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Abstract This paper considers pricing rules of single-period securities markets with
finitely many states. Our main result characterizes those pricing rules C that are super-
replication prices of a frictionless and arbitrage-free incomplete asset structure with a
bond. This characterization relies on the equivalence between the sets of frictionless
securities and securities priced by C . The former captures securities without bid-ask
spreads, while the second captures the class of securities where, if some of its delivers
is replaced by a higher payoff, then the resulting security is characterized by a higher
value priced by C . We also analyze the special case of pricing rules associated with
securities markets admitting a structure of basic assets paying one in some event and
nothing otherwise. In this case, we show that the pricing rule can be characterized
in terms of capacities. This Arrow–Debreu ambiguous state price can be viewed as a
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generalization for incomplete markets of Arrow–Debreu state price valuation. Also,
some interesting cases are given by pricing rules determined by an integral w.r.t. a risk-
neutral capacity. For instance, incomplete markets of Arrow securities and a bond are
revealed by a Choquet integral w.r.t. a special risk-neutral capacity.

Keywords Pricing rule · Frictionless incomplete market · Ambiguity · State price ·
Capacity, Lehrer integral · Choquet integral

JEL Classification D52 · D53

1 Introduction

Since the Arrow’s Role of Securities seminal paper, the financial general equilibrium
models assume that the price of assets satisfies equilibrium conditions in a competitive
setting where many agents demand assets profiles in accordance with their preferences
and their endowments, providing the foundations for the study of financial markets by
a celebrate fundamental result asserting that financial markets must not offer arbitrage
opportunities. For instance, in a two-period economy, it implies the impossibility,
at equilibrium, to realize positive net financial returns in the second period without
spending at the initial period some amount of money in the asset market. Furthermore,
the fundamental theorem of asset pricing for frictionless complete markets1 enforces
linear pricing rule: the cost of replication of any security is given by the mathematical
expectation of its payoffs stream under the unique state contingent price or risk-neutral
probability obtained by the no-arbitrage principle.

Nowadays, a widely studied paradigm says that complete markets assumption
becomes the exception rather than the rule in the study of financial markets. Mar-
ket incompleteness says that not all securities admit a perfect hedge, and therefore, in
many cases, the seller of a security should consider a superhedging strategy2 in order to
protect against any possible claims of the buyer of such security.3 Hence, in a financial
economy where agents can trade a finite and potential limited number of frictionless
securities, the pricing rule gives the minimum cost of getting a payoff equal to (or
larger than) a given contingent claim in any state of nature, which is also known as
the super-replication price. Importantly, by no-arbitrage and assuming the presence of

1 Recall that a financial market is complete if the trading of basic securities reproduce any financial payoff
stream, otherwise the financial market is incomplete.
2 A superhedging strategy or super-replication is a portfolio strategy which generates payoffs across the
states that are at least as large as the underlying security.
3 Some results show that this is typically the case for some important classes of securities markets, for
example, a well-known result from Ross (1976) says that whenever the payoff of every call or put option
can be replicated, the securities market must be complete. Also, Aliprantis and Tourky (2002) showed that
if the number of securities is less than half the number of states of the world, then generically we have
the absence of perfect replication of any option. Hence, the approach of finding the value of an option
by reference to the prices of the primitive securities breaks down for any option. In another way, Baptista
(2007) showed that (generically) if every risk binary contingent claim is non-attainable, then every option
is non-attainable. For further results, see Polyrakis and Xanthos (2011).
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Pricing rules and Arrow–Debreu ambiguous valuation 3

a fair risk-free security, the super-replication price of any security can be determined
by its supremum expected value with respect to all risk-neutral probabilities.

Another prominent problem in the study of financial markets is the possibility of
frictions affecting tradeable assets.4 Among others, frictions include bid-ask spreads,
short-sales constraints and short-selling costs, and differences between borrowing
and lending rates. In such cases, the market might be complete and we still have more
than one underlying risk-neutral probability and the pricing rule is also given by the
supremum over the expected values with respect to all risk-neutral probabilities. A
consequence is that any normalized pricing rule should satisfy a set of mild and intu-
itive conditions as essentially obtained by a well-known representation theorem for
a functional described by a set of probability measures.5 Next section assumes such
conditions as a primitive for pricing rules, as done by Jouini and Kallal (2001), and
discusses its intuitive appeal.

It is quite immediate that given a pricing rule, there are many candidates for the
corresponding underlying type of financial structure. So, given a non-linear pricing
rule, how to identify the type of market imperfection related to it? Our main result
identifies the case of pricing rules related to frictionless incomplete markets by finding
a special property for pricing rules avoiding market imperfections affecting tradeable
securities.

For our main result characterizing those pricing rules C that are super-replication
prices of some frictionless incomplete asset structure, we established an equivalence
between the set of frictionless securities and undominated securities priced by C . The
set of frictionless securities priced by C is defined as

FC := {Y : C (Y ) + C (−Y ) = 0} ,

and the set of undominated securities priced by C is defined as

LC := {Y : X > Y ⇒ C (X) > C (Y )} .

While a frictionless security can be bought and sold without any frictions, undom-
inated securities have the property that if a payoff assigned to a state by the security
is replaced by a bigger payoff, then the resulting security has a strictly superior super-
replication price.6 So, for an undominated security, there is no gain that can be added
while maintaining its super-replication price. On the other hand, for a dominated secu-
rity X , there is some Y paying never less than X and delivering more in at least one
state of nature with same price, i.e., C (Y ) = C (X). So, if an agent purchase X instead
of Y , then she/he is discarding the positive contingent wealth sure in the event where

4 In this paper the term friction is used for market imperfections related to assets available in the market,
so we assume the convention that incompleteness is a market imperfection not qualified as a friction.
5 See, for instance, Huber (1981), Gilboa and Schmeidler (1989), and Chateauneuf (1991). The same
characterization is the key for the representation of coherent risk measures as introduced by Artzner et al.
(1999).
6 Formally, this definition captures the pricing rule’s domain of monotonicity. Also, given an arbitrary
pricing rule, any frictionless security is an undominated security.
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the first security reveals a worse performance than the second one. Hence, our main
result says that C reveals a frictionless securities market if, and only if, every security
such that every payoff cannot be improved without additional cost is frictionless.

We also analyze the special case of pricing rules associated with arbitrage-free
securities markets admitting a structure of basic assets paying one in some event and
nothing otherwise, i.e., a structure of bets or {0, 1}-securities. In this case, we show that
the pricing rule can be characterized in terms of a capacity by obtaining the extended
set of linear states prices of such markets as the set of probabilities below such capac-
ity. This capacity called Arrow–Debreu ambiguous state price can be viewed as a
generalization for incomplete markets of Arrow–Debreu price valuation.7 Also, some
interesting cases of {0, 1}-securities markets are associated with pricing rules deter-
mined by an integral w.r.t. a subadditive capacity, and in such case, this ambiguous
state price is called a risk-neutral capacity. More precisely, many markets of bets are
revealed through pricing rules given by a Lehrer integral w.r.t. a risk-neutral capacity.
Moreover, the special case of partition markets (i.e., markets of bets where basic assets
induce a partition of state space) is always revealed through pricing rules given by a
Choquet Integral w.r.t. a risk-neutral capacity given by a plausibility measure.

2 Framework and a fundamental result

We consider a single-period economy where the uncertainty is modeled by a finite
state space S = {s1, . . . , sn}. A mapping X : S → R is a security that gives the right
to X (s) units of consumption or wealth in the second period in each state of nature
s ∈ S. A special class of securities is given by the family of bets on events modeled
by characteristic functions of events: Given an event A, we denote its characteristic
function by A∗ : S → {0, 1} where A∗ (s) = 1 iff s ∈ A. So, a bet on the event A is
given by the security A∗.

We denote by C : RS → R a pricing rule, i.e., agents have to pay C (X) units of
initial wealth in order to guarantee at least X (s) units of wealth in each state s ∈ S. Fol-
lowing well-known works in the literature, we shall make the following assumptions
concerning a pricing rule

Definition 1 A pricing rule satisfies :
(i) C is sublinear, i.e.,

C (λX) = λC (X) , and

C (X + Y ) ≤ C (X) + C (Y ) ,

7 In a sense, ambiguous state prices can be viewed as the pricing consequence of some results in the general
equilibrium literature on no-trade with ambiguity averse agents. For instance, Mukerji and Tallon (2001)
analyzed conditions in which ambiguity aversion can be viewed as a foundation for incomplete markets.
Recently, de Castro and Chateauneuf (2011) show that under unambiguous endowments, more ambigu-
ity aversion implies less trade. In another way on ambiguity aversion and its equilibrium consequences,
de Castro et al. (2011) recapture the Arrow–Debreu’s state contingent model in an asymmetric informa-
tion economy and show that under maximin expected utility agents any “maximin” efficient allocation is
incentive compatible.
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Pricing rules and Arrow–Debreu ambiguous valuation 5

for all X, Y ∈ RS and all non-negative real number λ;
(i i) C is arbitrage free, i.e., C (X) > 0 for any nonzero security X ≥ 0;
(i i i) C is normalized, i.e., C (S∗) = 1;
(iv) C is monotonic, i.e., C (X) ≥ C (Y ) for all X, Y ∈ RS s.t. X ≥ Y ;
(v) C is constant additive, i.e.,

C
(
X + kS∗) = C (X) + k,

for all X ∈ RS and every real number k.

Note that all along the paper, for sake of brevity, we will call indifferently a finan-
cial pricing rule or a super-replication pricing rule, any pricing rule satisfying the
properties of Definition 1.

