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Abstract We study equilibrium existence in normal form games in which it is
possible to associate with each nonequilibrium point an open neighborhood, a set
of players, and a collection of deviation strategies, such that at any nonequilibrium
point of the neighborhood, a player from the set can increase her payoff by switching
to the deviation strategy designated for her. An equilibrium existence theorem for
compact, quasiconcave games with two players is established as an application of a
general equilibrium existence result for qualitative games. A new form of the better-
reply security condition, called the strong single deviation property, is proposed.
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1 Introduction

A number of generalizations and strengthenings of Reny’s equilibrium existence the-
orem for better-reply secure games (Reny 1999) have been proposed recently. Among
them are the papers by Barelli and Soza (2009), Carmona (2011a,b), De Castro (2011),
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McLennan et al. (2011), Bich (2009), and Reny (2009). Within the framework of the
endogenous sharing rule approach by Simon and Zame (1990), Balder (2011) presents
an equilibrium closure result for a sequence of games and associated mixed strategy
Nash equilibria. De Castro (2011) explores a link between Reny’s better-reply security
and Simon and Zame’s approach.

In this paper, we look at the equilibrium existence problem in normal form and
qualitative games through the prism of a property called, by Reny (2009), the single
deviation property. Both better-reply secure games and diagonally transfer continuous
games (Baye et al. 1993) possess this property. According to it, if a strategy profile
is not a Nash equilibrium, then there exist an open neighborhood and a full profile of
deviation strategies—one for each player—such that, at any point of the neighborhood,
a player can increase her payoff by switching to her deviation strategy. If the single
deviation property holds and the game has no Nash equilibria in pure strategies, we can
associate with each strategy profile a neighborhood and a collection of constant-valued
correspondences defined on the neighborhood. Barelli and Soza (2009, Theorem 2.2)
glue the locally defined correspondences together into an upper hemicontinuous cor-
respondence, defined on the Cartesian product of the players’ strategy sets, to which
Kakutani’s fixed point theorem can be applied. A strengthening of Barelli and Soza’s
equilibrium existence result for qualitative games, Theorem 5, is established in Sect. 4
via using majorized correspondences.

As shown with the aid of a three-player example by Reny (2009, Section 3), replac-
ing the better-reply security condition with the single deviation property does not
result in a complete set of sufficient conditions for the existence of a pure strategy
Nash equilibrium in compact, quasiconcave games.1 In that example, even though it
is possible to find, for every point, a neighborhood and a collection of constant-valued
correspondences defined on the neighborhood, one cannot glue them together into a
well-behaved correspondence having the Cartesian product of the players’ strategy
sets as its domain. Nessah and Tian (2010) show that if, instead of quasiconcavity, a
property related to but stronger than diagonal transfer quasiconcavity is assumed, then
the existence of an equilibrium obtains.

The weak single deviation property, introduced in this paper, is weaker than the
single deviation property in two respects: (a) deviation strategies need not be defined
for all players, and (b) neighborhoods of nonequilibrium points may contain equilib-
rium points, as in second-price sealed-bid auction games with bidders having different
valuations.

Intuitively, if a single player can increase her payoff using the same deviation strat-
egy at every point of an open neighborhood of a nonequilibrium point, there is no
need in defining deviation strategies for the rest of the players. On the other hand,
if deviation strategies are not necessarily defined for all players, then glueing locally
defined correspondences together might become a rather unwieldy problem.

The main result of the game theoretical part of this paper, Theorem 3, states that
every compact, quasiconcave, two-person game with the weak single deviation prop-
erty has a pure strategy Nash equilibrium if the players’ strategy sets lie on the real

1 However, if the mixed extension of a compact Borel game has the single deviation property, then the
game has a mixed strategy Nash equilibrium (see also Reny 2011).
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line. To show Theorem 3, we proceed by contradiction, assuming that the game has no
equilibrium. Then, we construct an open cover of the Cartesian product of the players’
strategy sets that satisfies the hypotheses of Theorem 2, a particular case of Theorem 5
for normal form games.

In Sect. 3, we introduce a strengthening of the weak single deviation property, the
strong single deviation property. This property is not a generalization of the better-
reply security condition, but another, slightly improved form of it. Lemmas 1 and 2
show that the strong single deviation property is equivalent to the better-reply security
condition in compact games with no Nash equilibria in pure strategies. As we dem-
onstrate on the example of a timing game, the strong single deviation property makes
it possible to apply Reny’s equilibrium existence theorem to games with a noncom-
pact set of pure strategy Nash equilibria. In Remark 1, we describe a possible way of
modifying the notion of a better-reply secure game.

The equilibrium existence results for qualitative games presented in the second part
of the paper serve as the cornerstone of its game theoretical part. Since the ground-
breaking work of Borglin and Keiding (1976) and Yannelis and Prabhakar (1983),
majorized correspondences have been used as a powerful tool for analyzing qualita-
tive and generalized games. At the heart of the proof of the aforementioned Theorem 5
lies the notion of a domain L-majorized correspondence.

Implicitly, the idea of domain L-majorization has been present in the literature
studying majorized correspondences and their applications for quite a while. For
instance, Yuan (1999) considers a correspondence whose values majorize values of
the correspondence under study and that has a multivalued selection with open lower
sections. This very idea also stands behind L FC -majorized correspondences (Ding and
Xia 2004). Domain L-majorization, introduced in Sect. 4, goes a little farther: We do
not majorize the values of the correspondence under study, only its domain.

Lemma 5 provides a set of sufficient conditions for a correspondence to be domain
L-majorized that are equivalent, in the context of qualitative games, to Barelli and
Soza’s equilibrium existence conditions (Corollary 3).

Intuitively, Theorem 5 deals with qualitative games having a generalized weak sin-
gle deviation property. Some of its applications are provided in Sect. 4. Corollary 4 is
a generalization of the Fan-Browder collective fixed point theorem, and Corollary 5
is an equilibrium existence theorem for qualitative games.

2 The weak single deviation property

We consider a compact game G = (Xi , ui )i∈N where N = {1, . . . , n} denotes the
set of players, each player i’s pure strategy set Xi is a nonempty, compact subset of
a Hausdorff topological vector space, and each payoff function ui is a bounded func-
tion from the Cartesian product X = Πi∈N Xi , equipped with the product topology,
to R. Under these conditions, G = (Xi , ui )i∈N is called a compact game. A game
G = (Xi , ui )i∈N is quasiconcave if each Xi is convex and ui (·, x−i ) : Xi → R is
quasiconcave for all i ∈ N and all x−i ∈ X−i , where X−i = Πk∈N\{i} Xk . Denote
the set of all pure strategy Nash equilibria of G in X by EG and the graph of G by
GrG = {(x, u) ∈ X × R

n | ui (x) = ui for all i ∈ N }. For a subset B of a topological
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vector space Y , denote the interior of B in Y by intY B, the boundary of B by ∂ B, the
closure of B by clB, and the convex hull of B by coB.

Definition 1 Player i can secure a payoff of α ∈ R at x ∈ X if there exists di ∈ Xi

such that ui (di , x ′−i ) ≥ α for all x ′−i in some open neighborhood of x−i .

Definition 2 A game G = (Xi , ui )i∈N is better-reply secure if, whenever (x∗, u∗) ∈
clGrG and x∗ ∈ X\EG , some player i can secure a payoff strictly above u∗

i at x∗.

The following theorem is the main result of Reny (1999).

Theorem 1 If G = (Xi , ui )i∈N is compact, quasiconcave, and better-reply secure,
then it possesses a pure strategy Nash equilibrium.

It is not difficult to verify that every better-reply secure game possesses the follow-
ing property (see Reny 2009; Nessah and Tian 2010; or Lemma 2 below).

