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Abstract Random matching models with a continuum population are widely used
in economics to study environments where agents interact in small coalitions. This
paper provides foundations to such models. In particular, the paper establishes an exis-
tence result for random matchings that are universal in the sense that certain desirable
properties are satisfied for any assignment of types to agents. The result applies to
infinitely many types of agents, thus covering random matching models which are
currently used in the literature without a foundation. Furthermore, the paper provides
conditions guaranteeing uniqueness of random matching.
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1 Introduction

A substantial part of economics investigates the implications of a variety of frictions for
allocations. An important case are frictions arising because social interactions occur

We thank an anonymous referee for valuable comments and for suggestions on how to improve the
presentation of the material of this paper.

K. Podczeck
Institut für Wirtschaftswissenschaften, Universität Wien, Hohenstaufengasse 9, 1010 Wien, Austria
e-mail: konrad.podczeck@univie.ac.at

D. Puzzello (B)
Department of Economics, University of Illinois, Urbana, IL 61801, USA
e-mail: dpuzzell@illinois.edu

123



2 K. Podczeck, D. Puzzello

in a decentralized fashion, i.e., in small groups of agents. Frequently, such contexts are
modeled by assuming that there is random matching of agents. For instance, in several
papers in monetary theory, markets with decentralized trade are modeled by assuming
that agents are randomly matched in pairs; see, e.g., Kiyotaki and Wright (1989) or
Lagos and Wright (2005). In labor economics, search frictions are modeled by assum-
ing that workers and firms are randomly matched; see, e.g., Mortensen and Pissarides
(1994). In game theory, pairwise random matching of agents is used as a framework to
study environments with infrequent interactions; see, e.g., the papers on social norms
by Kandori (1992); Okuno-Fujiwara and Postlewaite (1995), or Takahashi (2010).

Many models with random matching consider a continuum population, or, more
precisely, a non-atomic probability space of agents. This specification of the popula-
tion is taken as a justification for assuming that the random matching satisfies certain
desirable properties which, in particular, should ensure that cross-sectional aggregate
outcomes associated with the random matching are deterministic almost surely. For-
mal statements of desirable properties of random matching will be given in Sect. 2.
Here we illustrate proportionality and mixing properties with a simple example.

Consider a continuum of agents who are randomly and bilaterally matched. Sup-
pose that an agent is either a buyer or a seller. Proportionality means that for any agent
the probability of being matched with a buyer (seller) is equal to the proportion of
buyers (sellers) in the population. Mixing, on the other hand, is a property concerning
sample functions and means that, almost surely, the proportion in the population of
those agents of type t that are matched with agents of type t ′ is equal to the product of
the proportions of agents of these types, where both t and t ′ can stand for “buyer” or
“seller.” Now a typical approach in random matching models with a continuum pop-
ulation amounts to taking it for granted that proportionality and some independence
in the matching process are satisfied, and that, as a consequence, mixing should be
satisfied as well. The prediction in the example is then that the proportions of matches
between two buyers, two sellers, and a buyer and a seller are, respectively, p2

1, p2
2, and

2p1 p2 almost surely, denoting by p1 the proportion of buyers, and by p2 that of sellers.
This approach has some intuitive appeal. In fact, as noted for instance in Molzon and

Puzzello (2010), proportionality and mixing properties as in the above example hold
asymptotically for uniform random matching on finite populations when the number
of agents becomes large. That is, these properties are consistent with the idea of a
continuum population as a convenient idealization of large finite populations. Nev-
ertheless, the approach above is problematic. Indeed, it is a well known (and rather
trivial) fact that if one considers, as in the example, a continuum of random variables,
indexed by an atomless probability space, then just assuming the random variables to
be identically distributed and to satisfy independence conditions does not imply that,
almost surely, the sample functions over the index probability space have a distribution
equal to that of the random variables; actually, it need not even be the case that, almost
surely, distributions of the sample functions are defined.

