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Abstract We study dynamic committee bargaining over an infinite horizon with dis-
counting. In each period, a committee proposal is generated by a random recognition
rule, the committee chooses between the proposal and a status quo by majority rule,
and the voting outcome in period 7 becomes the status quo in period ¢ 4+ 1. We study
symmetric Markov equilibria of the resulting game and conduct an experiment to test
hypotheses generated by the theory for pure distributional (divide-the-dollar) environ-
ments. In particular, we investigate the effects of concavity in the utility functions,
the existence of a Condorcet winning alternative, and the discount factor (committee
“impatience”). We report several new findings. Voting behavior is selfish and myopic.
Status quo outcomes have great inertia. There are strong treatment effects that are in
the direction predicted by the Markov equilibrium. We find significant evidence of
concave utility functions.
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1 Introduction

The large redistributive programs that have characterized western democracies since
the end of World War II—pension, health, and disability plans, for example—share
a common characteristic. Once one of these programs is created by a legislature, it
remains in force until explicitly revised. This feature makes the politics of redistribu-
tion an intrinsically dynamic game that cannot be studied as a simple static struggle
for resources among different constituencies or even as a sequence of independent
struggles. A policy chosen today will be the status quo tomorrow. In choosing the
optimal policy, a policy maker should not only consider the direct effect of the policy
today, but also the indirect effect that the policy has for future policy decisions. In the
short run, the policy maker may prefer a policy that favors only his constituency; when
the long run is considered, however, a more moderate policy may be preferred because
a moderate status quo favorable to a larger constituency will be harder to overturn in
the future.

Recent theoretical work has put particular emphasis on the dynamic structure of
policy outcomes, producing a rich assortment of predictions.! This literature raises
three natural questions: To what extent do game theoretic models accurately predict
behavior in a dynamic policy game? Can the models be improved to better explain
empirical evidence? If so, how?

In this paper, we take a step in answering these questions by studying equilibrium
behavior in a simple dynamic model of committee bargaining with endogenous status
quo and by presenting the first laboratory experiment on this class of games.” We
consider an infinite horizon model in which a committee of three agents has to divide
a dollar at every period. At the beginning of a period, a member of the committee is
selected at random to propose a division to the committee. The committee then chooses
by majority rule between the proposal and a given status quo. The selected policy is
implemented, and it becomes the new status quo. With a positive probability, the game
is repeated exactly as before, but with the new status quo; with the complementary
probability, the game is terminated. The policy choice in period ¢, therefore, will affect
the bargaining game at # 4 1 and indirectly in the following period as well.

1 Among the most recent works, see Baron et al. (2011), Baron and Herron (2003), Battaglini and Coate
(2006, 2007, 2008), Diermeier and Fong (2009), Duggan and Kalandrakis (2010), Kalandrakis (2004), Penn
(2009).

2 Previous experimental work on legislative bargaining games is provided by McKelvey (1991) and, more
recently, by Diermeier and Morton (2006), Diermeier and Gailmard (2006) and Frechette et al. (2003,
2005a,b,c) and Frechette et al. (2011). All these works, however, focus on static environments inspired by
the seminal paper by Baron and Ferejohn (1989) in which a given amount of resources is allocated only
once.
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We study this model because similar models have been theoretically studied by a
number of authors (Epple and Riordan 1987; Baron 1996; Baron and Herron 2003;
Kalandrakis 2004; Duggan and Kalandrakis 2010), and it is therefore a natural starting
point. Despite its simplicity, a complete understanding of behavior in this game has
thus far proven elusive. When agents are risk neutral, Kalandrakis (2004) has shown
by construction that this game has a symmetric Markov equilibrium in which commit-
tee members behave myopically, maximizing their current utility. In this equilibrium,
therefore, proposers succeed in appropriating all or almost all the dollars in every
period as if the game was a sequence of one-period games. Baron (1996) and Baron
and Herron (2003) however have conjectured that with more general utilities, agents
have stronger incentives for dynamic strategic behavior, suggesting that concavity in
the utility function would lead to more equitable outcomes. However, equilibrium
behavior in a legislative bargaining game with general utilities has not been charac-
terized yet, so the importance of this phenomenon is not known in general.?