Such properties are usual and have been proposed by Jouini (2000), Jouini and
Kallal (2001) and Castagnoli et al. (2002), among others. The assumption (i) means
that the price of a security is proportional to the quantity purchased and that it is
less expensive to purchase a portfolio of securities than to purchase each security
separately. We note that subadditivity implies that

C (X) ≥ −C (−X) ,

that is, the price at which X can be bought is larger than or equal to the price at which
it can be sold. The assumption (ii), which was first suggested by Ross (1978), captures
the absence of arbitrage opportunities by imposing that there are no free security that
are non-negative in every state of nature and strictly positive in at least one. Assump-
tion (iii) means that the riskless asset can be bought and sold without any frictions and
that riskless rate is equal to zero. The assumption (iv) is a natural condition saying
that any investor will not pay more for less. Finally, the assumption (v) means either
to purchase a portfolio composed by a security and the riskless asset or to purchase
each of these securities separately leads to the same price.

We recall that in a given financial economy, where in order to transfer wealth from
the initial date to the future, agents can trade a finite number of securities, the induced
pricing rule C reveals for any security X its minimum cost C (X) of getting a payoff
equal to (or larger than) the delivers promised by X across the states of nature. Thus, the
pricing rule C is also referred as a super-replication price of its underlying securities
market.8

In terms of representation, every financial pricing rule can be computed by the
following representation:

Theorem 2 For any pricing rule satisfying conditions (i–v) there is a closed and con-
vex set K of probability measures, where at least one element is strictly positive, such

8 See Appendix Part A for the precise definition of super-replication price of frictionless securities markets
without arbitrage opportunities. This concept will play a major role in next sections. We note that the values
−C (−X) and C (X) can also be interpreted as arbitrage bounds on the price of X . Indeed, the normative
argument is that investors would not pay more than C (X) for X and would not sell it for less than −C (−X).
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that for any security X

C (X) = max
P∈K

EP (X)

With such representation in mind, given a pricing rule C , its extended set of risk-
neutral probabilities K is the closure of the usual set of risk-neutral probabilities,
knowing also as the set of “underlying” linear pricing rules. By this representation,
we are motivated to adopt a definition saying that the probability measure P ∈ K
“prices” X if it satisfies C (X) = EP (X).

3 Pricing rules and frictionless securities markets

The usual way in the literature in order to obtain a pricing rule starts from a given finan-
cial market and consider the arbitrage-free pricing problem related to superhedging
strategies. This leads a functional form for the super-replication price describing the
market valuation, which satisfies the five conditions as given in Definition 1 of pricing
rules. It seems useful to review some cases of arbitrage-free market structures M and
its derived set of risk-neutral probabilities QM:, with the induced super-replication
price or pricing rule:

(i) if markets are complete and frictionless, then the set QM: has only one element,
i.e., C is the well-known linear pricing rule of a complete market;

(ii) If markets are incomplete and without any other imperfection, i.e., the set of
tradeable securities is free of any friction, then we will call such market a fric-
tionless incomplete market. In this case, the QM: is the set of probabilities
defining all linear valuation pricing every basic asset, or taking into account the
multi-period framework with a normalized price, QM: is the set of martingale
measures of the traded securities (Jouini and Kallal 1995);

(iii) If the traded securities can be bought at a price (the ask) that is potentially
higher than the price (the bid) at which they can be sold, then QM: is the set
of martingale measures of any price between the normalized bid and ask price
(Jouini and Kallal 1995; see also, Bensaid et al. 1992; Baccara et al. 2006).

(iv) If agents are subject to short-sales constraints, then the set QM: is the set of
supermartingale measures of the traded securities normalized price (Dybvig
and Ross 1986; Jouini and Kallal 1995).

Since in any case above the induced pricing rule is the supremum expected value with
respect to all probability in QM:, it illustrate how different market structures share
a common form of pricing rules and attest the consistency of the general aspect of
Definition 1. Such generality reveals an interesting identification problem; in fact, for
a given pricing rule, it is possible that there are many candidates for its underlying
market structure type. Of course, if we take a linear pricing rule, it is quite immediate
that the underlying market must be complete and frictionless. On the other hand, in the
case of a non-linear pricing rule, it seems problematic to identify the respective market
imperfection related to it. Traditionally, in a competitive market, the observed price
reveals the whole pertinent information to agents. One question that seems interesting
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Pricing rules and Arrow–Debreu ambiguous valuation 7

to us is whether the knowledge of the pricing rule can reveal the type of incompleteness
or else the kind of frictions related to the tradeable securities in the market.

Our main result characterizes those pricing rules C that are super-replication prices
of a frictionless incomplete market structure with the riskless bond and without arbi-
trage opportunities. We perform this resulting by adding a new condition to the list
of necessary properties (i–v) shared by any financial pricing rule. Next subsections
discuss the necessary concepts for our characterization.

3.1 Frictionless and unambiguously priced securities

Given a pricing rule C , its possible lack of additivity sounds natural to be related to
some frictions in the financial market. For instance, there is friction for a security X
if the buying price C (X) is not the same as its selling price −C (−X), and in this
case, the subadditivity captures the natural intuition that its selling pricing C (X) may
be greater than its buying price −C (−X). Thus, the set of frictionless securities is
defined by

FC :=
{

X ∈ RS : C(X) + C(−X) = 0
}

.

A security X belonging to FC means that it can be bought and sold without any
frictions when priced by C . A pricing rule C , thanks to its basic properties, always
induces a collection of frictionless securities with a structure of linear space, formally:

Lemma 3 Let C be a financial pricing rule, the set of frictionless securities FC is a
linear subspace.

We already know that given a pricing rule C , there is a unique convex and closed
set of probabilities K related to C revealing the set of linear pricing rules compatible
with the underlying market. Under multiple linear pricing rules, the market has several
securities with many expected values generated by the multiple usual risk-neutral val-
uation. On the other hand, many securities may be immune to the existence of multiple
linear pricing, which motivates to define a security X as an unambiguously priced
security if for all linear pricing rules P, Q ∈ K

EP (X) = EQ (X) .

Such condition means that all linear pricing rules agree about the price of X , in
particular, any risk-neutral probability P ∈ K “prices” the security X . A simple and
interesting result says that

Lemma 4 Given a financial pricing rule C, a security X is frictionless if, and only if,
X is unambiguously priced.
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3.2 Pricing rules and undominated securities

In the real world, many insure contracts give examples of contingent promises for
which by discarding some of promised deliveries it does not affect its price. In fact,
this is the essence of incompleteness phenomena in financial markets. Formally, given
a pricing rule C , its set of undominated securities is defined by9

LC :=
{

X ∈ RS : Y > X ⇒ C (Y ) > C (X)
}

.

A undominated security X is a security with the property that if some payoff
assigned to a state by the claim is replaced by a better payoff, then the resulting
security is strictly more expensive than the original one. On other hand, for a domi-
nated security X , by definition, there is Y such that Y > X and C (Y ) = C (X). It
means that if an agent purchases X instead of Y as above, then she/he is discarding
the wealth Y (s)− X (s) in each state of the event {Y > X}. We note that any friction-
less security X is undominated; in fact, for a pricing rule C, since the set of multiple
linear pricing rules K contains a strictly positive probability P0, if Y > X from X
unambiguously priced, we obtain that10

C (Y ) ≥ EP0 (Y ) > EP0 (X) = C (X) .

3.3 Main result

Recalling that a frictionless incomplete market is an incomplete market where trade-
able securities do not exhibit, bid-ask spreads one obtains:

Theorem 5 A pricing rule C is a super-replication price of a frictionless and arbi-
trage-free incomplete market of tradeable securities F including the riskless bond if,
and only if, C is a financial pricing rule satisfying FC = LC . In such case the marketed
space satisfies F = FC .

In worlds, for a given pricing rule that the investor would observe in the finan-
cial market, the underlying complete or incomplete market structure will not exhibit
friction in any tradeable security if, and only if, any undominated security is unam-
biguously priced or, equivalently, frictionless. Also, in this case, the presence of any
non-linearity reveals that the corresponding financial market is incomplete. In another
way, taking into account the viewpoint of a price taker investor choosing between
securities priced by a non-linear pricing rule satisfying our main result, the choice of
any friction security will make the investor suboptimal in the sense that it is available
a security that improves the former in at least one contingence.11

9 In the context of decision theory under uncertainty, Lehrer (2007) provided a representation for prefer-
ences using a similar notion called fat-free acts.
10 Or, in another way, given a security X s.t. C (X) = −C (−X), for any Y > X we obtain that by
no-arbitrage that C (Y ) − C (X) = C (Y ) + C (−X) ≥ C (Y − X) > 0.
11 Of course, this reasoning supposes an investor that prefers always increase his/her wealth in any future
contingency.
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Pricing rules and Arrow–Debreu ambiguous valuation 9

Our characterization allows to recover the underlying frictionless incomplete mar-
ket associated with any pricing rule C such that LC = FC . In fact, the market space
should be given by F = FC , which is a linear space and containing the bond S∗. By
considering an arbitrary basis {X0, X1, . . . , Xm} of F with X0 = S∗, we can find the
corresponding price by considering q j = C

(
X j

)
for any j ∈ {0, 1, . . . , m}. Finally,

the pricing rule C should satisfy

C (X) = min
{
� jθ j q j : � jθ j X j ≥ X

}
.

Also, the pricing rule C is associated with a set of probabilities Q, which is the
same as the set of extended set of risk-neutral probabilities, i.e.,

Q = {
P ∈ � : EP

(
X j

) = q j for all j
}
.

So, C is the super-replication price of the arbitrage-free securities market

M = (
X j , q j ; 0 ≤ j ≤ m

)
.

Now, we present some examples showing how our result can reveal when the under-
lying market is given by a frictionless incomplete market of securities.

Example 6 Consider the pricing rule C : R3 → R defined by

C (X) = max
{

EP1 (X) , EP2 (X)
}
,

where P1 = ( 1
2 , 1

4 , 1
4

)
and P2 = ( 1

4 , 1
2 , 1

4

)
. We note that, for all security X =

(x1, x2, x3)

C (X) = max

{
αx1 +

(
3

4
− α

)
x2 + 1

4
x3 : α ∈

[
1

4
,

1

2

]}
.

