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1 Introduction

Models of risk averse decision-makers are applied in a wide variety of contexts.
For example, expected utility models have recently been applied in research on
principle-agent theory (Chade and de Serio 2002), risk aversion and prudence (Lajeri
and Nielsen 2000; Eichner and Wagener 2003), bounds on utility (LiCalzi 2000;
Zambrano 2008), non-location scale distributions (Boyle and Conniffe 2008), and fre-
quentist perspective (Hu 2009). Rank-dependent models have recently been applied
to research on savings decisions (Bleichrodt and Eeckhoudt 2005), monotone risk
aversion (Chateauneuf et al. 2005), and medical insurance (Ryan and Vaithianathan
2003). Dual theory of expected utility and cumulative prospect theory have, respec-
tively, recently been applied in research on incomplete preferences (Maccheroni 2004)
and the St. Petersburg paradox (Rieger and Wang 2006). Our paper reports research
on internal coherence problems that can arise in applications of such models.

Models of decision under risk represent risk preferences with utility functionals
that are nonlinear in payoffs or nonlinear in probabilities or nonlinear in both. For
example, expected utility theory represents risk aversion with concave utility of pay-
offs. The dual theory of expected utility (Yaari 1987) represents risk aversion with
convex transformation of decumulative probabilities. Rank-dependent utility theory
(Quiggin 1993) and cumulative prospect theory (Tversky and Kahneman 1992) rep-
resent risk attitudes with nonlinear transformations of both payoffs and probabilities.
The nonlinear transformations suggest questions about the internal coherence of the
theoretical models.

Rabin (2000) demonstrated how modeling risk aversion with concave utility of
payoffs can fail to provide a coherent theory of both small-stakes risk aversion and
large-stakes risk aversion.1 Although Rabin’s statement of the critique applies only
to the expected utility of terminal wealth model, subsequent authors extended this
payoffs calibration critique to a class of theories of decision under risk that have
utility functionals that are nonlinear in payoffs.2 But the payoffs calibration argu-
ments have no implications for nonlinear transformations of probabilities, which is
an alternative way to model risk aversion. Sadiraj (2012) presents a probabilities
calibration that demonstrates the implausible implications of nonlinear transforma-
tion of probabilities. Each of the distinct types of calibration (of nonlinear payoffs
transformation or nonlinear probabilities transformation) by itself has implications
of implausible risk aversion for theories of decision under risk that transform both
payoffs and probabilities.

Together, the payoffs calibrations and the probabilities calibrations provide an
answer to a central question raised by the calibration literature: What would be the
characteristics of a theory of risk-avoiding behavior that is immune to both payoffs
calibration and probabilities calibration arguments? This paper offers insights into

1 See Hansson (1988) for an earlier critique of expected utility theory with similar arguments.
2 Several studies report payoffs calibration patterns that apply to models defined on (1) terminal wealth or
(2) income. Studies that focus on terminal wealth models include Hansson (1988), Rabin (2000), Neilson
(2001) and Safra and Segal (2008, 2009). Varying-payoffs calibrations for models defined on income are
reported by Barberis et al. (2006), Cox and Sadiraj (2006), and Rubinstein (2006).
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Is there a plausible theory for decision under risk? 307

answering this question with an analysis of decision theories based on duality. We
show that the payoffs calibration patterns conform to the linearity in payoffs prop-
erty of the utility functional for the dual theory of expected utility (Yaari 1987). In
contrast, the probabilities calibration patterns conform to the linearity in probabili-
ties property of the utility functional for expected utility theory (von Neumann and
Morgenstern 1947). Our dual analysis reveals that Sadiraj’s (2012) probabilities cal-
ibration patterns, together with Rabin’s (2000) payoffs calibration patterns, provide
an answer to the central question about the properties that would characterize a the-
ory of risk-avoiding preferences that would not be called into question by calibration
critique. A theory of risk preferences with functional that is linear in probabilities
would be immune to the probabilities calibration critique. A theory of risk preferences
with functional that is linear in payoffs or assumes variable reference payoffs would
be immune to the payoffs calibration critique. Hence, a theoretical model character-
ized by linearity in probabilities and variable reference payoffs would be immune to
both of the dual calibration critiques. A version of the vintage model in Markowitz
(1952) has the requisite properties to survive the dual critiques unscathed. In con-
trast, currently-popular models are vulnerable to one or both types of calibration
critique.

The fundamentality of the calibration literature ultimately rests on empirical validity
of the patterns of risk aversion supposed in the two types of calibration propositions.
To date, however, there has been argument about the “reasonableness” of calibration
suppositions, but no data from real-payoff controlled experiments to inform the issue.
This paper reports several experiments conducted in three countries (India, Germany,
and the United States) with idiosyncratic opportunities for implementing a variety
of experimental designs and protocols covering both payoffs calibration patterns and
probabilities calibration patterns that, together, have broad implications for plausibility
of theories of decision under risk.

2 Dual calibration patterns and dual paradoxes

For any given integer m, let Im denote the set of positive integers not larger than m, that
is Im = {1, 2, . . . , m}. Let {yk, pk}k∈Im denote an m-outcome lottery, L that pays yk

with probability pk, k ∈ Im , where
∑m

k=1 pk = 1. We use the convention y j+1 ≥ y j ,

for j ∈ Im−1. Whenever the smallest payoff is zero (i.e., y1 = 0), we use the simpler
notation {ym, pm, . . . , y2, p2}.

In this paper, we focus on a class of theories of decision under risk that includes all
of the more prominent ones. The most familiar such theory is expected utility theory
(EU) that represents the utility of a lottery, L = {yk, pk}k∈Im with the functional

U (L) =
m∑

k=1

v(yk)pk, (EU-1)

where v(·) is a continuous positively monotonic function that transforms payoffs. As
is well known, EU represents risk aversion solely by concavity of the utility function
v(·). The distinguishing property of functional (EU-1) is its linearity in probabilities,
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which follows from the Independence Axiom.3 With the terminal wealth model of
EU, v(yk) = u(w + yk),∀k ∈ Im, where w is the amount of initial wealth, whereas
in case of the income model of EU, the utility function v(·) is invariant to w.

In order to facilitate exposition of less familiar models, we will first rewrite (EU-1)
in an alternative, logically equivalent form. Let Pk, k ∈ Im denote the (decumulative)
probability that the lottery L pays yk or more, that is Pk = ∑m

i=k pi , k ∈ Im . Using
this notation, (EU-1) can be rewritten as

U (L) = v(ym)Pm +
m−1∑

k=1

v(yk)[Pk − Pk+1]. (EU-2)

The class of theories of decision under risk that we consider have functionals that
can be written in forms similar to (EU-2) but that relax the assumption of linearity in
probabilities. The utility of a lottery L for this class of theories is given by

U (L) = v(ym) f (Pm) +
m−1∑

k=1

v(yk)[ f (Pk) − f (Pk+1)] (NL-1)

where f (·) is a continuous, positively monotonic function that transforms decumula-
tive probabilities and v(·) is a continuous, positively monotonic function that trans-
forms payoffs. Of course, the EU functional is the special case of (NL-1) in which the
probability transformation function is the identity mapping, f (P) = P.

Theories with functionals that are nonlinear in both payoffs and probabilities include
rank-dependent utility theory (Quiggin 1993) and cumulative prospect theory (Tversky
and Kahneman 1992). We subsequently refer to this class of theories as NLPP theories.

In the case of dual theory of expected utility (DU), the functional is the special case
of (NL-1) that is linear in payoffs. The DU functional takes the simple form

U (L) = ym f (Pm) +
m−1∑

k=1

yk[ f (Pk) − f (Pk+1)] (DU-1)

that is dual to (EU-2). The distinguishing property of (DU-1), linearity in payoffs,
follows from the Dual Independence Axiom (Yaari 1987).4 Recall that, for DU, risk
aversion is equivalent to f (·) being convex (see Yaari 1987, p. 107).

3 This axiom was introduced by von Neumann and Morgenstern (1947). The statement of the axiom by
Yaari (1987, p. 98) is: (IA) For all lotteries A and B, if lottery A is preferred to lottery B then for all lotteries
C , and all α ∈ [0, 1], an α-probability mixture of lotteries A and C is preferred to an α-probability mixture
of lotteries B and C : αA + (1 − α)C � αB + (1 − α)C . That is getting lottery A with probability α and
lottery C otherwise is preferred to the lottery that offers lottery B with the same probability α and lottery
C otherwise.
4 The dual independence axiom (Yaari 1987, p. 99) is: (DIA) For all lotteries A and B, if lottery A is
preferred to lottery B, then for all lotteries C , and all α ∈ [0, 1], α-payoff mixture of lotteries A and C is
preferred to α-payoff mixture of lotteries B and C : (αP−1

A + (1−α)P−1
C )−1 � (αP−1

B + (1−α)P−1
C )−1

where (·)−1 is a (generalized) inverse operator, whereas PA and PB denote decumulative probability
distribution functions of lotteries A and B.
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Is there a plausible theory for decision under risk? 309

We begin with two examples that illustrate payoffs calibrations and probabilities
calibrations. For ease of exposition, the examples build on EU and DU because of
the simplicity that follows from linearity in either probabilities or payoffs. The propo-
sitions reported in Sects. 3 and 4, however, show that each of the dual patterns of
risk aversion by itself has implausible implications for NLPP theories, such as rank-
dependent utility theory (Quiggin 1993) and cumulative prospect theory (Tversky
and Kahneman 1992), that are characterized by functionals that are nonlinear in both
payoffs and probabilities. As shown by Corollary 2.2 in Sect. 4, the probabilities cali-
bration patterns described in Sect. 2.2 also have implausible risk aversion implications
for rank-dependent models with endogenous reference amounts of payoff.

