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Abstract This paper provides a self-contained definition and a characterization of
the class of extensive form games that are adequate for applications, but still do not
employ any finiteness assumptions. In spite of its simplicity, the resulting definition
is more general than the classical ones. Moreover, we show that this class satisfies the
basic desiderata that strategies induce outcomes and do so uniquely. Within the class
of playable extensive forms, the characterization is by the existence of an immediate
predecessor function on the set of moves.
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1 Introduction

Non-cooperative game theory is the theory of games with complete rules. The tool to
verify that rules are complete is the representation of the game in extensive form. This
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76 C. Alós-Ferrer, K. Ritzberger

representation also lends itself naturally to an intuitive understanding of the players’
interaction. As a consequence, a number of commonly used solution concepts that
relate to backwards induction, like subgame perfection or perfect Bayesian equilib-
rium, are only defined for extensive form games.

Much of the early theoretical work on extensive form games (Kuhn 1953; Selten
1975) tacitly adopted finiteness assumptions in order to avoid technicalities and focus
on conceptual issues. Likewise, more recent definitions as those by Kreps and Wilson
(1982) or Mas-Colell et al. (1995, p. 227) are restricted to finite settings. On the other
hand, applications of game theory soon transcended these limitations: games with con-
tinuum action spaces and infinitely repeated games are examples of obvious interest
to economists. For decades, this has led to a parallel development with applications of
large games on the one hand and theoretical analysis of finite games on the other. Yet,
as far as the extensive form representation of a game is concerned, this gap is easily
closed.

In this paper, we show that all finiteness assumptions for extensive form represen-
tations of games can be dispensed with. This point is not new and we have already
emphasized it in previous papers (briefly described below). But our previous work
aimed at necessity on top of sufficiency, in order to precisely delimit the confines of
traditional game theory. This has led to statements that are occasionally complicated
by technical subtleties. In this paper, we focus on a framework that is sufficient for
(most) applications and that is the one which has effectively been employed in practice.
And it turns out that this framework is considerably simpler than the general one.

This is, of course, an informed endeavor which uses previous results on what is nec-
essary for game theoretic analysis. And it has to be, because merely dropping finiteness
assumptions without appropriate substitutes can produce pathologies. It is well known,
for instance, that extensive form games in continuous time (“differential games”) may
allow strategies that produce no outcome at all or a continuum of outcomes (e.g.,
Simon and Stinchcombe 1989; Stinchcombe 1992; Alós-Ferrer and Ritzberger 2008).
But this is not an artifact of continuous time. For, replace the reals for the time axis
by all rational numbers of the form t = 1/n for n = 1, 2, . . . , together with t = 0.
Suppose that at each t ∈ {0, . . . , 1/2, 1}, player t , say, can choose an action a ∈ [0, 1]
from the unit interval. For every b ∈ [0, 1], define a strategy profile as follows: choose
a = b at “time” 0, choose a = 0 at any positive “time” if a = b has been chosen by
all players before the present one, and choose a = 1 otherwise. If b = 1, this strategy
profile induces no outcome. For, constantly playing a = 1 is not compatible with this
strategy, as players would switch to 0 at any positive “time.” On the other hand, there
cannot be any n = 1, 2, . . . , such that player t = 1/n chooses a = 0 either. For, if
there were, then all players 1/ (n + τ), for τ = 1, 2, . . ., before the present one must
have chosen action 1; but in that case, player 1/ (n + 1) must already have chosen
action 0 according to the strategy profile, prompting player t = 1/n to choose a = 1,
a contradiction. Since the strategy profile chooses only between 0 and 1, it induces no
outcome. On the other hand, if b = 0, the associated strategy profile induces multiple
outcomes: constantly playing 0, and starting with a = 0 at t = 0 and playing 1 at all
positive “times”.

That a strategy combination induces no outcome or many is problematic, because
neither the empty set nor (nonsingleton) sets of outcomes belong to the domain of
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players’ preferences. Therefore, players cannot evaluate such strategies, as they are
supposed to, for instance, in equilibrium analysis. In other words, dropping finiteness
assumptions calls for a careful specification of the objects of extensive form analysis.

In an earlier paper (Alós-Ferrer and Ritzberger 2005b), we have shown that it
involves no loss of generality to view the tree of an extensive form as a collection
of subsets of an underlying set of outcomes (with a particular structure), as proposed
by von Neumann and Morgenstern (1944, p. 65). This formalization makes the game
tree an appropriate domain for decision theory, as nodes are sets of “states” like any
other event. And this formalism covers all known examples of extensive form games,
inclusive of infinitely repeated games, infinite bilateral bargaining (Rubinstein 1982),
stochastic games (Shapley 1953), the “transfinite cheap-talk” by Aumann and Hart
(2003), and “differential games.”

Related work (Alós-Ferrer and Ritzberger 2008) has investigated when strategies,
as derived from an extensive form, satisfy the following two desiderata: (A1) Every
strategy combination induces an outcome/play; and (A2) if a strategy combination
induces an outcome, this outcome is unique. The main result of that paper is that (A1)
and (A2) hold true if and only if the tree satisfies two conditions: it is “regular” and
“up-discrete” (precise definitions are below). The good news is that this character-
ization does—almost—not rule out any of the classical examples of extensive form
games. All aforementioned cases are covered, except for differential games (which
are not up-discrete).

In practice, most applications use more structure than what is necessary and suffi-
cient to obtain (A1) and (A2). The key step from what is necessary to what is sufficient
is a property which we call “discreteness,” but which does not exclude, e.g., contin-
uum action sets. More precisely, discreteness has two parts. Up-discreteness (toward
the root of the tree) is necessary for extensive form analysis, as pointed out above.
The other part, down-discreteness, is the added structure that dramatically simplifies
the formalism and still maintains enough generality for applications. In particular, the
combination of up- and down-discreteness still allows one to study games with large
(continuum) action spaces and/or a long (infinite) time horizon.

In this paper, we characterize the class of discrete extensive forms within the abstract
framework developed in previous papers. It is shown that discrete trees are charac-
terized by the existence of an (onto) immediate predecessor function on the set of
moves. Equivalently, this means that the history of every decision point in the tree can
be uniquely reconstructed in a finite number of steps—yet, infinite-horizon games are
not excluded. As a result, an elementary definition of extensive forms (on a discrete
tree) is obtained that lends itself easily to applications, but is still more general than
the classical ones. The four defining consistency conditions of the general definition
collapse to two intuitive properties: One says that the decisions of the relevant players
at any given move lead to a unique new node. The other says that players cannot deduce
from the menu of available choices more information than what they have according
to their information sets.

A key advantage of the present approach is that it is immaterial whether plays or
nodes are taken as the primitives. In particular, for discrete trees, there is an alternative
definition with the nodes as primitives—“simple extensive forms.” This is due to the
fact that certain (“infinite”) terminal nodes need not be part of the tree. In the end, then,
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one obtains a simple framework for extensive form analysis that still covers almost all
relevant cases and preserves the freedom to take plays or nodes as primitives.

The remainder is organized as follows. Section 2 presents the definition of a game
tree, the classification of nodes, and extensive decision problems in the general frame-
work developed by Alós-Ferrer and Ritzberger (2005b; 2008, henceforth AR1 and
AR2) and discusses the characterization of playable games. Section 3 characterizes
discrete trees and the associated notion of a discrete extensive form. In this section, we
also show that (A1) and (A2) hold for all discrete extensive forms. Section 4 exploits a
property of discrete trees to provide a definition and characterization of “simple” trees
and associated extensive forms, where nodes (rather than plays) serve as the primi-
tives. Section 5 concludes. Proofs are given in the text only for the main theorems; all
other proofs are gathered in an Appendix.

2 Extensive form games: the general case

2.1 Game trees

Extensive form games are defined on (decision) trees. The concept of a tree, as needed
in game theory, is studied in detail in AR1. The results in that paper show that there
is no loss of generality in assuming a game tree, as in the following definition, when
working with decision trees.1

Definition 1 A (rooted) game tree T = (N ,⊇) is a collection of nonempty subsets
x ∈ N (called nodes) of a given set W partially ordered by set inclusion such that
W ∈ N and

(GT.i) h ⊆ N is a chain if and only if there is w ∈ W such that w ∈ x for all
x ∈ h,2

(GT.ii) if w,w′ ∈ W satisfy w �= w′, then there are x, x ′ ∈ N such that w ∈ x \ x ′
and w′ ∈ x ′ \ x .

For a game tree (N ,⊇) and a node x ∈ N define the up-set (or order filter) ↑ x and
the down-set (or order ideal) ↓ x by

↑ x = {y ∈ N |y ⊇ x } and ↓ x = {y ∈ N |x ⊇ y } . (1)

By the “if”-part of (GT.i) ↑ x is a chain for all x ∈ N . A play is a chain of nodes
h ⊆ N that is maximal in N , i.e. there is no x ∈ N \ h such that h ∪ {x} is a chain.
For every chain in N , there exists a play that contains it. This is the Hausdorff Maxi-
mality Principle—a version of the Axiom of Choice (see Hewitt and Stromberg 1965,
chp. 1).

The main advantage of game trees is that the set of plays can be one-to-one identified
with the underlying set W (Theorem 3(c) of AR1). A node can then be identified with

1 Henceforth ⊆ denotes weak set inclusion and ⊂ denotes proper inclusion.
2 A chain is a subset of a partially ordered set that is completely ordered.
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the set of plays passing through it, and the underlying set W represents all plays. An
element w ∈ W can thus be seen either as a possible outcome (element of some node)
or as a play (maximal chain of nodes). When a distinction is called for, we write w for
the outcome and ↑{w} for the play (chain of nodes), where ↑{w} = {x ∈ N |w ∈ x }
is the play consisting of all nodes that contain w. If h is a play, there exists a unique
outcome w ∈ W such that ∩x∈h x = {w}, or, equivalently, ↑{w} = h.

Textbook formulations typically start from a given set of nodes and define trees as
graphs on this set, that is, as a partially ordered set (poset) where the order relation
≥ is precedence (e.g., the “arborescences” in Kreps and Wilson 1982). Every game
tree as defined above can be also viewed as a graph by taking set inclusion as the
relevant partial order, i.e. a node x precedes another node y if and only if x ⊇ y.
Conversely, if one starts from a tree as a graph, it is shown in AR1 (Theorem 1, p.
775) that it is always possible to construct an equivalent game tree as defined above.
The construction is as follows. Let M be a finite set with a partial order ≥. If y1 ≥ y2
say that y1 is a predecessor of y2 or that y2 is a successor of y1. Call this poset a tree if
the set of predecessors of any given node is a chain and every non-terminal node has
at least two different proper successors (a nontriviality requirement). For each y ∈ M ,
let W (y) denote the set of maximal chains that y belongs to. The collection of all
W (y) ordered by set inclusion is a game tree in the sense of Definition 1. Every node
gets represented by the set of plays passing through it.

For instance, consider the finite set {y1, . . . , y5} endowed with the partial order
given by y1 ≥ yi for all i = 1, . . . , 5, y3 ≥ y4, and y3 ≥ y5. There are three max-
imal chains in this graph, w1 = {y1, y2}, w2 = {y1, y3, y4}, and w3 = {y1, y3, y5}.
Now represent this graph as a game tree by x1 = {w1, w2, w3}, x2 = {w1}, x3 =
{w2, w3}, x4 = {w2}, and x5 = {w3}. This procedure works beyond finite examples,
as shown in detail in AR1 (see also Sect. 4).