It is simple to see that FC = {
X ∈ R3 : x1 = x2

}
and X = (1, 2, 0) ∈ LC with

bid-ask 1/4. Hence, C is not a super-replication price of a frictionless incomplete
market.

An interesting fact is that the pricing rule in Example 6 is a special case of insur-
ance functional as studied by Castagnoli et al. (2002). So, in this case, the underlying
insurance market must admit frictions for some tradeable securities.

Example 7 Consider C : R3 → R defined by

C (X) =
{

x3, if x1 + x2 − 2x3 < 0
1
2 (x1 + x2) , if x1 + x2 − 2x3 ≥ 0

We note that, for any security X

C (X) = max

{
αx1 + αx2 + (1 − 2α) x3 : α ∈

[
0,

1

2

]}
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We note that in this case, FC = LC = {
X ∈ R3 : x1 + x2 − 2x3 = 0

}
. Hence, C is

the super-replication price of the incomplete market where, e.g., basic assets are given
by (1, 1, 1) , (2, 0, 1), both with price 1.

Example 8 Given a strictly positive probability Q, let C : RS → R be a pricing rule
defined by

C (X) = (1 − ε) EQ (X) + ε max X (S) ,

that we call an epsilon-contaminated pricing rule.
In fact, given a security X

C (X) = max
P∈(1−ε){Q}+ε�

EP (X) .

In this case, FC = span {S∗} and LC = R
S . Hence, C is not the super-replication

price of a frictionless incomplete market. We note hat for any security X , its bid-ask
is given by

B A (X) := C (X) + C (−X) = ε (max X − min X) .

4 Markets of bets

Arrow (1953) introduced the notion of contingent markets where agents can trade
promises concerning future uncertain realizations. A wide class of assets used is known
as Arrow securities characterized by a promise on a particular state of nature s ∈ S,
i.e., in a financial market, the set of possible Arrow securities is given by A :={{s}∗ : s ∈ S

}
.12 Given an event A, recall that the {0, 1}-security A∗ is also often

called a bet on (the event) A.

Definition 9 We say that the mapping C : RS → R is the super-replication price of a
frictionless market of {0, 1} -securities without arbitrage opportunities if C is a super-
replication price of an arbitrage-free securities market M = (

X j , q j ; 0 ≤ j ≤ m
)

where there is a collection of events B1, . . . , Bm such that X j = B∗
j for any j ∈

{1, . . . , m}.
For instance, a simple example is given by a complete securities market revealed

by a pricing rule C such that there is a strictly positive probability P such that

C (X) = EP (X) .

In such case, the value P ({s}) := ps is the Arrow–Debreu state price of the contin-
gence s ∈ S. Also, in this case, the underlying market can be constructed by choosing
the whole collection of simple bets {s}∗ with respective prices ps . Another simple

12 Of course, markets with only Arrow securities is a very particular case of markets with {0, 1}-securities.
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Pricing rules and Arrow–Debreu ambiguous valuation 11

example is obtained by considering the pricing rule given by

C (X) = max
P∈�

EP (X) = max
s∈S

X (s) .

In this case, the underlying market is given by the arbitrage-free financial market
with only one bet given by the bond S∗ with normalized price 1.

In this section, we characterize the class of frictionless incomplete markets of bets.
Before, we need to recall some mathematical notation and definition about non-addi-
tive measure and integration.

4.1 Capacities and non-additive integration

A capacity is a set-function μ : 2S → [0, 1] such that: (i) μ (∅) = 0 and μ(S) = 1; and
(ii) A ⊇ B ⇒ μ(A) ≥ μ(B). We say that a capacity μ is concave if for all A, B ∈ 2S

μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B).

Of course, any concave capacity is subadditive, in the sense that for all disjoint
events A, B ∈ 2S

μ(A ∪ B) ≤ μ(A) + μ(B),

but the converse is not true.13 The case of convex and subadditive capacities follows
in an analogous way by taking the reverse inequalities.

The set of unambiguous events induced by the capacity μ is defined by14

Eμ :=
{

A ∈ 2S : μ(A) + μ(Ac) = 1
}

,

which defines the linear subspace

Fμ := span
{

A∗ : A ∈ Eμ

}
.

Another important concept related to a capacity μ is its anticore defined by

acore(μ) :=
{

P ∈ � : P(A) ≤ μ(A), ∀A ∈ 2S
}

.

The outer capacity of μ, denoted by μ∗, is defined by:

A ∈ 2S → μ∗ (A) = min
{
μ (B) : B ∈ Eμ and A ⊂ B

}
,

So, given a capacity μ, since μ∗ ≥ μ clearly acore (μ) ⊂ acore (μ∗).

13 See, for instance, Schmeidler (1972) and Chateauneuf and Jaffray (1989).
14 This is the natural notion of unambiguous events in our context of pricing rules. For a discussion on
the variety of preference-based definitions of unambiguous events see, for instance, Klibanoff et al. (2011)
and references therein.

123



12 A. Araujo et al.

A capacity μ is called a-exact if for every event A ⊂ S, there is a probability
P ∈ acore(μ) with P (A) = μ (A). A capacity μ has no-gap if for every positive
measure τ : 2S → [0, 1] that satisfies μ ≥ τ , there is p in the acore of μ such that
p ≥ τ . Note that it is not imposed that τ (S) = 1.

We note that, given a financial pricing rule C, we define the price of bets by

μC (A) := C
(

A∗) for any A ⊂ S.

Of course, an event B ∈ EμC iff the corresponding bet B∗ is unambiguously priced
by C . So, by Lemma 4, B is an unambiguous event iff the bet B∗ is frictionless.

Clearly, if the price of bets μC is additive, we come back to the usual Arrow–Debreu
state prices because it is the case if, and only if, the set of linear valuations Q is a
singleton. On the other hand, if the price of bets is non-additive, we call μC an Arrow–
Debreu ambiguous state price. In fact, if there are two probabilities P, Q ∈ Q such
that P �= Q, then there is an event E ⊂ S such that P (E) �= Q (E), which means
that not all linear valuation in Q agree about the price of the bet E∗. In particular, the
same ambiguous valuation holds for some state s in the ambiguous event E .

It is immediate to see that, given a pricing rule C with its related set of multiple
linear valuations Q, the ambiguous state price μC is a subadditive and a-exact capac-
ity. Moreover, since for all E ⊂ S, μC is the “upper probability” w.r.t. Q, that is, μC

is the upper envelope obtained from the set of linear valuations Q given by

μC (E) = max
P∈Q

P (E) ,

are always true the following inclusion:

Q ⊂ acore (μC ) ⊂ acore
(
μ∗

C

)
.

Also, since Q ∩ �+ �= ∅, the set of probabilities measures dominated by μC

contains a strictly positive probability. Summing up, for a given capacity μ to be an
ambiguous state price, it should be subadditive, a-exact, and acore (μ) ∩ �+ �= ∅.

The “concave integral” was proposed and characterized by Lehrer (2009) for capac-
ities, which differs from the well-known Choquet integral when the capacity is not
convex. In a similar way, Lehrer integral can be defined as a “convex integral”. A
special goal of this paper is the case of pricing rules that are characterized by a convex
Lehrer integral. For the next definition, we use the convention saying that a contingent
claimX is a security with non-negative payoffs.

Definition 10 Let C be a pricing rule over the set of contingent claims RS+, then C is
a Lehrer integral if

C (X) = (L)

∫
XdμC for all X ∈ RS+
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Pricing rules and Arrow–Debreu ambiguous valuation 13

where,

(L)

∫
XdμC := min

{∑
αiμC (Ai ) :

∑
αi A∗

i = X, αi ≥ 0
}

.

In this case, we call C a “Lehrer pricing rule” and μC a “risk neutral capacity”.
Finally, we have the following multiple linear valuations representation

C (X) = max
P∈acore(μC )

EP (X) .

The last equality above follows from Azrieli and Lehrer (2007) because every pric-
ing rule is supposed to be constant additive, and hence, the underlying risk-neutral
capacity induced by a Lehrer pricing rule has no-gap.15 Also, following the Remark 3
of Lehrer (2009), if a pricing rule over contingent claims X ∈ RS+ is, in fact, a Lehrer
pricing rule, then the constant additivity property enables us to extend the domain of
the “Lehrer pricing rule” from the non-negative securities to all securities. For instance,
given X ∈ RS with minS X < 0, then X − (minS X) S∗ ≥ 0 and

C (X) := C

(
X −

(
min

S
X

)
S∗

)
+ min

S
X.

Now, we recall the definition of Choquet integral (Choquet 1954):

Definition 11 Let C : RS → R be a pricing rule, then C is a Choquet integral if

C (X) = (C)

∫
XdμC for all X ∈ RS+

where,

(C)

∫
XdμC :=

0∫

−∞
[μC ({X ≥ t}) − 1] dt +

∞∫

0

μC ({X ≥ t}) dt.

In this case, we call C a “Choquet pricing rule” and, again, μC a risk neutral capac-
ity. Finally, we obtain the following multiple linear valuations representation (due to
Schmeidler 1986)16

C (X) = max
P∈acore(μC )

EP (X) .

15 In fact, this result was established for core of capacities with large core (the dual concept of no-gap) is
also presented in Lehrer (2009). A caveat: by taking a functional given by the maximum over the a-acore
of some a-exact capacity, such functional is a Lehrer integral iff such capacity has no-gap.
16 Recall that every pricing rule considered in this paper is subadditive.
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14 A. Araujo et al.