Definition 3 A game G = (Xi , ui )i∈N has the single deviation property if, whenever
x ∈ X\EG , there exist a profile of deviation strategies d ∈ X and a neighborhood
UX (x) of x in X such that, for every x ′ ∈ UX (x), there is a player i for whom
ui (di , x ′−i ) > ui (x ′).

We modify Definition 3 in two aspects: First, the requirement that a deviation
strategy, di , be defined for each player i can be detrimental in applications (see, e.g.,
Example 1), and second, we ought not to require that there be a player able to increase
her payoff for those x ′ ∈ UX (x) which are Nash equilibria of G.

Definition 4 A game G = (Xi , ui )i∈N has the weak single deviation property if,
whenever x ∈ X\EG , there exist an open neighborhood UX (x) of x , a set of players
I (x) ⊂ N , and a collection of deviation strategies {di (x) ∈ Xi : i ∈ I (x)} such that,
for every x ′ ∈ UX (x)\EG , there is a player i ∈ I (x) for whom ui (di (x), x ′−i ) >

ui (x ′).

To simplify notation, we will write di instead of di (x) if it is clear for which neigh-
borhood UX (x) player i’s deviation strategy di is used.

Theorem 2 is an equilibrium existence result for normal form games with the weak
single deviation property. Its proof is omitted since the theorem is a particular case
of Theorem 5 whose proof is given in Sect. 4. For a set A, let 〈A〉 denote the family
of its nonempty finite subsets. In Theorem 2, it is assumed that di (x) = {∅} for all
i ∈ N\I (x).

Theorem 2 Let G = (Xi , ui )i∈N be a compact game. Suppose that

(i) G has the weak single deviation property: that is, for each x ∈ X\EG, there
exist an open neighborhood UX (x) of x, a set of players I (x) ⊂ N, and a
collection of deviation strategies {di (x) ∈ Xi : i ∈ I (x)} such that, for every
x ′ ∈ UX (x)\EG, there exists i ∈ I (x) with ui (di (x), x ′−i ) > ui (x ′);

(ii) for each A ∈ 〈X\EG〉 and every z ∈ ∩x∈AUX (x), there exists i ∈ ∪x∈A I (x)

such that zi /∈ co{∪x∈Adi (x)}.
Then, G has a pure strategy Nash equilibrium.
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The only demanding assumption of Theorem 2, (ii), is naturally satisfied in a number
of games. Among them are both quasiconcave games, such as second-price sealed-bid
auctions, and nonquasiconcave games, such as the duopoly game from Example 1
of Baye et al. (1993). Example 1 illustrates the importance of allowing I (x) to be a
proper subset of N .

Example 1 The following notion of a weakly transfer continuous game is introduced
in Nessah (2011, Definition 3.1). A game G = (Xi , ui )i∈N is weakly transfer con-
tinuous if, whenever x ∈ X\EG , there exist a player i , a deviation strategy di ∈ Xi ,
and a neighborhood UX (x) of x such that inf x ′∈UX (x){ui (di , x ′−i ) − ui (x ′)} > 0. To
show that the infimum operation in the last inequality is excessive, we introduce the
following definition: A game has the single player deviation property if, whenever
x ∈ X\EG , there exist a player i , a deviation strategy di ∈ Xi , and a neighborhood
UX (x) of x such that ui (di , x ′−i ) − ui (x ′) > 0 for all x ′ ∈ UX (x). Obviously, every
game that possesses the single player deviation property also has the weak single
deviation property.

Assume, by way of contradiction, that there is a compact, quasiconcave game with
the single player deviation property which has no Nash equilibrium in pure strategies
(see also Nessah 2011, Corollary 3.1). Then, for every x ∈ X , there exist an open
neighborhood UX (x) of x , a player i(x), and a deviation strategy di(x)(x) ∈ Xi(x)

such that, for every x ′ ∈ UX (x), ui(x)(di(x)(x), x ′
−i(x)) > ui(x)(x ′). Since the game is

quasiconcave, (ii) of Theorem 2 is satisfied. Therefore, the game has a pure strategy
Nash equilibrium by Theorem 2, a contradiction.2

At the same time, adding the assumption that I (x) = N for all x ∈ X would make
the application of Theorem 2 unfeasible.

A compact, quasiconcave game with the weak single deviation property need not
have a pure strategy Nash equilibrium. The next example is borrowed from Reny
(2009).

Example 2 Consider a three-player game G = (Xi , ui )i∈{1,2,3} with X1 = X2 =
X3 = [0, 1]. The payoff functions are defined as follows. Let, for r ∈ [0, 1],

u0(r) =
{

0 if r > 0,

1 if r = 0,
, u1(r) =

{
0 if r < 1,

1 if r = 1.

Then, for x3 ∈ [0, 1
2 ],

x2 ∈ [0, 1
3 ] x2 ∈ ( 1

3 , 2
3 ) x2 ∈ [ 2

3 , 1]

x1 ∈ [0, 1
2 ] u0(x1), u1(x2), u0(x3) u1(x1), u1(x2), u0(x3) u1(x1), u1(x2), u1(x3)

x1 ∈ ( 1
2 , 1] u0(x1), u1(x2), u0(x3) u1(x1), u1(x2), u1(x3) u1(x1), u1(x2), u1(x3)

2 If we considered generalized weakly transfer continuous games (Nessah 2011, Definition 3.2), we would
have to invoke the more general Theorem 5.
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and, for x3 ∈ ( 1
2 , 1],

x2 ∈ [0, 1
3 ] x2 ∈ ( 1

3 , 2
3 ) x2 ∈ [ 2

3 , 1]

x1 ∈ [0, 1
2 ] u0(x1), u0(x2), u0(x3) u0(x1), u0(x2), u0(x3) u1(x1), u0(x2), u1(x3)

x1 ∈ ( 1
2 , 1] u0(x1), u0(x2), u0(x3) u0(x1), u0(x2), u1(x3) u1(x1), u0(x2), u1(x3)

where the first coordinate of each entry corresponds to player 1, the second coordi-
nate to player 2, and the third to player 3. It is not difficult to see that the game is
compact and quasiconcave and has the weak single deviation property. At the same
time, it has no Nash equilibrium in pure strategies. Therefore, it is impossible to find,
for each x ∈ X\EG , an open neighborhood UX (x), a set of players I (x) ⊂ N , and a
collection of deviation strategies {di (x) ∈ Xi : i ∈ I (x)} satisfying the hypotheses of
Theorem 2. However, this conclusion does not hold in two-player games.

The following theorem covers a broad class of compact, quasiconcave games with
two players, including second-price sealed-bid auctions and diagonally transfer con-
tinuous and better-reply secure games.3

Theorem 3 If a two-player, compact, quasiconcave game G = (Xi , ui )
2
i=1 has the

weak single deviation property and each Xi is a subset of the real line R, then G has
a pure strategy Nash equilibrium.

Intuitively, the first step of the proof of Theorem 3 is clear: Assume, by way of con-
tradiction, that the game has no pure strategy Nash equilibrium. Then, since the game
has the weak single deviation property, we consider a cover of X consisting of open
neighborhoods UX (x), with some corresponding sets of players I (x) and collections
of deviation strategies {di (x) ∈ Xi : i ∈ I (x)}. The compactness of X implies that
the cover has a finite subcover, and it is tempting to conclude that what is left is to
apply Theorem 2. However, Example 3 demonstrates that it is not so.

Example 3 Consider a two-player game G = (Xi , ui )i∈{1,2} with X1 = X2 = [0, 1],
and u1 : X → R defined by

u1(x) =
⎧⎨
⎩

1 if x ∈ { 1
2 } × [0, 1

2 ) and x ∈ (0, 1
2 ] × [ 1

2 , 1],
2 if x ∈ {0} × [ 1

2 , 1],
0 otherwise,

and u2 : X → R defined by

u2(x) =
⎧⎨
⎩

1 if x ∈ [0, 1
2 ] × [ 1

2 , 1) and x ∈ ( 1
2 , 1] × { 1

2 },
2 if x ∈ [0, 1

2 ] × {1},
0 otherwise.