The first example, which illustrates payoffs calibration, builds on a pattern of small-
stakes risk aversion that appears in Rabin (2000). This pattern conforms to the dual the-
ory of expected utility because of linearity of the DU functional in payoffs, as explained
below. The second example, which illustrates probabilities calibration, builds on a pat-
tern of risk aversion introduced in Sadiraj (2012). This second pattern conforms to
expected utility theory because of linearity of the EU functional in probabilities, as
explained below.

2.1 Example 1: John Doe’s risk preferences conform to the dual theory
of expected utility

Suppose that John Doe, whose initial wealth is $125, is observed to reject a 50/50
bet in which he could lose $100 or gain $110. Does decision theory make any pre-
dictions about what choice John would make at other wealth levels? Expected utility
theory makes no prediction based on this one observation unless one adds special-
case assumptions about risk attitudes such as constant or decreasing absolute risk
aversion. In contrast, dual theory of expected utility (Yaari 1987) makes a general
prediction about John’s choices. According to the DU functional [as in (DU-1)],
John’s rejection of the 50/50 lose $100 or gain $110 bet at initial wealth level $125
reveals 125 ≥ UDU (bet) = (125 + 110) f (0.5) + (125 − 100)(1 − f (0.5)) =
125 + 210 f (0.5) − 100; thus f (0.5) ≤ 100/210. From the last inequality, it follows
that w ≥ UDU (bet) for all initial wealth w ≥ $125 because w ≥ UDU (bet) =
(w + 110) f (0.5) + (w − 100)(1 − f (0.5)) = w + 210 f (0.5) − 100 is true if and
only if f (0.5) ≤ 100/210. Therefore, according to DU, John will (weakly) reject the
bet at all wealth levels if he does so at wealth level $125.

What are the implications for expected utility theory if one actually observes rejec-
tion of the bet or indifference for all initial wealth levels in some finite interval?
Consider the pairs of lotteries in Table 1. The first row shows the alternative options
discussed above, a choice between certain payoff x = $125 in the option B column
and a 50/50 bet, with outcomes $(x − 100) or $(x + 110) in the option A column.
Now suppose that (as predicted by dual theory of expected utility) additional observa-
tions of John’s decisions under risk show him choosing option B or indifference in all
rows of Table 1. What are the implications of these observations for EU? EU implies
that, if John weakly prefers the certain payoff to the lottery in all rows of Table 1,
then he will also prefer a certain payoff of $3,000 to a 50/50 bet with payoffs of
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Table 1 Example 1: Varying-payoffs calibration pattern

Row Option A {x − 100, 0.5; x + 110} Option B {x, 1}

1 25 or 235 125

2 235 or 445 335

3 445 or 655 545

. . . . . . . . .

t 25 + 210 (t − 1) or 25 + 210 t 125 + 210 (t − 1)

. . . . . . . . .

114 23,755 or 23,965 23,855

115 23,965 or 24,175 24,065

$125 or $3.2 million (see Proposition 1 in Sect. 3). What accounts for this implausible
implication of EU?

According to EU, choice of option B in the first row in Table 1 reveals that5 v(125) ≥
0.5v(235) + 0.5v(25), which together with the (weak) concavity of the continuously
differentiable function,6 v(·) imply that 110v′(235) ≤ v(235) − v(125) ≤ v(125) −
v(25) ≤ 100v′(25). Therefore v′(25 + 210) ≤ (10/11)v′(25). Choice of option B in
the second row of Table 1 reveals that v′(25+2×210) ≤ (10/11)v′(25+210), which
together with the penultimate inequality imply v′(25 + 2 × 210) ≤ (10/11)2v′(25).
Similarly, it can be verified that v′(25 + 210t) ≤ (10/11)tv′(25) follows from the
weak preference for option B in all rows one to t in Table 1. So, if option B is not
rejected in all rows of Table 1, then the (weak) concave utility of payoffs explanation
of these choices implies that

v′(24,175) = v′(25 + 115 × 210) ≤ (10/11)115v′(25) < 0.00002 × v′(25).

Such extreme diminishing marginal utility produces ridiculously low marginal utilities
for large payoffs that leads to implausible large-stakes risk aversion such as the one
stated at the end of the preceding paragraph.

2.2 Example 2: Jane Doe’s risk preferences conform to expected utility theory

Now suppose that Jane Doe has been observed to reject a 50/50 bet that pays $30 or $0
in favor of a bet that pays $30 with probability 0.45, $10 with probability 0.1, or $0 with
probability 0.45. Does decision theory make any predictions about what choice Jane
would make when given options with higher or lower probability for the high payoff
(of $30) but with the same 0.1 probability of the middle outcome (of $10)? DU makes
no prediction based on this one observation unless one adds special-case assumptions

5 Recall that for the terminal wealth model v(yk ) = u(w + yk ), whereas for the income model v(yk ) =
u(yk ).

6 This illustrative example uses a differentiable utility function for simplicity. Concavity calibration does
not require differentiability; see Appendix 8.1 or Rabin (2000).
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Table 2 Example 2: Varying-probabilities calibration pattern

Row Option A {30, p; 0} Option B {30, p − 1/20; 10, 2/20; 0}

Payoff 30 Payoff 0 Payoff 30 Payoff 10 Payoff 0

1 1/20 19/20 0/20 2/20 18/20

2 2/20 18/20 1/20 2/20 17/20

. . . . . . . . . . . . . . . . . .

10 10/20 10/20 9/20 2/20 9/20

. . . . . . . . . . . . . . . . . .

i i/20 (20 − i)/20 (i − 1)/20 2/20 (19 − i)/20

. . . . . . . . . . . . . . . . . .

18 18/20 2/20 17/20 2/20 1/20

19 19/20 1/20 18/20 2/20 0/20

about risk attitudes. In contrast, EU makes a general prediction about Jane’s choices.
Using the functional in statement (EU-1), one infers that Jane’s rejection of the two-
outcome bet reveals that 0.5×v(30) ≤ 0.45×v(30)+0.1×v(10) if, without any loss
of generality, the utility of outcome 0 is normalized to 0. The last inequality simplifies
to 0 ≤ −0.05v(30)+0.1×v(10). Adding p ×v(30) to both sides of the immediately
preceding inequality, one has p × v(30) ≤ (p − 0.05)× v(30)+ 0.1 × v(10). Hence,
EU predicts that Jane will (weakly) reject the two-outcome lottery that pays $30
with probability p and $ 0 otherwise, in favor of the three-outcome lottery that pays
$30 with probability p − 0.05, $ 10 with probability 0.1 and $0 otherwise, for all
p ∈ {0.05, 0.1, . . . , 0.95}, if she does so for p = 0.5.

What are the implications for DU if one actually observes the choices that conform
to EU, (weak) rejection of the two-outcome lottery in favor of the three-outcome lottery
for all p ∈ {0.05, 0.1, . . . , 0.95}? Consider the pairs of lotteries in Table 2. Row 10
shows the first pair of options discussed above, a choice between a 50/50 bet that pays
$30 or $0 in the option A column and a bet that pays $30 with probability 9/20, $10
with probability 2/20, or $0 with probability 9/20 in the option B column. Suppose
that (as predicted by expected utility theory) observations of Jane’s decisions under
risk show her choosing option B or indifference in all rows of Table 2. Probabilities
calibration (see Sect. 4) shows that these observations have the implausible implication
that Jane will also prefer a certain payoff of $3,000 to a 50/50 bet that pays $3 million
or $0. What accounts for this implausible implication of DU?

Consider row 18 of Table 2. According to DU, the dual expected utilities of option
A18 and option B18 are U (A18) = 30 f (18/20) and U (B18) = 30 f (17/20) +
10[ f (19/20)− f (17/20)]. Subtraction of 10 f (18/20) from both U (A18) and U (B18)

and rearrangement of terms show that U (B18) ≥ U (A18) if and only if [ f (19/20) −
f (18/20)] ≥ 2[ f (18/20)− f (17/20)]. It follows from the last inequality and convex-
ity of the continuously differentiable function,7 f (·) that f ′(19/20) ≥ 2 f ′(17/20).

7 The proofs of Proposition 2 and its corollaries do not require either differentiability or convexity. To see
that extreme implications follow for cases in which the probability transformation is not everywhere convex
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Next, rejection of the two-outcome lottery in favor of the three-outcome lottery in
row 16 implies f ′(17/20) ≥ 2 f ′(15/20). Hence, rejection of the two-outcome lot-
tery in rows 16 and 18 reveals f ′(19/20) ≥ 22 f ′(15/20). Similarly, rejection of the
two-outcome lottery in all of the even-numbered rows of Table 2 reveals that

f ′
(

19

20

)

= f ′
(

1 + 2 × 9

20

)

≥ 2 f ′
(

1 + 2 × 8

20

)

≥ · · · ≥ 29 f ′
(

1

20

)

= 512 f ′
(

1

20

)

.

