ′
il
}; diagonally transfer continuous if Φ(x, z) > 0 implies that

there exists a neighborhood U of z and x ′ such that Φ(x ′, z′) > 0 for any z′ ∈ U .
9 We recall that u is said to be transfer upper continuous if u(x) > u(z) implies that there exists a
neighborhood U of z and x ′ such that u(x ′) > u(z′) for any z′ ∈ U (see Tian and Zhou 1995).
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z′ ∈ Uz . Let ξ : Uz −→ X be the correspondence defined by ξ(z′) = {( f (z′
2), x2)}

for all z′ ∈ Uz . It is clear that ξ is a well-behaved correspondence. So, Φ(ξ(z′), z′) =
f (z′

2) > t for all z′ ∈ Uz , which proves that Φ is generalized positively quasi-transfer
continuous. On the other hand, for any neighborhood U ′

z of z and for any x ′ ∈ X ,
there are points z′ ∈ U ′

z such that x ′
1 �= f (z′

2), which implies Φ(x ′, z′) ≤ 0. Hence,
Φ is not diagonally transfer continuous.

For any function Φ, we denote by S(Φ) the set of solutions to inequality (2) and
we set S : Φ ∈ f0 → S(Φ) ⊆ X . Note that S(Φ) �= ∅ for all Φ ∈ f1.

We recall that a set-valued function T : Y ⇒ X , where Y and X are metric spaces,
is said to be closed (see, for example, Aliprantis and Border 1999) if, for any sequence
(yn)n converging to y in Y and for any sequence (xn)n converging to x in X with
xn ∈ T(yn) for n sufficiently large, one has x ∈ T(y).

Remark 5 Let T : Y ⇒ X , where Y and X are metric spaces and X is compact. Then,
T is upper semicontinuous with compact values if and only if T is closed (see, for
example, Aliprantis and Border 1999).

Proposition 4 The set-valued function S is closed.

Proof By contradiction, assume that: ρ1(Φn, Φ) −→ 0, zn −→ z, zn ∈ S(Φn) for
n sufficiently large and z �∈ S(Φ). Then, there exists x ∈ X such that Φ(x, z) > t
for some t > 0. Since Φ is generalized positively quasi-transfer continuous, there
exists a neighborhood Uz of z and a well-behaved correspondence ξ : Uz ⇒ X
such that Φ

(
ξ(z′), z′) > t for any z′ ∈ Uz . So, for n sufficiently large, we have

Φ (sn, zn) > t > ρ1(Φn, Φ), where sn ∈ ξ(zn), which implies:

Φ(sn, zn) > ρ1(Φn, Φ) ≥ Φ(sn, zn) − Φn(sn, zn) .

Hence, Φn(sn, zn) > 0 for n sufficiently large, which contradicts zn ∈ S(Φn). ��

Corollary 2 f1 is a complete metric space.

Proof In light of Proposition 3, it is sufficient to prove that if (Φn)n ⊆ f1 and
ρ1(Φn, Φ) −→ 0, then S(Φ) �= ∅. Let zn ∈ S(Φn) for any n. Since X is com-
pact, there exists a subsequence of (zn)n which converges to a point z ∈ X : suppose
that zn −→ z. From Proposition 4, we have z ∈ S(Φ), that is, S(Φ) is non-empty. ��

Now, assume that X is a convex and compact subset of a metrizable and locally
convex topological vector space and let f2 be the set of functions which are general-
ized positively quasi-transfer continuous and 0-diagonally quasi-concave in the first
argument on X × X . In light of Proposition 2, we have f2 ⊂ f1.