The following example (taken from Section 2.2.5 of AR1) shows that game trees
even cover “differential games,” that is, decision problems in continuous time.

Example 1 (Differential game) Let W be the set of functions f : R+ → A, where A
is a set of “actions” (with at least two elements), and N = {xt (g) |g ∈ W, t ∈ R+ },
where xt (g) = { f ∈ W | f (τ ) = g(τ ), ∀τ ∈ [0, t) }, for any g ∈ W and t ∈ R+. At
each point in time t ∈ R+ a decision at ∈ A is taken. The “history” of all deci-
sions taken in the past (up to, but exclusive of, time t) is a function f : [0, t) → A,
i.e. f (τ ) = aτ for all τ ∈ [0, t). A node at “time” t is the set of all functions that
coincide with f on [0, t), all possibilities still open for their values thereafter. It can
be shown that (N ,⊇) is a game tree.

A convenient class of examples for game trees are the, in many respects, simplest
trees of all (see also Example 3 of AR1).

Example 2 (Centipedes) Let (W,≥) be a completely ordered set of arbitrary cardi-
nality, xt = {τ ∈ W |τ ≥ t } for all t ∈ W , and N = {{t}| t ∈ W } ∪ { xt | t ∈ W }.
The resulting tree (N ,⊇) satisfies (GT.ii) from Definition 1. But, because for the
play h∞ = {xt }t∈W the intersection ∩t∈W xt may be empty (e.g., if W were the nat-
ural numbers), the tree may not satisfy the “only if”-part of (GT.i). In this case, the
tree can be completed by adding an “infinite” element w∞ without affecting the order-
theoretic structure (see Proposition 8 of AR1). Then, W has a maximum w∞ and
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w∞ ∈ x for all x ∈ h∞. As a consequence, (N ,⊇) also satisfies the “only if”-part of
(GT.i) and is a game tree. We refer to this as the W -centipede.

Nodes in a game tree that are properly followed by other nodes are called moves,
i.e. X = {x ∈ N | (↓ x) \ {x} �= ∅} is the set of all moves (decision points). All other
nodes are called terminal, and E = {x ∈ N |↓ x = {x} } denotes the set of terminal
nodes. It can be shown that a node x ∈ N is terminal if and only if there is w ∈ W such
that x = {w} (see Lemma 3(b) in the Appendix). The following is a more fundamental
classification of nodes in a game tree.

Definition 2 Let (N ,⊇) be a game tree and x ∈ N \ {W }. Say that x is finite if
(↑ x) \ {x} has a minimum, infinite if x = inf (↑ x) \ {x}, and strange if (↑ x) \ {x}
has no infimum. Denote the sets of infinite and strange nodes in N by I (N ) and S(N ),
respectively, and by F (N ) the set of finite nodes together with the root W .

The three possibilities in this definition are exhaustive, that is, all nodes x ∈ N \{W }
are either finite, infinite, or strange. For, if (↑ x) \ {x} has an infimum z, it is either a
minimum (and then x is finite), or z /∈ (↑ x) \ {x}. In the latter case, it follows from
the definition of an infimum that z = x .

On finite nodes a function p can be defined that assigns to every finite node its
immediate predecessor. Namely, let p : F (N ) → X be given by

p (x) = min (↑ x) \ {x} for all x ∈ F (N ) \ {W } (2)

and p (W ) = W by convention. Hence, x ⊂ p (x) = ∩y∈(↑x)\{x}y for x ∈ F (N ) \
{W }.

A node x ∈ N is infinite if and only if x = ∩y∈(↑x)\{x}y by Lemma 4(b) in the
Appendix. In this sense, infinite nodes can be reconstructed from the other nodes in
a game tree. That is, the set of infinite nodes for a game tree (N ,⊇) can alternatively
be defined as I (N ) = {

x ∈ N
∣
∣x = ∩y∈(↑x)\{x}y

}
.

Example 3 (Infinite centipede) Let W = {1, 2, . . . ,∞} be the natural numbers
together with “infinity” ∞ and consider the corresponding W -centipede (Exam-
ple 2). This example is illustrated in Fig. 1. There is a unique infinite node in
this game tree, namely {∞} ∈ N . For, ∩ {xt |1 ≤ t < ∞} = {∞}, but {∞} /∈
{xt ∈ N |t = 1, 2, . . . } = (↑{∞}) \ {{∞}}.

Not all centipedes are so well behaved as the infinite centipede. In particular, it may
be the case that moves are infinite nodes. Intuitively, an infinite move corresponds to a

Fig. 1 The infinite centipede. W = {1, 2, . . . , ∞}, xt = {t, t + 1, . . . , ∞}
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decision point that is never actually reached, because it is due after an infinite sequence
of other decision points. This is the case, for instance, if decisions are taken at each
point in continuous time.

Example 4 (Continuous centipede) If in Example 2 W = [0, 1], all singletons {t}
are finite, except for the “last” node, {1}. All moves, though, are infinite, except for
the root [0, 1]. For, ∩ {y |y ∈ (↑ xt ) \ {xt } } = ∩ {xτ |τ < t } = [t, 1] = xt , provided
t > 0 (otherwise the intersection is empty), implies that xt is infinite.

Though finite and infinite nodes can show up in centipedes in various combina-
tions, strange nodes cannot. For, in a centipede for a singleton {t} ∈ N , the move
xt ∈ N provides an infimum for the chain (↑ {t}) \ {{t}} (even if xt = {t}, as in the
continuous centipede for t = 1). A move xt ∈ X in a centipede is either infinite or
satisfies xt ⊂ ∩x∈(↑xt )\{xt }x . In the latter case, there is a unique τ ∈ W such that
τ ∈ (∩x∈(↑xt )\{xt }x

)\ xt . (For, if τ, τ ′ ∈ (∩x∈(↑xt )\{xt }x
)\ xt are such that, say, τ ≥ τ ′,

then xτ ′ ⊇ xτ ⊃ xt and τ, τ ′ ∈ x for all x ∈ (↑ xt ) \ {xt } imply τ ′ ∈ xτ , hence,
τ ′ = τ by the properties of a centipede.) Therefore, xτ ∈ N provides a minimum for
(↑ xt ) \ {xt } and xt ∈ X is finite. Centipedes are, therefore, examples without strange
nodes. To illustrate strange nodes takes a separate example, like the following “Twins”
(Example 13 of AR1).

Example 5 (Twins) Let W = [0, 1] and N = {{w}| w ∈ W } ⋃ {xt }∞t=1, where

xt =
[

0,
1

t + 1

]
∪

[
t

t + 1
, 1

]
for all t = 1, 2, . . .

It can be shown that this is a game tree (see AR1). The singletons {0} , {1} have the
same (proper) predecessors

(↑{1}) \ {{1}} = (↑{0}) \ {{0}} = {xt ∈ N |t = 1, 2, . . . }

Therefore, they are both lower bounds for the chain {xt ∈ N |t = 1, 2, . . . }, but they
are disjoint. Hence, this chain has no infimum, and {0} , {1} ∈ N are strange.

Observe that neither {0} nor {1} can be removed without affecting the structure of
the tree. In fact, any removal of one of the two leads to a violation of condition (GT.ii)
from Definition 1 (see Sect. 4.1 below).

2.2 Extensive decision problems

The primary goal of the concept of a game tree is to define extensive forms without any
finiteness or discreteness assumptions. Below such a definition is provided (Definition
7 of AR1 and Definition 3.1 of AR2).

Some preparation is needed. For a game tree (N ,⊇) with set of outcomes W and
an arbitrary subset a ⊆ W (not necessarily a node), the down-set of a is given by
↓ a = {x ∈ N |x ⊆ a } and the up-set of a by ↑ a = {x ∈ N |a ⊆ x }. Moreover, the
set of immediate predecessors of a ∈ 2W is defined by
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P (a) = {x ∈ N |∃y ∈↓a : ↑ x = (↑ y) \ (↓a) } (3)

Since nodes in a game tree are sets of outcomes, they too may, but need not, have
immediate predecessors. It is easy to see that a node has an immediate predecessor if
and only if it is finite (AR2, p. 224).

Definition 3 An extensive decision problem (EDP) with player set I is a pair (T, C),
where T = (N ,⊇) is a game tree with set of outcomes W and C = (Ci )i∈I is a system
consisting of collections Ci (the sets of players’ choices) of nonempty unions of nodes
(hence, sets of outcomes) for all i ∈ I such that

(EDP.i) if P (c) ∩ P
(
c′) �= ∅ and c �= c′, then P (c) = P

(
c′) and c ∩ c′ = ∅, for

all c, c′ ∈ Ci for all i ∈ I ;
(EDP.ii) x ∩ [∩i∈J (x)ci

] �= ∅ for all (ci )i∈J (x) ∈ A (x) and for all x ∈ X ;
(EDP.iii) if y, y′ ∈ N with y ∩ y′ = ∅ then there are c, c′ ∈ Ci for some player

i ∈ I such that y ⊆ c, y′ ⊆ c′, and c ∩ c′ = ∅;
(EDP.iv) if x ⊃ y ∈ N , then there is c ∈ Ai (x) such that y ⊆ c for all i ∈ J (x),

for all x ∈ X ;

where A (x) = ×i∈J (x) Ai (x) , Ai (x) = {c ∈ Ci |x ∈ P (c) } are the choices available
to i ∈ I at x ∈ X , and J (x) = {i ∈ I |Ai (x) �= ∅} is the set of decision makers at x ,
which is required to be nonempty, for all x ∈ X .

The interpretation is as follows (see AR1, Section 5, for additional details). A choice
c ∈ Ci is available at x ∈ X if x ∈ P (c). (EDP.i) stands in for information sets: if
two distinct choices c, c′ ∈ Ci are ever simultaneously available, then they are disjoint
and available at the same moves—at those in the information set g = P (c) = P

(
c′).

(EDP.ii) requires that simultaneous decisions by different players at a common move
do select some outcome. (EDP.iii) states that for any two disjoint nodes, there is a
player, who can eventually take a decision that selects among them. Finally, (EDP.iv)
states that, if a player takes a decision at a given node, he must be able not to discard
any given successor of the node.3

An important point about an EDP is that it allows several players to decide at the
same move. This, at times, simplifies both the representation of a game and the anal-
ysis of equilibrium. We will elaborate on this point in Sect. 3.3 below (Examples 8
and 9).

2.3 Strategies

A pure strategy for player i ∈ I is a function si : Xi → Ci , where Xi =
{x ∈ X |i ∈ J (x) }, such that

s−1
i (c) = P (c) for all c ∈ si (Xi ) (4)

3 (EDP.iv) excludes absent-mindedness (Piccione and Rubinstein 1997) by Proposition 13 of AR1, as in
the original formulation by Kuhn (1953).
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where si (Xi ) ≡ {si (x) |x ∈ Xi }. That is, the function si assigns to every move x ∈ Xi

a choice c ∈ Ci such that (a) choice c is available at x , i.e. si (x) = c ⇒ x ∈ P (c)
or s−1

i (c) ⊆ P (c), and (b) to every move x in an information set g = P (c) the same
choice gets assigned, i.e. x ∈ P (c) ⇒ si (x) = c or P (c) ⊆ s−1

i (c), for all c ∈ Ci

that are chosen somewhere, viz. c ∈ si (Xi ). Let Si denote the set of all pure strategies
for player i ∈ I . A pure strategy combination is an element s = (si )i∈I ∈ S ≡ ×i∈I Si .