4.2 Pricing rules and frictionless markets of bets

This section will explain why non-additive measures and integration is useful in some
important characterizations of incomplete markets. For instance, suppose that a pric-
ing rule C is given by a non-additive integral of Lehrer or Choquet; in this case as
we defined in the previous Section, we call μC a risk-neutral capacity. Essentially, the
main idea of the fundamental Arrow–Debreu valuation in complete markets is that
for every security, its arbitrage-free price is the (usual) integral of the state-payoff
weighted by its unique state price or risk-neutral probability. By extending the possi-
bilities of Arrow–Debreu valuation through non-additive probabilities, this paper also
shows that in many cases, the super-replication price of every security can be com-
puted as an integral of the state-payoff weighted by its risk-neutral capacity. We will
see also that not all arbitrage-free market of bets has a pricing rule C related to Cho-
quet or Lehrer integral, but for all arbitrage-free market of bets, its set of risk-neutral
probability Q is revealed by its ambiguous state price μC .17

The following result characterizes the case of frictionless securities markets admit-
ting a structure of {0, 1}-assets and shows that the multiple state prices set related to
the case of incomplete markets is determined by ambiguous state price of this market.
In fact, in every market of bets, the extended set of risk-neutral probabilities is given
by the acore of the ambiguous state price μC . Also, for many markets of bets, the lin-
ear complete markets pricing rule can be reformulated by considering a non-additive
expected value with respect to the risk-neutral capacity μC .

Theorem 12 A mapping C : RS → R is a super-replication price of a frictionless
and arbitrage-free securities market of bets with the bond if, and only if, C is a pricing
rule such that its set Q of extended risk neutral probabilities satisfies

Q = acore
(
μ∗

C

)
.

Hence, in this case

C(X) = max
P∈acore(μC )

EP (X) .

So, FEμC
is the set of tradeable securities and acore (μC ) is the set of extended

risk-neutral probabilities of the underlying market.

This theorem provides a complete characterization of the class of capacities that
can be viewed as an ambiguous state price of a frictionless and arbitrage-free market
of bets. In fact, a capacity μ is an ambiguous state price of a frictionless and arbitrage-
free market of bets if, and only if, μ is an upper probability w.r.t. Q which contains
a strictly positive probability and Q = acore

(
μ∗

C

)
. In this case, clearly, we also have

that acore (μC ) = acore
(
μ∗

C

)
.

Next, an example that gives a case of pricing rules of a frictionless incomplete
market with no structure of assets given by bets.

17 So, in our terminology, an Arrow–Debreu ambiguous state price μC is a risk-neutral capacity when for
any security X, C (X) is given by the “integral” of X w.r.t. μC , in the sense of Lehrer or Choquet.
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Pricing rules and Arrow–Debreu ambiguous valuation 15

Example 13 We consider again the functional as in the Example 7, where for any
security X,

C (X) = max

{
αx1 + αx2 + (1 − 2α) x3 : α ∈

[
0,

1

2

]}

We already proved that C is a pricing rule of a frictionless and arbitrage-free finan-
cial market. Note that for all non-empty event E �= ∅,

μC (E) ∈
{

1

2
, 1

}
with μC (E) = 1

2
iff A ∈ {{s1} , {s2}} ,

which implies that EμC = {∅, S}, hence for any E �= ∅, we have that μ∗
C (A) = 1

and acore
(
μ∗

C

) = �. Since δ{s1} /∈ acore (μC ), we obtain that

acore (μC ) �= acore
(
μ∗

C

)
.

Hence, any underlying market for the pricing rule C is not a market of bets.

In the next result, we obtain a consequence of the previous theorem on digital mar-
kets describing the case of pricing rules of frictionless and arbitrage-free markets of
bets given by a Lehrer integral, and in special, the class of risk-neutral capacities for
frictionless and arbitrage-free markets.

Corollary 14 Let C : RS → R be a pricing rule, then (i) is equivalent to (i i):

(i) C is a super-replication price of a frictionless and arbitrage-free market of bets,
and for any contingent claim X ≥ 0

C (X) = (L)

∫
XdμC .

(i i) C is a pricing rule such that its set Q of extended risk neutral probabilities
satisfies

Q = acore
(
μ∗

C

)
,

and μC has no-gap.
In another way, we can summarize this result by saying that an ambiguous state
price μC is a risk neutral capacity iff μC has no-gap.

Recalling that every ambiguous state price μC is an a-exact capacity, the important
results derived by Biwas et al. (1999) finding sufficient conditions which guarantee
that a-exact game (or, a-exact capacity) has large core (or, has no-gap) have obviously
important consequences for our study of pricing rules. Among such sufficient condi-
tions given by Biwas et al. (1999), the cardinality condition obtained in their Theorem
3 is an useful result for pricing rules. The consequence is,
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16 A. Araujo et al.

Corollary 15 Suppose that the cardinality of the state space is not greater than four,
then a pricing rule C is a super-replication price of a frictionless and arbitrage-free
market of bets if and only if C is a Lehrer pricing rule.

Next, we present an example of a super-replication price C of a frictionless and
arbitrage-free incomplete market of bets, which is not a Lehrer pricing rule.

Example 16 For the state space S = {s1, . . . , s5}, consider the financial market
M = (

X j , q j ; 0 ≤ j ≤ 3
)

with securities X0 = S∗, X1 = {s1, s3}∗ , X2 =
{s1, s2, s4}∗ , X3 = {s1, s2, s5}∗ and prices q0 = 1, q1 = 2

5 , q2 = 3
5 and q3 = 3

5 .
Since P0 = 1

5 S∗ is a risk-neutral probability, there is no-arbitrage opportunity. Simple
computation shows that the set of extended risk-neutral probabilities is given by

QM =
{

P =:
(

p,
3

5
− 2p,

2

5
− p, p, p

)
: p ∈

[
0,

3

10

]}
.

and by our Theorem 12 acore (μC ) = QM.
Now, choosing the security X := 2 {s1}∗ + {s2}∗, one has

C (X) = max
P∈acore(μC )

EP (X) = 3

5
.

Notice also that any writing of X by X = �αi A∗
i , αi ≥ 0, is given by

X = α {s1, s2}∗ + (1 − α) {s2}∗ + (2 − α) {s1}∗ ,

with α ∈ [0, 1]. Since μC ({s1, s2}) = 3
5 , μC ({s2}) = 3

5 , and μC ({s1}) = 3
10 , we

obtain that

(L)

∫
XdμC = min

α∈[0,1]

{
α

3

5
+ (1 − α)

3

5
+ (2 − α)

3

10

}
>

3

5
= C (X) .

One immediate consequence is that μC has a gap. In fact, by taking τ =
3

10 {s3, s4, s5}∗, it is easy to see that τ ≤ μC . But, if a probability P ∈ acore (μC )

dominates τ , then 2
5 − p ≥ 3

10 and p ≥ 3
10 , so p ≤ 1

10 and p ≥ 3
10 , a contradiction.

4.3 Pricing rules and frictionless partition markets

This section studies a special case of market of bets. Given a frictionless and arbitrage-

free market of bets M =
(

B∗
j , q j

)m

j=1
. We say that such market is a frictionless and

arbitrage-free partition market of securities when{Bk}n
k=1 is a partition of the state

space S.
Next result characterizes in an interesting way pricing rules for partition markets:

Theorem 17 Let C : RS → R be given, then the following assertions are equivalent:
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Pricing rules and Arrow–Debreu ambiguous valuation 17

(i) C is a Choquet pricing rule of a frictionless and arbitrage-free security market;
(i i) C is a super-replication price of a frictionless and arbitrage-free partition

market;
(i i i) C is a pricing rule given by the functional

C(X) =
n∑

j=1

P0(B j ) max
s∈B j

X (s), for all X ∈ RS,

where P0 is a strictly positive probability and
{

B j
}n

j=1 is a partition of S.
(iv) C is a pricing rule of a frictionless securities market such that FC is a Riesz

space containing the riskless bond S∗
In any case, the set of attainable claims FC is the Riesz vector space generated
by the P-atoms of the “Boolean algebra” EμC of unambiguous events, and the
concave risk neutral capacity μC satisfies μC = μ∗

C .

Theorem 17 states that in any frictionless partition market, the price valuation is
given by a Choquet pricing with respect to a special concave risk-neutral capacity given
by plausibility measures as introduced by Shafer (1976). Moreover, this is the unique
type of Choquet integral related to frictionless incomplete markets. On the other hand,
such special super-replication pricing is related to a “rich” structure of assets in the
sense that the marketed space is a Riesz space, which is necessarily generated by a
partition markets of bets.

Next, an example that gives a case of pricing rules of a frictionless market of bets
with no partition structure of basic bets.

Example 18 Consider a capacity μ over the power algebra generated by the state space
S = {s1, s2, s3, s4} defined by18

μ1 = μ4 = μ12 = μ34 = 1

2
,

μ2 = μ3 = μ23 = 1 − μ14 = 1

3
,

μ13 = μ123 = μ234 = 5

6
,

μ24 = μ124 = μ134 = 1.

We note that μ is an upper probability w.r.t.

Q =
{(

p,
1

2
− p, p − 1

6
,

2

3
− p

)
: 1

6
≤ p ≤ 1

2

}
,

and Q = acore (μ∗). So, by our Lehrer pricing rule characterization, the price
functional

C (X) := min
{∑

αiμ (Ai ) :
∑

αi A∗
i = X, αi ≥ 0

}
, for all X ≥ 0,

18 For simplicity, we denote for each A ⊂ S, μ (A) = μi :i∈A .
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18 A. Araujo et al.

defines a Lehrer pricing rule of a frictionless market of bets. On the other hand, since
μ∗

123 = 1, i.e., μ �= μ∗, every possible basic structure of bets cannot induce a partition
of the state space. For instance, a possible underlying market is given by the assets
(1, 1, 0, 0) , (0, 1, 1, 0), and S∗ priced by the risk-neutral capacity μ.