Taking up such issues, several papers have raised the question of existence of
random matching, and have shown that it is indeed possible to have models with
random matching such that some desired properties are satisfied. We refer to Aliprantis
et al. (2006); Alós-Ferrer (1999); Alós-Ferrer (2002); Boylan (1992, 1995); Duffie and
Sun (2007); Gilboa and Matsui (1992), and Molzon and Puzzello (2010).
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Independent random matching 3

Alós-Ferrer (1999) is the seminal paper about existence of random matching with a
continuum population. In the present paper, we continue the line of research initiated
by Alós-Ferrer (1999). In particular, we provide an existence result which improves on
that of Alós-Ferrer (1999) in several aspects. First, we establish existence of random
matchings that are universal in the sense that certain desirable properties (see Sect. 2)
are satisfied for any assignment of types to agents. Second, the random matching in our
result satisfies independence properties which are natural if the population is modeled
as a continuum. Third, our result applies to random matching models with infinitely
many types of agents.

These improvements on the result of Alós-Ferrer (1999) are relevant to economic
models with random matching. For instance, if a model with repeated random match-
ing is to be constructed in a context dealing with the evolution of the frequencies of
agents’ types in a population, it is inconvenient to have the random matching depend
on the type assignment. Moreover, for a wide class of random matching models with
a continuum population, it is not possible to capture the relevant attributes of all
the agents in a finite type space. This is the case, e.g., for the models described in
Cavalcanti and Puzzello (2010); Green and Zhou (2002); Lagos and Wright (2005);
Molico (2006); Shi (1997); Zhu (2005), where there are no upper bounds on money
holdings or money holdings are perfectly divisible, or those described in Hofbauer
et al. (2008); Oechssler and Riedel (2002); Sandholm (2001); van Veelen and Spreij
(2009), where infinite strategy sets matter.

However, it is fair to mention here that, unlike Alós-Ferrer (1999), we do not take
the probability space of agents to be the unit interval [0, 1] with Lebesgue measure. In
fact, as shown in Alós-Ferrer (1999), with this choice of the space of agents there can
be no random matching that is universal in the sense above. Existence of a probability
space of agents that does not entail this restriction is part of our result on existence of
random matching. In this sense, our result provides an alternative to that of Alós-Ferrer
(1999), but is not an extension in the strictly formal sense.

Actually, in our result we can still have [0, 1] for the set of agents. It is just that
the measure involved cannot be Lebesgue measure. However, in many contexts, a
continuum population is assumed just to render individual agents negligible, that is,
only non-atomicity of the measure on the population is important. In particular, then,
if the set of agents is taken to be [0, 1], any atomless probability measure on this set
is as good as Lebesgue measure.

An existence result for random matching related to ours can be found in Duffie and
Sun (2007). However, the approach in that paper restricts attention to random matching
with finitely many types of agents. Further, the independence property required of the
random matching in our existence result is stronger and more natural than that stated
in the result of Duffie and Sun (2007). On the technical side, the approach of Duffie
and Sun (2007) relies on nonstandard analysis, whereas ours stays in the framework
of ordinary measure and set theory.

The literature on foundations of random matching so far has mainly focused on exis-
tence problems. Another interesting question concerns uniqueness of random match-
ing. In fact, as shown in Molzon and Puzzello (2010), a random matching is not
uniquely determined by measure preservation, proportionality, and mixing proper-
ties. However, in this paper we show that, in terms of distributions on the set of
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matchings, a random matching is uniquely determined by proportionality and inde-
pendence properties.

The plan of the paper is as follows. In Sect. 2 we give basic definitions and present
formal statements of measure preserving, proportionality, independence, and mixing
properties of random matching. Section 3 addresses measurability issues arising with
random matching. The main result of our paper is about existence of independent
random matching and is stated and discussed in Sect. 4. Section 5 provides a unique-
ness result. Most of the proofs are in Sect. 6. Note that our existence result is quite
general and applies also to models with infinitely many types. Such models arise nat-
urally in economics, as illustrated in Sect. 7 where some examples from the literature
are discussed.

2 Properties of random matching

We start by introducing some basic definitions, and then state properties of random
matching which are used in a variety of models.