Lemma 1 Assume that (Φn)n is a sequence of 0-diagonally quasi-concave in the
first argument functions that converge to a function Φ in the metric ρ1. Then, Φ is
0-diagonally quasi-concave in the first argument.
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Proof By contradiction, suppose that there exists a subset {x1, . . . , xk} of X and
z = ∑k

j=1 λ j x j ∈ co{x1, . . . , xk}, where λ j > 0 for any j , such that min{Φ(x j , z) :
j = 1, . . . , k} > 0. Since any function Φn is 0-diagonally quasi-concave in the first
argument, we have that min{Φn(x j , z) : j = 1, . . . , k} ≤ 0 for any n. So, there
exists x̄ ∈ {x1, . . . , xk} and a subsequence (Φnl ) of (Φn) such that Φnl (x̄, z) =
min{Φnl (x j , z) : j = 1, . . . , k} ≤ 0 for l sufficiently large. Since ρ1(Φnl , Φ) −→ 0,
we get a contradiction. ��
Finally, from Propositions 2, 3 and 4 and Lemma 1, we have:

Corollary 3 f2 is a complete metric space and the set-valued function S : Φ ∈ f2 →
S(Φ) is closed and non-empty compact valued.

4 Essential Nash equilibria of discontinuous games

In this section, we prove that games having essential Nash equilibria are the generic
case for any g ∈ {g1, g2}, that is, there exists a dense subset q of g such that,
for every game which belongs to q, every Nash equilibrium is an essential equi-
librium relative to g. Let N : g ⇒ X be the set-valued function defined by
N(G) = {Nash equilibria of G} for any G ∈ g. Note that N(G) = S(Φ), where
Φ is defined by (3). We recall that a set-valued function T : Y ⇒ X is lower semi-
continuous (see, for example, Aliprantis and Border 1999) if, for any y ∈ Y and for
any open set O such that T(y) ∩ O �= ∅, there exists a neighborhood U of y such that
T(y′)∩ O �= ∅ for any y′ ∈ U . It is clear that every Nash equilibrium of a game G ∈ g
is an essential equilibrium relative to g if and only if N is lower semicontinuous at G.
So, useful is the following theorem of Fort (1949):

Lemma 2 Let Y and X be metric spaces and Y be complete. Assume that T : Y ⇒ X
is an upper semicontinuous set-valued function with non-empty and compact values.
Then, there exists a dense Gδ subset Q of Y such that T is lower semicontinuous at
any point belonging to Q.10

In order to apply Lemma 2, we need to prove that any g ∈ {g1, g2} is a complete
metric space and the set-valued function N is upper semicontinuous with non-empty
and compact values on g.

Proposition 5 g1 and g2 are complete metric spaces.

Proof Let g ∈ {g1, g2} and (Gn)n ⊆ g be a Cauchy sequence. Since gb is a complete
metric space, the sequence (Gn)n converges to a game G = 〈Xi , ui 〉i∈I ∈ gb in the
metric ρ. Now, let (Φn)n be the sequence of functions such that, for any n, Φn is

10 We recall that a subset of a topological space is a Gδ-set (in short Gδ) if it is a countable intersection of
open subsets. We note that the theorem of Fort holds also in the more general case in which Y is a Baire
topological space. A Baire’s space is a topological space where any countable intersection of open dense
subsets is a dense subset. Examples of Baire spaces are the complete metric spaces (see Aliprantis and
Border 1999).
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defined by (3) for the game Gn . The sequence (Φn)n is included in f1, if g = g1, or in
f2, if g = g2. One has:

ρ1(Φh, Φk) ≤ 2ρ(Gh, Gk) for any h and k ,

which implies that (Φn)n is a Cauchy sequence. So, (Φn)n converges to a function Φ

which belongs to f1, if g = g1 (see Corollary 2), or to f2, if g = g2 (see Corollary 3).
Finally, since Φn(x, z) −→ Φ(x, z) and

un
i (xi , z−i ) − un

i (z) −→ ui (xi , z−i ) − ui (z)

for any (x, z) ∈ X × X and any i ∈ I , we have:

Φ(x, z) =
∑

i∈I

[
ui (xi , z−i ) − ui (z)

]
for any (x, z) ∈ X × X ,

that is, Φ is the function defined by (3) for G. ��

Proposition 6 The set-valued function N is upper semicontinuous with non-empty
and compact values for each g ∈ {g1, g2}.