Such extreme increasing marginal probability transformation produces implausible
risk aversion such as the one stated above.

2.3 Postulated preferences for John and Jane Doe are paradoxical

The postulated risk preferences for John and Jane Doe imply a double paradox: (1)
John’s pattern, which conforms to the dual theory of expected utility theory, has implau-
sible risk aversion implications for expected utility theory; and (2) Jane’s pattern, which
conforms to expected utility theory, has implausible risk aversion implications for the
dual theory of expected utility theory.

In Sects. 3 and 4, we offer a dual analysis of implications of patterns of risk aversion
that (P.1) conform to the dual theory of expected utility or (P.2) conform to expected
utility theory. The analysis shows that both patterns of type (P.1) and patterns of type
(P.2) have implausible risk aversion implication for theories, such as rank-dependent
utility theory (Quiggin 1993) and cumulative prospect theory (Tversky and Kahneman
1992), with functionals that are nonlinear in both payoffs and probabilities.

The empirical relevance of these thought exercises with patterns of risk aversion
rests on empirical validity of (weaker versions of) the patterns of risk aversion assumed
in the above examples. We address this issue with the experiments reported in Sects. 5
and 6. We next turn our attention to formal statements of calibration propositions and
corollaries in Sects. 3 and 4.

3 Payoffs calibrations

Calibration propositions for theories with nonlinear utility of money payoffs have
been reported in several papers (cited above in the introduction). In order to provide a
foundation for our payoffs calibration experiments, we report a calibration proposition
for expected utility theory and a corollary that applies to rank-dependent theories on
finite domains. The focus is on finite domains because of our intention to apply the
theory to data from experiments. Design of experiments reported in Sect. 5 is based
on the calibration patterns discussed here.

Footnote 7 continued
assume it has an inverted S-shape with an inflection point at 1/3; in that case, one still gets extreme risk
aversion as revealed by: f ′(19/20) = f ′((7 + 2 × 6)/20) ≥ 26 f ′(7/20).
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3.1 Calibration for nonlinear payoff transformation functions

Consider payoff calibration patterns like those in Example 1 of Sect. 2.1. For bounded
intervals of income, Proposition 1 states a payoff calibration result for expected utility
theory with weakly concave utility of money payoff function v(·).8

The following standard notation is used: � indicates weak preference; � indicates
strong preference; {z, p; y} denotes a binary lottery that pays z and y with probabilities
p and 1 − p; 	x
 is the largest integer smaller than x .

Let the domain of monetary prizes be a closed interval, [m, M] ⊂ (0,∞). For
any given positive payoffs �, g such that 0 < � < g let z∗ = m + (� + g) × (2 −
ln 2/ ln(�/g)). Consider statements

x � {x + g, 0.5; x − �}, for all integers x ∈ [m, M] (P.1)

{z + G, 0.5; m} � z, (Q.1)

for some z ∈ (z∗, M) and sufficiently large G > (z − m)g/�.

Proposition 1 Let prizes �, g such that 0 < � < g and positive integer m be given.
Then

a. DU predicts that statement P.1 is equivalent to 0 � {g, 0.5;−�},
b. For all z > z∗ and all G > (z − m)g/�,

(i) for all M > m both statements P.1 and Q.1 are true for DU with

f (0.5) ∈
(

z − m

z − m + G
,

�

g + �

]

(ii) there exists M > m such that P.1 and Q.1 cannot both be true for EU.

Proof Parts (a) and (b.i) are straightforward; for part (b.ii) see Appendix 8.1. ��
Part (a) of this proposition says that any DU agent who rejects lottery {g, 0.5;−�}

will satisfy pattern P.1; the inverse is also true. Part (b) says, that for G as large as one
wants it to be, there are DU agents but no EU agents who satisfy both patterns P.1
and Q.1. The proof is constructive with respect to M . The following expression that
relates M to G and z [see the proof in Appendix 8.1, inequality (8.9)] will be useful
in our numerical illustrations:

G/(g + �) < N − K − 1 + r−N A(r, K ), (*)

where K = 	(z − m)/(g + �)
 , N = 	(M − m)/(g + �)
 , A(r, K ) = r−r1+K −r K

and r = �/g. We use statements (∗) and P.1 in Proposition 1 to construct the illustrative
examples that are reported in Table 3.

8 See Rabin (2000) and Cox and Sadiraj (2006) for concavity calibrations on unbounded domains.
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Table 3 Calibrations for varying-payoffs patterns: 3,000 � {G∗, 0.5; 100}
Rejection intervals
[100, M]

Calibration for
g = 110, � = 100

Calibration for
g = 90, � = 50

Calibration for
g = 30, � = 20

M G∗ G∗ G∗

6,000 6,690 0.22 × 1013 0.13 × 1023

8,000 9,913 0.85 × 1016 0.14 × 1030

10,000 15,298 0.31 × 1020 0.16 × 1037

30,000 0.47 × 108 0.10 × 1057 0.44 × 10107

50,000 0.40 × 1012 0.32 × 1093 0.12 × 10178

Suppose that an agent weakly prefers the certain amount of income x to the binary
lottery {x + 110, 0.5; x − 100}, for all integers x ∈ [100, M], where values of M are
given in the “Rejection Intervals” column of Table 3. In that case, all three expected
utility (of terminal wealth, income, and initial wealth and income) models9 predict
that the agent prefers receiving the amount of income 3,000 for sure to a risky lottery
{z + G, 0.5; 100}, where the values of z + G(= G∗) are given in the second column
of Table 3. For example, if [m, M] = [100, 50,000], as in the last row of Table 3, then
G∗ = 0.4 × 1012 ; that is, expected utility theory implies that the agent will prefer
3,000 for sure to a 50/50 lottery that pays 100 or 0.40 × 1012. According to the entry
in the third column and M = 30,000 row of Table 3, expected utility theory predicts
that if an agent prefers certain payoff in amount x to lottery {x + 90, 0.5; x − 50}, for
all integers x between 100 and 30,000, then such an agent will prefer 3,000 for sure
to the 50/50 lottery with positive outcomes of 100 or 0.10 × 1057.

3.2 Calibration for fixed reference payoff models

The generalization of Proposition 1 is straightforward for the NLPP class of theories
that includes cumulative prospect theory with zero-income reference point (Tversky
and Kahneman 1992) and rank-dependent utility theory (Quiggin 1993). We use R(p)

to denote the following function R(p) = (1 − h(p))�/h(p)g, p ∈ (0, 1]. One has:

Corollary 1.1 Suppose that the value function is (weakly) concave. For any positive
prizes �, g such that R(0.5) < 1, NLPP theories predict that for all z > z∗ =
m + (�+ g)(2 − ln 2/ ln(R(0.5)) and any given large G there exists M such that z, M
and G satisfy inequality (*) with r = R(0.5) and statements P.1 and Q.1 cannot both
be true.

Proof See Appendix 8.1. ��
Recall that for expected utility theory, with a functional that is linear in proba-

bilities, Proposition 1 reveals implausible large-stakes risk aversion if g > �. In the
corollary, this implication holds when h(0.5)g > [1−h(0.5)]�, which is equivalent to

9 See Cox and Sadiraj (2006) for discussion of these three expected utility models.
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r = R(0.5) < 1. Examples that illustrate the implications of Corollary 1.1 are similar
to those in Table 3.

A reference-dependent theory can incorporate variable reference amounts of money
payoff. Wakker (2005, 2010) explains that variable reference payoffs can immunize
prospect theory to payoffs calibration arguments based on the small-stakes risk aver-
sion pattern (Rabin 2000). A straightforward extension of Wakker’s arguments implies
that the Markowitz (1952) model can be immunized to payoffs calibration by a suitable
interpretation of its reference points.

Empirical validity of the P.1 pattern of small-stakes risk aversion is testable.
Section 5 reports experiments on this question.

4 Probabilities calibrations

We now consider varying probabilities, fixed payoffs patterns of risk aversion like
those in Example 2 of Sect. 2.2. We report a calibration proposition for the dual theory
of expected utility and corollaries that apply to NLPP theories that have functionals
that are nonlinear in both probabilities and payoffs. The design of experiments reported
in Sect. 6 is based on patterns of risk preferences discussed here.

4.1 Calibration for nonlinear probability transformation functions

Consider 2n − 1 pairs of lotteries Ai and Bi , i ∈ I2n−1. Lottery Ai = {y, pi } pays
a positive amount of money y with probability pi or the amount 0 with probability
1− pi . Denote δ = 1/2n and let pi = i/2n, i ∈ I2n−1. Lottery Bi = {y, pi −δ; x, 2δ}
pays the amount y with probability pi −δ or the amount x, x ∈ (0, y) with probability
2δ or the amount 0 with probability 1 − (pi − δ + 2δ).

Suppose that an agent (weakly) prefers the three-outcome lottery Bi to the two-
outcome lottery Ai , for all i ∈ I2n−k∗ , where k∗ is a positive integer not larger than
n. Note that by linearity in probabilities (see EU-1) any expected utility maximizer
who prefers x for sure to the 50/50 lottery that pays y or 0 satisfies this supposition.
Discussion following the statement of Proposition 2, however, shows that if the high
outcome y is larger than twice the intermediate outcome x , then this supposition
implies implausible risk aversion for DU agents.