3 First-price sealed-bid auctions with two bidders do not have the weak single deviation property and do
not have pure strategy Nash equilibria if the bidders have different valuations. There are a number of ways
to ensure equilibrium existence. For instance, the sharing rule can be determined endogenously, as in Simon
and Zame (1990), or, when information is incomplete, communication can be allowed, as in Lebrun (1996)
and Jackson et al. (2002).
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This game is compact and quasiconcave and has the weak single deviation property.
Denote by BX (x, r) the open ball in X of radius r > 0 centered at x ∈ X .

Consider UX ( 1
2 , 1

2 ) = BX (( 1
2 , 1

2 ), 1
10 ). For this open neighborhood of x =

( 1
2 , 1

2 ), I (x) = {1, 2}, and, unfortunately, there are two possible ways of choosing
the set {di ∈ Xi : i ∈ I (x)}, namely (d1

1 , d1
2 ) = ( 1

2 , 1) and (d2
1 , d2

2 ) = (0, 1
2 ). Since

xi ∈ co{d1
i , d2

i } for i = 1, 2, it is quite possible that (ii) of Theorem 2 does not hold
for a finite subcover consisting of open balls, irrespective of how small its elements
are. As a result, we have to modify the finite cover to make Theorem 2 applicable (see
Example 3 continued after the proof of Theorem 3 in Appendix A).

3 The strong single deviation property

In this section, we introduce a strengthening of the weak single deviation property and
show that it is another, slightly weakened form of the better-reply security condition.

Definition 5 A game G = (Xi , ui )i∈N has the strong single deviation property if
whenever x ∈ X\EG , there exist an open neighborhood UX (x) of x , a set of players
I (x) ⊂ N , a family of open neighborhoods {UX−i (x−i ) : i ∈ I (x)}, a collection of
deviation strategies {di (x) ∈ Xi : i ∈ I (x)}, and a number ε(x) > 0, such that, for
every x ′ ∈ U (x)\EG , there exists i ∈ I (x) with ui (di (x), z−i ) − ε(x) > ui (x ′) for
all z−i ∈ UX−i (x−i ) such that (di (x), z−i ) ∈ X\EG .

A game with the strong single deviation property need not be better-reply secure
in the sense of Definition 2.

Example 4 Consider a timing game between two players with X1 = X2 = [0, 1].
Player i’s payoff function is given by

ui (xi , x−i ) =
⎧⎨
⎩

1 if xi < x−i ,

ϕi (xi ) if xi = x−i ,

−1 if xi > x−i ,

where ϕi (xi ) = 1 if xi = x−i and xi < 0.5, and ϕi (xi ) = 0 if xi = x−i and xi ≥ 0.5.
The set of pure strategy Nash equilibria of this game is EG = {x ∈ [0, 1

2 ) × [0, 1
2 ) :

x1 = x2}. It is easy to see that the game is not better-reply secure at ( 1
2 , 1

2 ).
In order to show that the game has the strong single deviation property, we have to

consider the following two cases.
If x ∈ X is such that x−i < xi for some i ∈ {1, 2}, then put r = xi −x−i

2 , I (x) =
{i}, di (x) = 0, UX (x) = BX (x, r), UX−i (x−i ) = BX−i (x−i , r), and ε(x) = 1.

If x ∈ X is such that x1 = x2 and x1 ≥ 1
2 , then put r = x1

2 , I (x) =
{1, 2}, (d1(x), d2(x)) = (0, 0), UX (x) = BX (x, r), UX−i (x−i ) = BX−i (x−i , r), and
ε(x) = 1

2 .
Verifying that the game possesses the strong single deviation property is a straight-

forward exercise in both cases.
The difference between the strong single deviation property and the better-reply

security condition is in the way Nash equilibria are treated.
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Lemma 1 If a compact game G = (Xi , ui )i∈N with no Nash equilibria in pure strat-
egies has the strong single deviation property, then it is better-reply secure.

Proof Consider x∗ ∈ X and u∗ ∈ R
n such that (x∗, u∗) ∈ clGrG. Since the game has

the strong single deviation property, there exist an open neighborhood UX (x∗) of x∗, a
set of players I (x∗) ⊂ N , a family of open neighborhoods {UX−i (x∗−i ) : i ∈ I (x∗)}, a
collection of deviation strategies {di ∈ Xi : i ∈ I (x∗)}, and a number ε(x∗) > 0, such
that, for every x ′ ∈ UX (x∗), there exists i ∈ I (x) with ui (di , z−i ) − ε(x∗) > ui (x ′)
for all z−i ∈ UX−i (x∗−i ).

We shall show that some player i can secure a payoff strictly above u∗
i at x∗. Fix a

net {xβ} converging to x∗ such that the corresponding net {u(xβ)} tends to u∗. Then,
there exists β̂ such that xβ ∈ UX (x∗) and

∣∣u∗
i − ui (xβ)

∣∣ <
ε(x∗)

2 for all β � β̂

and all i ∈ I (x∗). In particular, by the strong single deviation property, the inclusion
x β̂ ∈ UX (x∗) implies that there exists i ∈ I (x∗) such that ui (di , z−i )−ε(x∗) > ui (x β̂ )

for all z−i ∈ UX (x∗−i ). Therefore, ui (di , z−i ) − ε(x∗)
2 > u∗

i for all z−i ∈ UX (x∗−i ),

which means that player i can secure u∗
i + ε(x∗)

2 at x∗. 
�
The following corollary follows from Theorem 1 and Lemma 1.

Corollary 1 If G = (Xi , ui )i∈N is compact, quasiconcave and has the strong single
deviation property, then it possesses a pure strategy Nash equilibrium.

Remark 1 It is not difficult to relax the better-reply security condition to cover, for
example, the above timing game. Instead of considering the graph of G, we can intro-
duce the “nonequilibrium” graph of G by GrnG = {(x, u) ∈ X × R

n | ui (x) = ui

for all i ∈ N and x ∈ X\EG} and replace the set clGrG in Definition 2 with clGrnG,
which will expand the scope of applications of Theorem 1.

The next lemma, along with Lemma 1, shows that the strong single deviation prop-
erty is another, slightly weakened form of the better-reply security condition.

Lemma 2 If a compact game G = (Xi , ui )i∈N is better-reply secure, then it has the
strong single deviation property.

The proof of Lemma 2 is given in Appendix B.
The closest to the strong single deviation property is the lower single deviation

property, introduced by Reny (2009). Its definition is as follows. For each i ∈ N , let
ui : X → R be defined by ui (xi , x−i ) = lim inf

x ′−i →x−i

ui (xi , x ′−i ). A game G = (Xi , ui )i∈N

has the lower single deviation property if whenever x ∈ X\E(G), there exists d ∈ X
and a neighborhood U of x such that for every x ′ ∈ U , there is a player i for whom
ui (di , y−i ) > ui (x ′) for all y ∈ U .

Since ε(x) in Definition 5 does not depend on x ′ and ui (x ′) ≥ ui (x ′) for each
i ∈ N and every x ′ ∈ X , a game with no Nash equilibria in pure strategies that has
the strong single deviation property also has the lower single deviation property. The
latter property is a generalization of the better-reply security condition. In its turn, the
strong single deviation property may be considered as a slightly improved version of
the better-reply security condition. The lower single deviation property can also be
improved upon in a similar manner.
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4 Equilibrium existence in qualitative games

In this section, we first introduce domain L-majorized correspondences and then prove
Theorem 5, a general equilibrium existence result for qualitative games which is used
in the proof of Theorem 3.