Definition 1 Let X be a set. An involution on X is a bijection f : X → X which is
self-inverse (i.e., such that the inverse f −1 satisfies f −1 = f ); equivalently, an invo-
lution on X is a mapping f : X → X such that f ◦ f is the identity on X . A mapping
f : X → X is said to be fixed point free if f (x) �= x for all x ∈ X .

Involutions provide a natural formalization for the notion of bilateral matching
[e.g., Alós-Ferrer (1999); Aliprantis et al. (2006)]. In this study, we focus on bilat-
eral matchings where no agent remains unmatched. For short, we will call a bilateral
matching simply a matching.

Definition 2 A matching on a set A of agents is a fixed point free involution on A.

We will now give the definition of random matching.

Definition 3 Let (A,A , μ) be a probability space of agents and let (�,�, ν) be a
sample probability space. A random matching is a mapping f : A ×� → A such that

(a) f (·, y) is a matching on A for each y ∈ �,
(b) the mappings f (·, y) : A → A and f (x, ·) : � → A are measurable for each

y ∈ � and each x ∈ A.

Notation In the context of Definition 3, we also write fx for the function f (x, ·), and
fy for f (·, y).

Definition 3 is general in the sense that it imposes only minimal measurability
conditions needed to formulate our definitions and results. It leaves the door open to
a variety of specific properties of random matching that are considered in economic
models.

An essential part of random matching models is the specification of agents’ types.
The notion of type is meant to capture the payoff-relevant characteristics of agents.
For instance, in several models of monetary theory, the type of an agent is simply

123



Independent random matching 5

given by his money holdings and by whether he is a buyer or a seller. In evolutionary
game theory, types are identified with strategies [e.g., Kandori et al. (1993)].

In this paper, we consider abstract notions of type space and type assignment,
defined as follows.

Definition 4 A type space is a measurable space (T,T ). Given a probability space
(A,A , μ) of agents, a type assignment is a measurable mapping θ from (A,A , μ)

to a type space (T,T ), and the corresponding type distribution is the distribution of
θ , i.e., the probability measure on T given by τ(B) = μ(θ−1(B)) for each B ∈ T .

We are now ready to formally present desirable properties of random matching. In
naming them, we follow Alós-Ferrer (1999) if there is an analog in that paper (which is
the case for (P1)–(P3) and (P5)–(P7) below). See (b)–(d) of Remark 4 at the end of this
section for differences between the formalizations given here and that in Alós-Ferrer
(1999).

Let (A,A , μ) be a probability space of agents, (�,�, ν) a sample probability
space, f : A × � → A a random matching, (T,T ) a type space, θ : A → T a type
assignment, and τ the corresponding type distribution.

(P1) “Measure preservation:” For all y ∈ �, fy is inverse-measure-preserving, i.e.,
μ( f −1

y (E)) = μ(E) for any E ∈ A .
(P2) “General proportional law:” For all x ∈ A, fx is inverse-measure-preserving,

i.e., ν
(

f −1
x (E)

) = μ(E) for any E ∈ A .
(P3) “Strong mixing:” For any E1, E2 ∈ A , μ(E1 ∩ f −1

y (E2)) = μ(E1)μ(E2) for
almost all y ∈ �.

(P4) “General independence:” The family 〈 fx 〉x∈A is stochastically independent;
that is, the family 〈�x 〉x∈A is stochastically independent, writing �x for the
sub-σ -algebra of � generated by fx .

(P5) “Atomless:” For any two x, x ′ ∈ A, the set {y ∈ � : fx (y) = x ′} is a ν-null set.
(P6) “Types proportional law:” For all x ∈ A, the mapping θ ◦ fx from � to T has

distribution τ , i.e., ν
(
(θ ◦ fx )

−1(B)
) = τ(B) for any B ∈ T .

(P7) “Types mixing:” For any B1, B2 ∈ T , μ
(
θ−1(B1) ∩ (θ ◦ fy)

−1(B2)
) =

τ(B1)τ (B2) for almost all y ∈ �.
(P8) “Independence in types:” The family 〈θ ◦ fx 〉x∈A of mapping from � to T is

stochastically independent; that is, the family
〈
�θ

x

〉
x∈A is stochastically inde-

pendent, writing �θ
x for the sub-σ -algebra of � generated by θ ◦ fx .

