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Abstract Purification results are important in game theory and statistical decision
theory. We prove a new purification theorem that generalizes several earlier results.
The key idea of our proof is to make use of the exact law of large numbers. As an
application, we show that every mixed strategy in games with finite players, general
action spaces and diffused, conditionally independent incomplete information has
many strong purifications.
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1 Introduction

The idea of purification, i.e., elimination of randomness, is important in game theory
and statistical decision theory. Theorem 4 of Dvoretzky et al. (1951a) (DWW Theo-
rem henceforth), which is a generalization of the celebrated theorem of Lyapunov for
vector measures, plays a central role. In particular, it says that corresponding to any
mixed strategy with finite actions, there exists a pure strategy with identical integrals
with respect to a finite set of atomless measures on a measurable space. Here, the pure
strategy is called a purification of the mixed strategy.

The applications of DWW Theorem to purification problems are also investigated
in Dvoretzky et al. (1950, 1951b). In particular, the purification results for statisti-
cal decision procedures and for mixed strategies in two person zero-sum games with
finite actions are established. The relevance of DWW Theorem to purification results
in finite-player games with finite actions and with diffused, incomplete information
is suggested by Radner and Rosenthal (1982) and Milgrom and Weber (1985).1 In
these games, each equilibrium in mixed strategy has a payoff equivalent or distri-
bution equivalent purification. A unified approach by applying DWW Theorem to
purification problems in games with finite players is presented in Khan et al. (2006).
More precisely, Khan et al. establish a stronger purification result that, in the above
games with diffused and incomplete information, any mixed strategy (not necessarily
an equilibrium) has a strong purification (see Definition 4). In addition, Khan et al.
establish the existence of purification for any mixed strategy Nash equilibrium in a
large non-anonymous game as in Schmeidler (1973),2 and the existence of symme-
trization for an equilibrium distribution in a large anonymous game as in Mas-Colell
(1984) and Khan and Sun (1991).

DWW Theorem has been generalized in several ways. Edwards (1987) shows that
DWW Theorem still holds for a countable infinite action space without any additional
assumptions, see also Khan and Rath (2009) for an elementary proof. In the context
of an uncountable action space, Loeb and Sun (2006) show a generalization of DWW
Theorem by working with atomless Loeb measure spaces instead of atomless measure
spaces.3 Moreover, a more general version of DWW Theorem is presented in Podczeck
(2009) and Loeb and Sun (2009), where atomless Loeb measure spaces are replaced
by saturated probability spaces (see Sect. 2.1).

In 1984, Hoover and Keisler introduced the concept of saturated probability spaces
in literature. Loosely speaking, a probability space is saturated if its σ -algebra
restricted to any set with positive measure is never countably generated modulo all the
null subsets (see Definition 2). In comparison, the σ -algebra on the usual Lebesgue
unit interval is countably generated (modulo the null sets). Saturated probability spaces

1 See Radner and Rosenthal (1982, Footnote 3) and Milgrom and Weber (1985, Sect. 5).
2 See Rath (1992) for a direct proof of the existence of pure strategy Nash equilibria in large games when
the payoffs depend on own action and the average response of others.
3 For the construction of Loeb measure spaces, see Loeb and Wolff (2000).
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could serve as a substitute for Lebesgue spaces in situations where the latter fails to
work. Keisler and Sun (2009) investigate several properties which are valid on any
saturated probability space but invalid on any non-saturated probability space. As a
result, such properties can be used to characterize the saturation property of proba-
bility spaces. These properties, for instance, include various regularity properties on
distributions of correspondences defined on a probability space (such as convexity,
closedness, compactness, preservation of upper semi-continuity), and the existence
of pure strategy equilibria in games with many players. Recently, there has been a
growing literature on applications of saturated probability space in economic theory
(see, e.g., Khan et al. 2005; Loeb and Sun 2009; Noguchi 2009; Podczeck 2008, 2009,
2010; Sun and Yannelis 2008).

In this paper, we present a general purification theorem on saturated probability
spaces (see Theorem 1), which provides a far reaching generalization of the earlier
purification results. In particular, it generalizes the results of Loeb and Sun (2006,
2009) and Podczeck (2009) in the following two ways. First, we work with a general
Polish (complete separable metric) action space instead of a compact metric space.
Second, we require the payoff functions to be jointly measurable, while in Loeb and
Sun (2006, 2009) and Podczeck (2009), the payoff functions should satisfy a more
restrictive condition, the Carathéodory condition (see Sect. 3).

Our proof is built heavily on the exact law of large numbers (ELLN for brevity)
systematically studied in Sun (1998, 2006) (see also Sect. 2.2). This ELLN approach is
different from the techniques used in Loeb and Sun (2006, 2009) and Podczeck (2009).
In particular, Loeb and Sun (2006) make use of the nonstandard analysis. Loeb and Sun
(2009) apply techniques of Hoover and Keisler (1984) that certain properties can be
transferred from one saturated probability space to another. And in Podczeck (2009),
the main result is proved through establishing new results in functional analysis. It is
worthwhile to note that in Loeb and Sun (2006, 2009) and Podczeck (2009), the proofs
of their purification theorems depend on the setting that the action space is a compact
metric space and the payoff functions satisfy the Carathéodory condition. Thus, their
methods cannot be applied to the setting of our main result, Theorem 1, directly.

One advantage of this ELLN approach is that one can simultaneously obtain
many required purification mappings. Specifically, these purification mappings can
be indexed by a full subset in an atomless probability space. In comparison, note that
in the earlier purification results only the existence of some purification mapping has
been established. The relevance of the ELLN to the ex post Nash equilibrium of a
large game with idiosyncratic uncertainty is already considered in Theorem 7 of Khan
and Sun (2002, p. 1792). Further results on ex post Nash equilibrium in large games
are established in Khan et al. (2005) and Sun (2007b).

Finally, as an application of Theorem 1, following Khan et al. (2006), we study
in Sect. 4 the problem of purification for mixed strategies in game theoretic mod-
els as in Milgrom and Weber (1985). We show that every mixed strategy has many
strong purifications in such a finite-player game with a general Polish action space
(not necessarily compact), and with a diffused, conditionally independent incomplete
information structure, and even with discontinuous payoff functions.