Clearly, an EDP ought to satisfy some basic properties, like that every strategy
combination induces an outcome/play. This takes a notion of when a pure strategy
combination “induces” an outcome. Define, for every s ∈ S, the correspondence
Rs : W → W by

Rs (w) =
⋂

{si (x) |w ∈ x ∈ X, i ∈ J (x) } . (5)

Say that strategy combination s induces the outcome w if w ∈ Rs(w), i.e. if it is a
fixed point of Rs .

In an arbitrary EDP, the correspondence Rs for a given strategy combination s ∈ S
may not have a fixed point at all or a whole continuum thereof. But neither the empty
set nor a (nonsingleton) set of outcomes belongs to the domain of players’ preferences.
This calls for further restrictions. The two basic desiderata on an EDP, expressed in
terms of Rs , are as follows.

(A1) For every s ∈ S, there is some w ∈ W such that w ∈ Rs (w).
(A2) If for s ∈ S, there is w ∈ W such that w ∈ Rs (w), then Rs has no other fixed

point and Rs (w) = {w}.
(A1) says that for every strategy combination s ∈ S, there is an outcome/play

w ∈ W that is induced by s. Say that an EDP (T, C) is playable if (A1) holds.
(A2) requires that the induced outcome is unique. (A1) and (A2) define a function
φ : S → W that associates a unique outcome to each pure strategy combination.
(Furthermore, this function is onto by Theorem 4 of AR2.) These two properties are,
therefore, necessary and sufficient to define a normal form (without payoffs).

The differential game (Example 1), where the choices at a node xt ( f ) are given
by ct (xt ( f ), a) = {g ∈ xt ( f )| g(t) = a} for any action a ∈ A, is an example of an
EDP that is not playable, and where (A2) is also violated (see Examples 10 and 12 of
AR2).4 Another example that violates (A2) is the “Twins” (Example 5) with a single
player and perfect information: there is a strategy that assigns to every move the next
move in the row, s (xt ) = xt+1 for all t = 1, 2, . . . This strategy induces the two
outcomes 0, 1 ∈ W .

The main result of AR2 (Theorem 6 and Corollary 5(b); see also Alós-Ferrer et al.
forthcoming) states that (A1) and (A2) are essentially equivalent to two properties of
the tree: “regularity” and “up-discreteness.” Thus, these two properties represent the
appropriate restriction on game trees for a well-founded sequential decision theory.

Definition 4 A game tree (N ,⊇) is regular if there are no strange nodes, i.e. if
S (N ) = ∅. It is up-discrete if every (nonempty) chain in N has a maximum.

4 That without restrictions on allowable strategies no outcome may be induced in a continuous-time problem
has also been observed by Simon and Stinchcombe (1989) and by Stinchcombe (1992).

123



84 C. Alós-Ferrer, K. Ritzberger

3 Discrete extensive form games

3.1 Up-discrete trees

It can be shown (AR2, p. 235) that up-discreteness is equivalent to the chains
↑ x for x ∈ N being dually well-ordered (that is, all their subsets have a max-
imum). This condition is common in order theory and theoretical computer sci-
ence (see Koppelberg 1989, chp. 6). It implies that the set of immediate successors,
p−1 (y) = {x ∈ F(N ) |p (x) = y }, of a move is nonempty and forms a partition of
the move by finite nodes.

Proposition 1 Let T = (N ,⊇) be an up-discrete game tree. Then, for every x ∈ X

(a) the preimage p−1 (x) is a partition of x, hence nonempty;
(b) for every y ∈ N with y ⊂ x, there exists z ∈ p−1 (x) such that y ⊆ z.

Of course, up-discreteness excludes continuous-time examples. On the other hand,
up-discreteness imposes a tight connection between choices (as sets of outcomes) and
nodes, as the following result shows.

Proposition 2 Let T = (N ,⊇) be an up-discrete game tree and A (T ) the set of all
a ∈ 2W that are unions of nodes. Define

N (a) = {x ∈ N |x ⊆ a and x is maximal in a } . (6)

for any a ∈ A (T ). Then,

(a) N (a) is a partition of a; and
(b) its predecessor set is given by P (a) = {p (x) |x ∈ N (a) ∩ F (N ) }.

This implies that for any a ∈ A (T ) there exists a coarsest partition by nodes.
Applying this result to choices from an EDP yields the following: for any choice
c ∈ Ci for some i ∈ I there is a set N (c) ⊆ N such that c is a disjoint union over the
nodes in N (c) and P (c) = {p (x) |x ∈ N (c) ∩ F(N ) }. This property is crucial for
going back and forth between trees where plays are taken as the primitive and trees
where nodes are the primitive (see Sect. 4).

3.2 Discrete trees

To the best of our knowledge, all games that have been studied in the literature—with
the exception of differential games—satisfy (A1) and (A2), that is, they are regular and
up-discrete. As a matter of fact, this is because they usually satisfy even more strin-
gent conditions. In particular, differential games and the transfinite cheap-talk game
by Aumann and Hart (2003) seem to be the only examples which fail the following
property that is complementary to up-discreteness.

Definition 5 A game tree (N ,⊇) is down-discrete if the chain (↑ x) \ {x} has an
infimum in E ∪ (↑ x) \ {x} for every x ∈ N \ {W }. It is discrete if it is up-discrete
and down-discrete.
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That is, a game tree is down-discrete if for all x ∈ N \ {W } the chain (↑ x) \ {x}
has either a minimum or an infimum in the set of terminal nodes. Furthermore:

Proposition 3 A game tree is down-discrete if and only if it is regular and all moves
are finite (i.e. X ⊆ F (N )).

Infinitely repeated games, infinite bilateral bargaining games (Rubinstein 1982), or
stochastic games (Shapley 1953) all employ discrete trees, as do the infinite exten-
sive form games in Aumann (1964). “Long cheap-talk” à la Aumann and Hart (2003)
employs a tree that satisfies (A1) and (A2), but is not down-discrete. It has a time axis
of order ω+1, where ω denotes the first infinite (limit) ordinal and ω+1 its successor
according to the usual well-order. A similar example is obtained as follows.

Example 6 (ω + 1-centipede) Consider the W -centipede (Example 2) with W =
{1, 2, . . . , ω, ω + 1}. There, the infimum of the chain {xt |1 ≤ t < ω } = (↑ xω)\{xω}
is the move xω. Hence, this tree is not down-discrete, even though it is regular and
up-discrete.

An EDP defined on the tree of the previous example will satisfy (A1) and (A2),
even though the tree is not discrete—in contrast to differential games that fail (A1) and
(A2). So, discreteness is more than what is needed. But it has convenient implications.
A particularly striking consequence of discrete trees is captured by the next theorem.
It characterizes discrete trees, within the class of regular game trees, by the properties
of the immediate predecessor function p : F (N ) → X .

Theorem 1 For a regular game tree (N ,⊇) the following statements are equivalent:

(a) (N ,⊇) is discrete;
(b) all infinite nodes are terminal (X ⊆ F(N )) and the immediate predecessor func-

tion p : F(N ) → X satisfies that for all x ∈ F(N ) \ {W }

x ⊂ p(x) and if x ⊂ y ∈ N then p(x) ⊆ y ⊆ ∪∞
t=1 pt (x) (7)

where p1 = p, pt = p ◦ pt−1 for all t = 2, 3, . . . ,;
(c) X ⊆ F(N ) and the chain ↑ x ∩ ↓ y = {z ∈ N |x ⊆ z ⊆ y } is finite for all

x, y ∈ F(N ).
(d) the chain ↑ x is finite for all x ∈ X.

Furthermore, if any of the statements (a)–(d) hold, the immediate predecessor
function is onto.

Proof “(a) implies (b)”: Since discreteness entails down-discreteness, that X ⊆ F (N )

follows from Proposition 3. Let p be defined as in (2). Then, x ⊂ p (x) and if x ⊂
y ∈ N , then y ∈ (↑ x) \ {x} implies p (x) ⊆ y, for any x ∈ F (N ) \ {W }.

Moreover, for x ∈ F (N ) consider the chain
{

pt (x)
}∞

t=1. Since the tree is up-dis-
crete, it has a maximum z = pk (x). Therefore, p (z) = pk+1 (x) = pk (x) = z which
is a contradiction unless z = W . Hence, ∪∞

t=1 pt (x) = W ⊇ y for any y ∈ (↑ x)\ {x}.
“(b) implies (c)”: That X ⊆ F (N ) is immediate. Thus, let x, y ∈ F (N ) and x ⊂ y.

Then p (x) ⊆ y ⊆ ∪∞
t=1 pt (x) by (7). It follows that there must be some k ≥ 1 such

123



86 C. Alós-Ferrer, K. Ritzberger

that pk−1 (x) ⊂ y ⊆ pk (x) (where p0 is the identity). But by (7) applied to pk−1 (x)

this implies y = pk (x). Hence, the chain ↑ x ∩ ↓ y is contained in the finite chain{
x, p (x) , p2 (x) , . . . , pk (x) = y

}
and, therefore, itself finite. If x, y ∈ F (N ) are

such that x = y, then ↑ x ∩ ↓ y = {x} is finite as well. If x, y ∈ F (N ) are such that
y ⊂ x or x ∩ y = ∅, then ↑ x ∩ ↓ y is empty, thus finite.

“(c) implies (d)”: This follows by choosing y = W .
“(d) implies (a)”: First notice that, if the tree is trivial, N = {W }, there is nothing

to prove. Hence, suppose it is nontrivial. We have that W ∈ F (N ) by Definition
2. Let x ∈ X, x �= W. Since ↑ x is finite, it follows that the node x is finite, thus
X ⊆ F(N ). Proposition 3 implies that the tree is down-discrete. To prove up-discrete-
ness, let h ∈ 2N be any chain in N . If h contains no move, then h contains only one
element which is its maximum. If there is a move x ∈ h, the chain ↑ x is finite by
hypothesis. Enumerate its elements, x = x0 ⊂ x1 ⊂ x2 ⊂ · · · ⊂ xm = W , and let t
be the largest integer such that xt ∈ h. We claim that xt is a maximum for h. Choose
any z ∈ h. If z ⊆ x then z ⊆ x = x0 ⊆ xt . If x ⊂ z there is 0 < τ ≤ m such that
z = xτ and, therefore, z = xτ ⊆ xt . It follows that xt is a maximum for h.

This proves the equivalence of (a)–(d). Now, we prove that the immediate prede-
cessor function p is onto. Because discreteness entails up-discreteness, for any x ∈ X ,
there exists a maximum y for a maximal chain in (↓ x) \ {x} (where the latter is non-
empty by x ∈ X ).5 Note that then x = min (↑ y) \ {y} and hence y ∈ F(N ). Since
y ⊂ x , it follows from (b) that p (y) ⊆ x . If p (y) �= x , then p (y) ∈ (↓ x) \ {x} with
y ⊂ p (y) contradicts the construction of y. Therefore, p (y) = x and, because x ∈ X
was arbitrary, p is surjective.

The hypothesis of a regular game tree is necessary for Theorem 1. This is illus-
trated by Example 5 (“Twins”), which satisfies both (b) and (c) of Theorem 1 but is
not regular and, hence, not down-discrete (by the “only if”-part of Proposition 3). The
following example illustrates that up-discreteness is responsible for the very last part
of (7), viz. that the root can be reached from any move by iterating the immediate
predecessor function.