To investigate these issues and provide a theoretical benchmark for the experimental
evidence, we proceed in two steps. First, we study a simple environment in which we
can prove the existence of a unique equilibrium with certain desirable properties, and
we can fully characterize it. In this environment, we can consider both situations in
which the policy space admits a Condorcet winner and situations in which a Condor-
cet winner does not exist. A central principle of static models of committee decision
making is that Condorcet winners will prevail. In the environment we study, even with
a Condorcet winner, we predict the stability of dynamic regimes where non-Concorcet
winners prevail indefinitely. Second, we extend the analysis to a “divide-the-dollar”
game in which multiple equilibria may exist. We study this game by numerical meth-
ods, showing that Baron’s conjecture is correct by computing an equilibrium in which
as concavity increases, equilibrium outcomes become more equitable.

This theoretical analysis provides a rich set of predictions that we can test in the
laboratory. We consider an experimental design that varies the environment across
three dimensions. One dimension is whether the environment is a (nearly) continu-
ous divide-the-dollar setting versus a more constrained set of allocations. The second
dimension, applied to the finite environment, is the effect of the existence of a Condor-
cet winner. The third dimension, applied to the continuous environment, is the effect
of long-run incentives, which we study by varying the discount factor of the committee
members — comparing “patient” legislatures or committees with “impatient” ones.

Our experimental findings allow a clear evaluation of the ability of these complex
theoretical models to predict empirical behavior. In environments where bargaining is
over a limited set of states, the “standard” theoretical model assumed in the literature
(in which utilities are linear and agents play according to Nash equilibrium) is con-
sistent with many features of the data, but with some exceptions which we discuss.
The model predicts, in particular, the difference in behavior that we observe between
the case in which there is a Condorcet winner among the alternatives or not. When
bargaining is over more complicated state spaces (as in the unit simplex), however,
the standard model performs less well. The model predicts highly unequal outcomes

3 Bowen and Zahran (2009) have constructed an example of an equilibrium with these properties for a
non-degenerate interval of discount factors when then the number of agents is larger than four.
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in which in each period one agent appropriates most of the resources: However, we
rarely observe such outcomes, on the contrary, we observe a significant frequency of
allocations in which resources are evenly distributed among all participants. We can
however show that this type of behavior is not necessarily evidence of social pref-
erences or non-strategic behavior. Indeed, there is little or no evidence in our data
indicating a preference for fairness. Rather, our main experimental findings are con-
sistent with selfish preferences and concave rather than linear utilities, and we fit such
a model to the data. Players tend to make proposals that maximize their payoff at the
expense of others when it is optimal to do so (as when they are favored by the status
quo); and voting behavior is overwhelmingly myopic and selfish in all treatments.

The rest of the paper is organized as follows. The next section lays out the model.
Section 3 characterizes the theoretical properties of the model. Section 4 describes the
experimental design. Section 5 analyzes the results and findings of the experiment.
We conclude in Sect. 6.

2 Model

We consider the problem faced by a set of N agents who repeatedly bargain over a set
of outcomes X. In each period r = 1, 2, 3. . ., a policy x; is chosen by the agents. The
bargaining protocol with which policy x; is chosen is as follows. At the beginning of
each period, an agent is chosen by nature as the proposer and proposes a policy, y; € X.
The floor votes on this policy following a g rule, where g € [1, N]. If the number
voting in favor is greater than or equal to g, the proposal is accepted and x; = y; is the
implemented policy at ¢. If the proposal is voted by less than g agents, the proposal
is rejected and a status quo policy X; = x,_1 is implemented. The initial status quo
X1 is exogenously specified. Each agent can be recognized as a policy proposer: The
probability that agent i is recognized as proposer in period ¢ is % so the probabilities
of being recognized are assumed here to be symmetric and history invariant.