The rest of this paper is organized as follows. We present basic results about sat-
urated probability spaces and the ELLN in Sect. 2. The main result, Theorem 1, is
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presented and discussed in Sect. 3. Section 4 deals with the problem of purification
for mixed strategies in finite-player games with incomplete information as in Milgrom
and Weber (1985). The proofs of the key results are relegated to Appendix.

2 Saturation and the ELLN

In this section, we introduce basic results about saturated probability spaces in
Sect. 2.1, about the ELLN in Sect. 2.2. Section 2.3 deals with one relationship between
the saturation property and the existence of rich Fubini extension based on a probability
space.

For a Polish (complete separable metric) space X , denote its Borel σ -algebra by
BX , and by M(X) the space of all Borel probability measures associated with the
topology of weak convergence. Given any Borel probability measure γ ∈ M(X), its
support is written as supp γ . It is well-known that, for any measure-valued mapping f
from (I, I, λ) to M(X), the I-measurability of f with respect to the weak topology
is equivalent to the I-measurability of the function f (·)(B) for all B ∈ BX . For any
I-measurable mapping g : I → X , the induced distribution is defined as λg−1 by
letting λg−1(B) := λ[g−1(B)] for all B ∈ BX .

Given two probability spaces based on I , say (I, I, λ) and (I, I ′, λ′), the former
is said to be an extension of the latter if I ′ is a sub-σ -algebra of I, and the restriction
of λ to I ′ coincides with λ′. Throughout this paper, a set is said to be countable if it
is finite or countably infinite. Let N be the set of all the natural numbers.

2.1 Saturated probability space

The notion of saturated probability spaces is introduced into literature by Hoover and
Keisler (1984).

Definition 1 A probability space (I, I, λ) is said to be saturated if for any two Pol-
ish spaces X and Y , any Borel probability measure τ ∈ M(X × Y ) with marginal
probability measure τX on X , and any measurable mapping g from (I, I, λ) to X with
distribution τX , there exists a measurable mapping h : (I, I, λ) → Y such that the
measurable mapping (g, h) : (I, I, λ) → X × Y has distribution τ .

Given a probability space (I, I, λ), for any subset S ∈ I with λ(S) > 0, denote by
(S, IS, λS) the probability space restricted to S. Here IS := {S ∩ S′ : S′ ∈ I} and λS

is the probability measure re-scaled from the restriction of λ to IS .
As shown in Hoover and Keisler (1984, Corollary 4.5), there is an equivalent def-

inition (Definition 2) for the saturated probability space. To proceed, as in Podczeck
(2008, 2009), we first review some concepts related to the measure algebra for a
probability space.

Let (I, I, λ) be a probability space. Consider a relation ‘∼’ on I as follows, for
any E, F ∈ I, E ∼ F if and only if μ(E�F) = 0, where ‘�’ denotes the symmetric
difference. It is clear that ‘∼’ is an equivalence relation on I. For any E ∈ I, let
Ê = {F ∈ I : F ∼ E} be the equivalence class of E ; it is clear that E ∈ Ê . The pair
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(Î, λ̂) is said to be the measure algebra of (I, I, λ), here Î is the quotient Boolean
algebra for the equivalence relation ∼, i.e., the set of equivalence classes in I for ∼,
and λ̂ : Î → [0, 1] is given by λ̂(Ê) = λ(E), for some E ∈ Ê . Also, we can define the
operations ∪̂, ∩̂, \̂, �̂ and ⊆̂ on Î in the following way: For any Ê, F̂ ∈ Î with E ∈ Ê
and F ∈ F̂, Ê⊆̂F̂ if and only if λ(E\F) = 0, Ê∪̂F̂ = Ê ∪ F , and analogously ∩̂, \̂
and �̂ can be well-defined. It is clear that Î is a Boolean algebra under \̂ and ∪̂.

Let (Î, λ̂) be the measure algebra associated to the probability space (I, I, λ). A
subset of Î is said to be a subalgebra of Î if it contains Î (the equivalent class of
I ) and is closed under ∪̂ and \̂. A subalgebra E is order-closed with respect to ⊂̂ if
for any non-empty upwards directed subset of E with supremum in Î, the supremum
belongs to E as well. A subset A of Î is said to completely generate Î if the small-
est order-closed subalgebra in Î containing A is Î itself. Finally, the Maharam type
of Î (or (I, I, λ)) is the least cardinal number of any subset of Î which completely
generates Î.

Definition 2 A probability space (I, I, λ) is said to be countably generated if the
Maharam type of (I, I, λ) is countable. It is said to be saturated (or super-atomless)
if, for any subset S ∈ I with λ(S) > 0, the Maharam type of the restricted probability
space (S, IS, λS) is uncountable.4

By Definition 2, a saturated probability space is an atomless probability space.
Suppose (I, I, λ) is a saturated probability space, so is the restricted probability space
(S, IS, λS) for any subset S ∈ I with λ(S) > 0. The Lebesgue unit interval, i.e.,
the interval [0, 1] associated with the σ -algebra of Lebesgue measurable sets and the
Lebesgue measure, is a countably generated probability space; it is thus not a saturated
probability space. In comparison, any atomless Loeb probability space is saturated.5

By Maharam’s theorem, a probability space is saturated if and only if its measure alge-
bra is a countable convex combination of measure algebras of uncountable powers of
the Borel σ -algebra on [0, 1].6

2.2 The ELLN

For any two probability spaces (I, I, λ) and (Ω,F , P), we write I ⊗ F as the usual
productσ -algebra (including all the null subsets) generated by {S×T : S ∈ I, T ∈ F},
and write λ⊗ P as the product probability measure on I ⊗ F . Given any mapping F
from I ×Ω to a Polish space X , for any i ∈ I and ω ∈ Ω , let Fi denote the marginal
mapping F(i, ·) on Ω , and Fω the marginal mapping F(·, ω) on I . As in Sun (1998,
2006), a process F is said to be essentially pairwise independent if for λ-almost all
i ∈ I, Fi and Fi ′ are independent for λ-almost all i ′ ∈ I .