Let prizes x, y such that y > 2x > 0, and positive integer k∗ be given. For any
integer n, n ≥ k∗ consider the following statements

{y, (i − 1)/2n; x, 1/n} � {y, i/2n}, for all i ∈ {1, 2, . . . , 2n − k∗} (P.2)

{zG, 0.5} � {z, 1 − (k∗ − 1)/2n}, for some positive z and large G. (Q.2)

Proposition 2 Let prizes x, y such that y > 2x > 0, and positive integer k∗ be given.
Then

a. For EU, statement P.2 is equivalent to x � {y, 0.5}.
b. For any given sufficiently large G
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Table 4 Calibrations for varying-probabilities patterns: 1,000 � {G, 0.5}

Rejection intervals Calibrated values of G for different values of n and C

n C = 2.5 C = 3 C = 3.5 C = 4.0 C = 5.0

5 8,593 33,000 98,000 244,000 1,025,000

10 58,665 1,025,000 9,530,000 0.59 × 108 0.10 × 1010

20 3,326,256 0.10 × 1010 0.90 × 1011 0.34 × 1013 0.10 × 1016

50 0.63 × 1012 0.11 × 1019 0.78 × 1023 0.71 × 1027 0.12 × 1034

100 0.40 × 1021 0.12 × 1034 0.62 × 1043 0.51 × 1051 0.16 × 1064

200 0.16 × 1039 0.16 × 1064 0.38 × 1083 0.26 × 1099 0.25 × 10124

500 0.11 × 1092 0.32 × 10154 0.93 × 10202 0.36 × 10242 0.10 × 10305

(i) for all integers n ≥ k∗ both statements P.2 and Q.2 are true for EU with
v(y) < 2v(x) and 2v(1/G) < v(1).

(ii) there exist integers n ≥ k∗ such that statements P.2 and Q.2 cannot both be
true for DU.

Proof Parts (a) and (b.i) are straightforward; for part (b.ii) see Appendix 8.2. ��
The proof is constructive with respect to n and G. The following expression that

relates n to G [see the proof in the Appendix 8.2, inequality (8.12)] will be useful in
our numerical illustrations:

G < T (y/x, n − k∗, n − 1), (**)

where T (t, m, n) = 1 + ∑m
j=0 (t − 1) j+1/

∑n
i=0 (t − 1)−i . We use statements (∗∗)

and P.2 in Proposition 2 to construct the illustrative examples that are reported in
Table 4 for the special case of k∗ = 1. In the table, C denotes the ratio of the highest
payoff to the second highest payoff in the three prize lottery, C = y/x . With C = 2.5
and n = 20, Proposition 2 tells us that for this P.2 pattern DU predicts that the agent
prefers 1,000 for sure to a lottery that pays 3.3 million or 0 with even odds, as reported in
the second column and third row of Table 4. With C = 3.5 and n = 50, the prediction
is preference for 1,000 for sure over a 50/50 lottery that pays 0 or 0.78 × 1023, as
reported in the fourth column and fourth row of Table 4. Finally, with C = 5 and
n = 10, the prediction is preference for 1,000 for sure to the 50/50 lottery that pays 0
or 1 billion.

4.2 Calibration for reference-dependent models

Proposition 2 is stated for the dual theory of expected utility that is characterized
by a preference functional that is linear in payoffs and nonlinear in decumulative
probabilities. The generalization is straightforward for the NLPP class of theories.
First consider a NLPP model with fixed, zero-income reference point, as in Tversky

123



Is there a plausible theory for decision under risk? 317

and Kahneman (1992) and Quiggin (1993). For nonlinear transformation of payoff
functions υ(·) that are sub-additive on positive payoffs one has:

Corollary 2.1 For υ(y) > 2υ(x), NLPP models with zero-income reference point
predict that for any given sufficiently large G, there exist integers n ≥ k∗ such that
statements P.2 and Q.2 cannot both be true.

Proof see Appendix 8.2. ��
For NLPP models with zero-income reference point, the relation between n and

G is given by G < T (υ(y)/υ(x), n − k∗, n − 1). Implications of Corollary 2.1 for
the special case in which k∗ = 1 are given in Table 4 for the (alternative) definition
C = υ(y)/υ(x). For example, if the value of the high payoff υ(y) is at least 3 times
as large as the value of the intermediate (positive) payoff υ(x), then implications of
calibration pattern P.2 are given by the C = 3 column of Table 4, and so on.

Probabilities calibration does not apply to the Markowitz (1952) model because its
functional is linear in probabilities. In contrast, probabilities calibration applies to rank-
dependent models because of their nonlinear transformation of probabilities, whether
or not the reference point is exogenous. The reason for this is straightforward: the
calibration is constructed by varying the probabilities for which three or two payoffs
are paid, not by varying the payoff amounts. Hence, it makes no difference to this
calibration whether the reference amount of payoff is or is not fixed at zero payoff.
Here is a formal statement of the result that the calibration applies to rank-dependent
models with endogenous reference payoff. Let μ(·) < 0 denote the value function for
negative payoffs. For υ(·) sub-additive on positive payoffs one has:

Corollary 2.2 Let the reference point be the intermediate payoff x and υ(y − x) >

−μ(−x). Rank-dependent models predict that for any given sufficiently large G, there
exist integers n ≥ k∗ such that statements P.2 and Q.2 cannot both be true.

Proof See Appendix 8.2. ��
It can be verified (see Appendix 8.2) that the relation between n and G in this case

is given by G < T (R + 1, n − k∗, n − 1), where R = −υ(y − x)/μ(−x). Similar
corollaries can be stated for cases in which the endogenous reference point is the
highest payoff or the lowest payoff (or other convex combinations of the high and low
payoffs) rather than the intermediate payoff. Empirical validity of the pattern P.2 is
testable. Section 6 reports experiments on this question.

5 Experiments with varying payoffs

We ran three experiments with calibration patterns (P.1) for payoff transformation
theories identified in Proposition 1 and Corollary 1.1 in Calcutta (India) and Magde-
burg (Germany). We explain the common features and idiosyncratic lotteries used in
these experiments after presenting a detailed discussion of one experiment to provide
a representative example.
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5.1 Experimental design: an example

Subjects in one experiment parameterization were asked to make six choices between
a certain amount of money x and a binary lottery {x + 30, 0.5; x − 20} for values
of x from the set {100, 1K , 2K , 4K , 5K , 6K }, where K = 1,000. Subjects were
asked to choose among option A (the risky lottery), option B (the certain amount
of money), and option I (indifference). The choice tasks given to the subjects for this
parameterization are presented in Table 5. Each row of Table 5 shows a certain amount
of money and paired lottery in a choice task included in the experiment. The subjects
were not presented with a fixed order of decision tasks, as in Table 5. Instead, each
pair of a sure payoff and a risky lottery was shown on a separate (response form) page.
Each subject picked up a set of response pages that were arranged in independently
drawn random order. He or she could mark choices in any order desired.

5.2 Experimental design: alternative parameterizations and protocols

We conducted three experiments on empirical validity of the calibration pattern P.1
in Proposition 1. These experiments used the random decision selection payoff pro-
tocol in which one of each subject’s several decisions is randomly selected for pay-
off at the end of the experiment. In the Calcutta 30/−20 experiment, binary lotteries
{x+30, 0.5; x−20} and sure payoffs x were from the set {100, 1K , 2K , 4K , 5K , 6K },
where K = 1,000; payoffs were in rupees. In the Calcutta 90/−50 experiment,
binary lotteries {x + 90, 0.5; x − 50} and sure payoffs x were from the set
{50, 800, 1.7K , 2.7K , 3.8K , 5K }, where K = 1,000; payoffs were in rupees. Finally,
in the Magdeburg 110/−100 experiment, binary lotteries {x + 110, 0.5; x − 100}
and sure payoffs x were from the set {3K , 9K , 50K , 70K , 90K , 110K }, where
K = 1,000; payoffs were in contingent euros.

An appendix available from the authors reports the subject instructions (in English),
the response forms (or pages), and detailed information on the protocol used in all
of the experiments. Before presenting data, we note economic significance of rupee
payoffs in Calcutta experiments and the meaning of contingent euro payoffs in the
Magdeburg experiment.

5.3 Economic significance of payoffs

Data collected in Calcutta at the time of the first experiment show that the 50 rupee
amount at risk in the Calcutta 30/−20 experiment lotteries was the monetary equivalent

Table 5 Choice alternatives in
varying-payoffs experiment
Calcutta 30/−20

Row Option A Option B

1 80 or 130 100

2 980 or 1,030 1,000

3 1,980 or 2,030 2,000

4 3,980 or 4,030 4,000

5 4,980 or 5,030 5,000

6 5,980 or 6,030 6,000
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of: (1) a full day’s pay for the student subjects; (2) 15 (grocery store) servings of
chicken; or (3) 14 bus tickets. Rupee payoffs in the Calcutta 90/−50 experiment were
even more significant.

The Magdeburg 110/−100 experiment used contingent payoffs in amounts as high
as 110 K euros. We could offer to pay such large amounts in contingent euros by using
a casino payoff protocol explained in Appendix 8.3.