4.1 Domain L-majorized correspondences

Let X be a nonempty subset of a topological space, Y be nonempty, convex subset
of a vector space, and θ : X → Y be a single-valued function. A correspondence
F : X � Y has open lower sections in X if F−1(y) = {x ∈ X : y ∈ F(x)} is open
in X for every y ∈ Y ; F is of class Lθ with respect to θ if it has open lower sections
in X and θ(x) /∈ coF(x) for all x ∈ X . In the special cases when Y = X and θ is
the identity map on X and when X = Πn

i=1 Xi , Y = Xi , and θ : X → Xi is the
projection of X onto Xi , we will write L in place of Lθ . The domain of F is defined
by DomF = {x ∈ X : F(x) �= ∅}. If DomF = X , then we say that F is strict.

Given F : X � Y, θ : X → Y, and x ∈ X , a correspondence Fx : X � Y is an
Lθ -majorant of F at x if Fx is of class Lθ and there exists an open neighborhood Ux

of x in X such that F(z) ⊂ Fx (z) for every z ∈ Ux .4 The correspondence F is locally
Lθ -majorized if, for each x ∈ DomF , there exists an Lθ -majorant of F at x , and F
is Lθ -majorized if there exists a correspondence F : X � Y of class Lθ such that
F(x) ⊂ F(x) for every x ∈ X .

The next maximal element existence result is equivalent to Browder’s fixed point
theorem (see Browder 1968, Theorem 1; Yannelis and Prabhakar 1983, Theorems 3.1
and 5.1).

Lemma 3 Let X be a nonempty, compact, convex subset of a Hausdorff topological
vector space, and let F : X � X be a correspondence of class L . Then, there exists
x̂ ∈ X such that F (̂x) = ∅.

The following lemma says that, from the standpoint of applications, there are no
differences between Lθ -majorized and locally Lθ -majorized correspondences (see
Yannelis and Prabhakar 1983, Corollary 5.1; or Bagh 1998, Lemma 1.5).

Lemma 4 Let X be a nonempty, compact subset of a Hausdorff topological vector
space, and Y be a nonempty, convex subset of a vector space. Let θ : X → Y and
F : X � Y be a strict correspondence. Then, F is locally Lθ -majorized if and only
if it is Lθ -majorized.

Among the assumptions of Lemma 4 is a nonstandard one, namely that F is a strict
correspondence. It is not restrictive since every proof using majorized correspondences
proceeds by contradiction.

The proof of Lemma 4 follows along the lines of the proof of Corollary 1 of Borglin
and Keiding (1976) (for details, see Ding et al. 1994, Theorem 1; Ding and Tan 1993,
Lemma 2).

4 In this section, we will write Ux instead of UX (x) since there is no ambiguity regarding the space in
which the neighborhood is considered.
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Corollary 2 (Yannelis and Prabhakar 1983, Corollary 5.1) follows from Lemmas 3
and 4 by way of contradiction.

Corollary 2 Let X be a nonempty, compact, convex subset of a Hausdorff topological
vector space and F : X � X be a locally L-majorized correspondence. Then there
exists x̂ ∈ X such that F (̂x) = ∅.

Now, we introduce a generalization of the notion of an L-majorized correspondence.

Definition 6 Let X be a nonempty subset of a topological space and Y be a nonempty,
convex subset of a vector space, and let θ : X → Y . A correspondence F : X � Y
is domain Lθ -majorized if there exists a correspondence F : X � Y of class Lθ such
that DomF ⊂ DomF .

Clearly, if F is Lθ -majorized, then it is domain Lθ -majorized. Obviously, the con-
verse does not necessarily hold.

Theorem 4 is a maximal element existence theorem for domain L-majorized cor-
respondences.

Theorem 4 Let X be a nonempty, compact, convex subset of a Hausdorff topological
vector space, and let F : X � X be a domain L-majorized correspondence. Then,
there exists x̂ ∈ X such that F (̂x) = ∅.

Proof Since F : X � X is domain L-majorized, there is a correspondence F : X �
X of class L such that DomF ⊂ DomF . Then, by Lemma 3, F (̂x) = ∅ for some
x̂ ∈ X , which implies that F (̂x) = ∅. 
�

The next lemma provides a set of sufficient conditions for a correspondence to be
domain Lθ -majorized.

Lemma 5 Let X be a compact Hausdorff topological space and Y be a nonempty,
convex subset of a vector space. Let θ : X → Y and F : X � Y be a strict corre-
spondence such that

(i) for each x ∈ X, there exist an open neighborhood Ux of x in X and a correspon-
dence Fx : X � Y with DomFx = Ux and open lower sections in X;

(ii) for each A ∈ 〈X〉 and every z ∈ ∩x∈AUx , θ(z) /∈ co{∪x∈A Fx (z)}.
Then F is domain Lθ -majorized.

The proof of Lemma 5 is given in Appendix B, where is shown that (i) and (ii)
imply the existence of a strict correspondence F : X � Y of class Lθ .

It is worth noticing that another set of sufficient conditions obtains if (ii) is replaced
with the more conventional assumption that ∩x∈AUx ⊂ Dom(∩x∈A Fx ) for each A ∈
〈X〉 (see, e.g., Yuan 1999, Theorem 3.1). However, the latter assumption has a strong
flavor of value majorization.

4.2 Qualitative games

As before, let N = {1, . . . , n} be a finite set of players. Each player i’s strategy set Xi

is a nonempty, compact, and convex subset of a Hausdorff topological vector space.
Let X = Π i∈N Xi , and let Pi : X � Xi denote player i’s preference correspondence.
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Consider a qualitative game Γ = (Xi , Pi )i∈N . A strategy profile x ∈ X is an
equilibrium of Γ if Pi (x) = ∅ for all i ∈ N .

For a qualitative game Γ = (Xi , Pi )i∈N , we call the set DomΓ = ∪i∈N DomPi

the domain of Γ .

Definition 7 A game Γ = (Xi , Pi )i∈N is domain L-majorized if there exists a cor-
respondence F : X � X of class L such that DomΓ ⊂ DomF .

Obviously, if Γ is domain L-majorized, then it has an equilibrium x̂ ∈ X ; that
is, Pi (̂x) = ∅ for each i ∈ N . Therefore, if we want to show the existence of an
equilibrium in a qualitative game, a legitimate way of doing that is to show that the
game is domain L-majorized. However, it is important to keep in mind that the corre-
spondence F should not only have open lower sections but also satisfy the condition
that x /∈ coF(x) for all x ∈ X .

Extending Lemma 5 to qualitative games produces an equilibrium existence result,
which is analogous to Theorem 2.2 of Barelli and Soza (2009).

Corollary 3 Let Xi be a nonempty, compact, convex subset of a Hausdorff topolog-
ical vector space, and let Γ = (Xi , Pi )i∈N be a qualitative game. Suppose, for each
x ∈ DomΓ , there exists an (n + 1)-tuple (D1

x , . . . , Dn
x ; Ux ), where Di

x : X � Xi

and Ux is an open neighborhood of x in X, such that

(i) DomDi
x = Ux and Di

x has open lower sections in X for all i ∈ N;
(ii) for each A ∈ 〈DomΓ 〉 and every z ∈ ∩x∈AUx , there exists i ∈ N such that

zi /∈ co{∪x∈A Di
x (z)}.

Then Γ has an equilibrium.

Proof Assume, by contradiction, that Γ has no equilibrium. For each x ∈ X , consider
Fx : X � X defined by Fx (z) = (D1

x (z), . . . , Dn
x (z)). Since assumptions (i) and (ii)

of Lemma 5 are satisfied, Γ is domain L-majorized, a contradiction. 
�
From the standpoint of applications, assumption (i) of Corollary 3 is too strong. For

example, if, for some i, Pi (z) = ∅ for all z ∈ Ux , then DomDi
x should be equal to

the empty set as well. Moreover, assuming that (i) holds for all i ∈ N makes it more
difficult to satisfy (ii) (see Example 1).