Example 7 (Augmented Inverse Infinite Centipede) Consider the negative integers
augmented by a “smallest” element −∞ and call this set W . The corresponding W -
centipede is a down-discrete game tree. All nodes are finite (because (↑ xt ) \ {xt } =
{xτ }−∞

τ=t−1 and (↑{t}) \ {t} = {xτ }−∞
τ=t ) and immediate predecessors are given by

p ({t}) = xt and p (xt ) = xt−1 for all t = −1,−2, . . . , But, if the predecessor func-
tion is iterated from any node, the root is never reached, i.e., ∪∞

k=1 pk(x) ⊂ W , even
though p ({−∞}) = W (that is, even though the immediate predecessor function is
surjective). This is so, because no maximal chain in (↓W ) \ {W } has a maximum.

Most textbooks, of course, simply use trees where all plays have finite length (con-
tain finitely many elements). Say that a game tree (N ,⊇) has finite height if every
chain in N has a maximum and a minimum. This definition has no implications on
the number of choices available at any given move (i.e. on the number of successors
of a given move). But it does restrict the lengths of plays. For, if there were an infinite

5 This only requires “weak up-discreteness” (see AR2, Definition 2.2).
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play for a game tree (N ,⊇) with finite height, then this play would have to have a
minimum x ∈ N by definition. Since a game tree with finite height is clearly discrete,
Theorem 1 (c) would then imply that the chain ↑ x ∩ ↓ W is finite; but since x is the
minimum of the play, ↑ x ∩ ↓W equals the play—a contradiction. Hence, for a game
tree with finite height, all plays have finite length. Conversely, a game tree, where all
plays have finite length, is clearly a game tree with finite height.

Moreover, for game trees with finite height, all nodes must be finite. For, if all plays
have finite length, then all chains of the form (↑ x) \ {x} (for a node x ∈ N ) also do.
Hence, all these chains have minima, implying that N = F (N ).6 Consequently, by
Theorem 1(b), the immediate predecessor function is defined on all nodes for game
trees with finite height.

3.3 Discrete extensive forms

In this subsection, we show that if one restricts attention to games on discrete trees,
a much simpler definition of an EDP can be obtained that is still equivalent to the
original one (Definition 1) for this class of trees. The key step is to replace the three
properties (EDP.ii), (EDP.iii), and (EDP.iv) by a single, but equivalent condition.

Definition 6 A discrete extensive form (DEF) is a pair (T, C), where T = (N ,⊇)

is a discrete game tree with set of outcomes W and C = (Ci )i∈I a system consisting
of collections Ci (the sets of players’ choices) of nonempty unions of nodes (hence,
sets of outcomes) for all i ∈ I , such that

(DEF.i) if P (c) ∩ P
(
c′) �= ∅ and c �= c′, then P (c) = P

(
c′) and c ∩ c′ = ∅, for

all c, c′ ∈ Ci for all i ∈ I ;
(DEF.ii) p−1 (x) = {

x ∩ (∩i∈J (x)ci
) ∣
∣(ci )i∈J (x) ∈ A (x)

}
, for all x ∈ X ;

where A (x) = ×i∈J (x) Ai (x) , Ai (x) = {c ∈ Ci |x ∈ P (c) } are the choices available
to i ∈ I at x ∈ X , and J (x) = {i ∈ I |Ai (x) �= ∅} is the set of decision makers at x ,
which is required to be nonempty, for all x ∈ X .

(DEF.i) is identical to (EDP.i), that is, the “information set property” that players
cannot deduce from the available choices at which move in the information set they
are. The second property is also fairly intuitive. (DEF.ii) says that, at any given move,
the combined decisions of the relevant players lead to a new node, and that any (imme-
diate) successor of the move can be selected by an appropriate combination of players’
decisions. (The intersection with the move x ∈ X is needed because of potentially
large information sets.)

Theorem 2 Let T = (N ,⊇) be a discrete game tree with set of outcomes W and
C = (Ci )i∈I a system consisting of collections Ci of nonempty unions of nodes for all
i ∈ I . The pair (T, C) is an EDP if and only if it is a DEF.

Proof What needs to be shown is that (EDP.ii), (EDP.iii), and (EDP.iv) are equivalent
to (DEF.ii), because (DEF.i) is precisely (EDP.i).

6 The converse is not true, not even in the class of discrete trees. All nodes can be finite, even though some
plays do not have finite length. This is, for instance, the case in Example 3, when the node {∞}, but not the
outcome ∞, is removed from the tree.
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“if:” Consider some x ∈ X and (ci )i∈J (x) ∈ A (x). By hypothesis there is some
y ∈ (↓ x) \ {x} such that p (y) = x and y = x ∩ (∩i∈J (x)ci

)
. As y �= ∅, (EDP.ii)

holds.
Next, consider y, y′ ∈ N such that y ∩ y′ = ∅. We claim that ↑ y∩ ↑ y′

has a minimum. If either y ∈ X or y′ ∈ X , this follows from Theorem 1(d).
Hence, suppose y, y′ ∈ E . If there is z ∈ (↑ y) \ {y} such that z /∈ (↑ y′) \ {

y′},
then z ∈ X and ↑ y∩ ↑ y′ ⊆↑ z and the desired conclusion follows, because
the latter chain is finite by Theorem 1(d). Therefore, we are left with the case
(↑ y)\{y} ⊆ (↑ y′)\{

y′}. Analogously, we obtain the reverse inclusion, that is, we can
assume (↑ y) \ {y} = (↑ y′) \ {

y′}. But that implies y, y′ ∈ S (N ) in contradiction to
Proposition 3.

Let x = min ↑ y∩ ↑ y′, and note that y ⊂ x and y′ ⊂ x . By Proposition 1(b) there
are z, z′ ∈ p−1 (x) such that y ⊆ z and y′ ⊆ z′. Let (ci )i∈J (x) ,

(
c′

i

)
i∈J (x)

∈ A (x) be

such that x ∩ (∩i∈J (x)ci
) = z and x ∩ (∩i∈J (x)c′

i

) = z′. Because z ∩ z′ = ∅, there
is some i ∈ J (x) such that ci �= c′

i . By (DEF.i) ci ∩ c′
i = ∅, which completes the

verification of (EDP.iii).
Let x ⊃ y ∈ N . By Proposition 1(b), there exists z ∈ p−1 (x) such that y ⊆ z. Let

(ci )i∈J (x) ∈ A (x) be such that z = x ∩ (∩i∈J (x)ci
)
. Then y ⊆ ci for all i ∈ J (x)

which verifies (EDP.iv).
“only if:” First, we claim that for any x ∈ X and (ci )i∈J (x) ∈ A (x) the intersection

x ∩ (∩i∈J (x)ci
)

is an element of p−1 (x).
By (EDP.ii) there is w ∈ W such that w ∈ x ∩ (∩i∈J (x)ci

)
. By Proposition 1(a),

there exists y ∈ p−1 (x) with w ∈ y. By (EDP.iv) there are c′′
i ∈ Ai (x) such that

y ⊆ c′′
i for all i ∈ J (x). Since w ∈ y ∩ (∩i∈J (x)ci

)
, (EDP.i) implies that c′′

i = ci for
all i ∈ J (x). Therefore, y ⊆ x ∩ (∩i∈J (x)ci

)
.

Suppose there is w′ ∈ (
x ∩ (∩i∈J (x)ci

)) \ y. Then by the same argument as before
there is y′ ∈ p−1 (x), disjoint from y by Proposition 1(a), such that w′ ∈ y′ ⊆
x ∩ (∩i∈J (x)c′

i

)
for some

(
c′

i

)
i∈J (x)

∈ A (x). Therefore, by (EDP.i) the choices ci and

c′
i must be disjoint for all i ∈ J (x). This contradicts the construction of w′. Therefore,

y = x ∩ (∩i∈J (x)ci
)
, completing the proof of the claim.

This shows that
{

x ∩ (∩i∈J (x)ci
) ∣
∣(ci )i∈J (x) ∈ A (x)

} ⊆ p−1 (x). To prove the
reverse inclusion, consider some y ∈ p−1 (x). By (EDP.iv) there are choices ci ∈
Ai (x) such that y ⊆ ci for all i ∈ J (x). Hence, y ⊆ x ∩ (∩i∈J (x)ci

)
. Since x ∩(∩i∈J (x)ci

) ∈ p−1 (x) by the previous claim, it follows from Proposition 1(a) that
y = x ∩ (∩i∈J (x)ci

)
.

Theorem 2 captures the following quasi-operational interpretation of an extensive
form. At every move x ∈ X each player i ∈ J (x) is told (by an “umpire”) which
choices c ∈ Ci she has available (in the sense that x ∈ P (c) , c ∈ Ci ) and asked to
select one of those. No other information is released to players. Given the decisions
by all players in J (x), taking the intersection gives a node, which becomes the new
“state” of the game.

The simplification associated with the transition from an EDP to a DEF may come
at a cost. Clearly, transfinite and continuous-time examples are excluded. But other
than that nothing is lost. This is the content of the next result.
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Theorem 3 If (T, C) is a DEF, then (A1) and (A2) hold.

Proof By Proposition 3, the tree T is regular. Since (T, C) is a DEF, the tree T is
up-discrete by definition. Hence, (A1) follows from Theorem 3 in AR2.

Property (A2) will follow from Theorem 5 and Proposition 7 of AR2 if (T, C) ful-
fills two properties introduced in that paper (see also Alós-Ferrer et al., forthcoming).
The first one, (EDP.ii’) (see Proposition 7 in AR2) is fulfilled by Corollary 3 and Prop-
osition 9 in AR2. The second, selectiveness (see Definition 6.2 in AR2) follows from
Proposition 6(b) and Lemma 5 in AR2. The first states that a regular tree is selective if
every history has a continuation with a maximum. The second implies that the latter
property follows from up-discreteness.

This theorem shows that DEFs satisfy the basic requirements for a well-founded
interpersonal decision theory. Furthermore, the definition of DEF is easier to verify
than that of an EDP because the four properties collapse to two.

Another simplification is already implicit in the definition of an EDP (Definition
3). The original definition of extensive forms games by Selten (1975) required that the
set of decision makers at any move contains exactly one player. In this case (DEF.ii)
reduces to p−1 (x) = {x ∩ c |c ∈ A (x) } for any x ∈ X . For simultaneous decisions
this leads to cascading information sets. This is allowed but not necessary in the present
framework, which encompasses games where several players may decide at the same
move.7 This, for instance, simplifies the extensive form representation of an infinitely
repeated game. Furthermore, consider the following examples.