Proof Let (Gn)n be a sequence converging to G in the space g ∈ {g1, g2}. Consider
the sequence (Φn)n and Φ, where, for any n, Φn and Φ are defined by (3) for the games
Gn and G, respectively. So, (Φn)n converges to Φ in the sup-norm metric; moreover,
N(G) = S(Φ) and N(Gn) = S(Φn) for any n. From Proposition 4 and Remark 5, it
follows that N is upper semicontinuous on g. Finally, if g = g1, we have that N(G)

is non-empty and therefore compact for any G ∈ g1. If g = g2 and G ∈ g2, N(G) is
non-empty and compact in light of Proposition 2. ��

From Lemma 2 and Propositions 5 and 6, we obtain:

Theorem 1 For any g ∈ {g1, g2}, there exists a dense Gδ subset q of g such that, for
every game in q, every Nash equilibrium is an essential equilibrium relative to g.

Remark 6 In the paper by Carbonell-Nicolau (2010)—see Theorem 2—it is proved
that games having essential Nash equilibria are the generic case in the space gX . In
light of Proposition 1 and Example 1, gX is strictly included in g1. So, Theorem 2 by
Carbonell-Nicolau (2010) can be obtained as a corollary from Theorem 1.

5 Essential Nash equilibria of discontinuous potential games

In this section, we deal with potential games. We prove that there exists a dense subset
q of g

p
1 such that, if G ∈ q, every maximizer of the potential of G is an essential

Nash equilibrium of G relative to g
p
1 . For any potential game G ∈ g

p
1 , we denote by

M(G) the set of maximizers of its potential. So, the maximizers of the potential of
G are essential Nash equilibria relative to g

p
1 if and only if the set-valued function

M : G ′ ∈ g
p
1 −→ M(G ′) is lower semicontinuous at G.
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If G = 〈Xi , ui 〉i∈I is a potential game, the potential P of G is unique up to an
additive constant (see Monderer and Shapley 1996, Lemma 2.7) and it is given by:

P(x) =
∑

i∈I

[
ui (x1, . . . , xi , x̄i+1, . . . , x̄|I |) − ui (x1, . . . , xi−1, x̄i , . . . , x̄|I |)

]
, (7)

where x̄ is a fixed strategy profile and |I | denotes the number of players. So, the
potential of a game with bounded payoff functions is bounded, and we have:

Proposition 7 g
p
1 is a complete metric space.

Proof Let (Gn)n ⊂ g
p
1 be a Cauchy sequence. Since gb is complete, (Gn)n converges

to a game G in the metric ρ. For any n, let Pn be the potential of Gn defined according
to (7). We have:

Ph(x) − Pk(x)

=
∑

i∈I

[
uh

i (x1, . . . , xi , x̄i+1, . . . , x̄|I |) − uk
i (x1, . . . , xi , x̄i+1, . . . , x̄|I |)

]

+
∑

i∈I

[
uk

i (x1, . . . , xi−1, x̄i , . . . , x̄|I |) − uh
i (x1, . . . , xi−1, x̄i , . . . , x̄|I |)

]
.

So, ρ1(Ph, Pk) ≤ 2ρ(Gh, Gk), which implies that (Pn)n is a Cauchy sequence and, in
light of Proposition 2 by Scalzo (2009), (Pn)n converges to a weakly upper pseudocon-
tinuous function P . The function P is the potential of G: in fact, since the sequences
{ρ(Gn, G)}n and {ρ1(Pn, P)}n converge to 0 and

un
i (xi , x−i ) − un

i (x ′
i , x−i ) = Pn(xi , x−i ) − Pn(x ′

i , x−i )

for any xi and x ′
i belonging to Xi , for any x−i ∈ X−i , for any i ∈ I and for any n, one

has:

ui (xi , x−i ) − ui (x ′
i , x−i ) = P(xi , x−i ) − P(x ′

i , x−i ) ,

which concludes the proof. ��
Let us note that, if G ∈ g

p
1 ,M(G) is not necessarily a compact set: see Example 3.