Property (P1) states that, for all matchings, a given measurable set of agents must
have the same measure as the set of their partners. This is simply a consistency require-
ment: It should not be the case that, say, 1/8 of the agents are matched with 5/8 of
the agents. Note that if the population is finite, (P1) is automatically satisfied for the
normalized counting measure. The other properties should be considered in view of
continuum populations. Property (P2) says that for any agent the probability of being
paired to an agent belonging to a measurable set E in the population A is equal to
the proportion of the agents from E in the total population. This property is usually
seen as saying that the random matching is uniform over the agents. In applications,
it plays an important role for expected payoff equations. Property (P3) states that the
measure of the set of those agents in a given measurable set E1 ⊂ A that are matched
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with agents belonging to a measurable set E2 ⊂ A is equal to the product of the
measures of E1 and E2 for almost all matchings. In other words, it states that given
any non-negligible measurable set E1 ⊂ A, the proportion in E1 of the agents that
are matched with agents belonging to another given measurable set E2 ⊂ A is equal
to the proportion of the agents from E2 in the total population, almost surely in �.
This property is sometimes interpreted as manifestation of a law of large numbers. In
the next section we show that under some condition this view can be justified. The
intuition behind property (P4) is that, for finitely many distinct agents in a continuum
population, the events that these agents have partners in any given measurable sets
should be independent, as finite sets in a continuum population (specified as atomless
probability space) are negligible.1 Of course, (P4) cannot be satisfied if the population
is finite. However, considering uniform random matching on finite populations and
letting the number of agents go to infinity, it may be seen by calculations that, for
any fixed integer k ≥ 2, the deviation from independence that appears for any sets
of k agents vanishes asymptotically.2 Thus, in a model with a continuum population,
viewed as idealization of a large finite set of negligible agents, (P4) may be seen as
a natural property of random matching. Property (P5) states that the probability that
any two given agents are matched is zero. This property may also be seen as natural
in a random matching model with a continuum population. Moreover, this property
is important as it captures the notion of “anonymity” [see Aliprantis et al. (2006)].
Properties (P6), (P7), and (P8) have meanings similar to those of (P2), (P3), and (P4)
respectively. For instance, (P6) says that for any agent the probability of being paired
to an agent whose type belongs to a measurable set B in the type space is equal to the
proportion of the agents whose types belong to B.

We note the following simple fact for later reference.

Remark 1 For any type assignment, (P2) implies (P6), (P3) implies (P7), and (P4)
implies (P8). If (A,A , μ) is atomless, then (P2) also implies (P5).3

The proposition below summarizes converse implications. It shows, in particular,
that for a random matching to be universal in the sense that (P6)–(P8) are satisfied for
every possible type assignment, it is necessary that the general properties (P2)–(P4)
be satisfied. Actually, the matter reduces to finite type spaces.

1 The fact that matching agent xi with agent x j implies x j is matched with xi does not mean a contradiction
to (P4) if the space of agents is atomless and the random matching satisfies (P2), because any two null sets
in the sample space are trivially stochastically independent.
2 Indeed, to capture also finite populations with an odd number of agents, modify Definition 2 to require
that at most one agent remains unmatched. Then for each integer n > 0, let An be a finite population with n
agents, and I n the set of all matchings on An . Let Pn be the normalized counting measure on I n . Suppose
that the random matching is uniform for each n, i.e., that all elements of I n are equally likely. Then, for
each n, randomness of matching is described by Pn . Fix an integer k > 0. For each n > k, let An

1 , . . . , An
k

be any subsets of An , let xn
1 , . . . , xn

k be any distinct agents in An , and for each i = 1, . . . , k, let Fn
i be the

set of those elements of I n which match agent xn
i with an agent belonging to An

i . A straightforward but a

bit messy calculation shows that
∣∣
∣Pn

(⋂k
i=1 Fn

i

)
− ∏k

i=1 Pn (
Fn

i

)∣∣
∣ → 0 as n → ∞, i.e., the deviation

from independence that appears for any sets of k agents vanishes asymptotically.
3 To see that (P4) implies (P8), simply note that, for any x ∈ A, measurability of θ implies that the σ -algebra
generated by θ ◦ fx is included in that generated by fx .
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Independent random matching 7

Proposition 1 Let (A,A , μ) be a probability space of agents, (�,�, ν) a sample
probability space, and f : A × � → A a random matching.