We note that the class of super-replication prices of frictionless market that can be
written as a Choquet integral is linked to financial markets where derivative markets
(in the sense of Aliprantis et al. 2000) are complete.19 A restatement of the result due
to Ross (1976), provided by Aliprantis et al. (2000), says that derivative markets are
complete if and only if the vector space of attainable securities is a Riesz subspace.
Hence, by our characterization of partition markets, the family of Choquet pricing
rules of frictionless and arbitrage-free securities markets describe the super-replica-
tion prices in markets where derivative markets are complete. For instance, note that
in the Example 18, the Arrow security {s2}∗ is not replicated and the basic securities
{s1, s2}∗ and {s2, s3}∗ induces through the “min” operator the Arrow security paying
related to the scenario two. On the other hand, given a partition

{
B j

}n
j=1 of the state

space S and a strictly positive probability P0 inducing the risk-neutral capacity given
by the plausibility measure

μ (A) =
∑

j :B j ∩A �=∅
P0

(
B j

)
.

There is no no-replicated bet A∗ given through a security induced by the minimum
between two bets in this partition market.20

4.4 Arrow–Debreu ambiguous valuation

Given a pricing rule C for a financial market, for all event A ⊂ S, its “price of bet”
is given by C (A∗) = μC (A), and, by considering A = {s}, we have computed the
vector of Arrow–Debreu (ambiguous) state prices (μs)s∈S defined by μs := μC ({s}),
which can reflect the intuition that investors may be unable to form a single additive
probability belief about asset returns.21 Clearly, the information revealed by a ambigu-
ous state price might not be enough for pricing all bet because the general subadditivity
of μC implies that the knowledge of each state price μs only gives an upper bound on
the prices of bets on events.22

19 A ABW-derivative security is any security that has the same payoff in states in which the payoffs of all
basic assets are the same.
20 In fact, as we saw in Theorem 17, in this class of markets the family of unambiguous events (unambig-
uously priced bets) form an algebra (a Riesz linear subspace) of subsets.
21 In a general equilibrium framework, Ozsoylev and Werner (2011) show the possibility of illiquid mar-
ket under information transmission in asset markets when agents’ probabilistic information is ambiguous
and analyze its consequences for asset prices. On the other hand, Condie and Ganguli (2011) show that
strong-form efficient equilibrium prices exist even when many ambiguity averse investors in the market
make use of information in a way that is substantially different from traditional financial models.
22 For instance, given the state prices μs and μs∗ then μss∗ ≤ μs + μs∗ .
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Pricing rules and Arrow–Debreu ambiguous valuation 19

We saw in the results about markets of bets that a special class of capacities plays a
fundamental role. In fact, in such markets pricing, rules can be characterized in terms
of an ambiguous state price μ because the related set of linear pricing rules is given
by family of all probabilities dominated by μ. That is,

C (X) = max
P≤μ

EP (X) ,

and the ambiguous state price μ gives the upper bound for the value of each event.
We also obtained some special cases of pricing rules where an integral with respect

to a risk-neutral capacity characterizes completely the valuation rule in the entire
universe of securities. For such financial markets, for any security X

C (X) = “Integral” of X w.r.t μC .

For instance, Lehrer pricing rules says that for any contingent claim X ≥ 0,

C (X) = min
{∑

αiμC (Ai ) :
∑

αi A∗
i = X, αi ≥ 0

}
.

Which means that in order to price a claim X , it is enough to consider the unique
non-additive event price {μC (A)}A⊂S and find the cheapest portfolio of bets that
“replicates” X .

Thus, the notion of non-linear market evaluation extends the usual way of pric-
ing in complete market setting to many incomplete markets of bets without arbitrage
opportunities by taking the introduced Arrow–Debreu ambiguous valuation through
a non-additive integral with respect to the risk-neutral capacity μC .

A simple example of pricing rule that captures the previous intuition is given by
the functional

CA(X) =
∑

s∈E0

X (s) Q ({s}) + Q
(
Ec

o

)
max
s∈Ec

o

X (s),

where Q ∈ �+. Note that the cost of betting on the event E is given by the following
concave capacity,

μCA (E) =
{

Q(E), E ⊆ E0
Q(E ∩ E0) + Q

(
Ec

0

)
, otherwise.

Clearly,

C (X) = (C)

∫
XdμCA .

One possible underlying market of securities revealed by this pricing rule is
the potential incomplete market of Arrow securities and one bond with the assets
S∗,

({sk}∗
)

k=1,...,K and corresponding prices 1, (qk)k=1,...,K , where E0 is the set of
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20 A. Araujo et al.

all unambiguous states and qk = Q ({sk}). Hence, CA can be viewed as an Arrow
ambiguous pricing rule of an incomplete market of Arrow securities.

The result about Choquet pricing shows that even without transaction costs, the
valuation in incomplete financial markets can be achieved through the notion of Cho-
quet integration. In fact, in a sense, this result comes in contrast with Bettzüge et al.
(2000) that analyzed a general equilibrium model with transaction costs satisfying
mild conditions and showed that the Choquet non-linear pricing approach, as pro-
posed by Chateauneuf et al. (1996) for the case of transactions costs, typically does
impose restrictive pricing conditions that are incompatible with non-linear equilib-
rium prices. A positive aspect of this limitation is that Choquet pricing can distinguish
special market characteristics that are beyond the condition of a perfect market. For
instance, from our results, we can say that every incomplete market given through a
basic structure of assets with the riskless bond and only Arrow securities can be con-
structed by a special case of Choquet pricing. In the case of transaction costs, Choquet
pricing also have special implications, as showed by Castagnoli et al. (2004),23 and
this topic represents a starting point of our goal for future research about pricing rules
for markets with frictions.

5 Appendix

5.1 Part A : Frictionless securities markets and its pricing rules

Arrow (1953) proposed the approach of contingent markets with the presence of a
complete frictionless securities market and used the results from Arrow and Debreu
(1954) as well as McKenzie (1954) for the existence of competitive equilibrium. Magill
and Quinzii (1996) and Magill and Shafer (1991) are basic references for the case of
general equilibrium analysis of frictionless incomplete markets, and such works pro-
vided a list of the main contributions in this field. In another way, Föllmer and Schied
(2004) provided a treatment of the basic results in frictionless incomplete markets
following the lines of standard finance theory.

Next, under no-arbitrage assumption, we describe the case of a competitive secu-
rities market without assuming completeness and avoiding the possibility of frictions
in any tradeable security.24 Formally, a pricing rule C is a super-replication price of a
frictionless and arbitrage-free securities market if we have the following conditions:

• There is a finite number of frictionless assets X j ∈ RS, 0 ≤ j ≤ m, with respec-
tive prices q j ∈ R, where X0 = S∗ := (1, . . . , 1) is the riskless bond with

23 They have shown that Choquet pricing rules can represent strong frictionalities, in the sense that the
existence of any frictionless tradeable security makes the whole market frictionless. The weakness of
this result in a setup of two-period economy with finitely many states is the required existence of a fully
revealing security, i.e., a security for which the whole available information is summarized by its contingent
payments.
24 Carvajal and Weretka (2010) argue that the principle of no-arbitrage asset pricing is also consistent
with non-competitive behavior of the arbitragers and extend the fundamental theorem of asset pricing to
the non-competitive setting.
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the price normalization q0 = 1.25 We note that there is only one possible devi-
ation from the standard frictionless complete markets setup given by the possi-
bility of incomplete markets when the set of attainable claims, denoted by F :=
span {X0, X1, . . . , Xm} , is a proper subspace of RS .

• This collection of assets and prices characterizes a frictionless market of securities
denoted by

M = (
X j , q j ; 0 ≤ j ≤ m

)
,

which is supposed to be without arbitrage opportunities, i.e., for all portfolio
θ ∈ Rm+1,

m∑

j=0

θ j X j > 0 ⇒
m∑

j=0

θ j q j > 0,

m∑

j=0

θ j X j = 0 ⇒
m∑

j=0

θ j q j = 0.

Recall that a financial market M = (
X j , q j ; 0 ≤ j ≤ m

)
offers no-arbitrage

opportunity if and only if there is a strictly positive probability26 P0 ∈ � such
that EP0(X j ) = q j , 0 ≤ j ≤ m (see, for instance, Theorem 1.6 in Föllmer and
Schied 2004). Also, given the financial market M, we denote by

QM = {P ∈ �+ : EP (X j ) = q j , ∀ j ∈ {0, . . . , m}},

the set of risk-neutral probabilities (or martingale measures)
• Finally, C is the super-replication price of the frictionless securities market M,

i.e., for all security X ∈ RS

C(X) = inf

⎧
⎨

⎩

∑

j

θ j q j :
∑

j

θ j X j ≥ X

⎫
⎬

⎭
.

Any Y = ∑
j θ j X j ≥ X gives a corresponding super-replication strategy θ ∈

R
m+1 for the security X , and in our case, the existence of superhedging strategies

for all security follows from the existence of the riskless bond.

25 We suppose, w.l.g., that this collection of assets are non-redundant (linearly independent). We do not
suppose they are positive.
26 Note that P0 strictly positive means that P0 ({s}) > 0 for any s ∈ S. The collection of strictly positive
probabilities is denoted by �+. Also, we are denoting EP (X) as the integral of the random variable X
w.r.t. the probability P .
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It is worth noticing that for a frictionless securities market M offering no-arbitrage
opportunity, the super-replication prices satisfy27

C (X) = sup
P∈QM

EP (X) , for all X ∈ RS .

Hence, by taking the closure of the set of risk-neutral probabilities Q := QM, we
obtain that C is a pricing rules (Definition 1) determinate by Q,28

C (X) = max
P∈Q

EP (X) , for all X ∈ RS .