Theorem 5 Let Xi be a nonempty, compact, convex subset of a Hausdorff topologi-
cal vector space, and let Γ = (Xi , Pi )i∈N be a qualitative game. Suppose, for each
x ∈ DomΓ , there exist I (x) ⊂ N, and an (n + 1)-tuple (D1

x , . . . , Dn
x ; Ux ), where

Di
x : X � Xi and Ux is an open neighborhood of x in X, such that

(i) DomDi
x = Ux and Di

x has open lower sections in X for all i ∈ I (x), and
DomDi

x = ∅ for all i ∈ N\{I (x)};
(ii) for each A ∈ 〈DomΓ 〉 and every z ∈ ∩x∈AUx , there exists i ∈ ∪x∈A I (x) such

that zi /∈ co{∪x∈A Di
x (z)}.

Then Γ has an equilibrium.

Proof Assume, by contradiction, that Γ has no equilibrium, that is, DomΓ = X .
Since X is compact, the open cover {Ux : x ∈ X} of X contains a finite subcover

123



394 P. Prokopovych

{Ux j : j ∈ J }, where J is a finite set. Let {Vx j : j ∈ J } be an open refinement of
{Ux j : j ∈ J } such that clVx j ⊂ Ux j for every j ∈ J (see Aliprantis and Border 2006,

p. 169). For each j ∈ J and each i ∈ N , define a correspondence F j
i : X � Xi by

F j
i (z) =

{
Di

x j
(z) ∪{s∈J\{ j}:z∈Vxs } Di

x j
(z) if z ∈ clVx j and i ∈ I (x j ),

Xi if z /∈ clVx j or i /∈ I (x j ).

It is not difficult to see that each F j
i has open lower sections. Then, for each

i ∈ N , the correspondence Fi : X � Xi defined by Fi (z) = ∩ j∈J F j
i (z)

has open lower sections. Therefore, the correspondence F : X � X defined by
F(z) = ∩i∈N {Πk∈N\{i} Xk × Fi (z)} also has open lower sections.

Fix some z ∈ X . It lies in some Vx j . We have to show that zi ′ /∈ coF j
i ′ (z) for some

i ′ ∈ I (x j ). Denote A = {s ∈ J : z ∈ Vxs }. By (ii), there exists i ′ ∈ ∪x∈A I (x) such

that zi ′ /∈ co{∪ j∈A Di ′
x j

(z)}. Since, by definition, F j
i ′ (z) = ∪ j∈A Di ′

x j
(z), we conclude

that zi ′ /∈ coF j
i ′ (z). Therefore, zi ′ /∈ coFi ′(z), and consequently, z /∈ coF(z).

Since F is of class L and DomΓ = DomF = X, Γ is domain L-majorized, a
contradiction. 
�

Corollary 4 is a version of the Fan-Browder collective fixed point theorem. In
Lassonde and Schenkel (1992, Theorem 5), it follows from a generalization of the
KKM lemma, which is a reflection of the fact that the KKM lemma and Browder’s
fixed point theorem are two equivalent results (see Yannelis 1991, pp. 105–109, for
an in-depth explanation).5

Corollary 4 Let X1, . . . , Xn be nonempty, compact, convex subsets of Hausdorff
topological vector spaces, and X = Π i∈N Xi . For each i ∈ N, let Di : X � Xi

have open lower sections. If, for each x ∈ X, there exists i ∈ N such that Di (x) �= ∅,
then there exists x ∈ X and i ∈ N such that x ∈ coDi (x).

Proof Assume, by way of contradiction, that each correspondence Di is of class L .
Consider the game Γ = (Xi , Di )i∈N . For each x ∈ X , put I (x) = {i ∈ N : Di (x) �=
∅} and fix a neighborhood Ux of x such that Ux ⊂ DomDi for all i ∈ I (x). Then
define Dx

i : X � Xi as a restriction of Di to Ux for i ∈ I (x) and put DomDx
i = ∅

for i ∈ N\I (x). By Theorem 5, Γ has an equilibrium, a contradiction.

Corollary 5 extends 4 to qualitative games.

Corollary 5 Let each Xi be a nonempty, compact, convex subset of a Hausdorff topo-
logical vector space, and let Γ = (Xi , Pi )i∈N be a qualitative game. If, for each
i ∈ N, the correspondence Pi : X � Xi is domain L-majorized, then Γ has an
equilibrium in X.

5 In order to show Reny’s equilibrium existence theorem for better-reply secure games, Prokopovych
(2011) applies the Fan-Browder collective fixed point theorem to well-behaved selections of ε-best-reply
correspondences.
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Proof Since the players’ preference correspondences are domain L-majorized, for
each i ∈ N , there exists Fi : X � Xi of class L such that DomPi ⊂ DomFi .

By Corollary 4, there exists x ∈ X such that Fi (x) = ∅ for all i ∈ N . Since
DomΓ = ∪i∈N DomPi ⊂ ∪i∈N DomFi , Γ has an equilibrium. 
�

Appendix A

Proof of Theorem 3

Assume, by contradiction, that G has no Nash equilibrium in pure strategies. Since
G has the weak single deviation property, for every x ∈ X , there exist an open
ball BX (x, 3r(x)) of x in X , a set of players I (x) ⊂ {1, 2}, and a collection
of deviation strategies K (x) = {di ∈ Xi : i ∈ I (x)}, such that for every
x ′ ∈ BX (x, 3r(x)), ui (di , x ′−i ) > ui (x ′) for some i ∈ I (x).

We will modify the initial open cover of X, {BX (x, r(x)) : x ∈ X}, in a number
of steps. First, we additionally assume that, for every x ∈ X, r(x), I (x), and K (x)

satisfy the following three conditions:

(a) if di �= xi for some i ∈ I (x), then |di − xi | > 5r(x);
(b) I (x) is minimal in the following sense: If I (x) = {1, 2}, there are no r > 0 and

i ∈ {1, 2} such that ui (di , x ′−i ) > ui (x ′) for all x ′ ∈ BX (x, r);
(c) if di = xi for some i ∈ I (x), then di cannot be replaced in K (x) with di ∈

Xi\{di } such that, for some r > 0 and every x ′ in BX (x, 3r), at least one of the
following inequalities holds: ui (di , x ′−i ) > ui (x ′) or u−i (d−i , x ′

i ) > u−i (x ′).

As is shown below, if the elements of the cover satisfy these three simple con-
ditions, we do not have to further modify them in most cases. Condition (a) is not
restrictive since, for every x ∈ X , the radius r(x) can be chosen arbitrarily small.
If I (x) = {1, 2}, then condition (b) states that, given K (x), it is impossible to re-
duce the number of elements of I (x) by choosing a smaller r(x). Condition (c)
is also not burdensome. If di = xi for some i ∈ I (x) and there are r > 0 and
di ∈ Xi\{di } such that ui (di , x ′−i ) > ui (x ′) for every x ′ ∈ BX (x, 3r) at which
ui (di , x ′−i ) > ui (x ′) and u−i (d−i , x ′

i ) ≤ u−i (x ′), then we replace BX (x, r(x)) in
the cover with BX (x, r) and di in K (x) = {d1, d2} with di . A useful fact to keep in
mind is the following: If di = xi for some i ∈ I (x), then d−i does not coincide with
x−i .

The compactness of X implies that the open cover {BX (x, r(x)) : x ∈ X} of X
contains a finite subcover {BX (x j , r(x j )) : j ∈ J }, where J = {1, . . . , k}. It is useful
to notice that if BX (xs, r(xs))) ∩ BX (xt , r(xt )) �= ∅ and r(xs) > r(xt ) for some
s, t ∈ J , then BX (xt , r(xt )) ⊂ BX (xs, 3r(xs))). Hence, for every x ′ ∈ BX (xt , r(xt )),
there exist i ∈ I (xs) and ds

i ∈ K (xs) such that ui (ds
i , x ′−i ) > ui (x ′).