5.4 Data provide support for the concavity calibration Pattern P.1

Statement P.1 in Proposition 1 involves weak preference for (safe) option B over
(risky) option A. Therefore, in all tests, we aggregate choices of option B with (the
very small number of) choices of option I (indifference) and denote the aggregated
choice category as BI. We report tests for incidence in the data of patterns of choices
that, according to Proposition 1 and Corollary 1.1, imply implausible risk aversion
in the large with expected utility theory and, for the experiments in Calcutta, with
original cumulative prospect theory (with zero-income reference point) and with rank
dependent utility theory.

We use error rate analysis for statistical inferences on the proportion of subjects
who made choices consistent with the calibration patterns.10 Choice probabilities are
assumed to deviate from 1 or 0 by an error rate ε, as in Harless and Camerer (1994).
Thus if BI is preferred to A then Pr(choose BI) = 1 − ε and if BI is not preferred to A
then Pr(choose B I) = ε, where ε < 0.5. The error rate model postulates that a subject
with real preferences for BI (respectively A) over A (respectively BI) in all six rows
could nevertheless be observed to have chosen BI in five (or fewer) out of six rows.
That is, the model allows that a subject with real underlying preferences such as [BI,
BI, BI, BI, BI, BI] could, instead, choose a different pattern, say [BI, BI, BI, A, BI,
BI], an event with probability (1 − ε)5ε, where ε is an error rate.

Models I, II, and III considered here are as follows. Model I includes only choices
of all BI (corresponding to M = 6,000 in Proposition 1 for the Calcutta 30/−20
experiment, for example) as a calibration pattern and its mirror, all A’s as the other
pattern. Let the small-stakes lotteries be {x + 30, 0.5; x − 20} for x from 100 to
6,000. According to Proposition 1, the choice pattern “all BI” implies that 1,000 for
sure is preferred to the lottery that pays 0.13 × 1023 or 100 with equal probabilities.
Model II (which corresponds to Proposition 1 with M = 5,000 for the Calcutta
30/−20 experiment) contains the Model I pair of (calibration and other) patterns,
and one additional calibration pattern with A as the last entry (for x = 6,000) and
its mirror image as an additional “other pattern.” According to Proposition 1, the
calibration patterns in Model II imply that getting 1,000 for sure is preferred to the
50/50 lottery that pays 0.409 × 1019 or 100. Finally, Model III (which corresponds to
Proposition 1 with M = 4,000 for the Calcutta 30/−20 experiment) contains patterns
with four sequential BI in the first four positions (for x = 100, 1000, 2000, and 4000)
as calibration patterns and their mirror images as other patterns. With these calibration

10 We are grateful to Nathaniel Wilcox for generous advice about this approach to data analysis and for
supplying SAS code. See Wilcox (2008) for discussion of econometric methods for analysis of data from
binary discrete choice under risk.
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Table 6 Maximum likelihood estimates of the proportion of subjects who exhibit patterns P.1 and predic-
tions (not Q.1) for payoffs calibration

Experiment No. of subjects Model I Model II Model III

Calcutta 90/−50 40 0.82** 0.81** 0.81**

m = 50 (0.70, 0.94) (0.69, 0.93) (0.69, 0.93)

M = 5,000: 1,000
� {0.32 × 1011,
0.5; 50}

M = 4,000: 1,000
� {0.53 × 109,
0.5; 50}

M = 3,000: 1,000
� {0.86 × 107,
0.5; 50}

Calcutta 30/−20 30 0.43** 0.48** 0.48**

m = 100 (0.25, 0.62) (0.30, 0.66) (0.30, 0.67)

M = 6,000: 1,000
� {0.13 × 1023,
0.5; 100}

M = 5,000: 1,000
� {0.40 × 1019,
0.5; 100}

M = 4,000: 1,000
� {0.12 × 1016,
0.5; 100}

Magdeburg 110/−100 41 0.54** 0.54** 0.54**

m = 3,000 (0.39, 0.68) (0.39, 0.68) (0.36, 0.71)

M = 110,000:
5,000 �
{0.12 × 1023,
0.5; 3,000}

M = 90,000:
5,000 �
{0.14 × 1019,
0.5; 3,000}

M = 70,000:
5,000 �
{0.17 × 1015,
0.5; 3,000}

The Wald 90 % confidence interval is in parenthesis; ** p-value < 0.01

patterns, Proposition 1 implies that getting 1,000 for sure is preferred to the lottery
that pays 0.12 × 1016 or 100 with equal probabilities.

The top row in Table 6 shows estimated proportions of subjects whose choices
satisfy the calibration patterns for versions of Models I, II, and III using data from
Calcutta 90/−50. The estimated proportion for Model I (M = 5,000) is 0.82, with Wald
90 % confidence interval (0.70, 0.94). The estimated proportions for all three models
vary between 0.81 and 0.82; all are significant at 1 % (indicated by superscripted double
asterisks, **). The estimations for Calcutta 90/−50 imply that 81–82 % of the subjects
in this experiment made choices that conform to payoffs calibration patterns P.1 that are
problematic for expected utility theory, rank-dependent utility theory, and cumulative
prospect theory with fixed reference point. The second row of Table 6 reports estimates
for data from Calcutta 30/−20. The estimated proportions vary between 0.43 and 0.48,
and all are significant at 1 %. Estimates in the third row for data from Magdeburg
110/−100 are 0.54; all are significant at 1 %.

6 Experiments with varying probabilities

We ran four probabilities calibration pattern P.2 experiments in Germany, India, and
the United States. We explain the common design features and idiosyncratic lotteries
in these experiments and present a more detailed discussion of one experiment to
provide a representative example. We begin with the example.

6.1 Experimental design: an example

Subjects in one experiment parameterization were asked to make choices for each of
the nine pairs of lotteries shown in Table 7. The fractions in the rows of the table are the
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Table 7 Choice alternatives in varying-probabilities experiment Atlanta 14/4

Row Option A Option B

Payoff 14 Payoff 0 Payoff 14 Payoff 4 Payoff 0

1 1/10 9/10 0/10 2/10 8/10

2 2/10 8/10 1/10 2/10 7/10

3 3/10 7/10 2/10 2/10 6/10

4 4/10 6/10 3/10 2/10 5/10

5 5/10 5/10 4/10 2/10 4/10

6 6/10 4/10 5/10 2/10 3/10

7 7/10 3/10 6/10 2/10 2/10

8 8/10 2/10 7/10 2/10 1/10

9 9/10 1/10 8/10 2/10 0/10

probabilities of receiving the prizes in the two-outcome (option A) and three-outcome
(option B) lotteries. Each row of Table 7 shows a pair of lotteries included in the
experiment. The subjects were not presented with a fixed order of lottery pairs, as in
Table 7. Instead, each lottery pair was shown on a separate (response form) page. Each
subject picked up a set of response pages that were arranged in independently drawn
random order. He or she could mark choices in any order desired. On each decision
page, a subject was asked to choose among a two-outcome lottery (option A in some
row of Table 7), a three-outcome lottery (option B in the same row of Table 7), and
indifference (“option I”).

6.2 Experimental design: alternative parameterizations and protocols

We conducted four experiments on empirical validity of the calibration pattern P.2 pos-
tulated in Proposition 2. One experiment parameterization uses pairs of two-outcome
and three-outcome lotteries, A j = {y, p j ; 0} and B j = {y, p j − 0.1; x, 0.2; 0}, for
j ∈ {1, 2, . . . , 9}, and y = 14, x = 4 as shown in Table 7. We also ran experiments
with the parameterizations {y, x} = {40, 10} and {400, 80}.

The experiments were conducted in Magdeburg (Germany), Atlanta (U.S.A.) and
Calcutta (India) with payoffs, respectively, in euros, U.S. dollars, and Indian rupees.
The experiments used the following parameters: in the Magdeburg 40/10 experiment,
y = 40 euros and x = 10 euros; in the Atlanta 40/10 experiment, y = 40 dollars and
x = 10 dollars; in the Atlanta 14/4 experiment, y = 14 dollars and x = 4 dollars;
in the Calcutta 400/80 experiment, y = 400 rupees and x = 80 rupees. Economic
significance of rupee payoffs is discussed in Sect. 5.3. The two experiments in Atlanta
each included two treatments that used different payoff protocols. One protocol is the
conventional one in which a single decision by a subject is randomly selected for payoff
at the end of the experiment; this is labeled POR, for “pay one randomly,” in Table 8.
The other payoff protocol is the one that is theoretically incentive compatible for dual
theory of expected utility (Cox et al. 2012). In this payoff protocol, all decisions are
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paid correlated at the end. In order to keep the level of incentives similar across payoff
mechanisms, we used the version of the protocol in which the amounts of all payoffs are
divided by the number of decisions; this is labeled PAC/9, for “pay all correlated/9,”
in Table 8. An appendix available from the authors reports subject instructions (in
English), response forms (or pages), and detailed information on the protocol used in
all of the experiments.