So, we consider the set-valued function C : G ∈ g
p
1 → clM(G) (we denote by clA

the closure of a set A). The following property of weakly upper pseudocontinuous
functions allows us to prove that C is upper semicontinuous.

Proposition 8 Let F be a weakly upper pseudocontinuous function on X and let (xn)n

be a sequence converging to x in X. Then:

F(x) < F(x ′)
F(xn) < F(x ′)

for n sufficiently large

⎫
⎬

⎭
�⇒ lim sup F(xn) < F(x ′) .
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Proof If there exists z such that F(x) < F(z) < F(x ′), we have lim sup F(xn) ≤
F(z) < F(x ′). Otherwise, assume that there are no z ∈ X such that F(x) < F(z) <

F(x ′). In this case, since F(xn) < F(x ′), we have F(xn) ≤ F(x) for n sufficiently
large and we get lim sup F(xn) ≤ F(x) < F(x ′). ��
Proposition 9 The set-valued function C is upper semicontinuous with non-empty and
compact values.

Proof The values of C are non-empty and compact in light of Remark 2. So, from
Remark 5, it is sufficient to prove that C is closed. By contradiction, assume that: (Gn)n

converges to G in g
p
1 , (xn)n converges to x �∈ C(G) and xn ∈ C(Gn) for any n. Let P

be the potential of G and, for any n, let Pn be the potential of Gn , where the potentials
are given by (7). Because (Gn)n converges to G, we have ρ1(Pn, P) −→ 0. Since
x �∈ C(G), there exists a neighborhood U of x such that U ∩ M(G) = ∅. Moreover,
because xn belongs to C(Gn), there exists a sequence (zn)n converging to x such that,
for n sufficiently large, zn belongs to M(Gn) but not to M(G). Let x̄ ∈ M(G). We get:

P(x) < P(x̄) P(zn) < P(x̄) zn −→ x

for n sufficiently large and, in light of Proposition 8, one has:

lim sup P(zn) < P(x̄) . (8)

On the other hand, we have:

P(zn) ≥ Pn(zn) − ρ1(Pn, P) ≥ Pn(x̄) − ρ1(Pn, P)

for any n. Since ρ1(Pn, P) converges to 0, we get

lim sup P(zn) ≥ P(x̄) ,

which contradicts (8). ��
Finally, we obtain:

Theorem 2 There exists a dense Gδ subset q of g
p
1 such that, for every game in q,

every maximizer of the potential is an essential Nash equilibrium relative to g
p
1 .

Proof In light of Lemma 2 and Proposition 9, there exists a dense Gδ subset q of
g

p
1 such that the set-valued function C is lower semicontinuous on q. Lemma 16.22

by Aliprantis and Border (1999) implies that the set-valued function M is lower
semicontinuous on q, and the thesis follows. ��
Remark 7 In the framework of the present paper, a set-valued function is upper semi-
continuous if and only if it is closed. Let us consider the set-valued function N defined
on g

p
1 by N(G) = {Nash equilibria of G}. The set-valued function N is not closed in

general; for instance, N is not closed at the game considered in Example 3. For this
reason, one cannot use the theorem of Fort in proving the existence of a dense subset
q of g

p
1 such that, for every game in q, every Nash equilibrium is essential.
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We conclude the section with some remark on the results that can be obtained
by using (generalized) positively quasi-transfer continuous functions in the setting of
potential games.

For any potential game G, let Υ be the real-valued function defined on X × X by
Υ (x, z) = P(x) − P(z), where P is the potential of G. So, the set of maximizers
of P—that we denote by argmaxP—coincides with the solution set of the Ky Fan
inequality:

find z ∈ X such that Υ (x, z) ≤ 0 for any x ∈ X .