Example 8 (Nonatomic games) Let the player set be a continuum, e.g., I = [0, 1].
All players choose simultaneously from a set A with at least two elements. This can
be formalized by taking as the set of outcomes W the set of functions f : [0, 1] → A.
Each player i ∈ I faces the choices ci (a) = { f ∈ W | f (i) = a } for all a ∈ A. It
is straightforward to check that (DEF.i) and (DEF.ii) are fulfilled. That is, nonatomic
games are discrete games. The traditional cascading information sets would give rise to
a tree of staggering complexity, when compared to the simplicity of the formalization
proposed here.8

Example 9 Spence’s job-market signalling model (Spence 1973) serves as an example
on how the present approach may simplify the analysis of equilibria. In that model
chance initially assigns a productivity (type) θ ∈ {θL , θH }, where 0 < θL < θH , to

7 An alternative formalization that allows several players to choose at the same move has been introduced
by Selten (1999).
8 More generally, any normal-form game is automatically associated to a natural (trivial) extensive form.
For games with a continuum of players (see e.g., Mas-Colell 1984; Carmona 2009), of course, other prob-
lems remain. For instance, straightforward aggregation of a continuum of independent mixed strategies is
prevented by the failure of the law of large numbers for such a framework. This problem can be bypassed
in the very definition of the mixed extension of the game, by e.g., changing the concept of aggregation as
in Uhlig (1996). Khan and Sun (1999) proposed abandoning the standard continuum framework in favor
of a hyperfinite agent set. More recently, Podczeck (2010) shows that the law of large numbers holds in
appropriately extended probability spaces, without the recourse to constructions from nonstandard analysis.
A closely related problem is the rigorous mathematical foundation of models involving random matching
of a continuum of agents (Alós-Ferrer 1999; Podczeck and Puzzello forthcoming).
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a potential “worker”. The prospective employee then decides on an education level
e ∈ R+ in order to signal her productivity. This signal, but not the productivity, is
observed by “a competitive industry” which then offers a wage w ∈ [θL , θH ]. This
wage is equal to the expected productivity, given some beliefs conditional on the
observed signal. To complete the specification of an extensive form game, assume two
firms, who compete à la Bertrand by offering wages to the worker, who in turn chooses
among wage offers. In any subgame perfect equilibrium, the worker will choose the
highest offer, and Bertrand competition will imply that both firms offer a wage equal
to expected productivity.

This guarantees that the productivities expected by the two firms are equal along
the equilibrium path. The natural equilibrium concept for this game, perfect Bayesian
equilibrium (PBE), does not force the two firms to hold the same beliefs off the equilib-
rium path, though. The stronger criterion of sequential equilibrium (Kreps and Wilson
1982)—that does not apply to this game, since it is only defined for finite games—
by contrast would imply equal beliefs across firms even at unreached information
sets—the “common belief property.” But PBE does not.9

This problem is complicated when simultaneous moves are captured by cas-
cading information sets; see e.g., the graphical representation by Mas-Colell et al.
(1995, p. 451). For this example, both firms move simultaneously after observ-
ing education level e. For the classical representation, outcomes are ordered four-
tuples (θ, e, w1, w2) ∈ {θL , θH } × R+ × [θL , θH ] × [θL , θH ] = W , assuming
that firm 1 “moves first” and ignoring the last (trivial) decision by the worker.
When xt (e) = {w ∈ W |θ = θt , e = e } denotes the node where type t = L , H has
chosen e ∈ R+, firm 1’s beliefs are μ1 (e) = (μ1 (xL (e)) , μ1 (xH (e))) ∈ �1,
where �1 is the one-dimensional simplex. Firm 2 “moves second” at her (infinite)
information set g2 (e) = {yt (e, w1) |t = L , H, w1 ∈ [θL , θH ] }, with yt (e, w1) =
{w ∈ W |θ = θt , e = e, w1 = w1 } denoting the node reached after type t = L , H
has chosen e ∈ R+ and firm 1 has offered w1 ∈ [θL , θH ]. Her beliefs are then given
by a probability measure μ2 (· |e ) : g2 (e) → R+.

This specification is void of economic content, but complicates the “common
belief property,” because it becomes necessary in a PBE to specify beliefs of firm
2 on the wage offered by firm 1 (and, out of equilibrium, nothing pins down such
beliefs). Common beliefs are captured by the statement that the probability mass
μ2 ({yt (e, w1) |w1 ∈ [θL , θH ] } |e ) numerically equals the probability μ1 (xt (e)), for
t = L , H for all e ∈ R+. The beliefs μ1 and μ2 are radically different formal objects!

Since the present formulation allows us to replace cascading information sets by
players deciding at the same move, the natural representation is much simpler. Out-
comes become triplets (θ, e, (w1, w2)) ∈ {θL , θH } × R+ × [θL , θH ]2 = W and all
nodes xt (e) are directly followed by terminal nodes (the nodes yt (e, w1) are dispensed
with). The information sets g (e) = {xt (e) |t = L , H } (common to both firms) consist

9 Admittedly, there is no universally accepted definition of PBE for general extensive form games. Mas-
Colell et al. (1995, p. 450) avoid this problem by incorporating the equality of beliefs in their definition of
PBE for its use in signaling games of the Spence type. From the theoretical point of view this is, of course,
unsatisfactory.
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of two nodes, beliefs for both firms are μ1 (e) , μ2 (e) ∈ �1, and the common beliefs
property is captured by the statement μ1 (e) = μ2 (e) for all e ∈ R+.

Another implication of Theorem 3 is that DEFs can be represented in normal form
(without payoffs). This raises issues about equivalences between DEFs.

Thompson (1952) introduced four transformations that define equivalence rela-
tions on the set of finite extensive form games (see also Dalkey 1953).10 He showed
that these transformations jointly characterize another equivalence relation, given by
agreement of the semi-reduced (or pure-strategy reduced) normal form. An important
objective for future research is to extend such a characterization to DEFs.

A first difficulty with such an endeavor is that the proofs use finite recursive algo-
rithms. A second, and probably more severe, obstacle is that one of Thompson’s
transformations, “deletion of irrelevant decision points,” relies on payoffs. Then, the
best that one can hope for is a characterization of the equivalence relation on DEFs
given by agreement of triplets of the form (S, W ′, φ), where S = ×i∈I Si is the space
of pure strategy combinations, W ′ is a quotient space of outcome equivalence classes,
and φ : S → W ′ a surjection. (Such a triplet may be called a “normal form,” delib-
erately dropping the word “game.”) The conceptual difficulty with such an approach
is that the equivalence relation on outcomes would have to imply that all players are
indifferent between outcomes in one equivalence class. And this is a statement about
the players’ preferences, and not about the representation. On the other hand, no game
is complete without a specification of the players’ preferences. Therefore, studying
Thompson transformations in the context of games represented by DEFs remains on
our agenda.

4 Discrete games when nodes are primitives

Traditional formulations for extensive form games rely on representing the tree by a
graph. It turns out that this is encompassed by the present framework. In this section,
we aim to show how DEFs translate into a graph representation. However, a few sub-
tleties appear in the transition to a graph representation. Those have to do with the role
of terminal nodes.

In a game tree, the set of plays can be identified with the set of underlying outcomes,
thus making it the natural domain for preferences or payoff functions. Of course, for
trees of finite height, plays are one-to-one with the set of terminal nodes. On the
other hand, for infinite-horizon games, this equivalence may break down, since it is
not guaranteed that all plays correspond to terminal nodes. For example, in the infi-
nite centipede (Example 3), the infinite terminal node {∞} could be removed without
affecting the structure of the game tree. This implies that there is some freedom in how
one constructs the graph representation. To find a simple representation, one needs to
know how far the graph can be “pruned” without affecting the structure of the game.
This is what we study in the next subsection.

10 One of Thompson’s transformations, “inflation/deflation,” does not preserve perfect recall. This has
prompted Elmes and Reny (1994) to drop it and reformulate another one so that perfect recall is maintained.
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4.1 Singletons and plays

Recall that a node is terminal if and only if it is a singleton (Lemma 3(b) in the
Appendix). This implies that X = N \ {{w}}w∈W is an alternative definition of (the
set of) moves for a game tree. This does not mean, however, that {w} ∈ N for all
w ∈ W . The intersection of the elements of an infinite chain of nodes may con-
tain only a single element w ∈ W , even though the singleton {w} does not belong
to N . It was shown in AR1 (Proposition 10) that the singletons from the underly-
ing set W can be added (e.g., for repeated games) to the set of nodes, as “termi-
nal nodes,” without affecting the structure of the tree. This is clearly the case in
the infinite centipede where, if the node {∞} were absent, it could be added with-
out changing the set of plays/outcomes. Define a complete game tree as one where
{w} ∈ N for all w ∈ W . That is, any game tree can be “completed” by adding
singletons.

In Examples 3, resp. 4 the infinite terminal nodes {∞} resp. {1} could be removed
without affecting the structure of the tree. Example 5, though, features terminal nodes
that cannot be removed without changing the tree. This is so, because the terminal
nodes {0} and {1} in Example 5 are not infinite nodes.

Finite and strange nodes cannot be removed. For, any node x ∈ F (N )∪S (N ) , x �=
W , satisfies x ⊂ ∩y∈(↑x)\{x}y (by definition if it is finite or by Lemma 4(c) in the
Appendix if it is strange), so that there are w ∈ x and w′ ∈ (∩y∈(↑x)\{x}y

) \ x . There-
fore, if x ∈ (S (N ) ∪ F (N )) ∩ E were removed, then in the resulting tree w ∈ y
would imply w′ ∈ y (because y ∈ (↑ x)\{x} in the original tree) for all y ∈ N \{x} in
contradiction to (GT.ii).11 Hence, if at all, only infinite terminal nodes may be removed
without harm.

The following result states that infinite terminal nodes can indeed be removed from
a game tree without affecting its structure. The resulting tree has the same order-the-
oretic structure as the original tree and essentially the same plays. Furthermore, if the
resulting set tree is completed by adding the now-missing singletons, the original game
tree reemerges. In other words, for game trees infinite terminal nodes are precisely
those, the presence or absence of which is immaterial to the structure of the tree.

Proposition 4 If (N ,⊇) is a complete game tree with set of outcomes W , then for
every set of infinite terminal nodes Y ⊆ E ∩ I (N ) ≡ EI the partially ordered set
(N \ Y,⊇) is a game tree with set of outcomes W ′, the mapping ϒ : W → W ′ given
by ϒ(w) = w \Y is bijective, and if (N \ Y,⊇) is completed by adding all singletons,
the result is the complete game tree (N ,⊇).

4.2 Simple trees

Proposition 4 shows that infinite terminal nodes may be suppressed without affecting
the structure of the tree. Doing so allows us to go further and give a definition of
discrete trees which uses nodes as primitives. Such a definition of a “simple tree” as

11 In order to recover (GT.ii), one would need to remove also the element w from the underlying set W .
But this, of course, changes the structure of the tree by changing the set of outcomes/plays.
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an ordered set of nodes relies on two additional facts. First, it is known from AR1 that
trees as partially ordered sets give rise naturally to trees as collections of subsets of an
underlying set (of outcomes/plays). Second, Theorem 1(d) yields that discreteness can
be characterized by finiteness of the sets of predecessors of moves. (In the following
definition the symbol ≥ denotes the predecessor relation.)

Definition 7 A simple tree T = (N ,≥) is a partially ordered set (the elements of
which are called nodes) with a maximum x0 ∈ N (called the root) such that

(ST.i) for all x ∈ N , the set ↑ x = {y ∈ N |y ≥ x } is a finite chain;
(ST.ii) for all x, y ∈ N , if x > y then there exists z ∈ N such that x > z and

neither y ≥ z nor z ≥ y;

where > denotes the strict order derived from ≥ (i.e. x > y ⇔ x ≥ y �= x).

For a simple tree, the set of moves is given by X = {x ∈ N |∃ y ∈ N : x > y }.
The following result clarifies in which sense the above definition is equivalent to the
concept that has been developed in the previous Section.