4 This condition is originally called “ℵ1-atomless” in Hoover and Keisler (1984), “nowhere separable”
in Džamonja and Kunen (1995), “rich” in an earlier version of Keisler and Sun (2009), then in Noguchi
(2009), “super-atomless” in Podczeck (2009, 2010), and “nowhere countably generatedness” in Loeb and
Sun (2009). The authors thank Konrad Podczeck for pointing out the relevance between the saturated
property and the “nowhere separable” property.
5 See Hoover and Keisler (1984).
6 See Fajardo and Keisler (2002) for details. And see Maharam (1947) for the Maharam’s theorem.
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We shall construct an essentially pairwise independent process as follows. Let [0, 1]
be the unit interval endowed with the Borel σ -algebra B[0,1] and the uniform distribu-
tion. For an atomless probability space (I, I, λ), let Ω = [0, 1]I represent the space
of all functions from I to the unit interval [0, 1]. By the Kolmogorov’s extension the-
orem, we can consider the continuum product probability space (Ω,F ′, P ′), where
F ′ is the σ -algebra generated by cylinders of the form {ω ∈ Ω : ω(i) ∈ B} for all
B ∈ B[0,1], and P ′ is the continuum product probability measure on (Ω,F ′).

Next define π to be a process from I × Ω to [0, 1] by letting π(i, ω) := ω(i)
for all (i, ω) ∈ I ×Ω . Here, the marginal function πi is the i th coordinate function
on (Ω,F ′, P ′). It is clear that πi induces the uniform distribution on [0, 1] for any
i ∈ [0, 1], and πi , π j are independent for i = j . Accordingly, the process π is an
essentially pairwise independent process. However, it is well-known that this process
π is not I × F ′-measurable.7 Indeed, the essentially pairwise independence and the
joint measurability of a process with respect to the usual product σ -algebra are never
compatible with each other except for the trivial case that almost all random variables
are essentially constants.8

To overcome the above non-compatibility problem of measurability and indepen-
dence, we next follow Sun (2006) to work with the framework of Fubini extension. It
is an enrichment of the usual product probability space on which the Fubini property
is retained.

Definition 3 Take as given two probability spaces (I, I, λ) and (Ω,F , P):

(A) A probability space (I ×Ω,W, Q) extending the usual product probability space
(I × Ω, I ⊗ F , λ ⊗ P) is said to be a Fubini extension if for any real-valued
Q-integrable function F on (I ×Ω,W),
(1) Fi is P-integrable on (Ω,F , P) for λ-almost all i ∈ I , and Fω is

λ-integrable on (I, I, λ) for P-almost all ω ∈ Ω;
(2)

∫
Ω

Fi dP and
∫

I Fω dλ are integrable on (I, I, λ) and (Ω,F , P), respec-
tively, in addition,

∫
I×Ω F dQ = ∫

I

(∫
Ω

Fi dP
)

dλ = ∫
Ω

(∫
I Fω dλ

)
dP .

(B) A Fubini extension (I ×Ω,W, Q) is said to be rich if there is a W-measurable
process G from I ×Ω to the interval [0, 1], such that G is essentially pairwise
independent, and Gi induces the uniform distribution on [0, 1] for λ-almost all
i ∈ I . We say that such a rich Fubini extension is based on (I, I, λ), and the
process G witnesses the richness of the Fubini extension.

In a Fubini extension (I ×Ω,W, Q), note that the marginal probability measures
of Q on (I, I) and (Ω,F) are λ and P , respectively. To reflect this property, as in Sun
(2006), we denote the Fubini extension (I ×Ω,W, Q) by (I ×Ω, I � F , λ � P).
Next, we introduce the existence of rich Fubini extension based on a saturated proba-
bility space.

Lemma 1 Assume that (I, I, λ) is a saturated probability space, then there exists
a probability space (Ω,F , P) extending (Ω,F ′, P ′), such that there exists a rich

7 See Doob (1953, p. 67) for the special case that (I,I, λ) is the Lebesgue unit interval.
8 See Proposition 2.1 of Sun (2006).
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Fubini extension (I ×Ω, I � F, λ� P) on which the process of coordinate functions
π is I � F-measurable and witnesses the richness of the Fubini extension.

Remark 1 If both (I, I, λ) and (Ω,F , P) are atomless Loeb probability spaces, their
Loeb product probability space is a rich Fubini extension as shown in Theorem 6.2
of Sun (1998). Sun (2006, Proposition 5.6) provides another construction, where I =
[0, 1] and (I, I, λ) is a probability space obtained from a hyperfinite Loeb counting
space via a bijection, and (Ω,F , P) is an extension of the usual continuum product
probability space (Ω,F ′, P ′). Based on the construction of Sun (2006), a new rich
Fubini extension is presented in Sun and Zhang (2009) where (I, I, λ) is a saturated
probability space and an extension of the Lebesgue unit interval. Podczeck (2010)
establishes a more general result that (I, I, λ) could be any saturated probability
space.

Indeed, a rich Fubini extension satisfies the universality property in the sense that
one can construct processes on it with essentially pairwise independent random vari-
ables that have any given variety of distributions on a general Polish space. The
following result is Proposition 5.3 of Sun (2006).

Lemma 2 Given a rich Fubini extension (I ×Ω, I � F , λ�P) and a Polish space X.
Let f be a measurable mapping from (I, I, λ) to M(X), then there exists an I � F-
measurable process F : I ×Ω → X such that the process F is essentially pairwise
independent and f (i) is the induced distribution by Fi , for λ-almost all i ∈ I .

The following result is a version of the ELLN in terms of sample means, see Cor-
ollary 2.10 of Sun (2006). Namely, in the framework of Fubini extension, if a process
F is essentially pairwise independent, then for P-almost every sample function Fω,
its mean is equal to the mean of F .

Lemma 3 Assume that (I ×Ω, I � F , λ� P) is a Fubini extension, and F is a real-
valued, essentially pairwise independent, λ� P-integrable process on I ×Ω . Then,
there exists a P-null subset N ⊆ Ω, such that

∫
I Fω(i) dλ(i) = ∫

I

∫
Ω

F dP(ω) dλ(i),
for all ω ∈ Ω\N.

The framework of Fubini extension plays a fundamental role in studying the ELLN.
Indeed, this framework is “necessary and sufficient” for the ELLN. First, in such a
framework, besides the ELLN in sample means as in Lemma 3, one can establish
other forms of ELLN, e.g., the ELLN in terms of sample distributions or coalitional
sample distributions, even the converse of the ELLN holds as well (see Sun 2006,
Sect. 2.3). Second, if a process is essentially pairwise independent and satisfies the
property of coalitional aggregate certainty (i.e., for any S ⊂ I with λ(S) > 0, almost
every sample function restricted to S has the same distribution as the process restricted
to S × Ω), then there exists a Fubini extension in which the process is measurable,
see Sun (2007a).