Let g
p
2 be the space of potential games where, for any game, X is the set of strat-

egy profiles and the function Υ is positively quasi-transfer continuous. It is easy to
see that a game G belongs to g

p
2 if and only if the potential P of G satisfies the

following property: if P(x) > P(z) + t for some t > 0, then there exists a neigh-
borhood Uz of z and x ′ ∈ X such that P(x ′) > P(z′) + t for any z′ ∈ Uz . We call
positively transfer upper continuous a function that satisfies the property. It is clear that
any upper semicontinuous function is positively transfer upper continuous. Indeed, the
positive transfer upper continuity is a property equivalent to the upper semicontinuity
when X is compact. In fact, we have:

Lemma 3 Let P be a real-valued function defined on a non-empty compact topologi-
cal space X. So, P is upper semicontinuous if and only if it is positively transfer upper
continuous.

Proof Let P be positively transfer upper continuous. Assume that P is not upper
semicontinuous. So, for at least one z ∈ X , we have:

P(z) < lim sup
z′−→z

P(z′) .

Let x ∈ argmaxP , which is non-empty and compact in light of Theorem 2 by Tian
and Zhou (1995). Then, there exists t > 0 for which

P(x) − lim sup
z′→z

P(z′) < t < P(x) − P(z) .

It follows from the definition of lim sup that in every neighborhood U of z, there exists
zU such that P(x) < P(zU ) + t . Since P is positively transfer upper continuous, we
get a contradiction. The converse is trivial. ��
In light of Lemma 3, gp

2 coincides with the space of potential games where the poten-
tial of each game is upper semicontinuous. So, g

p
2 ⊂ g

p
1 and, since the space of

upper semicontinuous function is complete in the sup-norm metric (see, for example,
Aliprantis and Border 1999), Proposition 9 and Lemma 2 imply that games having
essential Nash equilibria are the generic case in g

p
2 .

Finally, let g
p
3 be the space of potential games where, for any game, the function

Υ is generalized positively quasi-transfer continuous and 0-diagonally quasi-concave
in the first argument. Following the arguments of Sect. 4, it can be proved that there
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exists a dense subset q of g
p
3 such that any game which belongs to q has essential

Nash equilibria relative to g
p
3 . However, since g

p
3 ⊂ g

p
2 ⊂ g

p
1 , this property of g

p
3

can be obtained from the results presented in this section. In fact, let G ∈ g
p
3 . In light

of Proposition 2, the set of solutions to the Ky Fan inequality corresponding to Υ —
which coincides with the set of maximizers of the potential P of G—is non-empty
and compact. Assume that P(x) > P(z) + t , where t > 0. Since Υ is generalized
positively quasi-transfer continuous, there exists a neighborhood Uz of z and a well-
behaved correspondence ξz : Uz ⇒ X such that P(s′) > P(z′) + t for any s′ ∈ ξz(z′)
and for any z′ ∈ Uz . Let x ′ ∈ argmaxP . So, we have P(x ′) > P(z′) + t for any
z′ ∈ Uz and, in light of Lemma 3, P is upper semicontinuous. On the other hand, if
G ∈ g

p
3 and P is the potential of G, since Υ is 0-diagonally quasi-concave in the first

argument, we have that P is quasi-concave. So, g
p
3 is strictly included in g

p
2 .

6 Conclusions

In this paper, we have proved that games having essential Nash equilibria are the
generic case in the spaces of discontinuous games g1, g2 and g

p
1 (see Sect. 2). The

first two spaces concern the general case of strategic form games, while the last one
deals with potential games. We have introduced the class of generalized positively
quasi-transfer continuous functions and, among other properties, we have proved that
such a class is a complete metric space in the sup-norm metric. Using generalized
positively quasi-transfer continuous functions and the Ky Fan minimax inequality,
we have obtained that games having essential Nash equilibria are the generic case in
the spaces g1 and g2. In the setting of discontinuous potential games, we have used
a weakening of upper semicontinuity called weak upper pseudocontinuity (Morgan
and Scalzo 2006; Scalzo 2009). A theorem of Fort (1949) on the existence of dense
subsets of points of continuity for set-valued functions has played a central role in the
main results of the paper.
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