Proposition 5 (a) Let T = (N ,≥) be a simple tree and W the set of plays (maxi-
mal chains) for T . If W (N ) = {W (x)}x∈N is the collection of all sets W (x) =
{w ∈ W |x ∈ w } with x ∈ N, then T ′ = (W (N ),⊇) is a discrete game tree (with
underlying set W ) that is order-isomorphic12 to T with all nodes finite. Further,
(W (N ) ∪ {{w} |w ∈ W } ,⊇) is a complete game tree (which may have infinite
terminal nodes).

(b) Let T ′ = (N ,⊇) be a discrete game tree, and let F(N ) be its set of finite nodes.
Then, T = (F(N ),⊇) is a simple tree.

In summary, the transition from simple trees as defined above to (complete) discrete
game trees is a mere modeling decision. The only relevant difference is that, in simple
trees, infinite terminal nodes are not included.

The order relation ≥ in Definition 7 cannot directly be replaced by set inclusion,
because the resulting object might not be a game tree. The reason is that, with such a
definition, nodes may contain elements which are irrelevant in the sense that they do
not correspond to any play.13

Most textbook expositions use trees where, as in simple trees, nodes are taken as
the primitives. An exception is Ritzberger (2002), where discrete trees are used with
nodes as sets of outcomes as in Definition 1. A prominent example for simple trees in
a textbook treatment are the trees used by Osborne and Rubinstein (1994).

Example 10 (Osborne-Rubinstein trees) Let A be an arbitrary set of “actions” and Z
a set of (finite or infinite) sequences from A such that (a) ∅ ∈ Z , (b) if (aτ )

t
τ=1 ∈ Z

(where t may be infinity) and k < t , then (aτ )
k
τ=1 ∈ Z , and (c) if an infinite sequence

(aτ )
∞
τ=1 satisfies (aτ )

t
τ=1 ∈ Z for every positive integer t , then (aτ )

∞
τ=1 ∈ Z .

12 This means that x ≥ y if and only if W (x) ⊇ W (y), for all nodes x, y ∈ N .
13 The resulting tree fails to be its own set representation by plays in the sense of AR1, so that (W (N ), ⊇)

might have a simpler structure than T .
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The set W of outcomes is given by W = WF ∪W∞ where WF is the set of maximal
and finite sequences in Z and W∞ is the set of infinite sequences in Z .

The ordering on nodes is given by (aτ )
t
τ=1 ≥ (

a′
τ

)k
τ=1 if t ≤ k and aτ = a′

τ for all
τ = 1, . . . , t , and ∅ ≥ z for all z ∈ Z . Then, (Z ,≥) is a (rooted) tree, satisfying (ST.i).
It may fail (ST.ii), though, because a given node may only be followed by a single
other node.14 This can be fixed by adding the following condition: (d) If (aτ )

t
τ=1 ∈ Z ,

then there exists a′
t �= at such that

(
(aτ )

t−1
τ=1 , a′

t

)
∈ Z . Under this condition, (Z ,≥)

is a simple tree.
Let N be formed by the singletons {{w}}w∈W∞ together with all sets of the form

W (z) = {w ∈ W |z ⊆ w } for all finite sequences z ∈ Z . Then (N ,⊇) is order-iso-
morphic to (Z ,≥) and a discrete game tree. (Notice that W (∅) = W .)

For a simple tree (N ,≥) the immediate predecessor of a node x ∈ N \ {x0} is given
by p̂ (x) = min (↑ x) \ {x}, in analogy to the definition of immediate predecessor
in game trees. The immediate predecessors of a set c ⊆ N of nodes are given by
p̂(c) = {

p̂(x) |x ∈ c
}
. Accordingly, p̂−1 (c) = ∪x∈c p̂−1 (x) for a set c of nodes.

Moves x ∈ X are defined by the condition p̂−1 (x) �= ∅.
For a set of nodes c in a simple tree, W (c) denotes the image of c under the map-

ping W (·), i.e. W (c) = {W (x) |x ∈ c } is a set of nodes in the set representation
(W (N ) ,⊇) as given by Proposition 5(a). In order to distinguish it from the union,
V (c) = ∪x∈cW (x) denotes the union.

Definition 8 A simple extensive form with player set I is a pair (T, C), where T =
(N ,≥) is a simple tree and C = (Ci )i∈I consists of collections Ci of sets of nodes
such that

(SF.i) if p̂ (c) ∩ p̂
(
c′) �= ∅ and c �= c′, then p̂ (c) = p̂

(
c′) and c ∩ c′ = ∅, for all

c, c′ ∈ Ci and all i ∈ I ;
(SF.ii)

{{y} ∣
∣y ∈ p̂−1 (x)

} = {
p̂−1 (x) ∩ (∩i∈J (x)ci

) ∣
∣(ci )i∈J (x) ∈ A (x)

}
, for all

x ∈ X ;
(SF.iii) no choice c ∈ Ci contains two distinct ordered nodes;
(SF.iv) for every move x ∈ X and every choice c ∈ Ci , p̂−1(x) \ c �= ∅;

where A (x) = ×i∈J (x) Ai (x) , Ai (x) = {
c ∈ Ci

∣
∣x ∈ p̂ (c)

}
are the choices avail-

able to i ∈ I at x ∈ X , and J (x) = {i ∈ I |Ai (x) �= ∅} is the set of decision makers
at x , which is required to be nonempty, for all x ∈ X .

(SF.i) is the direct translation of (DEF.i), the “information set property.” (SF.ii) is
the version with nodes of (DEF.ii). Properties (SF.iii) and (SF.iv) are required here
because now choices are not sets of outcomes anymore. If they were sets of outcomes
(as in Definition 3) such conditions would be unnecessary.

The combination of properties (SF.i) to (SF.iii) implies Kuhn’s exclusion of absent-
mindedness (Kuhn 1953). Absent-mindedness allows the “state” that obtains (the move
in the information set at which the player is called upon to choose) to depend on the
decision maker’s choice.

14 In the terminology of AR1, Osborne-Rubinstein trees may not be decision trees.
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Lemma 1 Let T = (N ,≥) be a simple tree and let (T, C) be a simple extensive
form. If c ∈ Ci is a choice, then the information set p̂(c) does not contain two distinct
ordered nodes.

A property like (SF.iii) would be redundant if choices were sets of outcomes. For,
in that case, if a choice covers the outcomes in a node, then it must cover all outcomes
in all successors thereof. This is not the case when choices are sets of nodes.

The proof of Lemma 1 does not use property (SF.iv). The latter is a non-triviality
requirement, which forbids that a choice contains all immediate successors of a given
move. In such a situation, if choices were sets of outcomes, the choice would have to
include that move, and hence the problem cannot arise.

Property (SF.iv) is necessary for the next Lemma, which allows us to translate the
choices from a simple extensive form on a simple tree T = (N ,≥) into choices in the
set representation by plays (W (N ),⊇) given by Proposition 5(a). In this representa-
tion, nodes are sets of plays (maximal chains) of T , that is, the representation has the
set of plays of T as the underlying set. For sets of plays a that are unions of nodes of
W (N ), Proposition 2 gives the decomposition N (a) that consists of nodes in W (N )

that are maximal in a (see (6)).

Lemma 2 Let T = (N ,≥) be a simple tree, W the associated set of plays (maximal
chains), and (T, C) a simple extensive form. If c ∈ Ci is a choice, then

(a) N (V (c)) = {W (x) |x ∈ c }, where V (c) = ∪x∈cW (x);
(b) P(V (c)) = W

(
p̂(c)

)
, where W (Y ) = {W (y) |y ∈ Y } for any Y ⊆ N.

The following result states that simple extensive forms are the translation of EDPs
from discrete game trees to the corresponding simple trees.

Proposition 6 (a) Let (T, C) be a simple extensive form with player set I and T ′ =
(W (N ) ,⊇) the set representation given by Proposition 5(a). If C ′ = (

C ′
i

)
i∈I

with C ′
i = {V (c) |c ∈ Ci } for all i ∈ I , then

(
T ′, C ′) is an EDP on a discrete

game tree.
(b) Let

(
T ′, C ′) be an EDP with player set I on a discrete game tree T ′ = (N ,⊇) and

T = (F (N ) ,⊇) the associated simple tree from Proposition 5(b). If C = (Ci )i∈I
with Ci = {

N
(
c′) ∩ F(N )

∣
∣c′ ∈ C ′

i

}
for all i ∈ I , where N (c′) is as in Propo-

sition 2, then (T, C) is a simple extensive form.

This final result allows one to go back and forth between an extensive form repre-
sentation with a simple tree, where nodes are the primitives, and one with a discrete
game tree, where plays/outcomes are the primitives.

Example 11 Reconsider Example 9, Spence’s job-market signalling model. Now the
nodes are the primitives, hence identify plays/outcomes w ∈ W with terminal nodes
z (θ, e, (w1, w2)) ∈ Z , denote the root by x0, and keep the notation xt (e) for the
firms’ moves. Choices by firms are now sets of nodes, c1 (w1) = {z ∈ Z |w1 = w1 }
and c2 (w2) = {z ∈ Z |w2 = w2 }. Choices for the worker of type t = L , H are the
singletons ct (e) = {xt (e)}. The verification of conditions (SF.i-iv) is straightforward.

123



96 C. Alós-Ferrer, K. Ritzberger

5 Conclusions

Many applications of extensive form games to economics involve large action spaces
and/or a long time horizon. The traditional definitions of extensive forms, on the other
hand, are restricted to finite games. While some of the theoretical constructs, e.g.,
belief-based refinements of Nash equilibria, depend on finiteness, we argue that the
basic objects of extensive form analysis do not. In this paper, we propose a self-con-
tained definition of extensive forms that encompasses all commonly used general-
izations (with the exception of transfinite games and continuous-time problems), in
particular games with continuum action spaces and/or an infinite time horizon.

We show that this definition satisfies the two basic desiderata that every strategy
combination induces an outcome and that it does so uniquely. Moreover, the freedom
to take plays or nodes as the primitives is preserved.

The appropriate substitute for finiteness turns out to be a discreteness property
“along the time axis.” This can be characterized by the existence of an immediate
predecessor function on the set of moves in the tree. Intuitively, this means that for
every decision point, its history can be uniquely reconstructed in a finite number of
steps.

An important consequence of this characterization is a dramatic simplification of
the formal framework. An extensive form can be fully specified by two objects, the
tree and the players’ choices, and two consistency conditions: that the decisions of the
relevant players at any given move lead to a new node (new state of the game) and
that players cannot deduce from available choices where they are in an information
set. Despite its simplicity, a “discrete extensive form” imposes no constraints on its
practical applicability.

Appendix: Proofs

Lemma 3 Let T = (N ,⊇) be a game tree.15

(a) If x ∈ N contains at least two distinct elements, then for each w ∈ x there is a
node x ′ ∈ N such that w ∈ x ′ ⊂ x;

(b) a node x ∈ N is terminal if and only if there is w ∈ W such that x = {w}.
Proof (a) Let w,w′ ∈ x ∈ N such that w′ �= w. By (GT.ii) there is x ′ ∈ N such that
w ∈ x ′, but w′ /∈ x ′. As w ∈ x ∩ x ′, but w′ ∈ x \ x ′, (GT.i) implies that x ′ ⊂ x . (b)
The “if”-part is trivial. The “only if”-part follows from (a).