6.3 Data provide support for calibration pattern P.2

In testing for the presence of choices that satisfy the calibration pattern, we aggregate
choices of option B with (the very small number of) choices of option I (indifference)
because statement P.2 in Proposition 2 involves weak preference for B over A. Aggre-
gated choices of B and I are reported as BI. Subjects’ choice patterns are recorded as
sequences of nine letters, ordered according to the probability of the high outcome.
For example, the pattern [A, BI, BI, A, BI, BI, BI, BI, A] would indicate that a subject
chose A (a two-outcome lottery) when the probability of the high outcome was 1/10,
4/10 and 9/10—indexed as j = 1, 4 and 9—and chose B or I for all other values of
the index j . For the experiment with parameterization shown in Table 7, this pattern
would mean the subject chose option A on (randomly ordered) pages with the lottery
pairs in rows 1, 4, and 9 in the table and chose option B or option I on all other pages.

We use error rate models to draw statistical conclusions from these data. The error
rate model postulates that a subject with real preferences for BI (respectively A) over
A (respectively B I) in all nine lottery pairs could nevertheless be observed to have
chosen the other option in some rows. For example, according to this model a subject
with underlying preferences [BI, BI, BI, BI, BI, BI, BI, BI, BI] could, instead, be
observed to choose a different pattern such as [BI, BI, A, BI, A, BI, BI, BI, BI ], an
event with probability (1 − ε)7ε2.

Stochastic choice Model I contains only the choice pattern with a sequence of nine
BI in the category “calibration pattern” and its dual (“mirror”) image with a sequence
of nine A in the “other pattern.” According to Proposition 2, this calibration pattern
implies that 1,000 for sure is preferred to the 50/50 lottery that pays 98,000 or 0 for
the Atlanta 14/4 experiment, as reported in the third row in Table 8. For the Calcutta
400/80 experiment, Proposition 2 implies that 1,000 for sure is preferred to the 50/50
lottery that pays 1 million or 0, as reported in the bottom row in Table 8.

Model I is overly conservative in its specification of calibration patterns because
other data patterns can be calibrated to imply implausible risk aversion. Stochastic
choice Model II includes two patterns in the category “calibration patterns”: the pattern
with choice of BI for index j ∈ {1, 2, . . . , 8} and the all BI pattern (that is, j ∈
{1, 2, . . . , 9}). The mirror images of these two patterns comprise the “other patterns”
for Model II. Application of Proposition 2 demonstrates that these two patterns of “no
A except for index j = 9” imply that 1,000 for sure is preferred to the 50/50 lottery that
pays 81,000 or 0, as reported for the Atlanta 40/10 and Magdeburg 40/10 listings in
Table 8. We also consider Model III that includes the patterns “no A except for indexes
j = 8 and/or 9” in the category of calibration patterns. The mirror images of these
patterns comprise the other patterns for Model III. An implication of Proposition 2
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Table 8 Maximum likelihood estimates of the proportion of subjects who exhibit patterns P.2 and predic-
tions (not Q.2) for probabilities calibration

Experiment No. of subjects Model I Model II Model III

Atlanta 14/4 39 POR 0.74** 0.82** 0.88**

(0.55, 0.93) (0.68, 0.96) (0.77, 0.99)

34 PAC/9 0.81** 0.90** 0.93**

(0.61, 1.0) (0.76, 1.0) (0.81, 1.0)

1,000 �
{98,000, 0.5; 0}

1,000 �
{39,000, 0.5; 0}

1,000 �
{15,700, 0.5; 0}

Atlanta 40/10 22 POR 0.56** 0.59** 0.59**

(0.37, 0.75) (0.39, 0.78) (0.40, 0.79)

35 PAC/9 0.76** 0.83** 0.93**

(0.56, 0.95) (0.66, 1.0) (0.85, 1.0)

1,000 �
{244,000, 0.5; 0}

1,000 �
{81,000, 0.5; 0}

1,000 �
{27,000, 0.5; 0}

Magdeburg 40/10 31 POR 0.65** 0.67** 0.71**

(0.49, 0.81) (0.51, 0.83) (0.56, 0.87)

1,000 �
{244,000, 0.5; 0}

1,000 �
{81,000, 0.5; 0}

1,000 �
{27,000, 0.5; 0}

Calcutta 400/80 40 POR 0.72** 0.72** 0.73**

(0.58, 0.86) (0.58, 0.86) (0.59, 0.86)

1,000
� {1 million,

0.5; 0}

1,000 �
{256,000, 0.5; 0}

1,000 �
{64,000, 0.5; 0}

The Wald 90 % confidence interval is in parenthesis; ** p-value < 0.01

for these calibration patterns in case of n = 5 and C = 4 is preference for 1,000
for sure to the 50/50 lottery that pays 27,000 or 0, as shown in the Atlanta 40/10 and
Magdeburg 40/10 listings in the table.

Table 8 reports results from maximum likelihood estimation of the proportion of
subjects who exhibit the calibration patterns for Models I, II and III. The first row of
Table 8 shows results for data from the Atlanta 14/4 experiment with POR payoff pro-
tocol. For Model I, the estimated proportion of subjects who exhibited the calibration
pattern is 0.74. The Wald 90 % confidence interval is (0.55, 0.93). The 0.74 estimate is
significant at 1 % (as indicated by double asterisks, **). The other columns in the first
row of Table 8 report the estimated proportions of subjects whose choice patterns in
the Atlanta 14/4, POR protocol treatment conform to calibration patterns of Models
I, II, and III. These estimates vary between 0.74 and 0.88, and they are all significant
at 1 %. Results look similar for the Atlanta 14/4, PAC/9 protocol data in the second
row of Table 8 except that the proportions of subjects consistent with the calibration
patterns are even higher; they vary from 0.81 to 0.93.

Table 8 shows the estimated proportions of subjects whose choices are consis-
tent with calibration patterns in experiments Atlanta 40/10, Magdeburg 40/10, and
Calcutta 400/80. Depending on the model, the estimated proportion of subjects with
data consistent with the calibration patterns in the Atlanta 40/10, POR protocol
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treatment varies from 0.56 to 0.59, all significant at 1 %. Results look somewhat
different for the Atlanta 40/10, PAC/9 protocol data; here, the estimated proportions
of subjects with choices consistent with the calibration patterns again are higher; they
vary from 0.76 to 0.93. The estimates for data from Magdeburg 40/10 vary from 0.65
to 0.71, all significant at 1 %. Estimates with data from experiment Calcutta 400/80
lie between 0.72 and 0.73; all are significant at 1 %.

7 Is there a plausible theory for decision under risk?

Prominent theories of decision under risk model individuals’ preferences over lotter-
ies with nonlinear transformation of money payoffs and/or nonlinear transformation
of probabilities. Previous calibration literature, sparked by Rabin (2000), has focused
on the implications of nonlinear transformation of payoffs. Sadiraj (2012) offers cal-
ibrations that focus on the implications of nonlinear transformation of probabilities.
Theories with functionals that are nonlinear in both probabilities and payoffs are vul-
nerable to both types of calibration. If one allows for variable reference amounts of
payoff, the probabilities calibration is problematic for these theories, but the payoffs
calibrations appearing elsewhere in the literature are not.

This paper develops a dual analysis of the calibration patterns. Taken together, the
two calibration propositions provide a paradoxical insight into theories of decision
under risk: a pattern of risk aversion that conforms to rational behavior for a theory
with utility functional that is linear in probabilities (respectively, linear in payoffs)
has implausible implications for a theory with functional that is linear in payoffs
(respectively, linear in probabilities).

The internal consistency problems that follow from probabilities calibration are
even more problematic than those from payoffs calibration. Whereas the payoffs cal-
ibration critique applies across “small” and “large” payoff domains, the probabilities
calibration critique also holds within a (“small” or “large”) payoff domain.

First, note that the scale of the payoffs in pattern Q.1 depends on both the scale
of payoffs in pattern P.1 and the length of the interval where P.1 holds. The scale of
payoffs in pattern P.1 involves small-stakes risk aversion, but the pattern Q.1 must
characterize risk attitudes at large-stakes to make the pair paradoxical. Alternatively,
P.1 must involve small-stakes risk aversion to pair paradoxically with a given plausible
Q.1 in the large. Therefore, varying-payoffs, fixed-probabilities calibrations question
the ability of expected utility theory, rank-dependent utility theory, and cumulative
prospect theory with fixed reference point to rationalize plausible risk attitudes across
different domains of risk: “small-stakes” and “large-stakes”.

In contrast, the scale of the payoffs in pattern P.2 is not required to be different from
the scale of payoffs in pattern Q.2.11 Therefore, probabilities calibration questions the
ability of dual theory of expected utility and rank-dependent theories with exogenous

11 For example, Proposition 2 and its corollaries tell us that the following two statements are inconsistent for
DU and NLPP models. Statement P.2e: the three-outcome lottery that pays 400 or 80 or 0 with probabilities
p − 0.1, 0.2 and 1 − (p − 0.1 + 0.2) is preferred to the two-outcome lottery that pays 400 or 0 with
probabilities p and 1− p, for all p in {0.1, 0.2, …, 0.8, 0.9}. Statement Q.2e: the 50/50 lottery that pays 330
or 0 is preferred to a sure payoff of 10. These statements P.2e and Q.2e involve implausible combinations of
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(zero income) or endogenous reference point to rationalize plausible risk attitudes not
only across different domains of payoffs (small vs. large) but also within the same
domain of payoffs.