Without loss of generality, we assume that r(xs) > r(xt ) if s, t ∈ J and s < t and
that each BX (x j , r(x j )) contains some points of X that do not lie in any of the other
elements of the subcover. The latter assumption will help us avoid dealing with empty
sets in the course of modifying the cover.

123



396 P. Prokopovych

Let us show that, for our purposes, it is enough to focus attention on the intersections
of just two elements of the cover. In the reasoning below, the fact that the open sets are
balls is not essential. So, we want to show that if for some {l1, . . . , lm} ⊂ {1, . . . , k},
there exists z′ ∈ ∩m

j=1 BX (xl j , r(xl j )) such that z′
i ∈ co{∪m

j=1d
l j
i } for i = 1, 2 (here

we assume that d
l j
i = {∅} for i ∈ {1, 2}\I (xl j )), then z′

i ∈ co{ds
i , dt

i }, i = 1, 2, for
some s, t ∈ {l1, . . . , lm}.

Without loss of generality, {l1, . . . , lm} = {1, . . . , m}, u1(d1
1 , z′

2) > u1(z′) for
d1

1 ∈ K (x1), and d1
1 < z′

1. Since z′
1 ∈ co{d1

1 , ds
1} for some s ∈ {2, . . . , m} and u1 is

quasiconcave in x1, we have that z′
1 ≤ ds

1 and u2(z′
1, ds

2) > u2(z′). Then for some
t ∈ {1, . . . , m} such that z′

2 ∈ co{ds
2, dt

2}, the inequality u1(dt
1, z′

2) > u1(z′) holds. It
follows from the quasiconcavity of u1 in x1 that dt

1 < z′
1. That is, z′

i ∈ co{ds
i , dt

i } for
i = 1, 2, as claimed.

Now consider the intersection of the first two elements of the cover. Assume that
there is a point z′ ∈ BX (x1, r(x1))∩BX (x2, r(x2)) such that z′

i ∈ co{d1
i , d2

i }, i = 1, 2.
First, we will show that it might happen only in one case, Case 7, and then we will
describe how to modify the cover to preclude Case 7 for every pair of intersecting
elements of the cover.

As before, we assume that r(x1) > r(x2) and that u1(d1
1 , z′

2) > u1(z′) with d1
1 < z′

1
and u2(z′

1, d2
2 ) > u2(z′) with d2

2 > z′
2 (if it is not so, renumber the players and/or

redirect one or both axes). Then the inclusions z′
i ∈ co{d1

i , d2
i } for i = 1, 2 imply that

d2
1 ≥ z′

1 and d1
2 ≤ z′

2.
We claim that if z′

i ∈ co{d1
i , d2

i } for i = 1, 2, then the following six cases are
impossible (see the proof of this claim below).

Case 1. d1
1 = x1

1 and d2
1 = x2

1 .

Cases 2–3. d1
1 = x1

1 and d2
1 �= x2

1 .

Therefore, if Cases 1-3 are impossible, then it must be the case that
d1

1 �= x1
1 .

Case 4. d1
1 �= x1

1 and d2
1 �= x2

1 .

Case 5. d1
1 �= x1

1 , d2
1 = x2

1 , and d1
2 �= x1

2 .

Cases 4 and 5 complement the picture. We conclude from Case 4 that if
z′

i ∈ co{d1
i , d2

i }, i = 1, 2, then d2
1 = x2

1 , and from Case 5 that, moreover,
d1

2 = x1
2 . The next case is also impossible.

Case 6. d1
2 = x1

2 , d2
1 = x2

1 , and x2
2 > d1

2 .

It might happen that z′
i ∈ co{d1

i , d2
i } , i = 1, 2, in Case 7. As a result, we

have to modify the cover so that to ensure that every two of its elements
do not satisfy the conditions of Case 7.

Case 7. Let d2
1 = x2

1 , d1
2 = x1

2 , and x2
2 ≤ d1

2 . Denote BX (x1, r(x1)) by

V 1
X (x1, r(x1)) and replace BX (x1, r(x1)) in the cover {BX (x j , r(x j )) :

j ∈ J } with V 2
X (x1, r(x1)) = BX (x1, r(x1))\clBX (x2, r(x2)). We have

to add to the cover a finite number of open balls covering the compact set
A = ∂ BX (x2, r(x2)) ∩ clBX (x1, r(x1)). For every x ∈ A with x2 �= d1

2 ,
pick an open ball BX (x, r(x)) such that

∣∣x2 − d1
2

∣∣ > 5r(x) and find a min-
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imal I (x) ⊂ I (x1) (for BX (x, r(x))) with K (x) ⊂ K (x1) such that for
every x ′ ∈ BX (x, 3r(x)), there exists i ∈ I (x) with ui (di , x ′−i ) > ui (x ′).

Since x2
2 ≤ d1

2 and z′
2 ≥ d1

2 , we deduce that (d2
1 , d1

2 ) /∈ A. Then for every x ∈ A
with x2 = d1

2 , it is possible to choose an open ball BX (x, r(x)) such that
∣∣x1 − d2

1

∣∣ >

5r(x) and find a minimal I (x) ⊂ I (x2) with K (x) ⊂ K (x2) such that, for every
x ′ ∈ BX (x, 3r(x)), there exists i ∈ I (x) with ui (di , x ′−i ) > ui (x ′).

Since A is a compact set, it has a finite subset {x1
A, . . . , xT

A } such that A ⊂
∪T

t=1 BX (xt
A, r(xt

A)). Without loss of generality, r(xk) > r(x1
A) and r(xt

A) > r(xs
A)

if t, s ∈ {1, . . . , T } and t < s. Let xk+t = xt
A for all t ∈ {1, . . . , T }. Consider

the finite cover of X consisting of V 2
X (x1, r(x1)), BX (x2, r(x2)), . . .,BX (xk, r(xk)),

BX (xk+1, r(xk+1)), . . . , BX (xk+T , r(xk+T )).
For the open set V 2

X (x1, r(x1)), we use the same sets I (x1) and K (x1) as for
BX (x1, r(x1)). The balls that we have added to the initial cover satisfy conditions
(a)–(c). Moreover, dk+t

i �= xk+t
i for all i ∈ I (xk+t ) and all t ∈ {1, . . . , T }. Hence, if

a ball added to the cover, denoted by BX (xs, r(xs)), intersects another element of the
cover, denoted by V (x j ), then, for every z′ ∈ BX (xs, r(xs)) ∩ V (x j ), we have that
z′

i /∈ co{ds
i , d j

i } for i = 1, 2. This is so because V (x j ) is either a subset of or equal
to an open ball satisfying conditions (a)-(c), and ds

i �= xs
i for all i ∈ I (xs), which

precludes Case 7. It is worth mentioning that x1 need not belong to V 2
X (x1, r(x1)).

Then consider the sets V 2
X (x1, r(x1)) and BX (x3, r(x3)). If needed, we again mod-

ify the cover of X with the aid of the just described technique, denoting the dif-
ference of V 2

X (x1, r(x1)) and clBX (x3, r(x3)) by V 3
X (x1, r(x1)). Otherwise we put

V 3
X (x1, r(x1)) = V 2

X (x1, r(x1)). After considering all the pairs V j−1
X (x1, r(x1)) and

BX (x j , r(x j )), j = 2, . . . , k, we denote V (x1) = V k
X (x1, r(x1)) and proceed to

considering BX (x2, r(x2)) and BX (x3, r(x3)), and so on. If needed, the technique
is applied again. The last ball that might need modifying is BX (xk−1, r(xk−1)). Put
V (xs) = BX (xs, r(xs)) for s ≥ k. So, after a finite number of rounds, we will get a
finite open cover of X, {V (x j ) : j = 1, . . . , R} with I (x j ) and {d j

i ∈ Xi : i ∈ I (x j )},
such that

(a) for every x ′ ∈ V (x j ), ui (d
j

i , x ′−i ) > ui (x ′) for some i ∈ I (x j );
(b) for every pair s, t ∈ {1, . . . , R}, s �= t , if z′ ∈ V (xs) ∩ V (xt ), then z′

i /∈
co{ds

i , dt
i } for some i ∈ I (xs) ∪ I (xt ), where again we assume that d j

i = {∅} if
i ∈ {1, 2}\I (x j ).