Lemma 4 Let (N ,⊇) be a game tree. A node x ∈ N \ {W } is

(a) the infimum of a chain h ∈ 2N if and only if x = ∩y∈h y;
(b) infinite if and only if x = ∩y∈(↑x)\{x}y;
(c) strange if and only if (↑ x) \ {x} has no minimum and x ⊂ ∩y∈(↑x)\{x}y;

15 This result also holds for all irreducible W -set trees, where irreducibility is (GT.ii) from Definition 1
(see AR1 for a definition of W -set trees). Part (b) corresponds to Lemma 1 in AR2.
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(d) Further, x is not infinite (that is, it is either finite or strange) if and only if

for every chain h ∈ 2N , if x ⊇ ∩y∈h y then x ⊇ y for some y ∈ h. (8)

Proof Parts (a), (b), and (c) are proved in AR2 (Lemma 2). To see the “if”-part of (d)
let x be an infinite node. Consider the chain h = (↑ x) \ {x}. By (b), x = ∩y∈h y, but
x ⊂ y for all y ∈ h, so that (8) cannot hold. For the “only if”-part suppose that x
fails (8). There exists a chain h in N such that x ⊇ ∩y∈h y, but there is no y ∈ h such
that x ⊇ y. Since x ⊇ ∩y∈h y implies x ∩ y �= ∅ (because ∩y∈h y �= ∅, by the “only
if”-part of (GT.i)) for all y ∈ h, it follows from the “if”-part of (GT.i) that x ⊂ y for
all y ∈ h, i.e. y ∈ (↑ x) \ {x} for all y ∈ h. Thus, x ⊇ ∩y∈h y ⊇ ∩y∈(↑x)\{x}y ⊇ x .
Hence, x is infinite.

Remark 1 A (meet-)CPO is a poset with a top element (a maximum) such that all
“directed” sets have an infimum. Alós-Ferrer and Ritzberger (2005a) show that in a
tree the only directed sets are the chains. In a CPO finite elements are defined as those
elements such that if x ⊇ inf h, then x ⊇ y for some y ∈ h, whenever h is directed. By
Lemma 4(a), for game trees the infimum is actually the intersection, giving rise to part
(d) of Lemma 4. In game trees the finite elements of CPOs translate into non-infinite
nodes. Interestingly, it is possible to show that if a tree is a CPO, then it must be a
complete (join-)semilattice (see Alós-Ferrer and Ritzberger 2005a).

Proof of Proposition 1

(a) For every w ∈ x ∈ X , the set Mw (x) = {y ∈ N |w ∈ y ⊂ x} is nonempty by
Lemma 3(a) and a chain by the “if” -part of (GT.i). By up-discreteness there is
xw = max Mw (x) for all w ∈ x . If w,w′ ∈ x are such that xw ∩ xw′ �= ∅, then
by construction and (GT.i) xw = xw′ . This shows that M (x) = {xw |w ∈ x } is a
partition of x with each element maximal among the nodes in (↓ x) \ {x}. Note
that, if y is maximal among the nodes properly contained in x then necessarily
x = min (↑ y) \ {y}, hence, y ∈ F (N ) and y ∈ p−1 (x) �= ∅. Conversely, if
y ∈ p−1 (x) then y = xw for any w ∈ y. We conclude that M (x) = p−1 (x).

(b) Let z = max (↑ y) \ (↑ x), which exists by up-discreteness.

Proof of Proposition 2

(a) For any w ∈ a let Nw (a) = {x ∈↓a |w ∈ x }. By the “if”-part of (GT.i) Nw (a)

is a chain that is nonempty, because a ∈ A (T ). By up-discreteness there is
xw = max Nw (a) for all w ∈ a. If w,w′ ∈ a are such that xw ∩ xw′ �= ∅, then
by construction and (GT.i) xw = xw′ . This shows that N (a) = {xw |w ∈ a } is a
partition of a with each element maximal among the nodes in ↓a.

(b) Let x ∈ N be such that ↑ x = (↑ y) \ (↓a) for some y ∈↓a, that is, x ∈ P (a) as
in (3). It follows that x /∈↓a and x ∈ X , because y ∈ (↓ x) \ {x}. Let w ∈ y and
consider xw as in (a). By construction, p(xw) = x , implying that xw ∈ F(N ).
Thus, P (a) ⊆ {p (x) |x ∈ N (a) ∩ F(N ) }
Let xw ∈ N (a) ∩ F(N ) and x = p(xw). Then xw ∈↓a and ↑ x = (↑ xw) \ ↓a,
that is x ∈ P (a). We conclude that P (a) = {p (x) |x ∈ N (a) ∩ F(N ) }.
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Proof of Proposition 3 Consider a down-discrete game tree. By definition (↑ x) \ {x}
always has an infimum, so there are no strange nodes. Moreover, if (↑ x) \ {x} has no
minimum, x must be its infimum and, therefore, x is terminal. If, conversely, a game
tree is regular and all moves are finite, then for every x ∈ X there exists min (↑ x)\{x}
by the definition of finite nodes; furthermore, any non-finite node x ∈ N \ F (N ) must
then be terminal and the infimum of (↑ x) \ {x} by Lemma 4(a) and (b), as there are
no strange nodes by regularity.

Proof of Proposition 4 Recall that, since (N ,⊇) is a (complete) game tree, one can
take the set W both as the set of plays and as the underlying set (Theorem 3 of AR1). W
is also the underlying set of (N \ Y,⊇). The “if”-part of (GT.i) for (N ,⊇) is trivially
inherited by (N \ Y,⊇). If h is a chain in N \ Y , then it is a chain in N and, therefore,
has a lower bound in W ; that is, there is w ∈ ∩x∈h x , because (N ,⊇) is complete.
Thus (N \ Y,⊇) satisfies also the “only if”-part of (GT.i).

To verify (GT.ii), let v, v′ ∈ W be such that v �= v′. By (GT.ii) for (N ,⊇) there
are x, x ′ ∈ N such that v ∈ x \ x ′ and v′ ∈ x ′ \ x . If x, x ′ ∈ N \ Y , we are done. If
x ∈ Y ⊆ EI then by Lemma 3(b) x = {v}. Since x is infinite, {v} = ∩y∈(↑ x)\{x}y by
Lemma 4(b). Thus, there is z ∈ (↑ x) \ {x} such that v ∈ z and v′ /∈ z. If x ′ ∈ N \ Y
then v ∈ z\x ′ and v′ ∈ x ′ \z, as required. If x ′ ∈ Y ⊆ EI then, analogously, x ′ = {

v′}

and there is z′ ∈ (↑ x ′) \ {
x ′} such that v′ ∈ z′ and v /∈ z′. Hence, (N \ Y,⊇) satisfies

(GT.ii) and is a game tree.16

Let w′ ∈ W ′. If w′ ∈ W , there is a unique play for (N ,⊇), namely w′ itself, such
that ϒ(w′) = w′. If w′ /∈ W then there is y ∈ Y such that w′ ∪ {y} is a chain for
(N ,⊇). Because y ∈ Y ⊆ EI , by Lemma 3(b) y = {v} for some v ∈ W . Therefore,
v ∈ x for all x ∈ w′, since w′ ∪ {y} is a chain. Since (N \ Y,⊇) is a game tree, The-
orem 3(c) of AR1 implies that (↑{v}) \ {{v}} ∈ W ′ is a play (because {v} /∈ N \ Y ),
so that w′ ⊆ (↑ y) \ {y} and maximality imply w′ = (↑ y) \ {y}. Because y is infinite,
y = ∩x∈w′ x by Lemma 4(b), and there can be no other y′ ∈ Y \{y} such that w′ ∪{

y′}

is a chain for (N ,⊇). Therefore, w = w′ ∪ {y} is the unique play for (N ,⊇) such that
ϒ(w) = w′. Since this shows that every element of W ′ has a unique preimage under
ϒ , this mapping is bijective.

Finally, as all terminal nodes are singletons by Lemma 3(b), adding to (N \ Y,⊇)

all singletons must yield the (complete) game tree (N ,⊇) with all singletons present.

Proof of Proposition 5 (a) Note that (W (N ),⊇) is the “image in plays” introduced
in AR1 (Section 2.4). Conditions (ST.i) and (ST.ii) imply that T is a decision tree
(see AR1, Section 2.3) and that T ′ = (W (N ),⊇) is order-isomorphic to T . Next, it
is shown that T ′ is a game tree. To see (GT.i), let h′ be a chain in W (N ). By order
isomorphism, there exists a chain h in T such that h′ = {W (x) |x ∈ h }. Since h is
contained in some maximal chain w ∈ W by the Hausdorff Maximality Principle,
it follows that w ∈ W (x) for all x ∈ h, as required by the “only if”-part of (GT.i).
To see the “if”-part, let h′ be a subset of W (N ) such that there exists some w ∈ W
with w ∈ W (x) for all W (x) ∈ h′. It follows that the set h in T such that h′ =
{W (x) |x ∈ h } is a chain, thus also h′ is a chain.

16 Since the underlying set has not changed, Theorem 3 of AR1 implies that the sets of plays in the new
and the former trees are bijective. The present proof, however, is constructive.
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Now turn to (GT.ii). Let w,w′ ∈ W with w �= w′. Since w and w′ are maximal
chains in T , there exist x, x ′ ∈ N such that x ∈ w and x ′ ∈ w′, but x /∈ w′ and x ′ /∈ w.
It follows that w ∈ W (x) \ W (x ′) and w′ ∈ W (x ′) \ W (x). Thus, (GT.ii) also holds.

It has been shown that T ′ is a game tree. By the existence of a maximum in T, T ′
is rooted. By (ST.i) and order isomorphism ↑W (x) is finite and hence W (x) is a finite
node for all W (x) ∈ W (N ). Thus T ′ is regular and rooted, and, by Theorem 1, it is
discrete.

(b) The existence of a maximum follows from the fact that T ′ is rooted. (ST.i)
follows from (GT.i) and Theorem 1. Finally consider (ST.ii). This condition is Sepa-
rability in AR1, which is fulfilled in any game tree (see AR1, Lemma 8 and Definition
4). Hence, for x, y ∈ F(N ) with x > y it follows that there exists z ∈ N with x > z
such that neither y ≥ z nor z ≥ y. If z /∈ F(N ), then by definition it follows that there
must exist z′ ∈ F(N ) with x > z′ > z such that neither y ≥ z′ nor z′ ≥ y.

Proof of Lemma 1. Suppose x, y ∈ p̂(c) with x > y for c ∈ Ci . Note that this implies
that i ∈ J (x) ∩ J (y). The chain (↑ y) \ (↑ x) is finite by (ST.i) and, therefore, has
a maximum z, which fulfills x > z ≥ y. By construction, z ∈ p̂−1(x). Therefore,
(SF.ii) implies that there is a choice c′ ∈ Ci such that c′ ∈ Ai (x) and z ∈ c′.

If c = c′, then z ∈ c. Since y ∈ p̂(c), there exists a y′ ∈ p̂−1(y) ∩ c. But then
z ≥ y > y′ and z, y′ ∈ c contradict (SF.iii). It follows that c �= c′.

Since x ∈ p̂(c)∩ p̂(c′) and c �= c′, (SF.i) implies that p̂(c) = p̂(c′) and c ∩ c′ = ∅.
Then, y ∈ p̂(c) implies y ∈ p̂(c′). By (SF.ii), there is a y′′ ∈ p̂−1(y) ∩ c′. Thus,
z ≥ y > y′′ with z, y′′ ∈ c′ contradicts (SF.iii).