Agents have a Von Neuman Morgenstern per period utility U; : X — R,
which is assumed to be continuous and (weakly) quasi concave. The policy imple-
mented in period ¢, x;, therefore induces an n-tuple of utilities (U; (x,))lN: 1- The util-
ity of an infinite sequence of policies, x = {x{,...,x;, ...}, is given by Ui‘S (x) =
(1=9) Z;’il 8"~ 'U; (x,) where the non-negative discount factor, §, is assumed to be
strictly less than 1.

Many examples of this general framework can be constructed, such as the following
two:

Example I (Divide-the-dollar) The agents have to divide a pie of size K. An alloca-
tion is vector (x/), where x’ > 0Vi and ZlNz 1 x' = K. Each agent is interested

only in the size of the pie that he receives.

Example 2 (Public goods) In this case, X is a collection of projects {x, ..., xg},
where each project x; gives utility payoffs to the agents, (U; (xk))f.\': 1

An outcome in period ¢t is defined by the current status quo, X;, nature’s choice
of a proposer (; € {1, ..., N}, the proposed policy y; € X, and the vector of votes
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n; € {1,0}V. Letw, = {X;, s, y;, 7/} be an outcome at time 7 > 1, and x; = x (wr; q)
is the policy implemented under the voting rule, g, if the outcome in period ¢ is «;.
A t-history A is defined as h' = {w1, .. ..w;} ; the set of possible ¢-histories is H'. A
strategy for agent i is a set of functions s;; = [pi;, 0,17, where pj; : H=l 5 AX
describes the proposal strategy of agent i in period # (A X is the set of randomizations
over X);and o;; : H'™! x {1,..., N} x X — [0, 1] associates to each history h'~!,
proposer, and proposal a probability to vote for the proposal.

In a sequential equilibrium, the strategies are measurable with respect to the entire
history set H’. A Markov strategy, on the contrary, is measurable only with respect
to the status quo x; and the payoff relevant events that occur in period ¢: p; : X —
AX,0;: X x X — [0, 1]. A Markov equilibrium is a subgame perfect Nash equilib-
rium in Markov strategies. The analysis in this paper focuses on Markov equilibria. To
each Markov equilibrium and each agent i, we can associate a function v; (6), which
represents the expected continuation value of agent i when the status quo (current
policy) is 6 before the proposer is randomly selected. Given this, we can define the
function u; (6) = U;(0) + v; (0) as the expected utility of agent i if policy 6 is imple-
mented in a representative period; and the function u; (6’; 0) as the expected utility of
agent i if he proposes 6" when the status quo is 6.

A Markov equilibrium s = {(p;, 07)}i_, is symmetric if {(p;, 0;)}7_, and if it has
the following symmetry property. For any pair of agents 7, j and for any pair of alter-
natives, x, y € X, define x'/ (or y"/) by switching the i’” and j" components of x
(or y), e.g., x'2 = (x2, x1, x3). Then, we call s symmetric if p; (x|y) = p; (x"/|y'/)
and o;(x,y) = 0; (x'7, yi7) forany i, j and any x, y € X. A Markov equilibrium is in
stage undominated strategies if in each stage no agent uses a strategy that is weakly
dominated given his equilibrium value function v; (6). From now on, we will focus on
symmetric Markov equilibria in stage undominated strategies, and we refer to them
simply as equilibria.

3 Theoretical predictions

In this section, we describe the equilibrium properties of the game described in Sect. 2
under additional assumptions on the policy space. We focus exclusively on the case
of N = 3 and ¢ = 2. In Sect. 3.1, we study a case with a finite set of alternatives
in which the equilibrium is unique. In Sect. 3.2, we study equilibrium behavior in a
standard divide-the-dollar game.