(a) If f satisfies (P8) for every type assignment with a finite type space, then f
satisfies (P4).

(b) If f satisfies (P7) for every type assignment with a finite type space, then f
satisfies (P3).

(c) If f satisfies (P6) for every type assignment with a finite type space, then f
satisfies (P2).

The proof is elementary. The argument is given in Sect. 6.3 for completeness.
We close this section with three remarks. The first two concern the positions of the

quantifiers in (P3) and (P7), the third concerns the relationship between our setting of
random matching and that in Alós-Ferrer (1999).

Remark 2 Interchanging the positions of the quantifiers in (P7), one obtains the fol-
lowing substantially stronger property.

(P7’) For almost all y ∈ �,μ
(
θ−1(B1) ∩ (θ ◦ fy)

−1(B2)
) = τ(B1)τ (B2) for any

two B1, B2 ∈ T .

However, if the σ -algebra of the type space (T,T ) is countably generated, then (P7)
and (P7’) are equivalent. Indeed, it follows by a straightforward monotone class argu-
ment that if T is countably generated then (P7) implies (P7’); see Sect. 6.4 for details.
Actually, in most applications the σ -algebra of the type space is countably generated.
In fact, this property is satisfied whenever the type space is a Polish space with its
Borel σ -algebra, and in particular, of course, whenever the type space is finite.

Remark 3 In view of the previous remark, it might be tempting to also take the fol-
lowing strengthening of (P3) into consideration.

(P3’) For almost all y ∈�,μ(E1∩ f −1
y (E2))=μ(E1)μ(E2) for any two E1, E2 ∈A .

However, it is trivial that this is false for any random matching f on any probability
space (A,A , μ) of agents which is non-trivial in the sense that μ does not take only
the values 0 and 1 (regardless of whether or not any other of the properties listed
so far are satisfied). Indeed, given any y ∈ �, take E2 to be a member of A with
0 < μ(E2) < 1, and then take E1 = f −1

y (E2) if μ( f −1
y (E2)) > 0 and E1 = A

otherwise, obtaining a pair of members of A for which the equality in (P3’) does not
hold. (In fact, there is no non-trivial probability space on which there is a measurable
mapping to itself satisfying the equality in (P3’) for all pairs of measurable subsets.)

Remark 4 As noted in the introduction, research on issues of existence of random
matching with a continuum population was initiated by Alós-Ferrer (1999), so some
discussion of the relationship between his approach and what has been presented in
this section of our paper is perhaps in order. (Concerning the choice of the space of
agents, see Sect. 4.)
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(a) One minor difference between the approach in our paper and that in Alós-Ferrer
(1999) concerns the general definition of random matching. While in our paper a
random matching is defined as a mapping whose domain is the product of the agent
space with an abstract sample space, in Alós-Ferrer (1999) a random matching is
defined as a probability measure on the set of matchings, actually on the set of those
matchings which are measurable. However, given a random matching according to
this latter approach, one may view the set of measurable matchings together with the
measure on top of it as the sample space and then has a random matching accord-
ing to our definition, the mapping f of our definition now being concretely given
by f (x, y) = y(x), y a measurable matching, x a point in the agent space, the only
qualification being that it need not be true that the mappings f (x, ·) are measurable as
required in our definition. In Alós-Ferrer (1999), a measurability property is imposed
on these mappings implicitly in the proportionality properties stated for a random
matching, but not as part of the general definition of random matching. Actually, we
could also have formulated our setting in such a way that measurability of the functions
f (x, ·) is not part of the definition of random matching, but we have found it conve-
nient to have measurability of these functions out in the open prior to the statement
of the specific properties of a random matching, in particular in view of the indepen-
dence properties we consider in our paper. Apart from this aspect, random matching
according to the definition in Alós-Ferrer (1999) can be viewed as random matching
according to our definition. Thus, in principle, our definition of random matching
encompasses that of Alós-Ferrer (1999). For reasons of notational flexibility, we have
chosen to work with an abstract sample space in our paper.