2.3 Saturation and rich Fubini extension

Given a probability space (I, I, λ), let C be a countably generated sub-σ -algebra of
I. A measurable function f defined on the probability space (I, I, λ) is said to be
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essentially C-measurable if there is a C-measurable function g also defined on I such
that f (i) = g(i) for λ-almost all i ∈ I . The following result is Theorem 4.2 of Sun
(2006).

Lemma 4 Let F be an essentially pairwise independent process from (I ×Ω, I � F ,
λ� P) to a Polish space X, and C a countably generated sub-σ -algebra of I. Then,
the set of all ω ∈ Ω such that the function Fω is essentially C-measurable must have
probability zero except for the trivial case that almost all the random variables Fi are
constant.

The next result says that the existence of a rich Fubini extension based on a prob-
ability space is a characterization of the saturation property as in Keisler and Sun
(2009). It is straightforward from Lemmas 1 and 4, see Appendix for the proof.

Corollary 1 The probability space (I, I, λ) is saturated if and only if there is a rich
Fubini extension based on it.

3 The purification theorem

We first present the main result, Theorem 1, in Sect. 3.1, then we discuss it in Sect. 3.2.
In this section, we fix a saturated probability space (I, I, λ), and a rich Fubini

extension (I ×Ω, I � F , λ� P) as in Lemma 1. Let X be a Polish space associated
with BX and M(X) as in Sect. 2. For any I-measurable mapping f from (I, I, λ) to
M(X), let f (i; B) be the value of the probability measure f (i) for any Borel subset
B ⊆ X . Denote by f (i; dx) the integration operator with respect to this probability
measure f (i).

Let H be the collection of real-valued functions φ on the product space I × X such
that: (1) φ is I ⊗ BX -measurable, and (2) φ is integrally bounded, i.e., there exists a
non-negative integrable function αφ from (I, I, λ) to R with |φ(i, x)| ≤ αφ(i) for all
(i, x) ∈ I × X .

3.1 The main result

We are ready to introduce our main result, which is a general purification theorem.
See Appendix for the proof.

Theorem 1 Let (I × Ω, I � F, λ � P) be a rich Fubini extension based on a sat-
urated probability space (I, I, λ). Assume X is a Polish space, and D a countable
subset of H. Then for any I-measurable mapping f : I → M(X), there exists an
I � F-measurable process F : I ×Ω → X with the following properties:

(1) The process F is essentially pairwise independent and the induced distribution
on X of Fi is f (i) for λ-almost all i .

(2) For P-almost all ω ∈ Ω, the mapping Fω : I → X is a purification for f with
respect to D in the sense that for all φ ∈ D,

∫

I

∫

X

φ(i, x) f (i; dx) dλ(i) =
∫

I

φ[i, Fω(i)] dλ(i). (1)
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We can interpret Theorem 1 in a decision-making situation. Suppose Ann is the
decision maker with the space of uncertainty, (I, I). She can choose an action from
the space X and her payoff function is taken from D. Assume further that before
making an decision, she has no information about the uncertainty except the distri-
bution λ, which is a probability measure on (I, I). Her objective is to maximize the
expected payoff by choosing a mixed strategy f : I → M(X). That is, her action is
a probability measure on the action space X when facing the uncertainty i .

In Theorem 1, what is the role played by the probability space (Ω,F , P)? This
space works as a random device for the decision maker. When facing the uncertainty
i , Ann can choose actions with the assistance of this probability space. In particular,
she takes the action Fi (ω) when ω is realized. In this way, she takes a pure strategy
Fω : (I, I, λ) → X when ω is realized. We call F : (I × Ω, I � F , λ � P) → X
a behaviorial strategy.9 Assertion (1) in Theorem 1 says that for Fi defined on the
probability space (Ω,F , P) induces the same distribution as f (i) for λ-almost all i .
That is, with the assistance of the random device, the decision maker can implement
her mixed strategy f by taking the behaviorial strategy F .

Next, we say something about the property of essentially pairwise independence.
Since (I, I, λ) is interpreted the space of uncertainty, the independence condition
could model the situation that the decision maker takes actions independently when
facing different uncertainty, provided that the information structure is sufficiently
“rich”. In the theory of large games, (I, I, λ) is used to represent the space of names
of the players. The independence property is natural since different players take actions
independently.10

Under the assumption that the process F is essentially pairwise independent, by
the ELLN, Assertion (2) in Theorem 1 implies that almost every Fω is a required
purification. More precisely, for almost any ω ∈ Ω , by taking the pure strategy Fω,
Ann can earn the amount of

∫
I φ[i, Fω(i)] dλ(i), and this amount is exactly the same

as what she can expect by taking the mixed strategy f,
∫

I

∫
X φ(i, x) f (i; dx) dλ(i).

In other words, the risk about how much she can earn under different realizations of
ω ∈ Ω disappears.

The next result is a generalization of Khan et al. (2006, Corollary 1), which in
turn is a generalization of the original DWW Theorem in Dvoretzky et al. (1951a). It
follows from Theorem 1 line by line as Loeb and Sun (2006, Corollary 2.4) follows
from Loeb and Sun (2006, Theorem 2.2).

Corollary 2 Let (I ×Ω, I � F , λ� P) be a rich Fubini extension based on a satu-
rated probability space (I, I, λ). Let X be a Polish space. For each k in a countable
set K , let μk be a finite signed measure on (I, I) that is absolutely continuous with
respect to λ. For each j in a countable set J , assume that φ j ∈ H.

Then for any I-measurable mapping f from I to M(X), there exists an I � F-
measurable process F : I ×Ω → X, such that F is essentially pairwise independent,

9 See Khan et al. (2006) and the references therein for more discussion about mixed strategies and behavior-
ial strategies.
10 See Khan and Sun (2002) for a survey on games with many players.
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the induced distribution of Fi is f (i) for λ-almost all i ; and for P-almost all ω ∈ Ω
the sample mapping Fω satisfies the following properties:

1.
∫

I

∫
X φ j (i, a) f (i; dx) dλ(i) = ∫

I φ j [i, Fω(i)] dλ(i), ∀ j ∈ J ;
2.