Let x be some point of X . Since {V (x1), . . . , V (x R)} is a cover of X , there exists
V (x j ), j ∈ {1, . . . , R}, such that x ∈ V (x j ). Put UX (x) = V (x j ) and I (x) = I (x j ).
For each i ∈ I (x), set di (x) = d j

i . Then the hypotheses of Theorem 2 are satisfied, a
contradiction.

Proofs for Cases 1–6 of Theorem 3

The following fact will be used below frequently: It follows from the quasicon-
cavity of u1(u2) in x1(x2) and the inclusion z′

1 ∈ co{d1
1 , d2

1 } (z′
2 ∈ co{d1

2 , d2
2 })

that if u1(d1
1 , z′

2) > u1(z′) (u2(z′
1, d2

2 ) > u2(z′) ), then u1(d1
1 , z′

2) > u1(d2
1 , z′

2)
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(u2(z′
1, d2

2 ) > u2(z′
1, d1

2 )). So it is important to keep in mind that our assumptions
imply that u1(d1

1 , z′
2) > u1(d2

1 , z′
2) and u2(z′

1, d2
2 ) > u2(z′

1, d1
2 ).

Case 1. Assume, by contradiction, that d1
1 = x1

1 and d2
1 = x2

1 . Then u2(d2
1 , d2

2 ) >

u2(d2
1 , z2) for all (d2

1 , z2) ∈ BX (x2, r(x2)). Then the containment
BX (x2, r(x2)) ⊂ BX (x1, 3r(x1)), the quasiconcavity of u2 in x2, and
condition (a) imply that it must be the case that u1(d1

1 , z2) > u1(d2
1 , z2)

for all (d2
1 , z2) ∈ BX (x2, r(x2)), which contradicts condition (c).

Case 2. We now assume that d1
1 = x1

1 , d2
1 �= x2

1 , and (d1
1 , z′

2) ∈ BX (x2, 3r(x2)).
Since (d1

1 , z′
2) ∈ BX (x2, 3r(x2)) and u1(d1

1 , z′
2) > u1(d2

1 , z′
2), we have

that u2(d1
1 , d2

2 ) > u2(d1
1 , z′

2) ≥ u2(d1
1 , d1

2 ). However, the inclusion
(d1

1 , z′
2) ∈ BX (x1, r(x1)) implies that it must be the case that u2(d1

1 , d1
2 ) >

u2(d1
1 , z′

2), a contradiction.
Case 3. Let d1

1 = x1
1 , d2

1 �= x2
1 , and (d1

1 , z′
2) /∈ BX (x2, 3r(x2)). It is worth noticing

that if x2
1 ≤ d1

1 , then (d1
1 , z′

2) would be located closer to x2 than z′, which
is impossible since z′ ∈ BX (x2, r(x2)). Therefore, x2

1 > d1
1 . We have to

consider the following two subcases: d2
2 = x2

2 and d2
2 �= x2

2 .
Case 3.1. If d2

2 = x2
2 , then u1(d2

1 , d2
2 ) > u1(z′

1, d2
2 ) ≥ u1(d1

1 , d2
2 ). Since (z′

1, d2
2 ) ∈

BX (x1, 3r(x1)) and u1(z′
1, d2

2 ) ≥ u1(d1
1 , d2

2 ), it must be the case that
u2(z′

1, d1
2 ) > u2(z′

1, d2
2 ), a contradiction.

Case 3.2. Let d2
2 �= x2

2 . First, we claim that u2(z1, d2
2 ) > u2(z1, z′

2) ≥
u2(z1, d1

2 ) for all (z1, z′
2) ∈ BX (x2, r(x2)). Assume, to the contrary,

that u2(z1, d2
2 ) ≤ u2(z1, z′

2) for some (z1, z′
2) ∈ BX (x2, r(x2)). Since

(d1
1 , z′

2) /∈ BX (x2, 3r(x2)) and (z1, z′
2) ∈ BX (x2, r(x2)), we have that

d1
1 < z1. Then u1(d2

1 , z′
2) > u1(z1, z′

2) ≥ u1(d1
1 , z′

2), a contradiction.
Now we claim that, in contradiction to condition (b), u2(z1, d2

2 ) > u2(z)
for all z ∈ BX (x2, r(x2)) with z1 such that (z1, z′

2) ∈ BX (x2, r(x2)).
Assume, by contradiction, that u2(z1, d2

2 ) ≤ u2(z) for some z ∈
BX (x2, r(x2)) with z2 > z′

2 and z1 such that (z1, z′
2) ∈ BX (x2, r(x2)).

Then u1(d2
1 , z2) > u1(z), and, therefore, u1(z) ≥ u1(d1

1 , z2), which, in its
turn, implies that u2(z1, d1

2 ) > u2(z) ≥ u2(z1, d2
2 ), a contradiction.

Case 4. Let d1
1 �= x1

1 and d2
1 �= x2

1 . Then u1(d1
1 , z′

2) > u1(z1, z′
2) for all

(z1, z′
2) ∈ BX (x2, r(x2)). Let us show this for the sake of complete-

ness. Assume, by contradiction, that u1(d1
1 , z′

2) ≤ u1(z1, z′
2) for some

(z1, z′
2) ∈ BX (x2, r(x2)) with z1 < z′

1. Then u2(z1, d1
2 ) > u2(z1, z′

2), and,
hence, u1(d2

1 , z′
2) > u1(z1, z′

2). This implies that u1(d2
1 , z′

2) > u1(d1
1 , z′

2),
a contradiction.
Therefore, u2(z1, d2

2 ) > u2(z1, z′
2) ≥ u2(z1, d1

2 ) for all (z1, z′
2) ∈

BX (x2, r(x2)). We have to consider the following two subcases: d2
2 = x2

2
and d2

2 �= x2
2 .

Case 4.1. Let d2
2 = x2

2 . Since u1(d2
1 , d2

2 ) > u1(z′
1, d2

2 ), it must be the case that
u2(z′

1, d1
2 ) > u2(z′

1, d2
2 ) , a contradiction.

Case 4.2. Let d2
2 �= x2

2 . Then, in contradiction to the minimality property of
I (x2), u2(z1, d2

2 ) > u2(z) for all z ∈ BX (x2, r(x2)) with z1 such that
(z1, z′

2) ∈ BX (x2, r(x2)). Let us show this.
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Assume, by contradiction, that u2(z1, d2
2 ) ≤ u2(z) for some z ∈

BX (x2, r(x2)) with z2 > z′
2 and z1 such that (z1, z′

2) ∈ BX (x2, r(x2)).
Then u1(d2

1 , z2) > u1(z), and, hence, u2(z1, d1
2 ) > u2(z) ≥ u2(z1, d2

2 ), a
contradiction.

Case 5. Let d1
1 �= x1

1 , d1
2 �= x1

2 , and d2
1 = x2

1 . Since u2(d2
1 , d2

2 ) > u2(d2
1 , z2) for

all (d2
1 , z2) ∈ BX (x2, r(x2)), we have that u1(d1

1 , z2) > u1(d2
1 , z2) for all

(d2
1 , z2) ∈ BX (x2, r(x2)). In order to obtain a contradiction with condition

(c), it is enough to show that u1(d1
1 , z2) > u1(z) for all z ∈ BX (x2, r(x2)).