Building on the well-known properties discussed above, a trivial Lemma about
super-replication prices is naturally derived:

Lemma 19 The mapping C : RS → R is a super-replication price of a frictionless
securities market with the riskless bond and without arbitrage opportunities if, and
only if:

(1) There exist a linearly independent set {X0, X1, . . . , Xm} ⊂ R
S with X0 = S∗

and a strictly positive probability P0 such that: EP0(X j ) = C(X j ) = −C
(−X j

)
, 0 ≤

j ≤ m; and
(2) Denoting q j := C(X j ), it is true that

C(X) = max
P∈Q

EP (X), for all X ∈ RS .

So, in this case C is the super-replication price of the market M = {
X j , q j

}m
j=0.

This Lemma 19 summarizes the structure of a frictionless incomplete market with
the bond revealed by a pricing rule C . Statement (1) says that each basic security is
free of arbitrage and pricing by C without frictions. Statement (2) gives that any secu-
rity has its super-replication cost computed through the set of extended risk-neutral
probabilities Q.

5.2 Part B: Proofs of the results in the main text

Proof of Theorem 2 By Proposition 2.1 (Chap. 10) in Huber (1981), conditions (i),
(iii), (iv), (v) are necessary and sufficient for the existence of a closed and convex set
K of probability measures such that

C (X) = max
P∈K

EP (X) .

27 See, for instance, Föllmer and Schied (2004), Theorem 1.31 and Remark 1.32.
28 We note that

Q = {P ∈ � : EP (X j ) = q j , ∀ j ∈ {0, . . . , m}}.
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Now, if the pricing rule C is strictly positive, then C
({si }∗

)
> 0,∀i ∈ {1, . . . , n}.

Hence, for every state si ∈ S, there is a probability Pi ∈ K such that EPi

({si }∗
)

> 0.
Since K is convex, we obtain that it is possible to find a strictly positive probability
in K. For the converse, by assumption, there is a strictly positive probability P0 ∈ K;
hence, if X > 0

C (X) ≥ EP0 (X) ≥ max
s∈S

P0 ({s}) X (s) > 0.

��
Proof of Lemma 3 For the proof, only the sublinearity of C is needed. First, consider
Y ∈ FC and λ ∈ R+, since C is positively homogeneous, we have that C(λY ) =
λC(Y ) and C(λ (−Y )) = λC(−Y ), then C (λY ) + C (−λY ) = 0, i.e., λY ∈ FC . If
λ < 0, follows from the definition that −Y ∈ FC and then (−λ) (−Y ) ∈ FC , i.e.,
λY ∈ FC .

Now, if Y, Z ∈ FC , since C is subadditive

C (Y + Z) ≤ C(Y ) + C(Z), and

C (− (Y + Z)) ≤ C(−Y ) + C(−Z),

hence, adding these two inequalities

0 = C(0) ≤ C (Y + Z) + C (− (Y + Z)) ≤ 0,

i.e., Y + Z ∈ FC . ��
Proof of Lemma 4 Since for all security X, C (X) = maxP∈K EP (X) , if X is fric-
tionless, then

max
P∈K

EP (X) = − max
P∈K

EP (−X)

which is equivalent to

max
P∈K

EP (X) = min
P∈K

EP (X) ,

and since P → EP (X) is continuous and K is compact, then EP (X) = EQ (X) for
all P, Q ∈ K. For the converse, if X is such that EP (X) = EQ (X) for all P, Q ∈ K,
and the same is true for −X . Hence, C (X) = EP (X) and C (−X) = EP (−X) for
any P ∈ Q, which entails C (X) = −C (−X). ��

In order to prove Theorem 5, we will show some auxiliary results.
For a given frictionless securities market, we recall the following simple and impor-

tant result:29

29 See, for instance, the Corollary 1.34 in Föllmer and Schied (2004), which also cover the case with
infinitely many states. Note also that in our context, for any X, EP (X) = EQ(X) for all P, Q ∈ QM iff
EP (X) = EQ(X) for all P, Q ∈ QM.
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Lemma 20 Consider an arbitrage-free financial market M = {
X j , q j , 0 ≤ j ≤ m

}
,

a security X ∈ F := span
{

X j
}

0≤ j≤m if, and only if, EP (X) = EQ(X) for all

P, Q ∈ QM = {P ∈ �+ : EP (X j ) = q j , ∀ j ∈ {0, . . . , m}}.
Given a pricing rule C , its induced set of probabilities that agree about the expected

value of every frictionless securities is given by,

QC := {P ∈ � : EP (Y ) = C (Y ) , for all Y ∈ FC } .

A useful characterization of pricing rules of a frictionless securities market says
that

Lemma 21 Let C : RS → R be given, then (i) is equivalent to (i i):

(i) C is the pricing rule of a frictionless securities market without arbitrage oppor-
tunities;

(i i) C is a strictly positive linear form on FC and

C(X) = max
P∈QC

EP (X) .

Furthermore, under (i) and (i i) FC is the set of attainable claims and QC is
the set of extended risk-neutral probabilities of the underlying market.

Proof (i) ⇒ (i i) By Lemma 19, there exist a collection of linearly independent ele-
ments X0, X1, . . . , Xm ∈ RS with X0 = S∗ and a strictly positive probability P0 on
2Ssuch that EP0(X j ) = C(X j ) = −C

(−X j
)
, 0 ≤ j ≤ m. Moreover, ∀X ∈ RS

C(X) = max
P∈Q

EP (X),

where Q = {P ∈ � : EP (X j ) = C(X j ) =: q j ; 0 ≤ j ≤ m}.
Now, note that no-arbitrage principle implies that C is a strictly positive linear

form on F := span
{

X j
}m

j=0; actually, by the no-arbitrage condition, there is a strictly
positive probability P0 such that ∀Y ∈ F , C (Y ) = EP0 (Y ).

Also, we note that if C : RS → R is a super-replication price of the frictionless
market

M = {
X j , q j ; 0 ≤ j ≤ m

}
,

then FC = F . In fact, since EP (X) = C (X) for any X ∈ F and for any P ∈ Q,
clearly F ⊂ FC . Conversely, let X ∈ FC . Since for any P ∈ Q,

EP (X) ≤ C (X) and EP (−X) ≤ C (−X) ,

and

EP (X) + EP (−X) = 0 = C (X) + C (−X) ,
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we obtain that EP (X) < C (X) is impossible, i.e., given an asset X ∈ FC the mapping
P → 
X (P) := EP (X) is constant over Q , and by Lemma 20, X ∈ F . Moreover,
we obtain that C is a strictly positive linear form on FC .

Finally, by the definitions of QC and Q and since FC = span {X0, . . . , Xm}, it is
easy to see that QC = Q.

(i i) ⇒ (i) Since S∗ ∈ FC , let us consider X0, X1, . . . , Xm , with X0 = S∗, a basis
of the linear subspace FC . We intend to show that C is a super-replication price for
the securities market

{
X j , q j := C

(
X j

)}m
j=0.

By our assumption, the restriction C |FC of C on the linear subspace FC of the
Euclidian spaceRS is a strictly positive linear form; hence, it admits a strictly positive
linear extension C |FC on RS (see, for instance, Clark 1993, Theorem 6). Clearly, it
is true that C |FC (S∗) = 1; therefore, there is a strictly positive probability P0 on(
S, 2S

)
such that EP0 (X) = C |FC (X) , for any X ∈ RS ; in particular, EP0

(
X j

) =
C |FC

(
X j

) = C
(
X j

)
, 0 ≤ j ≤ m. So, the condition (1) of Lemma 19 is satisfied.

We choose FC =: F as the set of attainable securities. The proof of (i i) implies (i)
will be completed if we prove that QC = Q, where Q := QM. We note that QC is
non-empty30 because we just saw that there is a strictly positive probability P0 ∈ QC

Since for any j ∈ {0, 1, . . . , m} the security X j is frictionless, we obtain that
every probability P ∈ QC is an extended risk-neutral probability for the market M ={

X j , q j := C
(
X j

) ; 0 ≤ j ≤ m
}
.31 For the other necessary inclusion, let P ∈ Q and

an arbitrary Y ∈ FC , i.e., P is such that

EP
(
X j

) = C
(
X j

)
, 0 ≤ j ≤ m,

and Y is such that there exist λ0, λ1, . . . , λm ∈ R where

Y =
m∑

j=0

λ j X j .

Since C |FC is a linear mapping:

EP (Y ) = EP

⎛

⎝
m∑

j=0

λ j X j

⎞

⎠ =
m∑

j=0

λ j EP
(
X j

)

=
m∑

j=0

λ j EP
(
X j

) =
m∑

j=0

λ j C
(
X j

) = C

⎛

⎝
m∑

j=0

λ j X j

⎞

⎠ = C (Y ) .

Hence, P ∈ QC , which completes the proof. ��
Proof of Theorem 5 From Lemma 19 and Theorem 2, we already know that necessar-
ily C is a financial pricing rule. So we just confine on the equality FC = LC .

30 Also, it is clear that QC is compact and convex.
31 By the existence of the strictly positive probability P0, the financial market M is a market of securities
with no-arbitrage opportunity.
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(⇒) We want to show that LC = FC . In fact, we saw in the main text that for any
financial pricing rule C , it is true that FC ⊂ LC .
Now, suppose that X ∈ LC , then by definition Y > X ⇒ C (Y ) > C (X).
Since C is a super-replication price of a frictionless market of securities F =
FC . So, by supposing that X /∈ FC , since

C (X) = min {C (Y ) : Y ≥ X and Y ∈ FC }
(X /∈FC )= min {C (Y ) : Y > X and Y ∈ FC } ,

there is Z ∈ FC such Z > X and C (Z) = C (X), a contradiction.

(⇐) Since C is a financial pricing rule, we know that there is a non-empty, closed,
and convex set of probabilities measures K such that K ∩�+ �= ∅ and for any
X ∈ RS ,

C (X) = max
P∈K

EP (X) .