∫
I f (i; B) dμk(i) = μk[F−1

ω (B)], for all B ∈ BX and k ∈ K ;
3. Fω(i) ∈ supp f (i) for λ-almost all i ∈ I .

In Corollary 2, let J be an empty set, the existence result of the above corollary is a
variation of the DWW Theorem on a saturated probability space (I, I, λ) and a general
Polish space X . For another special case, taking J to be empty and the set K contains
only one element withμ1 = λ, the existence result of Corollary 2 is Theorem 3.6 (P6)
of Keisler and Sun (2009).

3.2 Discussion

In this paper, besides establishing the existence result based on saturated probability
spaces as in Loeb and Sun (2009) and Podczeck (2009), we can simultaneously obtain
many required purifications. More precisely, these purifications can be indexed by a
full subset in an atomless probability space (Ω,F , P).

Recall that the probability space (Ω,F , P) can represent all the mappings from I
to X (see Sect. 2.2). Assume that the measure-valued mapping f is nontrivial, i.e., it is
not the case that f (i) is a Dirac measure on X for λ-almost all i ∈ I . Accordingly, for
the relevant essentially pairwise independent process F , it is not the case that almost
every Fi is essentially a constant. Then, there are many different ω ∈ Ω such that Fω
are different measurable mappings over (I, I, λ). Therefore, if f is nontrivial, we can
simultaneously obtain many different purifications for f with respect to D.

We next compare our general purification result, Theorem 1, with the earlier results
in Loeb and Sun (2006, 2009) and Podczeck (2009). First, as to the methodology, our
result relies heavily on the ELLN. In comparison, the purification theorem of Loeb and
Sun (2006) is based on atomless Loeb probability spaces, and the authors make use of
techniques in nonstandard analysis. Loeb and Sun (2009) mainly apply techniques as
in Hoover and Keisler (1984) that certain types of results over one saturated probability
space can be transferred to another. Consequently, the existence result of purifications
based on an atomless Loeb probability space, Loeb and Sun (2006, Theorem 2.2), can
be transferred to the existence result based on a general saturated probability space.
In Podczeck (2009), new results on functional analysis are established to prove the
general purification theorem.

Second, in the earlier purification results, i.e., Loeb and Sun (2006, Theorem 2.2)
and (2009, Theorem 2.2), Podczeck (2009, Theorem 2), the target space X is a com-
pact metric space. While in our Theorem 1, we take X to be a more general Polish
space.

Third, in the earlier results, instead of functions in H, a more restrictive condition
is imposed on the functions over the product I × X . Let H′ denote the collection of
functions considered in Loeb and Sun (2006, 2009) and Podczeck (2009). Here H′
is the collection of all the functions φ on I × X with the following conditions: (1a)
φ(·, x) is I-measurable on I for each x ∈ X , (1b) φ(i, ·) is continuous on X for each
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i ∈ I , and (2) φ is bounded by a non-negative λ-integrable function αφ . Here, the
conditions (1a) and (1b) are the Carathéodory condition. It is known that any function
satisfying the Carathéodory condition is also jointly measurable. As a result, H′ is a
subset of H.

It is worthwhile to note that in Loeb and Sun (2006, 2009) and Podczeck (2009),
the proofs of purification theorems therein depend on the setting that the target space
is a compact metric space and the functions satisfy the Carathéodory condition. Thus,
their methods cannot be applied to our setting in Theorem 1 directly.

Finally, together with Lemma 1, it follows from Theorem 1 that the saturation prop-
erty of a probability space implies the existence of purification for any measure-valued
mapping with a general Polish action space. We note that the converse also holds.
Specifically, as illustrated by counterexamples in Loeb and Sun (2009, Remark 2.4)
and Podczeck (2009, Theorem 3(B)), if a probability space is not saturated, there
exists a measure-valued mapping, a function φ ∈ H, such that the purification does
not exist.11

4 Finite games with incomplete information

In this section, we apply our Theorem 1 to study the problem of purification for
games with incomplete information as in Milgrom and Weber (1985). A game Γ with
incomplete information consists of a finite set of m players and an information space
available to them. Each player n can take actions from Xn , which is a Polish space for
1 ≤ n ≤ m; and the Cartesian product �m

n=1 Xn is written as X . For each player n, a
measurable space (In, In) represents the set of possible information for her. The infor-
mation is incomplete in the sense that each player does not know the particulars of the
other players’ information. The payoff function of player n is un : I0 × In × X → R,
where I0 = {i0k : k ∈ N} is a countable set representing the common state space
which affects payoffs of all the players. Thus, player n’s payoff function depends on
the common states, her own information and the actions of all the players. Denote by I0
the power set of the countable set I0. Let (I, I) := (�m

j=0 I j ,�
m
j=0I j ) be the product

measure space and λ be a probability measurable on (I, I). The resulting probability
space (I, I, λ) constitutes an information structure of the game. For each player n,
assume further that the payoff function un(i0, in, x) is an In⊗ BX -measurable func-
tion for each i0 ∈ I0; in addition, for all i ∈ I, |un(i0, in, x)| ≤ α(i), where α is a
non-negative integrable function on (I, I, λ).

For 0 ≤ j ≤ m, denote by λ j the marginal probability measure of λ on (I j , I j ).
Suppose the support of λ0 is the whole set I0. As a result, when the common state i0 is
i0k , the conditional probability measure ofλ on the space (�m

j=1 I j ,�
m
j=1I j ) exists and

is denoted by λ(· ; i0k). Moreover, for each player n, let λnk be the marginal probability
measure of λ(· ; i0k) on the measurable space (In, In). Following Milgrom and Weber

11 For the counterexample in the special setting that the probability space is a Lebesgue space, see Loeb
and Sun (2006, Example 2.7). For a survey about similar counterexamples in the theory of large games,
see Khan and Sun (2002, Sect. 5).
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(1985), the information structure (I, I, λ) is said to be conditionally independent, if
λ(· ; t0k) = �m

n=1λnk, ∀ k ∈ K .
A mixed strategy for player n is a measurable mapping from her information space

(In, In) to M(Xn). A pure strategy is an In-measurable mapping from In to Xn , and
it can be regarded as a mixed strategy using Dirac measures. A mixed (pure) strategy
profile h = (h1, . . . , hm) is a tuple of mixed (pure) strategies, in which hn specifies a
mixed (pure) strategy for player n. Given any mixed strategy profile f = ( f1, . . . , fm),
the corresponding expected payoff for player n is

Un( f ) :=
∫

I

∫

X

un(i0, in, x) f1(i1; dx1) . . . fm(im; dxm) dλ(i), (2)

where for each i ∈ I , the inner integral on X is the iterated integral on Xm, . . . , X1,
respectively. A mixed strategy profile f = ( fn, f−n) is called a Nash equilibrium for
the game Γ if for every player n,Un( fn, f−n) ≥ Un( f ′

n, f−n) for any mixed strategy
f ′
n of player n.