Proof of Lemma 2. (a) We first show that, for any x ∈ c, W (x) ∈ N (V (c)). Since
W (x) ⊆ ∪x ′∈cW (x ′) = V (c), it remains to show that it is actually maximal in that
set. Suppose not. Then, there exists y ∈ N such that y > x and W (y) ⊆ V (c). By
(SF.iii), y /∈ c.

Construct a chain of nodes iteratively as follows. Let z0 = y. For every k =
1, 2, . . . , by (SF.iv), there exists a zk ∈ p̂−1 (zk−1) such that zk /∈ c. The chain
{z0, z1, . . . , } is either infinite or it ends at a terminal node zK . Let w be a play con-
taining this chain. Then w ∈ W (y) ⊆ V (c). Therefore there exists zw ∈ c such that
w ∈ W (zw).

We claim that zk > zw for all k = 0, 1, . . . , and prove this inductively. Since
y, zw ∈ w and w is a chain, either zw ≥ y or y > zw. In the first case, zw ≥ y > x but
x, zw ∈ c, which contradicts (SF.iii). Therefore z0 = y > zw. By induction, suppose
zk−1 > zw. Since zk, zw ∈ w and w is a chain, either zw ≥ zk or zk > zw. In the first
case, zk−1 > zw ≥ zk . Since p̂ (zk) = zk−1, by definition of p̂, we have that zw = zk ,
which contradicts zk /∈ c. Hence zk > zw, completing the argument.

It follows that the chain {y, z1, z2, . . . , } is contained in ↑ zw. Since the latter is
finite by (ST.i), the chain must end in a terminal node zK , which contradicts zK > zw.

This shows that the nodes W (x) with x ∈ c are maximal in V (c). Conversely, let
z ∈ W (N ) be maximal in V (c) = ∪x ′∈cW (x ′). Then, there exists some x ∈ c such
that z ∩ W (x) �= ∅, which by (GT.i) in the set representation and maximality of z in
W (x) implies z = W (x).
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(b) By Proposition 2(b), P (V (c)) = {P(W (x)) |x ∈ c } = {
W

(
p̂(x)

) |x ∈ c
} =

W
(

p̂(c)
)
. The second equality follows from P(W (x)) = W

(
p̂(x)

)
, which follows

from the order isomorphism in Proposition 5(a).

Proof of Proposition 6. (a) By Theorem 2 it only needs to be shown that (DEF.i) and
(DEF.ii) hold for

(
T ′, C ′).

To see (DEF.i), let V (c1), V (c2) ∈ C ′
i for some i ∈ I be such that V (c1) �= V (c2),

hence c1 �= c2, and P (V (c1))∩ P (V (c2)) �= ∅. We wish to show that p̂(c1)∩ p̂(c2) �=
∅. To see this, let W (x) ∈ P (V (c1))∩P (V (c2)). By definition of P , for k = 1, 2 there
exists W (yk) ∈↓V (ck) such that ↑W (x) = (↑W (yk))\(↓V (ck)), which in particular
implies W (x) � V (ck). Let W (zk) be the maximum of the chain (↑W (yk))\(↑W (x)),
which is finite by Theorem 1(d). It follows that p(W (zk)) = W (x) which by order
isomorphism (Proposition 5(a)) implies p̂(zk) = x .

We claim that W (zk) is maximal in V (ck). To see this, suppose there is W (x ′) ∈
W (N ) such that W (zk) ⊂ W (x ′) ⊆ V (ck). Since W (yk) ⊆ W (zk), it follows that
W (x ′) ∈↑ W (yk). If W (x ′) ∈↑ W (x), then W (x) ⊆ W (x ′) ⊆ V (ck) contradicts that
W (x) � V (ck). Hence W (x ′) ∈ (↑W (yk)) \ (↑W (x)), contradicting the definition
of W (zk).

By Lemma 2(a) W (zk) ∈ N (V (ck)) = W (ck), hence zk ∈ ck . Since p̂(zk) = x
for k = 1, 2, this shows that x ∈ p̂(c1) ∩ p̂(c2). Thus it follows from (SF.i) that
p̂ (c1) = p̂ (c2) and c1 ∩ c2 = ∅.

It remains to show that V (c1) ∩ V (c2) = ∅. Suppose there is a play w such that
w ∈ V (c1)∩ V (c2). Then there are x1 ∈ c1 and x2 ∈ c2 such that x1 and x2 belong to
the play w. This implies that they are ordered, say, x1 ≥ x2. Since c1 ∩ c2 = ∅, in fact
x1 > x2. This implies that x1 ≥ p̂ (x2). Since p̂ (c1) = p̂ (c2), there is some z ∈ c1
such that p̂ (x2) = p̂ (z), thus x1 ≥ z. If x1 = z would hold, then p̂ (x1) = p̂ (x2) in
contradiction to x1 > x2. Hence, x1 > z which contradicts (SF.iii).

Before turning to (DEF.ii), note that a choice (set of plays) V (c) ∈ C ′
i is available

at a node W (x) in T ′ if and only if the choice (set of nodes) c is available at the node x
of T . This follows from W ( p̂(c)) = P (V (c)) (Lemma 2(b)). Therefore we will not
distinguish between availability in (T, C) and in (T ′, C ′).

To show (DEF.ii), we first claim that, given y ∈ p̂−1 (x) such that {y} =
p̂−1 (x) ∩ (∩i∈J (x)ci

)
for some (ci )i∈J (x) ∈ A (x), it follows that W (y) = W (x) ∩(∩i∈J (x)V (ci )

)
. The proof is by double inclusion. First let w ∈ W (y). Since

y ∈ p̂−1 (x), it follows that x ≥ y and thus w ∈ W (x). For each i ∈ J (x) , y ∈ ci

implies that w ∈ V (ci ), thus w ∈ W (x) ∩ (∩i∈J (x)V (ci )
)
. Conversely, let

w ∈ W (x) ∩ (∩i∈J (x)V (ci )
)
. Suppose w /∈ W (y). Since x ∈ X and w is a play,

there is a z ∈ w ∩ p̂−1(x). Further, for each i ∈ J (x) there exists a zi ∈ ci ∩ w.
Then p̂(zi ) ∈ w ∩ p̂(ci ). Since x ∈ w ∩ p̂(ci ), it follows that x = p̂(zi ). Oth-
erwise, p̂(ci ) would contain two distinct ordered nodes, a contradiction to Lemma
1. Since x = p̂(zi ) = p̂(z) and z, zi ∈ w, it follows that z = zi . Therefore
z ∈ p̂−1 (x) ∩ (∩i∈J (x)ci

) = {y}, a contradiction.
To complete the verification of (DEF.ii) we now show that

p−1 (W (x)) = {
W (x) ∩ (∩i∈J (x)V (ci )

) ∣
∣(ci )i∈J (x) ∈ A (x)

}
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for every x ∈ X . Let W (y) ∈ p−1 (W (x)) (again by double inclusion). This implies
y ∈ p̂−1 (x) by the order isomorphism in Proposition 5(a). By (SF.ii), there exists
(ci )i∈J (x) ∈ A (x) such that {y} = p̂−1 (x)∩(∩i∈J (x)ci

)
. By the claim above, it follows

that W (y) = W (x) ∩ (∩i∈J (x)V (ci )
)
. Conversely, let a = W (x) ∩ (∩i∈J (x)V (ci )

)

for some (ci )i∈J (x) ∈ A (x). By (SF.ii) there exists y ∈ p̂−1 (x) such that {y} =
p̂−1 (x) ∩ (∩i∈J (x)ci

)
. By the claim above, a = W (y). This completes the proof of

(DEF.ii).
(b) By Theorem 2 (DEF.i) and (DEF.ii) hold for

(
T ′, C ′). It remains to check

(SF.i-iv) for (T, C). First notice that, if c′ ∈ C ′
i for some i ∈ I and c =

N (c′) ∩ F(N ), it follows that p̂ (c) = P
(
c′) by Proposition 2 (b). For P(c′) ={

p(x)
∣
∣x ∈ N (c′) ∩ F(N )

} = p̂(c), because c = N (c′) ∩ F(N ) and p̂ is just the
notation for the immediate predecessor when T = (F(N ),⊇) is considered as a
simple tree.

To show (SF.i), let N (c′
1)∩ F(N ), N (c′

2)∩ F(N ) ∈ Ci for some i ∈ I be such that
p̂(N (c′

1)∩ F(N ))∩ p̂(N (c′
2)∩ F(N )) �= ∅ and N (c′

1)∩ F(N ) �= N (c′
2)∩ F(N ). This

implies c′
1 �= c′

2 and P(c′
1) ∩ P(c′

2) �= ∅. By (DEF.i), it follows that P(c′
1) = P(c′

2)

and c′
1 ∩ c′

2 = ∅. Hence p̂(N (c′
1) ∩ F(N )) = p̂(N (c′

2) ∩ F(N )). It remains only to
show that N

(
c′

1

) ∩N
(
c′

2

)∩ F(N ) = ∅. By contradiction, suppose there exists a node
x ∈ N

(
c′

1

) ∩ N
(
c′

2

) ∩ F(N ). Then, since x is actually also a node in T ′, it follows
that ∅ �= x ⊆ c′

1 ∩ c′
2, a contradiction.

Turn to (SF.ii). A choice (set of nodes) N
(
c′)∩ F(N ) ∈ Ci is available at a node x

in T = (F (N ) ,⊇) if and only if the choice (set of plays) c′ is available at the node x
of T ′ = (N ,⊇). This follows from p̂ (N (c) ∩ F(N )) = P (c). Suppose y ∈ p−1 (x)

is such that y = x ∩ (∩i∈J (x)c′
i

)
for some

(
c′

i

)
i∈J (x)

∈ A (x). For each i ∈ J (x) , x ∈
P

(
c′

i

) = p̂(N (c′
i )∩F(N )) and y ⊆ c′

i implies that y ∈ N
(
c′

i

)∩F(N ) by Proposition
2. This shows that y ∈ p−1 (x)∩(∩i∈J (x)N

(
c′

i

))∩ F(N ). Suppose there is z ∈ F(N )

with z ∈ p−1 (x) ∩ (∩i∈J (x)N
(
c′

i

))
. It follows that z ⊆ x ∩ (∩i∈J (x)c′

i

) = y, hence
z = y. This shows that (DEF.ii) implies (SF.ii).

Consider (SF.iii). If for any c′ ∈ C ′
i for some i ∈ I there are x, y ∈ N

(
c′) ∩ F(N )

such that x ⊃ y, this contradicts that N
(
c′) is a partition of c′ by Proposition 2(a).

It remains to show (SF.iv). Let x be a move in F(N ) and c = N (c′) ∩ F(N ) for
some c′ ∈ C ′

i , for some i ∈ I . If p̂−1(x) ∩ c = ∅, (SF.iv) is void. Therefore, we
can assume that p̂−1(x) ∩ c �= ∅. Then there is y ∈ c such that p̂(y) = x . Suppose
p̂−1(x) \ c = ∅. Then, by Proposition 2, z ⊆ c′ for every z ∈ p̂−1(x). By Proposition
1(a) x = ∪z∈ p̂−1(x)z, hence, x ⊆ c′, which contradicts y ∈ N (c′) (Proposition 2).
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