Previous literature has not offered real-payoff, controlled experiment data on pat-
terns of risk aversion that appear in calibration suppositions. This paper reports data
from several experiments. As explained in Sect. 6, the data provide support for empir-
ical validity of risk aversion patterns underlying both of the dual calibrations.

Popular theories of decision under risk have been shown to be vulnerable to cali-
bration critique. This suggests a central question: What properties would characterize
a theory of risk-avoiding preferences that would not be called into question by the
critique? The answer follows from the dual calibration propositions and corollaries
presented in this paper. A theory of risk preferences with a functional that is linear
in probabilities would be immune to the probabilities calibration critique. A theory
with variable reference payoffs would be immune to the payoffs calibration critique.
The vintage Markowitz (1952, pp. 154–155) model has these two properties if one
identifies the second inflection point with the windfall gain offered by the sure option
in the payoff calibration pattern.12 Although a version of the Markowitz model does
survive the critique, unlike all of the currently popular models, whether the former can
survive other experimental tests is a question that needs to be addressed in subsequent
research.

8 Appendix

8.1 Proof of Proposition 1 and Corollary 1

We state a general Proposition 8.1 that applies to a theory with utility functional U as in
statement (NL-1). Proposition 1 and Corollary 1.1 follow directly from Proposition 8.1.

General result 1.13 Let a decision theory with “utility functional” U as in statement
(NL-1) be given. Referring to statement P.1, denote a = �, b = g + � and let N be
the largest integer smaller than (M − m)/b. For a general probability, p of the large
outcome, x + g statement P.1 for a sure outcome x + a becomes

Footnote 11 continued
same-stakes risk aversion. Furthermore, this same-stakes implausible risk aversion holds for all scales
of payoffs because the P.2e and Q.2e statements are dimension-invariant; that is, the numbers 400, 80,
330 and 10 could refer to numbers of cents, dollars or thousands of dollars or millions of dollars or any
other payoff scale. The figures 330 and 1 in statement Q.2e apply for all utility, v(·) of prizes that satisfy
v(400)/v(80) ≥ 3.

12 Unlike cumulative prospect theory with loss aversion, in a neighborhood of the origin, the Markowitz
model’s transformation function for payoffs is convex on positive changes and concave on negative changes.
How can one get risk aversion of type P.1 with this model? As an example think of the function being x2

on the right of the origin up to the third inflection point and being x3 on the left of the origin down to the
first inflection point, where both the first and the third inflection points are further from the origin than the
gains (g) and the losses (�) in pattern P.1.
13 This part of the proof is similar to Cox and Sadiraj (2006, p. 58).
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x + a � {x + b, p; x}, for all integers x ∈ [m + a, M + a]. (8.i)

Suppose that14

b f (p) > a, (8.ii)

where f (·) is the transformation function for decumulative probabilities as stated in
the main text. Let z∗ = m+b(2−ln 2/ ln q), where q = (1− f (p))�/ f (p)g. Let K be
the largest integer smaller than (z−m)/b, for a given z ∈ (z∗, M), and J be the largest
integer smaller than N − K + 1 + A(q, K )q−N , where A(q, K ) = q − q1+K − q K .

Proposition 8.1 For all (weakly) concave functions, v(·) and all positive numbers
a, b and f (p) that satisfy (8.ii) one has:

1. For all M > m, for all z ∈ (z∗, m + bN ), statement (8.i) implies z � {z + (J −
1)b, p; m};

2. For all positive G, for all z > z∗ there exists N such that statement (8.i) implies
that z � {z + G, p; m}.

Proof The proof of 8.1.1 consists of two steps. ��
First, we show that statements (NL-1), (8.i) and (weak) concavity of v(·) imply that

for all x ∈ [m + a, m + Nb + a]

v(x + jb) − v(x + ( j − 1)b) ≤ q j (v(x) − v(x − b)) , ∀ j ∈ �x , (8.1)

where �x is the set of all positive integers j such that x + ( j − 1)b − a belongs to
the interval [m, m + Nb], that is �x = { j ∈ N|x + ( j − 1)b − a ∈ [m, m + Nb]}.

Then, we show that for any given z ∈ (z∗, m + bN ),

m + K b ≥ {m + (K + J )b, p; m}. (8.2)

That is getting m+K b for sure is preferred to the binary lottery {m+(K + J )b, p; m},
which completes the proof of part 1 since by construction of K , m + (K + 1)b > z ≥
m + K b and therefore

v(z) ≥ v(m + K b) ≥ f (p)v(m + (K + J )b) + (1 − f (p))v(m)

> f (p)v(z + (J − 1)b) + (1 − f (p))v(m).

It follows from statements (NL-1) and (8.i) that

v(x + a) ≥ (1 − f (p))v(x) + f (p)v(x + b),∀x ∈ [m + a, m + Nb + a] ∩ N.

(8.3)

14 For theories that assume linearity in probabilities and p = 0.5, condition (8.ii) is simply g > � ; it says
that the expected value of risky lottery {b, 0.5; 0} is larger than the sure amount of money a. For theories
that assume nonlinearity in probabilities, condition (8.ii) says that the expected value of the risky lottery
after applying the probability transformation, that is EV({b, f (p); 0}), is larger than the sure amount of
money a.
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To derive (8.1) write v(x + a) = f (p)v(x + a) + (1 − f (p))v(x + a) and rearrange
terms in (8.3) to get

(1 − f (p)) [v(x + a) − v(x)] ≥ f (p) [v(x + b) − v(x + a)] ,

∀x ∈ [m + a, m + Nb + a] ∩ N. (8.4)

Note that from (weak) concavity of v(·),15 (v(x) − v(x − g))/g ≥ (v(x +
�) − v(x))/�, which together with statement (8.4) and using notations q = (1 −
f (p))�/ f (p)g, a = � and b = g + � imply

v(x + b) − v(x) = v(x + b) ∓ v(x + a) − v(x)

≤
(

1 − f (p)

f (p)
+ 1

)

(v(x + a) − v(x))

≤ 1

f (p)

�

g
(v(x) − v(x − g)) = q

1 − f (p)
(v(x) − v(x − g))

= q

(

1 + f (p)

1 − f (p)

)

(v(x) − v(x − g))

≤ q (v(x) − v(x − g) + v(x − g) − v(x − b))

= q (v(x) − v(x − b)) .

Finally, statement (8.1) follows from applying j times the preceding derived inequality,
v(x + b) − v(x) ≤ q(v(x) − v(x − b)).

To show statement (8.2), let y = m + K b and verify that statement (8.1) implies

v(y) − v(y − bK ) =
K−1∑

k=0

[v(y − kb) − v(y − (k + 1)b)] ≥ �v(y)

K−1∑

k=0

(1/q)k,

(8.5)

where �v(y) = v(y) − v(y − b). Next, it can be verified that y ≥ z − b > z∗ − b
implies that K > 1 − ln 2/ ln q. Hence A(q, K ) > 0 and therefore J + K > N , by
construction of J. It follows from (weak) concavity of v(·) and statement (8.1) that

15 To see this, write x as a convex combination of x + � and x − g and apply the definition of concavity
to get v(x) = v ([�(x − g) + g(x + �)] /(g + �)) ≥ [�v(x − g) + gv(x + �)] /(g + �).
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v(y + Jb) − v(y) =
J−1∑

j=0

[v(y + ( j + 1)b) − v(y + jb)]

≤ �v(y)

⎡

⎣q N−K+1(J − N + K − 1) +
N−K∑

j=0

q j+1

⎤

⎦ . (8.6)

Statements (8.5) and (8.6) imply that a sufficient condition for (8.2) is

(1 − f (p))

K−1∑

k=0

(1/qk) > f (p)

⎡

⎣q N−K+1(J − N + K − 1) +
N−K∑

j=0

q j+1

⎤

⎦ . (8.7)

Substitute (1−q)
∑N−K

j=0 q j+1 = q(1−q N−K+1), (1−q)
∑K−1

k=0 q−k = q(q−K −1)

and (1 − f (p))/ f (p) = qg/� in (8.7) to get

J < N − K + 1 +
(g

�
(q − q1+K ) − q K + q1+N

) 1

(1 − q)q N
. (8.8)

To show that inequality (8.8) is indeed satisfied recall that J ≤ N − K + 1 +
A(q, K )q−N by construction, q ∈ (0, 1) by statement (8.ii) and verify that:

A(q, K ) = q − q1+K − q K <
(g

�
(q − q1+K ) − q K + q N+1

) 1

(1 − q)
.

Statement A.2.2 follows from statement A.1.1. Let G > 0 and z > z∗ be given.
Then, as in part 1, let K be the largest integer smaller than (z − m)/b. It follows from
A(q, K ) > 0 and q ∈ (0, 1) that there exists N∗ such that for all integers N > N∗,
one has

N − K − 1 + A(q, K )q−N > G/b (8.9)

If statement (8.i) is true for some M such that N = 	(M − m)/b
 satisfies (8.9) then
one has: z � {z + (J − 1)b, p; m} � {z + G, p; m} ; the first inequality follows
from part 1 (8.1.1), whereas the second one follows from the construction of J and
first-order-stochastic dominance.