3.1 Simplified divide-the-dollar: coarse grid over allocations

In this section, we consider a relatively simple environment in which there is a unique
equilibrium prediction. We focus on two possible cases. In both cases, the 3-way
equal split that we call the universal allocation, is feasible. The two cases then
differ in the other three allocations. In the first case, there is no Condorcet winner
(NCW, which stands for “No Condorcet winner”): It only includes three majoritar-
ian allocations where the pie is divided equally between two committee members,
and the third committee member receives 0. In the second case (CW, which stands
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for “Condorcet winner”), the universal allocation is a Condorcet winner: that is, it is
myopically preferred by a majority of voters in any pairwise comparison with the other
three allocations.

3.1.1 No Condorcet winner (NCW)

Consider a bargaining game with a set of players N = {1, 2,3} and four states
X = {xo, x1, x2, x3} that induce payoffs described by the following matrix S:

12 3
xo 20 20 20
x1 0 30 30 (1
x 30 0 30
x3 30 30 0

where the rows describe the states and the column the players: The matrix specifies
the per period utility of an agent for each state.* In this game, there are only two
possibilities. Either the outcome is egalitarian if state xq is chosen; or the outcome
is strictly majoritarian: A minimal wining coalition of players shares the dollar and
leaves the remaining player with nothing. There is no Condorcet winner.

When the agents are identical, it is natural to consider equilibria in which agents
behave and treat the other agents in the same way. We have already assumed symmetry
of the strategies, but we can also consider a strong assumption that a strategy by i does
not discriminate between other players j and & in terms of outcomes. We say an equi-
librium is neutral if for any 0, x, y: u; (x; 0) = u;(y; 0) implies p; (x| 0) = p; (y|9),
and u; (x) = u;(0) implies o;(x|0) = % (where p; (x| 0) is the probability that x is
proposed by i in state 6, and o; (x| 6) is the probability that voter i votes for x when
the status quo is 6 ). Intuitively, an agent cares only about his expected payoff, not
about the particular state that achieves the payoffs. For the coarse grid divide-the-dollar
games, this refinement of the symmetric Markov equilibrium will deliver uniqueness.’

Consider a strategy profile, in which voters vote “myopically” for the alternative
that offers the highest per period payoff, mixing with equal probability when indiffer-
ent; and a proposer i proposes some x; j # i, 0. We call a strategy profile with these
characteristics a myopic strategy. The following result establishes that the symmetric
forward-looking equilibrium strategies are myopic when payoffs are described by (1):

Proposition 1 When payoffs are as (1), with linear utilities, there is a unique
neutral equilibrium. Each agent i proposes following history-independent strategy
Di (xj Ix) = p;i (xp |x) = %Vj, k ¢ {i, 0}, and Vx and votes for the alternative that
offers the highest immediate payoff, mixing with equal probability when indifferent.
This remains an equilibrium if the agents have the same strictly increasing utility
function.

4 In (1), the sum of payoffs is 60 because this is the size of the pie that we use in the experiments.

5 Later, when we consider the continuous (or fine grid) divide-the-dollar game, we do not impose the
condition of neutrality.
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Proof See Appendix. O

This result provides clear-cut predictions that can be tested in the laboratory. The
proposal behavior and the voting behavior do not depend on the initial status quo.
Specifically, in every round, equilibrium proposal strategies are mixed, with equal
probability on the two allocations that give the proposer 30. Voting behavior is myo-
pic, with indifference leading to uniform mixing. This Markov equilibrium generates
a unique transition probability function. From a status quo x;, the state remains at x;
with probability % and moves to a state x; with probability %, and never moves to xg.
From status quo xy, the state moves to each other state x; with probability % Proposals
of (20, 20, 20), therefore, never occur in equilibrium, so votes involving (20, 20, 20)
can only occur in the very first round, and only if (20, 20, 20) is the initial status quo.

It is useful to note that concavity (y > 0) does not destroy this equilibrium in the
present case. That is, regardless of the concavity of the utility function, the equilibrium
identified in Proposition 1 persists.

3.1.2 Condorcet winner (CW)

With finite states, there can be a Condorcet winner. The bargaining game described
by the following set of four allocations is one example:

1 2 3
xo 20 20 20
xy 30 15 15 (2)

xp 15 30 15
x3 15 15 30

As in (1), we have a symmetric policy (xp); now, however, in policies x; i = 1,2, 3,
one agent receives a payoff double to the payoff of the other players. The Condorcet
winner is x.