(b) Regarding the specific properties of random matching, we first note that in Alós-
Ferrer (1999) the properties “types proportional law” and “types mixing” are stated
in terms of singleton subsets of the type space. That is, translated into our setting
and notation, only singletons are taken for the sets B, B1, and B2 in the statements of
properties (P6) and (P7) respectively. Of course, this is equivalent to the way these
properties are actually stated in our paper if, as in Alós-Ferrer (1999), the type space
is finite (and its σ -algebra contains the singleton subsets).

(c) Concerning the properties “measure preservation” and “strong mixing,” in our
paper their statements involve inverse images of measurable subsets of the agent space,
while in Alós-Ferrer (1999) they are formulated in terms of direct images. That is, to
use our notation, what is f −1

y (E) in our statements of (P1) and (P3) is fy(E) in the
corresponding statements in Alós-Ferrer (1999). However, by the very definition of
random matching, the functions fy are involutions, i.e., f −1

y (E) and fy(E) are the
same, so it is just a matter of taste and habit which form one prefers to work with.

(d) Actually, the way in which in Alós-Ferrer (1999) the quantifiers in the statement
of the “strong mixing” property are placed leaves it unclear whether in Alós-Ferrer
(1999) this property is meant in the sense of (P3) or in that of (P3’) as formulated in
Remark 3. However, as noted in that remark, it is trivial that (P3’) fails for any random
matching with a non-trivial space of agents.

(e) Our statements of the properties “general proportional law” and “atomless” are
as in Alós-Ferrer (1999) apart from notation. Independence properties, as for instance
(P4) and (P8) of our paper, are not considered in Alós-Ferrer (1999).
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3 Joint measurability issues

Let (A,A , μ) be a probability space of agents, (�,�, ν) a sample probability space,
f : A × � → A a random matching, (T,T ) a type space, and θ : A → T a type
assignment. Further, let λ denote the product measure on A × � defined from μ and
ν, and 	 its domain.

Joint measurability issues with random matching arise in contexts like the follow-
ing. Suppose that r : T × T → R is a bounded T ⊗ T -measurable function with
the interpretation that if an agent of type t is matched with an agent of type t ′ then
the former agent gets a reward r(t, t ′). Let R : A × � → R denote the corresponding
reward process, i.e., the process defined by setting R(x, y) = r(θ(x), θ( f (x, y)))

for x ∈ A and y ∈ �. In such a situation, it is natural that one would like to talk
about an expected aggregate reward. Moreover, one would like to be able to express
the expected aggregate reward in terms of repeated integrals with respect to the factor
measures μ and ν; in particular, one might want to relate it to cross-sectional aggregate
rewards. For these purposes, it would be ideal if the random matching f were jointly
measurable, i.e., (	,A )-measurable.4 If this is the case, then for any given θ and r
as above, the process R is 	-measurable, so that the expected aggregate reward is
defined as the integral of R with respect to λ and can be computed in terms of repeated
integrals according to Fubini’s theorem.

Unfortunately, joint measurability may conflict with other desirable properties of
random matching. Since the concern of this paper is random matching on continuum
populations, we will just give a short argument showing that if the probability space
(A,A , μ) of agents is atomless, then it is impossible for the random matching f to
be (	,A )-measurable if (P2) and (P4) are satisfied.

To see this, suppose the contrary. Then since (A,A , μ) is atomless, we can select
a measurable function θ : A → {0, 1} with distribution (1/2, 1/2). Let g be the com-
position g = θ ◦ f . Then g is 	-measurable, and (P2) and (P4) imply that for the
family 〈gx 〉x∈A of sections of g we have

∫
�
|gx − gx ′ | dν = 1/2 for any two distinct

x, x ′ ∈ A. Now by a standard fact,5 since g is bounded and 	-measurable, there is
a null set N ⊂ A such that the set

{
g•

x : x ∈ A\N
}

is a separable subset of L1(ν),
writing g•

x for the ν-equivalence class of gx , x ∈ A. However, this contradicts the
above conclusion about the family 〈gx 〉x∈A because, (A,A , μ) being atomless, A\N
is uncountable.