The following definition is proposed in Khan et al. (2006).

Definition 4 A pure strategy profile g = (g1, . . . , gm) is said to be a strong purifica-
tion of a mixed strategy profile f = ( f1, . . . , fm) = ( fn, f−n) if the following four
conditions are satisfied for each player n:

1. Un( f ) = Un(g).
2. For any given mixed strategy f̃n of player n,Un( f̃n, f−n) = Un( f̃n, g−n).
3. For each k ∈ K , given i0 = i0k, gn and fn have the same conditional distribution

on Xn , i.e.,
∫

In
fn(in; ·) dλnk(in) = λnk g−1

n (·).
4. For λn-almost all in ∈ In, gn(in) ∈ supp fn(in).

Item 1 means that the strong purification yields the same expected payoff as the
mixed strategy for all players. Item 2 means that the expected payoff of player n from
any mixed strategy is always same irrespective of the opponents play being f−n or
g−n . Thus, Items 1 and 2 guarantee that if the mixed strategy f is a Nash equilibrium,
so is its strong purification, which is a pure strategy. See Section 3 of Khan et al. (2006)
for more discussion.

We are now ready to present our main result for this section, which generalizes
Theorem 3.2 of Loeb and Sun (2006). It is about the existence of strong purification
for any mixed strategy profile in the game Γ . This result follows from Corollary 2
almost in the same way that Theorem 3.2 of Loeb and Sun (2006) follows from Cor-
ollary 2.4 of (2006). The proof is relegated to Appendix.

Theorem 2 Assume that (1) the information structure in the game Γ is conditionally
independent, and (2) for each n, (In, In, λn) is a saturated probability space together
with a rich Fubini extension (In ×Ωn, In �Fn, λn � Pn). Then, for any mixed strategy
profile f = ( f1, . . . , fm) and for each player n, there exists an In � Fn-measurable
process Fn : In × Ωn → Xn, which is essentially pairwise independent and Fn

in

induces the distribution fn(in) on Xn for λn-almost all in, and (F1
ω1
, . . . , Fm

ωm
) is a

strong purification of f for Pn-almost all ωn ∈ Ωn, for each n.
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Remark 2 In our model of games with incomplete information, the common state
space I0 is a countable (probably infinite) set and the private information states In for
each player n can be uncountable, see also Loeb and Sun (2006). In addition, each
player’s private information space is a saturated probability space, and the action space
is a general Polish space. In comparison, in the purification results of Milgrom and
Weber (1985) and Khan et al. (2006), the common state space I0 is finite, while each
player’s private information space is atomless (not necessarily saturated) and action
space is finite. The role of this countable set I0 in Theorem 2 is similar to that of the
countable set K in Corollary 2. In particular, a countable set of probability measures
is obtained such that each measure therein is absolutely continuous with respect to
some given probability measure, then together with the conditionally independence
condition (1), Corollary 2 is applicable.

If there exists a Nash equilibrium in mixed strategy for the game Γ , it is guaranteed
by Theorem 2 that there also exists a Nash equilibrium in pure strategy. In general, as
discussed in Sect. 3.2, we can simultaneously obtain many pure strategy equilibria if
the mixed strategy f is nontrivial. In particular, assume that the mixed strategy f is a
Nash equilibrium for the game Γ , for each player n, and interpret (Ωn,Fn, Pn) as her
random device. Theorem 2 states that for Pn-almost every realization of ωn ∈ Ωn ∀n,
the realized pure strategy profile, (F1

ω1
, . . . , Fm

ωm
), is also a pure strategy Nash equi-

librium for Γ .
Next, we note that Theorem 2 generalizes the assumptions of compact metric action

spaces and continuous payoff functions in Loeb and Sun (2006, Theorem 3.2) to a
general setting of Polish action spaces and measurable payoffs, respectively. In such a
general or less demanding setting of game theoretic models with incomplete informa-
tion, it is stated in our theorem that each mixed strategy has many strong purifications.
This reflects the idea of purification that “when information in games is sufficiently
disparate among the players and when its distribution is sufficiently diffuse, the play-
ers might as well restrict their attention to pure strategies” (see p. 401 of Radner and
Rosenthal 1982).

Finally, it is worth mentioning that for the games as in Milgrom and Weber (1985),
Radner and Rosenthal (1982) as well, the independence condition for the information
structure plays an important role. In particular, it follows from this independence con-
dition that each player’s expected payoff depends on the others’ strategies only through
the induced distributions on their action spaces, and it is then that one can apply Cor-
ollary 2 to obtain strong purifications for any mixed strategy profile. In Yannelis and
Rustichini (1991), a model of Bayesian game without such an independence condition
was introduced where the state space is a probability space and each player’s informa-
tion structure is a general measurable partition of this state space.12 A positive result
on the existence of pure strategy equilibria was established in Yannelis and Rustichini
(1991, Theorem 5.2) by modeling the state space as an atomless probability space
and by modeling the set of strategies of each player via a R

-valued correspondence
which is convex-valued and integrably bounded. However, by modeling the set of

12 See Yannelis and Rustichini (1991, Sect. 6) for the comparison between this model and those in Milgrom
and Weber (1985) and Radner and Rosenthal (1982), see also Yannelis (2009) for a Bayesian game theoretic
model with a continuum of players.
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strategies for each player via a more general Banach-valued correspondence, one can
only obtain an approximate pure strategy Bayesian equilibrium. It is intuitively clear
that by formalizing the state space as a saturated probability space, and appealing to
the results in Podczeck (2008) and Sun and Yannelis (2008), one can obtain a similar
positive result as in the general setting of Yannelis and Rustichini (1991). We hope to
take the details up in a subsequent paper.