Suppose that voters have linear utilities, and consider the value function implied by
myopic strategies. The continuation value in state xg is the simplest to find, since—by
virtue of it being the Condorcet winner—the outcome transitions out of this state with
zero probability under myopic strategies. Therefore,

20
(1-19)

3

v; (x0) =

Given this, the remaining value functions can also be easily found by backward induc-
tion. When the state is x;, the value function v; (x;) of agent i is

1 2
vi(x;) = 3 (30 4 v (x;)) + 3 [% 30+ 8v;i (x)) + % (15 + 8v,'(xj))i|

2 1
=3 (30 + 8v; (x;)) + 3 (15 + dvi(x)) “)
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where v; (x;) is the value function of the same agent i when the state is j ¢ {0, i}.
With probability 1/3, i is the proposer and he can guarantee that x; is chosen; with
probability 2/3 a different agent (say j) is proposer and proposes x;: The proposal
is accepted with probability 1/2, with probability 1/2 x; is implemented again. The
continuation value at x; is for i is can be computed in a similar way:

vi (x)) :é(30+5v,~(x,'))+%(15+5vi(xj)) 3)

Solving equations (4)—(5) we have:

50 — 306 35 —156

i—se—s "=Tsne=s ©

vi (xj) =
From these formulas, it is easy to verify that the strategies described elsewhere induce
a value function that is monotonically increasing in the agent’s one-shot payoff. The
following proposition shows that not only these strategies are an equilibrium, but also
they are the unique symmetric Markov equilibrium:

Proposition 2 When the set of allocations is that in (2) and utilities are linear, there
is a unique neutral equilibrium. In this equilibrium, players play myopic strategies.

Proof See Appendix. O

The equilibrium strategies characterized in Proposition 2 imply a unique transition
matrix. From a status quo x;, the state remains at x; with probability % and moves to
a state x; with probability % and never moves to xg. From status quo xg, the state
remains at xo with probability 1.

As in the NCW case, voting behavior predicted by Proposition 3 is myopic; how-
ever, this leads here to an important difference. In the NCW case, (20, 20, 20) is
defeated in any pairwise vote against any other allocation; but in the CW case, it will
defeat any other allocation. Therefore, in the latter case, if the initial status quo is
(20, 20, 20), it will remain the status quo forever. Proposals of (20, 20, 20), while off
the equilibrium path in both the NCW and the CW case (except in the CW when it is
the initial status quo), have a much different effect, since (20, 20, 20) is an absorbing
state in the CW game, but it is always defeated the NCW game. As we show below
this implies drastically different dynamics in Markov quantal response equilibrium
(QRE) between the two tables, where because of the stochastic nature or propositions
under QRE, CW case represented by 2 will alternate between epochs of “universal”
regimes and “dictatorial” regimes, and the NCW environment represented by 1 will
yield stable “majoritarian” regimes, where there is a random rotation of two players
coalitions splitting the pie. The QRE dynamics are discussed in more detail in the
results section.

3.2 The divide-the-dollar game

As we mentioned in Sect. 1, in a standard “divide-the-dollar” game, a feasible allo-

cation is a vector (x; lN: | Where xti > (), and ZlNzl xlf is equal to a constant, the “size
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of the pie”; and each agent is interested only in the size of the pie that he receives.
Despite its simplicity, there is no known characterization of the divide-the-dollar bar-
gaining game described above for general utility functions.® To obtain predictions
that we can test using our experimental data, we turned to numerical methods. Here,
we describe properties of the numerically computed equilibrium under the parameter
specifications used in the experiments: three agents, a pie of size 60 and a discount
factor equal to either 0.83 or 0.75.