By Lemma 21, it is enough to show that C is strictly positive linear form on FC

and K = QC .
The inclusion K ⊂ QC is simple. Consider P ∈ K, if P /∈ QC , then there is

X ∈ FC such that EP (X) < C (X) = −C (−X); hence, EP (−X) > C (−X) =
maxP∈K EP (−X), a contradiction.

So, we need to show that K � QC is impossible. Assume that there is P1 ∈ QC such
that P1 /∈ K. Then, through the classical strict separation theorem (see, for instance,
Dunford and Schwartz 1988), there is a security X0 such that

EP1 (X0) > max
P∈K

EP (X0) = C (X0) .

If we prove that there is Y ∈ FC , Y ≥ X0 such that C (X0) = C (Y ), this will
entail a contradiction, since

EP1 (X0) > C (X0) = C (Y ) = EP1 (Y ) ≥ EP1 (X0) .

So it is enough to show that for any security X , setting

EX :=
{

Y ∈ RS : Y ≥ X and C (Y ) = C (X)
}

,

there is Y ∈ FC ∩ EX .
This result is obvious if X ∈ FC , so let us assume that X /∈ FC . Recall that from

Theorem 2, K contains at least a strictly positive probability P0.
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Let us now prove that EX is bounded from above, otherwise there would exist a
sequence {Yk}k≥1 , Yk ∈ EX ,∀k ≥ 1 and s0 ∈ S such that limk Yk (s0) = +∞. But

lim
k

C (Yk) ≥ lim
k

EP0 (Yk) = lim
k

∑

s∈S

P0 (s) Yk (s)

≥
∑

s �=s0

P0 (s) X (s) + lim
k

P0 (s0) Yk (s0) = ∞,

contradicting C (Yk) = C (X) ,∀k ≥ 1.
Let us now show that EX has a maximal element for the partial order ≥ on RS .

Thanks to Zorn ´s lemma, we just need to prove that every chain (Yλ)λ∈
 in EX has
an upper bound. Define Y by

Y (s) := sup
λ∈


Yλ (s) ,∀s ∈ S.

Since EX is bounded from above, it implies that Y ∈ RS . It remains to check that
C (Y ) = C (X), let ε > 0 be given, and let si ∈ S, hence there is λi ∈ 
 such that
Y (si ) ≤ Yλi (si ) + ε, since (Yλ)λ∈
 is a chain there is n ≥ 1 and λ̃ ∈ {λ1, . . . , λn}
such that Ỹλ ≤ Y ≤ Ỹλ + εS∗, therefore C

(
Ỹλ

) ≤ C (Y ) ≤ C
(
Ỹλ

) + ε, since
C

(
Ỹλ

) = C (X) it turns out that C (Y ) = C (X). Let now Y0 be a maximal element
of EX , the proof will be completed if we show that Y0 ∈ FC . From the hypothesis
FC = LC , it is enough to show that Y0 ∈ LC . Let Y1 be an arbitrary security such
that Y1 > Y0, since Y0 is a maximal element in EX , it comes that Y1 /∈ EX , but
Y1 > X , therefore C (Y1) > C (X) = C (Y0), so Y0 ∈ LC which completes the proof
of K = QC .

Now, since

C (X) = max
P∈QC

EP (X)

and QC ∩ �+ �= ∅, it is easy to see that C is a strictly positive linear form on FC .
��

Proof of Theorem 12 (⇒) Our assumption says that C is a super-replication price of
a frictionless securities market of bets with the riskless bond, that is, there is a list of
events {S, B1, . . . , Bm} such that X j = B∗

j for all j , and:

Q = {P ∈ � : P
(
B j

) = μC
(
B j

)
, 0 ≤ j ≤ m}.

We note that it is enough to show that acore
(
μ∗

C

) ⊂ Q. So, assume that P ∈
acore

(
μ∗

C

)
and let B j be a basic bet, which is, of course, an unambiguous event for

μC . By definition of μ∗
C , one has μ∗

C

(
B j

) = μC
(
B j

)
, therefore P

(
B j

) ≤ μ∗
C

(
B j

)

implies P
(
B j

) ≤ μC
(
B j

)
. Also, the same for Bc

j holds: μ∗
C

(
Bc

j

)
= μC

(
Bc

j

)
and

123



28 A. Araujo et al.

P
(

Bc
j

)
≤ μ∗

C

(
Bc

j

)
implies P

(
Bc

j

)
≤ μC

(
Bc

j

)
. By P

(
B j

) + P
(

Bc
j

)
= 1 =

μC
(
B j

) + μC

(
Bc

j

)
, it turns out that P

(
B j

) = μC
(
B j

)
.

(⇐) We need to prove that there exist B0, B1, . . . , Bm ∈ 2S with B0 = S, a

strictly positive probability P0 on 2S such that q j := P0
(
B j

) = C
(

B∗
j

)
, for any

j ∈ {0, 1, . . . , m}, and ∀ X ∈ RS

C(X) = max
P∈Q

EP (X),

where Q = {P ∈ � : P
(
B j

) = C
(

B∗
j

)
, 0 ≤ j ≤ m}.

Our assumption says that the set of extended risk-neutral probabilities Q satisfies

Q = {
P ∈ � : P (E) ≤ μ∗

C (E) , for all E ⊂ S
}
.

First, note that EμC �= ∅ because S is unambiguous. Consider

G := span
{

B∗ : B ∈ EμC

}
.

Clearly, there is a basis of G given by a finite set
{

B∗
0 , B∗

1 , . . . , B∗
m

}
with B0 = S

and B j ∈ EμC for all j . Also, we set q j := μC
(
B j

) = P0
(
B j

)
> 0 for all j for some

P0 strictly positive (recall that Q ∩ �+ �= ∅).
Now, suppose that P ∈ � is such that

P
(
B j

) = μC
(
B j

)
for all j.

Given an event E , there is an unambiguous event F such that μ∗
C (E) = μC (F).

Also, since F∗ ∈ G, there is a set JF ⊂ {0, 1, . . . , m} such that F∗ = � j∈JF B∗
j . In

fact,
{

B∗
j

}

j∈JF
is a collection of disjoint unambiguous events with F = ∪ j∈JF B j ,

which allows us to obtain that

μ∗
C (E) = μC (F) = P (F) ≥ P (E) .

That is, P ∈ acore
(
μ∗

C

)
.

For the converse, suppose that there is a probability P s.t. P ≤ μ∗
C , but such that

there is some j with

P
(
B j

) �= μC
(
B j

)
.

Since

1 = P
(
B j

) + P
(

Bc
j

)
= μC

(
B j

) + μC

(
Bc

j

)
,
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we have

P
(
B j

) − μC
(
B j

) = μC

(
Bc

j

)
− P

(
Bc

j

)
,

that is, P
(
B j

)
> μC

(
B j

)
iff μC

(
Bc

j

)
> P

(
Bc

j

)
. Hence, P /∈ acore (μC ) and

by the always true sentence

Q ⊂ acore (μC ) ⊂ acore
(
μ∗

C

)
,

we conclude that

Q �= acore
(
μ∗

C

)
,

a contradiction. ��
Proof of Corollary 14 By the Theorem 12, we known that a pricing rule of a friction-
less market of bets is the upper probability w.r.t. acore (μC ). On the other hand, by
Azrieli and Lehrer (2007) and Lehrer (2009), the Lehrer integral is constant additive
iff the capacity has large core (in our case, has no-gap), and in this case, for any
contingent claim X ∈ RS+

(L)

∫
XdμC = max

P∈acore(μC )
EP (X) ;

hence,

C (X) = (L)

∫
XdμC .

��
For the proof of Theorem 17, we need some previous results. We will see that

the possibility of pricing rules of frictionless securities markets given by a Choquet
integral is related to some strong condition on the set of attainable securities. For that
we present the next well-known definition,

Definition 22 A Riesz subspace ofRS is a linear subspace F ofRS such that X, Y ∈ F
implies that X ∨ Y ∈ F and X ∧ Y ∈ F .

Next result shows that a Choquet pricing rule of a frictionless and arbitrage-free
securities markets entails a strong condition on the set of attainable securities.

Lemma 23 If a pricing rule C of a frictionless and arbitrage-free securities market is
a Choquet integral then the induced ambiguous state price μC is a concave capacity
and the induced subspace F = FC of attainable securities is a Riesz space.
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Proof First, we note that from Proposition 3 given by Schmeidler (1986) we have that
if C is a subadditive Choquet integral with respect to the capacity μC , then μC is a
concave capacity.

Let us now prove that F is a Riesz space.
Let X, Y ∈ F , then by Lemma 20, we have that for any P ∈ Q, EP (X)+EP (Y ) =

C(X) + C (Y ). Since C is a Choquet Integral with respect to a concave capacity, it
turns out that32

C (X) + C (Y ) ≥ C (X ∨ Y ) + C (X ∧ Y ) .

Therefore, using the previous equality

EP (X ∨ Y ) + EP (X ∧ Y ) = EP (X) + EP (Y ) ≥ C (X ∨ Y ) + C (X ∧ Y ) .

But EP (X ∨ Y ) ≤ C (X ∨ Y ) and EP (X ∧ Y ) ≤ C (X ∧ Y ) for any P ∈ Q.
Hence, EP (X ∨ Y ) = C (X ∨ Y ) and EP (X ∧ Y ) = C (X ∧ Y ) for any P ∈ Q
which implies by Lemma 20 that X ∨ Y and X ∧ Y belongs to F . ��

Another important result is.33

Lemma 24 Let F be a Riesz subspace of Rn containing the unit vector 1Rn :=
(1, . . . , 1) ∈ R

n then F is a “partition” linear subspace of Rn, i.e., up to a per-
mutation 34:

x ∈ F iff x = (
x1, . . . x1, . . . , x j , . . . , x j , . . . , xm, . . . ., xm

)
.

Proof The proof is by induction on the cardinality n of S ≥ 1. Clearly, the result is
true if n = 1; now, assume that the result is true for n = k and let us show that it
remains true for n = k + 1.