Fortunately it will turn out that joint measurability as a condition on random match-
ing can be relaxed into a condition that practically does the same job as joint mea-
surability, but is not inconsistent with a combination of (P2) and (P4) (and the other
general properties). The suitable concept in this regard is provided by the notion of
a Fubini extension of a product measure, a notion introduced by Sun (2006) into the
economics literature. Here is a formal definition.

4 As usual, if � and T are σ -algebras on sets X and Y respectively, “(�, T)-measurable” for a function
f : X → Y means f −1(E) ∈ � for each E ∈ T; in case Y = R, “�-measurable” means f −1(E) ∈ � for
each Borel set E ⊂ R.
5 See, e.g., Fremlin (2003, 418S) and Fremlin (2001, 245X(h)).
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Definition 5 Let (X, �,μ) and (Y, T, ν) be probability spaces, and (X ×Y,	, λ) the
corresponding product probability space. Let λ̄ be a probability measure on X × Y ,
and 	̄ its domain. Then λ̄ is said to be a Fubini extension of λ if (a) 	̄ ⊃ 	 and
(b) for each H ∈ 	̄—denoting by χH the characteristic function of H—the inte-
grals

∫ ∫
χH(x, y) dν(y) dμ(x) and

∫ ∫
χH(x, y) dμ(x) dν(y) are well-defined and∫ ∫

χH(x, y) dν(y) dμ(x) = λ̄(H) = ∫ ∫
χH(x, y) dμ(x) dν(y).

Note that (a) and (b) in this definition imply that λ̄ agrees with λ on 	, so λ̄ is
indeed an extension of λ. The definition implies in particular that the conclusion of
Fubini’s theorem about repeated integrals with respect to the factor measures μ and ν

continues to hold for λ̄-integrable real-valued functions.
Now in the context above, suppose there is a Fubini extension λ̄ of λ such that the

random matching f is (	̄,A )-measurable, writing 	̄ for the domain of λ̄. Then, for
any θ : A → T and r : T × T → R as above, the reward process R is 	̄-measurable,
and thus the expected aggregate reward can be defined as the integral of R against
λ̄. This still gives a meaningful notion of expected aggregate reward, because, by
the definition of Fubini extension, λ̄ preserves its ties with λ in such a way that this
integral can be expressed in terms of repeated integrals against the factor measures μ

and ν. In particular, the expected aggregate reward, so defined, does not depend on
the particular choice of the Fubini extension λ̄, subject to the requirement that f be
(	̄,A )-measurable.6

Part of our existence result for random matching (to be stated in the next section)
is that this kind of generalized joint measurability property can indeed be satisfied
simultaneously with all the properties of random matching listed in Sect. 2. Here we
note that if the probability space of agents is atomless and the random matching sat-
isfies all of (P2), (P3), and (P4) then, in fact, an appropriate Fubini extension of the
product of the measures on the agent space and the sample space must exist.

Proposition 2 Let (A,A , μ) be an atomless probability space of agents, (�,�, ν)

a sample probability space, and f : A × � → A a random matching. Let λ be the
product probability measure on A × � defined from μ and ν. If f satisfies (P2) to
(P4), then λ has a Fubini extension λ̄ such that f is (	̄,A )-measurable, writing 	̄

for the domain of λ̄.

See Sect. 6.2 for the proof.
In the previous section we mentioned that property (P3) is sometimes viewed as

manifestation of a law of large numbers. Now the notion of Fubini extension also
provides the framework in which this view may be justified, in the sense that (P3) may
be derived as a conclusion from (P2) and (P4) (note that given any random matching
f : A × � → A, these latter two properties together mean that the family 〈 fx 〉x∈A is
i.i.d.). In fact, the following holds.