3.2.1 Numerical computation of the Markov equilibrium

We compute a Markov equilibrium for the family of utility functions with constant
relative risk aversion:

Ui(xi;y) = «HY Vi=1,2,3

-y

where x; is the share received by agent i. The coefficient of relative risk aversion
y measures the curvature of the utility function: The higher is y, the more concave
is utility. For simplicity, in this section, we discuss two polar cases: the linear case,
y = 0, and a strictly concave case, y = 0.95.7

Equilibria were computed as the limit of Markov Logit Quantal Response Equilibria
(MLE) by gradually reducing noise in the agents reaction functions. This smooths out
the best response correspondence, which is helpful in the numerical computation. In
the logit version of quantal response equilibrium, as defined for extensive form games,
each player at each information set uses a behavioral strategy where the log probability
of choosing each available action is proportional to its continuation payoff, where the
proportionality factor, A, can interpreted as a responsiveness (or rationality) parameter.
The continuation payoffs are computed using the MLE strategies of all future plays
in the game, as, for example, in the definition of continuation payoffs in a sequential
equilibrium (Kreps and Wilson 1982).8 Markov perfect equilibria can be found as
limits of MLE because for very high values of X, players choose best responses with
probability approaching 1, so limit points of the MLE correspondence, as A — oo are
Markov equilibria. Moreover, Theorem 4.1 in McKelvey and Palfrey (1998) can be
extended to the Markov equilibrium setting to show that for generic finite games in
which a Markov perfect equilibrium exists, there is one Markov perfect equilibrium
that is selected as the limit of the connected path in the equilibrium graph that has a
solution for every value of A > 0.

We solved the game using discrete approximation of a unit simplex where alloca-
tions are in increments of 5.7 This reduces the set of states to 91. Formally, the policy

6 The formal construction of an equilibrium in the divide-the-dollar game is available only for the case of
linear utilities (see Kalandrakis 2004). We will discuss this equilibrium elsewhere.

7 In later sections, we will use experimental data to obtain a maximum likelihood estimate of y.
8 A precise definition of this equilibrium concept is presented in Appendix 1.

9 For any discrete approximation, existence of a symmetric Markov equilibrium follows from standard
fixed-point arguments.
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space is as follows:

3
X = Ix = (x1,x2,x3) s.t. Vi 3t € N, x; = 5¢, Zx,- = 60} .

i=1

Given the smooth properties of this MLE path, there is a simple and (relatively) fast
path-following algorithm, which will find this solution. It is simple because we know
the solution at A = 0: All (behavioral) strategies are chosen with equal probability, and
this implies the unique value function. Hence, we begin with the solution at A = 0 and
can use that solution as the starting value to find the MLE for an incrementally larger
value, say A = €. Because we are guaranteed that for small enough e, the starting
value obtained from A = 0 is very close to the solution at A = ¢, so the fixed-point
algorithm will find a solution at € very quickly. Then, we use the solution at A = € to
compute the solution at A = 2¢ and so forth, thereby tracing out the MLE path that
converges to a Markov equilibrium of the game. There are some computational issues
when A becomes very large, and the algorithm takes several hours but conceptually it
is quite simple, and convergence is not difficult to achieve.

3.2.2 Steady state equilibrium dynamics

A proposal strategy associates with each status quo a vector of probabilities of pro-
posing each state. The voting strategies associate a probability of voting yes to each
possible status quo—proposal pair. Because the equilibrium strategy space is so large,
to describe the properties of equilibrium behavior, it is convenient to use the stationary
distribution over outcomes induced by equilibrium strategies. The equilibrium strat-
egies generate a Markov process with a stationary transition matrix. This transition
matrix associates each state x’ € X with a probability distribution ¢ (x |x’ ) over states
x € X in the following periods. For a given initial distribution P°(x) over the status
quo, we can therefore define the equilibrium distribution of states at ¢ recursively as:

Plx)= D> o |[x)P ).

x'eX

The probability function P’(x) converges to a stationary distribution P*(x) as t —
oo. This distribution represents the frequency of the states that we would expect to
observe in the long run, so it provides one of the fundamental properties of the Markov
equilibrium.