5 Appendix: Proofs

Proof of Corollary 1 By Lemma 1, the saturation property implies the existence of a
rich Fubini extension based on a probability space.

Next, we prove the converse. For the rich Fubini extension based on the proba-
bility space (I, I, λ), assume that the process π witnesses the richness. That is, π is
an essentially pairwise independent process and the random variable πi induces the
uniform distribution on the interval [0, 1]. Note that this process π is nontrivial. By
Lemma 4, (I, I, λ) cannot be countably generated. Otherwise, the Maharam type of
(I, I, λ) is countable; i.e., there is a countable set Ê = {Ên : n ∈ N} of Î, such that
Ê completely generates Î. For each equivalent class Ên in Ê , we take one element
En ∈ Ên . Then, the σ -algebra I itself can be completely generated by {En : n ∈
N}. Now according to Lemma 4, for P-almost all ω, the sample function πω is not
I-measurable, which contradicts Assertion (1) of Definition 3(A). Analogously, for
any subset S ∈ I with λ(S) > 0, notice that the restriction of the process π to S ×Ω

is also a nontrivial essentially pairwise independent process, then (I S, IS, λS) is not
countably generated either. Therefore, the probability space (I, I, λ) is saturated by
Definition 2. ��
Proof of Theorem 1 Let us first fix one φ ∈ D. Given the saturated probability
space (I, I, λ), together with the rich Fubini extension (I × Ω, I � F , P). Since
the measure-valued mapping f is I-measurable, by Lemma 2, there exists an
I � F-measurable process F : I × Ω → X , which is essentially pairwise inde-
pendent and the random variable Fi induces distribution f (i) for λ-almost all i ∈ I .
Thus, we prove Assertion (1) in the theorem.

We next show Assertion (2). Notice that Fi induces the distribution f (i) forλ-almost
all i , it follows that,

∫

X

φ(i, x) f (i; dx) =
∫

Ω

φ[i, F(i, ω)] dP(ω); (3)

then
∫

I

∫

X

φ(i, x) f (i; dx) dλ(i) =
∫

I

∫

Ω

φ[i, F(i, ω)] dP(ω) dλ(i). (4)

Define Gφ(i, ω) = φ[i, F(i, ω)]. We next show in two steps that Gφ is a λ � P-
integrable function. First, it is an I � F-measurable function on I × Ω . Towards
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this end, define H to be a process from (I ×Ω, I � F) to (I × X, I ⊗ BX ) by let-
ting H(i, ω) = [i, F(i, ω)]. The mapping H is measurable. Indeed, for any Borel
subset C ⊆ R, φ−1(C) ∈ I ⊗ BX because φ is measurable, then H−1[φ−1(C)]
is I � F-measurable. Note that [Gφ]−1(C) = H−1[φ−1(C)], we thus obtain the
I � F-measurability of Gφ . Second, because φ(i, x) is bounded by αφ(i) for any
x ∈ X , so is Gφ(i, ω) = φ[i, F(i, ω)] for any ω ∈ Ω . Therefore, we obtain the
λ � P-integrability of Gφ , because the λ-integrable function αφ can also be viewed
as a λ� P-integrable function on I ×Ω .

Note that (I ×Ω, I � F, λ� P) is a Fubini extension of the product space between
(I, I, λ) and (Ω,F , P), by Assertion (2), Part A of Definition 3,

∫

I

∫

Ω

φ[i, F(i, ω)] dP(ω) dλ(i) =
∫

I×Ω
Gφ dλ� P. (5)

Moreover, we claim that Gφ is an essentially pairwise independent process. Given
any Borel subset C in R, φ−1

i (C) ∈ BX due to the measurability of φ(i, ·) for λ-almost
all i ∈ I . Then for such an i, F−1

i [φ−1
i (C)] ∈ F since Fi is a F-measurable mapping.

It is clear that [Gφ
i ]−1(C) = F−1

i [φ−1
i (C)], which implies that Gφ

i is F-measurable

for λ-almost all i ∈ I . Moreover, Gφ
i and Gφ

i ′ are pairwise independent if Fi and
Fi ′ are independent. Accordingly, the process Gφ is essentially pairwise independent
because the process F satisfies this property.

Now we are ready to apply the ELLN for the essentially pairwise independent
process Gφ . By Lemma 3, there exists a P-null subset Nφ ⊆ Ω , such that for any
ω ∈ Ω\Nφ ,

∫

I×Ω
Gφ dλ� P =

∫

I

Gφ
ω(i) dλ(i) =

∫

I

φ[i, Fω(i)] dλ(i). (6)

Combining the above Eqs. (4)–(6), for any ω ∈ Ω/Nφ ,

∫

I

∫

X

φ(i, x) f (i; dx) dλ(i) =
∫

I

φ[i, Fω(i)] dλ(i). (7)

We next fix such a P-null subset for each φ ∈ D. Now we can turn to the countable
subset D of H. Following the above procedure, we can construct a countable number
of P-null subsets Nφ ⊆ Ω,∀φ ∈ D, such that Eq. (7) holds for each φ ∈ D. Let
N = ⋃

φ∈D Nφ , it is clear that P(N ) = 0. Hence, by Eq. (7), we obtain that for any
φ ∈ D and any ω ∈ Ω/N ,

∫

I

∫

X

φ(i, x) f (i; dx) dλ(i) =
∫

I

φ[i, Fω(i)] dλ(i). (8)
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Thus, the mapping Fω, for P-almost all ω ∈ Ω , is a required purification of the
measure-valued one f with respect to φ ∈ D. We complete the proof of Assertion (2)
of the theorem. ��

Proof of Theorem 2 As in Loeb and Sun (2006, Theorem 3.2), we next apply Corol-
lary 2, the ELLN version of purification theorem, to show Theorem 2.

In what follows, for any n, let � j =n denote �1≤ j≤m, j =n , which represents the
product over all the indices 1 ≤ j ≤ m except for j = n. For example, X−n =
� j =n X j , I−n = � j =n I j . And for any i = (i0, i1, . . . , im) ∈ I , write i−0 to be
(i1, . . . , im) = (in, i−n).