Proof of Proposition 1 (expected utility theory) Part a and Part b.i follow directly
by linearity in payoffs of the DU functional (see DU-1) and p = 0.5. Condition
G > (z − m)g/� implies that 0 < (z − m)/(z − m + G) < �/(g + �) < 1. To show
Part b.ii., note that statement (8.ii) is satisfied and apply part 2 of Proposition 8.1 with
p = 0.5, f (p) = p and q = �/g to find N such that statement P.1 for M =
m + N (g + �) implies z � {z + G, 0.5; m}, hence Q.1 is not true. ��
Proof of Corollary 1.1 (rank-dependent utility theory) It is an application of Proposi-
tion 8.1.2 with p = 0.5, f (p) = h(p) and v(z) = υ(z). ��
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8.2 Proof of Proposition 2 and its Corollaries

General result 2.16 Let preferences over finite discrete lotteries, L = {x j , p j }, j ∈ Im

be represented with utility functional as in statement (NL-1).

U (L) = v(xm)Pm +
m−1∑

j=1

v(x j )

Pj∫

Pj+1

d f (8.iii)

where Pj = Pr(x : x ≥ x j ) and
∫ Pj

Pj+1
d f = f (Pj ) − f (Pj+1). Without any loss of

generality, we use the normalization, v(0) = 0.

Suppose that statement P.2 as stated above Proposition 2 holds; that is for some
given y ≥ 2x > 0, and positive integers k∗ and n ≥ k∗, an agent prefers the following
three-outcome lottery to the binary one,

{y, pi − δ; x, 2δ} � {y, pi }, for all i ∈ {1, 2, . . . , 2n − k∗}, (8.iv)

where δ = 1/2n and pi = i/2n = iδ. Using notation C ≡ v(y)/v(x) and func-
tion T (·) as defined in Sect. 4.1, we first state and show a general Proposition 8.2
for sub-additive value functions of prizes. Proposition 2 and its Corollaries follow
straightforwardly from Proposition 8.2.

Proposition 8.2 Suppose that statement P.2 is true. Then there exists integer K such
that {z, 1 − (k∗ − 1)δ} � {zK , 0.5}, for all z > 0. The last statement is true for all
integers K that do not exceed T (C, n − k∗, n − 1).

Proof According to functional (NL-1), statement P.2 [i.e. Eq. (8.iv)] requires that

v(x)

(i+1)δ∫

(i−1)δ

d f + v(y) f ((i − 1)δ) ≥ v(y) f (iδ), ∀i ∈ {1, . . . , 2n − k∗},

for some positive integer k∗ not larger than n. Adding and subtracting v(x) f (iδ) and
rearranging terms in the last inequality, we get

(i+1)δ∫

iδ

d f ≥ (C − 1)

iδ∫

(i−1)δ

d f , ∀i ∈ {1, . . . , 2n − k∗}.

Write the last inequality for i + k(= 1, . . . , 2n − k∗ and apply it k times to get

(i+k+1)δ∫

(i+k)δ

d f ≥ (C − 1)

(i+k)δ∫

(i+k−1)δ

d f ≥ . . . ≥ (C − 1)k

(i+1)δ∫

iδ

d f ,

16 This part of the proof is similar to Sadiraj (2012).
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which generalizes as

( j+1)δ∫

jδ

d f ≥ (C − 1)i

( j−i+1)δ∫

( j−i)δ

d f ,∀ j ∈ {i, . . . , 2n − k∗}. (8.10)

To complete the proof, it suffices to show that

f (0.5) ≤
n−1∑

j=0

(
1

C − 1

) j 0.5∫

0.5−δ

d f and f ((2n − k∗ + 1)δ) − f (0.5)

≥
n−k∗
∑

i=0

(C − 1)i+1

0.5∫

0.5−δ

d f (8.11)

because two inequalities in (8.11) imply that

f ((2n − k∗ + 1)δ) ≥ f (0.5)

⎡

⎣1 +
n−k∗
∑

i=0

(C − 1)i+1/

n−1∑

j=0

(C − 1)− j

⎤

⎦ .

Multiplying both sides of the last inequality by v(z) and using the sub-additivity of
v(z), we get the needed result:

v(z) f ((2n − k∗ + 1)δ) ≥ f (0.5)v(z)T (C, n − k∗, n − 1) ≥ f (0.5)v(zK ).

To show the first inequality of (8.11) verify that it follows from inequality (8.10) that

f (0.5) =
n∑

i=1

iδ∫

(i−1)δ

df ≤
n∑

i=1

(
1

C − 1

)n−i nδ∫

(n−1)δ

d f =
n−1∑

j=0

(
1

C − 1

) j 0.5∫

0.5−δ

d f

Similarly, to show the second inequality of (8.11) verify that

f ((2n − k∗ + 1)δ) − f (0.5) =
2n−k∗+1∑

j=n+1

jδ∫

( j−1)δ

d f ≥
2n−k∗+1∑

j=n+1

(C − 1) j−n

0.5∫

0.5−δ

d f

=
n−k∗
∑

i=0

(C − 1)i+1

0.5∫

0.5−δ

d f

��
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Proof of Proposition 2 (dual theory of expected utility) Part (a) follows from the lin-
earity in probabilities of the EU functional (see EU-1). For part (b.i) first note that
k∗ ≥ 1 implies (1 − (k∗ − 1)δ)v(z) ≤ v(z) ; hence v(z) < 0.5v(zG) is a suffi-
cient condition for the inequality in statement Q.2 to be true. Letting z = 1/G,17

the last inequality is equivalently written as v(1/G) < 0.5v(1) which is satisfied for
G large enough because the right-hand side is a positive finite number, whereas the
left-hand side approaches 0 when G is large enough. Next, any such EU agent, with
v(y) < 2v(x), clearly satisfies pattern P.2 (which follows from part a). ��

To show part (b.ii) first note that y > 2x > 0 imply that T (y/x, n − k∗, n − 1) can
be as large as one wants it to be for big enough n. So, for any given G, there exists
n ∈ N such that

G < T (y/x, n − k∗, n − 1). (8.12)

Then apply Proposition 8.2 with v(z) = z to show that P.2 implies {z, 1−(k∗ −1)δ} �
{zG, 0.5}, for all positive z. Therefore statement Q.2 is not true.

Proof of Corollary 2.1 (zero-income reference-dependent preferences) The proof is
similar to the proof of Proposition 2.b.ii. There is only one difference: use v(z) = υ(z)
instead of v(z) = z. ��
Proof of Corollary 2.2 (endogenous reference-dependent preferences) Let the
endogenous reference point be the middle prize, x and let R denote the ratio between
the value of the perceived gain and the absolute value of the perceived loss, that is
R = −υ(y − x)/μ(−x) > 1. Statement P.2 in this case implies

μ(−x) f −(1 − (i + 1)δ) + υ((y − x) f +((i − 1)δ) ≥ μ(−x) f −(1 − iδ)

+υ(y − x) f +(iδ), ∀i ∈ I2n−k∗ ,

which can be equivalently rewritten as

(i+1)δ∫

iδ

d f + =
1−iδ∫

1−(i+1)δ

d f − ≥ υ(y − x)

−μ(−x)

iδ∫

(i−1)δ

d f +, ∀i ∈ I2n−k∗ ,

where the equality follows from f +(p) = 1 − f −(1 − p). Use notation R and apply
the last inequality j − i times to get

( j+1)δ∫

jδ

d f + ≥ R j−i

(i+1)δ∫

iδ

d f +,∀ j ∈ {i, . . . , 2n − k∗},

17 If one is interested in some particular positive t different from 1 that we consider here, then take z = t/G
and verify that the sufficient condition becomes v(t/G) < 0.5v(t), which is satisfied for G large enough.
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and then (as in the proof for the general result 2, Proposition 8.2) verify that the
following inequality is true

f +(1 − (k∗ − 1)δ) ≥ f +(0.5)

⎡

⎣1 +
n−k∗
∑

j=0

R j+1

/
n−1∑

i=0

R−i

⎤

⎦ .

Finally, to complete the proof, use the last inequality and sub-additivity of υ(·) and
choose n such that G < T (R +1, n −k∗, n −1); the existence of such n follows from
R > 1. ��

8.3 Contingent euro payoff protocol

The Magdeburg 110/−100 experiment included amounts x that were as large as 110 K
euros. We could credibly offer to pay such large amounts in contingent euros by
using the following protocol. The experiment included two parts. In part 1, subjects
made their choices between the sure amounts and the lotteries in the MAX-Lab at
the University of Magdeburg. They were told that whether their payoffs would be
hypothetical or real depended on a condition that would be described later in part
2. After making their decisions, the subjects were informed that real payoffs were
conditional on winning gambles at the Magdeburg Casino. The payoff contingency
was implemented in the following way. For each participant, the experimenter placed
e 90 on the number 19 on one of the (four American) roulette wheels at the casino.
The probability that this bet wins is 1/38. If the bet wins, it pays 35 to 1. If the first
bet won, then the experimenter would bet all of the winnings on the number 23. If
both the first and second bet won, then the payoff would be e (35 × 35 × 90) =
e 110,250, which would provide enough money to make it feasible to pay any of
the amounts involved in the part 1 decision tasks for that subject. The real payoff
contingency was made credible to the subjects by randomly selecting three of them
to accompany the experimenter to the casino and subsequently report to the others
whether the experimenter had correctly placed the bets and recorded the outcomes.
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