For descriptive purposes, we cluster the states in coarser regions. Figure 1 describes
a partition of the states in 7 regions. The D regions correspond to dictatorial alloca-
tions where one player receives the lion’s share of the pie. The M regions correspond
to majoritarian allocations where a coalition of two players receives most of the pie,
with nearly equal shares, while the third player receives only a small amount or noth-
ing. The U region consists of universal allocations, where the pie is equally, or nearly
equally, shared. Conditional on being, say, in D1, we can use the stationary distribu-
tion of the computed Markov equilibrium to derive the probability of transition to state
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Fig. 1 Allocation regions. The vertical coordinate represents Agent 1’s payoff, the horizontal represents
Agent 3’s payoff. The payoff of Agent 2 is the residual

M 12 (the M region corresponding to the coalition of players 1 and 2). Doing this for
all pairs of regions gives a representation of the steady state equilibrium dynamics of
the infinitely repeated game in a simple 7 x 7 matrix. This allows one to describe the
dynamics in a concise way.

Linear utilities We start with the discussion of the equilibrium with linear utili-
ties and § = 0.83. In choosing how to allocate the pie, a proposer is faced with a
trade-off between short-run and long-run effects of the allocation. In the short run, a
proposer is facing a simple problem: If the proposer were completely myopic (§ = 0),
he would attempt to form a minimal winning coalition and maximize his immediate
payoff. In the long run, however, the game is more complicated because a state that
maximizes his payoff today may reduce his payoff in the future.

To see which effect dominates when agents are risk neutral, consider the equilib-
rium transition matrix, presented in Table 1, using the condensed states described in
Fig. 1.'0 Given the symmetry of the equilibrium, we have only 3 regions to consider:
if we are in D1, in M12, or in U: The remaining cases will be the same. The dynam-
ics implied by Table 1 are therefore even more simply represented in Fig. 1, which
describes the transition probabilities from these three states.

Table 1 makes clear that the short-run effect dominates. For example, suppose the
initial state is in D1, where agent 1 receives most of the pie. In this case, the state

10 I Table 1, transition probabilities may not sum to one due to rounding errors. SQ; is the status quo in
period 7.
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Table 1 Theoretical transition

matrix of the 7 regions SQ SQrt1
§=.83,y=0 D1 D2 D3 Mi2  MI3 M23 U
Dl 0.34  0.33 0.33 0 0
D2 0.33 0.34 033 0 0
D3 0.33 0.33 034 0 0 0
U 0.01 0.01 0.01 0.31 0.31 0.31 0.03
MI2 0.33 0.33 0.25 0.08 0 0
MI13 0.33 0.25 0.33 0 0.08 0
M23 0.25 0.33 0.33 0 0 0.08 0

will stay at D1 with 34% probability and move to D;, j = 2, 3 with 33% probabil-
ity; that is, with 100% probability, the state will remain in the extreme regions. This
occurs because in D1 each agent will propose almost all the payoff for himself, with
a minimal share going to a single coalition partner.

It is interesting to note the dynamics evolving from a status quo in U. In this case,
the state does not jump directly to a region Di, i = 1, 2, 3 with high probability (in
total, only 3% of the time). Much more likely the state will transition to a state Mij,
i, j = 1,2, 3. This is because that it is very difficult for i to convince any other agent
to vote for a Di proposal. This can only happen if the state in U is bordering a region
Dj, j # i, by offering to k ¢ {i, j} (a currently disadvantaged agent) a more advan-
tageous payoff in Di. From a state Mij, however, the system moves to a D state with
very high probability, more than 90% of the time. From U, the system moves with
high probability to Mij.

In the long run, therefore we would expect the state to rotate around regions D1,
D2 and D3. This myopic behavior can be clearly seen in the stationary distribution
of outcomes represented in the top half of Fig. 3. In the long run, most of the mass
of the distribution of states is on the extremes: that is on states in which a single
agent receives a payoff between 50 and 60. When agents are risk neutral, therefore,
they behave as if they were myopic, simply choosing allocations that maximize their
current payoff.

This finding is consistent with the analysis in Kalandrakis (