First fix player n. For each k ∈ K , let ηk = λ0({t0k}). It is clear that for each
Sn ∈ In, λn(Sn) = ∑

k∈K ηkλnk(Sn). Thus, each λnk is absolutely continuous with
respect to λn . Denote by βnk the Radon-Nikodym derivative of λnk with respect to
λn . According to the conditionally independence, we have λ(· ; i0k) = �m

n=1λnk for
each k. For any mixed strategy profile f = ( f1, . . . , fm), player n’s expected payoff
Un( f ) defined in Eq. (2) can be written as follows:

∑

k∈K

ηk

∫

i−0∈�m
j=1 I j

∫

x∈�m
j=1 X j

un(i0k, in, x)
m
�
j=1

f j (i j ; dx j )
m
�
j=1

dλ jk(i j ). (9)

For the mixed strategy profile f , define

ψ
f

n (in, xn) =
∑

k∈K

ηkβnk(in)

∫

I−n

∫

X−n

un(i0k, in, xn, x−n) �
j =n

f j (i j ; dx j ) �
j =n

dλ jk(i j ).

(10)

Then, by Eq. (9), the expected payoff for player n is

Un( f ) =
∫

In

∫

Xn

ψ
f

n (in, xn) fn(in; dxn)dλn(in). (11)

For each j = 1, . . . ,m, denote by γ
f j

jk the induced probability distribution on X j

of
∫

I j
f j (i j , ·)dλ jk(i j ). Then, from Eq. (10), we obtain that

ψ
f

n (in, xn) =
∑

k∈K

ηkβnk(in)

∫

X−n

un(i0k, in, xn, x−n) �
j =n

dγ
f j

jk (x j ). (12)

Equations (11) and (12) imply that, given i0 = i0k , player n’s expected payoff depends
on the actions of the other players only through the induced conditional distributions
of their strategies on their action spaces.

123



Purification, saturation and the ELLN 543

Recall that α is a λ-integrable function that dominates all the payoff functions. Let
αn be the function from In to R+ such that for each in ∈ In ,

αn(in) =
∑

k∈K

ηkβnk(in)

∫

I−n

α(i0k, in, i−n) �
j =n

dλ jk(i j ). (13)

It is clear that αn is λn-integrable and that
∫

I α(i)dλ(i) = ∫
In
αn(in)dλn(in) by the

classical Fubini theorem. Recall that for any x ∈ X and i ∈ I, |un(i0, in, x)| ≤
α(i0, in, i−n). Consequently, Eqs. (10) and (13) imply that for any in ∈ In, xn ∈
Xn, |ψ f

n (in, xn)| ≤ αn(in).
Given the saturated probability space (In, In, λn), together with the rich Fubini

extension (In ×Ωn, In � Fn, λn � Pn), we can apply Corollary 2. The function ψ f
n

here corresponds toψ j thereof, and λnk for k ∈ K , Xn and fn to ηk, X , and f therein,
respectively. By Corollary 2, there exists a process Fn : In × Ωn → Xn , which is
essentially pairwise independent and Fn

in
induces the distribution fn(in) on Xn for

λn-almost all in ∈ In ; moreover, there exists a Pn-null subset Mn ⊆ Ωn such that for
each ωn /∈ Mn , the sample mapping Fn

ωn
: In → Xn is an In-measurable mapping

and satisfies the following properties:

(i)
∫

In

∫
Xn
ψ

f
n (in, xn) fn(in; dxn) dλn(in) = ∫

In
ψ

f
n [in, Fn

ωn
(in)] dλn(in);

(ii) for all Borel set Bn in Xn ,

∫

In

fn(in; Bn)dλnk(in) = λnk[Fn
ωn

]−1(Bn) = γ
fn

nk (Bn);

(iii) Fn
ωn
(in) ∈ supp fn(in) for λn-almost all in ∈ In .

Similarly, considering the saturated probability spaces (I j , I j , λ j ) together with
the rich Fubini extension (I j ×Ω j , I � F j , λ j � Pj ), we can apply the above proce-
dure for each player j = 1, . . . ,m. In particular, we can construct F j ,M j , such that

F j
ω j satisfies the above (i)–(iii) for player j for all ω j /∈ M j . Let ω = (ω1, . . . , ωm)

be the sample profile, and Fω = (F1
ω1
, . . . , Fm

ωm
) = (Fn

ωn
, [Fω]−n).

We next claim that Fω is a strong purification of f , for any sample profile ω with
ω j /∈ M j for each j ; i.e., it satisfies Items 1–4 in Definition 4. It is clear that the Items
3 and 4 are the above Assertions (ii) and (iii), respectively. We only need to prove
Items 1 and 2 in the definition.

Towards this end, fix one such sample profile ω, i.e., ω j /∈ M j for all j . For

any mixed strategy f̃n of player n, let f̃ = ( f̃n, f−n), and F̃ω =
(

f̃n, [Fω]−n

)
. By

Eq. (11), the expected payoff of player n with f̃ , Fω and F̃ω are, respectively, given
by
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Un( f̃ ) =
∫

In

∫

Xn

ψ
f̃

n (in, xn) f̃n(in; dxn) dλn(in), (14)

Un([Fω]) =
∫

In

ψ Fω
n [in, Fn

ωn
(in)] dλn(in), (15)

Un(F̃ω) =
∫

In

∫

Xn

ψ F̃ω
n (in, xn) f̃n(in; dxn) dλn(in). (16)

Since Assertion (ii) above holds for all players, it is obvious that for j = n, γ
f j

jk =
γ

F j
ω j

jk . By Eq. (12), ψ f
n only depends on the probability distributions γ

f j
jk , j = n.

Hence, we have ψ f
n = ψ

Fω
n = ψ

f̃
n = ψ

F̃ω
n . By Assertion (i) above, it follows that,

Un( f ) =
∫

In

∫

Xn

ψ
f

n (in, xn) fn(in; dxn)dλn(in) =
∫

In

ψ
f

n [in, Fn
ωn
(in)] dλn(in)

=
∫

In

ψ Fω
n [in, Fi

ωn
(in)]dλn(in) = Un(Fω).

We thus proved Item 1. Similarly, Item 2 also holds because,

Un( f̃ ) =
∫

In

∫

Xn

ψ
f̃

n (in, an) f̃n(in; dan)dλn(in)

=
∫

In

∫

Xn

ψ F̃ω
n (in, an) f̃n(in; dan)dλn(in) = Un(F̃ω).

��
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