Assume that u1(d1
1 , z2) ≤ u1(z) for some z ∈ BX (x2, r(x2)) with z1 <

d2
1 . Then it must be the case that u2(z1, d1

2 ) > u2(z), and, therefore,
u1(d2

1 , z2) > u1(z) ≥ u1(d1
1 , z2), a contradiction.

Case 6. Let d1
2 = x1

2 , d2
1 = x2

1 , and x2
2 > d1

2 . Since u2(d2
1 , d2

2 ) > u2(d2
1 , z2)

for all (d2
1 , z2) ∈ BX (x2, r(x2)), we have that u1(d1

1 , z2) > u1(d2
1 , z2)

for all (d2
1 , z2) ∈ BX (x2, r(x2)) with z2 ≥ d1

2 . Then one can show that
u1(d1

1 , z2) > u1(z) for all z ∈ BX (x2, r(x2)) with z2 ≥ d1
2 , which contra-

dicts condition (c).

Example 3 (continued)

We now explain the intuition behind the modifying technique used in the proof of
Theorem 3.

Let UX (x1) = BX (x1, r(x1)) with x1 = ( 1
2 , 1

2 ), r(x1) = 1
10 , I (x1) = {1, 2},

and (d1
1 , d1

2 ) = (0, 1
2 ), and UX (x2) = BX (x2, r(x2)) with x2 = ( 1

2 , 5
12 ), r(x2) =

1
11 , I (x2) = {1, 2} and (d2

1 , d2
2 ) = ( 1

2 , 1). It is not difficult to see that conditions
(a)-(c) of the proof of Theorem 3 are satisfied for these two open balls. Denote C =
[0, 1

2 ] × [ 1
2 , 1]. Then z′

i ∈ co{d1
i , d2

i }, i = 1, 2, for every z′ ∈ UX (x1) ∩ UX (x2) ∩ C .
We replace BX (x1, r(x1)) with VX (x1, r(x1)) = BX (x1, r(x1))\clBX (x2, r(x2))

and keep BX (x2, r(x2)) unchanged. Obviously, the open sets VX (x1, r(x1)) and
BX (x2, r(x2)) do not intersect. However, in order to cover the compact set A =
∂ BX (x2, r(x2)) ∩ clBX (x1, r(x1)), we have to add a finite number of new elements
to the initial cover.

For every x ∈ A with x2 �= d1
2 , we pick an open ball BX (x, r(x)) such that∣∣x2 − d1

2

∣∣ > 5r(x) and find a minimal I (x) ⊂ I (x1) (for BX (x, r(x))) with K (x) ⊂
K (x1) such that for every x ′ ∈ BX (x, 3r(x)), there exists i ∈ I (x) with ui (di , x ′−i ) >

ui (x ′).
For every x ∈ A with x2 = d1

2 , we pick BX (x, r(x)) such that
∣∣x ′

1 − d2
1

∣∣ > 5r(x)

and find a minimal I (x) ⊂ I (x2) with K (x) ⊂ K (x2) such that for every x ′ ∈
BX (x, 3r(x)) there exists i ∈ I (x) with ui (di , x ′−i ) > ui (x ′).

At first glance, it looks like not much has changed. However, it is not so. For exam-
ple, if, for some x ∈ A ∩ intC , there is z′ ∈ BX (x, r(x)) ∩ BX (x2, r(x2)) such that
z′

i ∈ co{di , d2
i }, i = 1, 2, then, obviously, I (x) = {1, 2}. As we have shown in the

proof of Theorem 3, it is possible only if di = xi for some i ∈ {1, 2} (Case 7). How-
ever, this is not the case by construction. Therefore, the minimal I (x) is a one-element
set.
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Appendix B

Proof of Lemma 2

Fix x ∈ X\EG . Let A(x) be the set of α ∈ R
n such that (x, α) ∈ clGrG. For each

i ∈ N , define ui : X → R by ui (xi , x−i ) = lim infx ′−i →x−i
ui (xi , x ′−i ). By construc-

tion, ui is lower semicontinuous in x−i . For each i ∈ N and every x−i ∈ X−i , define
δi : X−i → R by δi (x−i ) = supyi ∈Xi

ui (yi , x−i ). It is clear that each δi , as the supre-
mum of a collection of lower semicontinuous functions, is lower semicontinuous (see
also Reny 1999, p. 1037).

Since G is better-reply secure, for each α = (α1, . . . , αN ) ∈ A(x) there is i(α) ∈ N
such that δi(α)(x−i(α)) > αi(α). Pick εα > 0 and rα > 0 such that δi(α)(x−i(α)) >

α′
i(α)+εα for all α′ ∈ BRn (α, rα). We can say that player i(α) secures the neighborhood

BRn (α, rα) at x .
Since A(x) is compact, the cover {BRn (α, rα) : α ∈ A(x)} contains a finite sub-

cover {BRn (α j , rα j ) : j = 1, . . . , k}. Let ε(x) = 1
2 min j∈{1,...,k} εα j . Denote by Ji (x)

the collection of all j ∈ {1, . . . , k} such that player i secures BRn (α j , rα j ) at x . Let
I (x) = {i ∈ N : Ji (x) �= ∅} and αi = max j∈Ji (α

j + rα j ). Then, by the defi-
nition of the least upper bound, for each i ∈ I (x) there exists di ∈ Xi such that
ui (di , x−i ) > αi + ε(x). From the lower semicontinuity of ui in x−i , we deduce that
ui (di , x ′−i ) > αi + ε(x) for all x ′−i in some open neighborhood UX−i (x−i ) of x−i .

We claim that there exists an open neighborhood UX (x) of x such that, for every
x ′ ∈ UX (x), there is some i ∈ I (x) with ui (di , z−i ) − ε(x) > ui (x ′) for all z−i ∈
UX−i (x−i ). If it is not so, then one can construct a net {xβ} converging to x such that,

for each β and each i ∈ I (x), ui (di , zβ
−i )−ε(x) ≤ ui (xβ) for some zβ

−i ∈ UX−i (x−i ).
Since the payoff functions are bounded, there is no loss of generality in assuming
that the net {u(xβ)} converges to some α ∈ A(x). Then, for some j ∈ {1, . . . k},
there exists β̂ such that u(xβ) ∈ BRn (α j , rα j ) for all β � β̂. Therefore, for some i ∈
I (x), ui (di , x ′−i ) ≥ ui (di , x ′−i ) > αi +ε(x) > ui (xβ)+ε(x) for all x ′−i ∈ UX−i (x−i )

and all β � β̂, a contradiction.

Proof of Lemma 5

Since X is compact, the open cover {Ux : x ∈ X} of X contains a finite subcover
{Ux j : j ∈ J }, where J is a finite set. Let {Gx j : j ∈ J } be a closed refinement
of {Ux j : j ∈ J } such that Gx j ⊂ Ux j for each j ∈ J . For each j ∈ J , define a
correspondence Fj : X � Y by

Fj (z) =
{∪{s∈J :z∈Uxs }Fxs (z) if z ∈ Gx j ,

Y if z /∈ Gx j .

By (ii), θ(z) /∈ coFj (z) for all z ∈ Gx j . Each Fj has open lower sections in X
since, for each y ∈ Y ,
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F−1
j (y) = {z ∈ Gx j : y ∈ (∪{s∈J :z∈Uxs }Fxs (z))} ∪ (X\Gx j )

= (Gx j ∩ (∪s∈J (Uxs ∩ F−1
xs

(y))) ∪ (X\Gx j )

= ∪s∈J (Uxs ∩ F−1
xs

(y)) ∪ (X\Gx j ).

Therefore, F : X � Y defined by F(z) = ∩ j∈J Fj (z) also has open lower sections.
By construction, DomF = X and F is of class Lθ .
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