So let F be a subspace of Rk+1 containing 1Rk+1 , and let G be defined by:35

G :=
{

y = (x1, . . . , xk) ∈ Rk : ∃xk+1 s.t. (y, xk+1) ∈ F
}

.

It is straightforward to check that G is a Riesz subspace of Rk containing 1Rk , there-
fore by the induction hypothesis and up to a permutation y ∈ G is equivalent to y =

32 See, for instance, Huber (1981, p. 260, 261).
33 We give a direct proof of this result, which also can be deduced directly from some results obtained by
Polyrakis (1996, 1999). But, in order to derive this Lemma from Polyrakis’s results we need to introduce a
series of concepts that are beyond the scope of this work. See also Proposition 6 in Polyrakis and Xanthos
(2011).
34 Now, we use the notation 1Rn and not

(
R

n)∗ in order to avoid the confusion with the dual of R
n . The

notation A∗ is used only for characteristic funtions induced by subsets of the state space S.
35 For y = (x1, . . . , xk ) ∈ R

k and xk+1 ∈ R we use the following notation:

(
y, xk+1

) := (
x1, . . . , xk , xk+1

) ∈ R
k+1.
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(
x1, . . . , x1, . . . x j , . . . , x j , . . . , xm, . . . , xm

)
where x j ∈ R, 1 ≤ j ≤ m. Clearly, if

x ∈ F , then x ∈ G̃ ⊕ H̃ , the direct sum of the linear subspaces of Rk+1 given by

G̃ =
{
(y, 0) ∈ Rk+1 : y ∈ G

}

H̃ =
{
(0, . . . , 0, xk+1) ∈ Rk+1 : xk+1 ∈ R

}
.

Therefore, dim F ≤ dim G̃ ⊕ H̃ = m + 1. It is also immediate to see that dim F ≥
m; in fact, y ∈ G is equivalent to

y =
m∑

j=1

x j V ∗
j ,

where each V ∗
j ∈ R

k, i.e., Vj ⊂ {1, . . . , k}, and
{

V ∗
1 , . . . , V ∗

m

}
is a basis of G.

Let z j ∈ R be such that (V ∗
j , z j ) ∈ F, 1 ≤ j ≤ m; it is immediate to see that

{{
V ∗

1

}
, . . . ,

{
V ∗

m

}}
linearly independent in G implies

{{
V ∗

1 , z1
}
, . . . ,

{
V ∗

m, zm
}}

lin-
early independent in F , hence dim F ≥ m.

Two cases have to be examined:
(1) dim F = m + 1: Clearly, since F ⊂ G̃ ⊕ H̃ , this implies that F = G̃ ⊕ H̃ and

F is a “partition” space.

(2) dim F = m: In such a case, since
{

W ∗
j :=

{
V ∗

j , z j

}
, 1 ≤ j ≤ m

}
is linearly

independent in F,
{

W ∗
j :, 1 ≤ j ≤ m

}
is a basis of F . Hence, we obtain that x ∈ F if

and only if there are x j , 1 ≤ j ≤ m such that x =
m∑

j=1
x j W ∗

j , in particular,

xk+1 =
m∑

j=1

x j z j , (�) .

So, it remains to show that there is j0 ∈ {1, . . . , m} such that for any x ∈ F , it
is possible to write x = ∑m

j=1 x j V ∗
j + x j0 . Note that is enough to show that all the

z j ’s are equal to zero except z j0 = 1. Since 1Rk+1 ∈ F by the above property (�), we
obtain that

∑m
j=1 z j = 1.

Now take j �= i, j, i ∈ {1, . . . , m}. Since F is a Riesz space, W ∗
j , W ∗

i ∈ F

implies that W ∗
j ∧ W ∗

i ∈ F , but W ∗
j ∧ W ∗

i = ((
Vj ∩ Vi

)∗
, z j ∧ zi

)
and Vj ∩ Vi = ∅,

hence by property (�), we obtain that 0 = ∑m
j=1 x j z j = z j ∧ zi , therefore z j ≥ 0.

On the other hand, the Riesz space structure implies also that W ∗
j ∨ W ∗

i ∈ F , but

W ∗
j ∨W ∗

i = (
1Rk+1 , z j ∨ zi

)
l; hence, by property (�), we obtain that z j ∨zi = z j +zi .
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Summing up, we have

m∑

j=1

z j = 1, therefore for any j �= i, j, i ∈ {1, . . . , m} :

z j ∧ zi = 0 and z j ∨ zi = z j + zi ;

this implies that there is a unique j0 ∈ {1, . . . , m} such that z j0 = 1 and for any
j ∈ {1, . . . , m} \ { j0} it is true that j = 0, the desired result. ��

Proof of Theorem 17

(i) ⇒ (i i) Since C is a Choquet pricing rule of a frictionless and arbitrage-free
securities market, by Lemma 23, we know that the set of attainable
securities F is a Riesz subspace of RS containing the riskless bond
S∗. Therefore, by Lemma 24, we obtain that F is a partition linear
subspace ofRS ; hence, C is the super-replication price of a frictionless
and arbitrage-free partition market.

(i i) ⇒ (i i i) By assumption, we have a partition {B1, . . . , Bm} of the
state space S and a strictly positive probability P0 such that

P0
(
B j

) = C
(

B∗
j

)
for any j ∈ {1, . . . , m}.

Recall that,

Q = {
P ∈ � : P

(
B j

) = P0
(
B j

)
, 1 ≤ j ≤ m

}

and

C (X) = max
P∈Q

EP (X) .

Clearly, we have that

Q =
{

P ∈ � : ∃ {
A j

}m
j=1 s.t. A j ⊂ B j and P

(
A j

) = P0
(
B j

)
, 1 ≤ j ≤ m

}
.

Hence, given an arbitrary security X , consider
{

A j
}m

j=1 where A j := arg maxs∈B j

X (s) and take a linear valuation P̂ such that P̂
(

A j
) = P̂

(
B j

)
for all j . Note that if

s /∈ A j for all j , then P̂ ({s}) = 0.
Hence,

EP̂ (X) =
m∑

j=1

∑

s∈B j

P̂ ({s}) X (s) =
m∑

j=1

∑

s∈A j

P̂ ({s}) X (s) =
m∑

j=1

P̂
(
B j

)
max
s∈B j

X (s) .
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Now, for all Q ∈ Q, we obtain that for any j ∈ {1, . . . , m}
∑

s∈B j

Q ({s}) X (s) ≤
∑

s∈B j

Q ({s}) max X
(
B j

) = Q
(
B j

)
max X

(
B j

)

= P̂
(
B j

)
max X

(
B j

)
.

Hence,

EQ (X) =
m∑

j=1

∑

s∈B j

Q ({s}) X (s) ≤ EP (X) , ∀Q ∈ Q,

which shows that C (X) =
m∑

j=1
P̂

(
B j

)
maxs∈B j X (s) =

m∑

j=1
P0

(
B j

)
maxs∈B j X (s).

(i i i) ⇒ (i) By our assumption, we have that there is a strictly positive probability
P0 and a partition B1, . . . , Bm of S and such that ∀X ∈ RS

C(X) =
m∑

j=1

P0(B j ) max
s∈B j

X (s).

Hence, the induced ambiguous state price is given by the plausibility measure

μC (A) =
∑

k∈{ j :B j ∩A �=∅}
P0

(
B j

)
,

and it is well known that

C (X) = (C)

∫
XdμC ,

i.e., C is a Choquet pricing rule. Now, it is easy to see that FC is given by the par-
tition linear subspace span

{
B∗

1 , . . . , B∗
m

}
. Now, consider a security Y and suppose

that Y is not represented by a linear combination from the set
{

B∗
1 , . . . , B∗

m

}
. In this

case,

C (Y ) =
m∑

j=1

P0(B j ) max
s∈B j

Y (s),

and there is j and there are r, ω ∈ B j such that Y (r) > Y (ω). Now, take Z such
that for any s �= ω, Y (s) = Z (s) and Z (ω) = Y (r). In this case, it is easy to see that
C (Z) = C (Y ), that is, if Y /∈ span

{
B∗

1 , . . . , B∗
m

}
then Y /∈ LC . So, LC = FC which

implies that C is a Choquet pricing rule of a frictionless and arbitrage-free securities
market.

Finally, we note that Lemma 24 given us the equivalence between the items (i i)
and (iv), which complete the proofs of the desired equivalence.
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Now, the fact that FC is a Riesz linear subspace it follows from Lemma 23 or
Lemma 24, as we see just before. The fact that μC is concave follows as in the Lemma
23. From Nehring (1999), since μC is concave, we obtain that EμC is a Boolean
algebra. It remains to show that μ∗

C ≤ μC . First, let us show that μ∗
C is concave:

Let A1, A2 be subsets of S, by definition of μ∗
C , there exist B1 ⊃ A1 and B2 ⊃

A2, Bi ∈ EμC such that μ∗
C (Ai ) = μC (Bi ) , i = 1, 2. Hence, μ∗

C (A1) + μ∗
C (A2) =

μC (B1) + μC (B2) ≥ μC (B1 ∪ B2) + μC (B1 ∩ B2). Since B1 ∪ B2, B1 ∩ B2 ∈
EμC , B1∪B2 ⊃ A1∪ A2 and B1∩B2 ⊃ A1∩ A2, it turns out that μ∗

C (A1)+μ∗
C (A2) ≥

μ∗
C (A1 ∪ A2) + μ∗

C (A1 ∩ A2). Let A ⊂ S, μ∗
C concave implies that there is a prob-

ability P ∈ acore
(
μ∗

C

)
, but Theorem 12 guarantees that acore (μC ) = acore

(
μ∗

C

)

hence P ∈ acore (μC ), therefore

μ∗
C (A) = P (A) ≤ μC (A) .

��
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