Proposition 3 Let (A,A , μ) be an atomless probability space of agents, (�,�, ν)

a sample probability space, and f : A × � → A a random matching. Let λ be the
product probability measure on A × � defined from μ and ν. Suppose:

6 For a recent application of the notion of Fubini extension outside the scope of random matching models,
see Sun and Yannelis (2008). A general result on existence of (proper) Fubini extensions can be found in
Podczeck (2010).
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Independent random matching 11

(i) There is a Fubini extension λ̄ of λ such that f is (	̄,A )-measurable, writing
	̄ for the domain of λ̄.

(ii) f satisfies (P2) and (P4).

Then f satisfies (P3).7

Note that Propositions 2 and 3 in combination say that if a random matching on a
continuum population satisfies (P2) and (P4), then (P3) and (i) of Proposition 3 are
equivalent properties. Thus, for a “large numbers” interpretation of the strong mixing
property to be valid, it is both necessary and sufficient that the random matching have
the measurability property stated in (i) of Proposition 3.

As the proof of Proposition 3 is short and illustrative for the role of a Fubini exten-
sion, it will be given here.

Proof of Proposition 3 Fix any E1, E2 ∈ A and pick any B ∈ �. Note first that
by (i), we have (E1 × B)∩ f −1(E2) ∈ 	̄, and therefore, from the definition of Fubini
extension, the integrals

∫
E1

ν(B ∩ f −1
x (E2)) dμ(x) and

∫
B μ

(
E1 ∩ f −1

y (E2)
)

dν(y)

are well-defined and equal. Write �B for the sub-σ -algebra of � generated by B,
and �x for that generated by fx , x ∈ A. Now (P4) says that the family 〈�x 〉x∈A is
stochastically independent. Using Fremlin (2008, 5A6-272W), it follows that there
is a countable D ⊂ A such that for each x ∈ A\ D , �B and �x are stochastically
independent. As (A,A , ν) is atomless, this means �B and �x are stochastically inde-
pendent for almost all x ∈ A. Thus, ν(B ∩ f −1

x (E2)) = ν(B)ν( f −1
x (E2)) for almost

all x ∈ A. Finally, note that from (P2) we have ν( f −1
x (E2)) = μ(E2) for all x ∈ A.

Putting all these together, we may conclude that, for any B ∈ �,

∫

B

μ
(
E1 ∩ f −1

y (E2)
)

dν(y) =
∫

E1

ν
(
B ∩ f −1

x (E2)
)

dμ(x)

=
∫

E1

ν(B)ν( f −1
x (E2)) dμ (x)

=
∫

E1

ν(B)μ(E2) dμ(x)

= ν(B)μ(E2)μ(E1).

By the Radon–Nikodym theorem it follows that μ
(

E1 ∩ f −1
y (E2)

)
= μ(E1)μ(E2)

for almost all y ∈ �. Thus, as E1, E2 ∈ A are arbitrary, f satisfies (P3).
As noted in Remark 1, if a random matching satisfies (P3) then it satisfies (P7) for

every type assignment. Thus we have the following corollary of Theorem 3. ��

7 A warning may be in order here. Conditions (i) and (ii) cannot be satisfied simultaneously when (A, A , μ)

is taken to be [0, 1] with Lebesgue measure. Indeed, with this choice of the space of agents, there can be
no random matching satisfying (P3); see Sect. 4 for this.
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12 K. Podczeck, D. Puzzello

Corollary 1 Let (A,A , μ) be an atomless probability space of agents, (�,�, ν) a
sample probability space, and f : A × � → A a random matching. Let λ be the
product probability measure on A × � defined from μ and ν. Suppose:

(i) There is a Fubini extension λ̄ of λ such that f is (	̄,A )-measurable, writing
	̄ for the domain of λ̄.

(ii) f satisfies (P2) and (P4).

Then f satisfies (P7) for every type assignment.

Remark 5 We note here that even when a random matching is jointly measurable
(or satisfies (i) of Proposition 3), mixing properties do not follow from proportion-
ality properties if no independence properties are satisfied. This is illustrated in the
following example where (P6) holds but (P7) does not.

Example 1 Take the probability space (A,A , μ) of agents to be ([0, 1] ,B, λ), where
λ is Lebesgue measure, and B the Borel σ–algebra of [0, 1]. Partition [0, 1] into eight
measurable subsets A1, . . . , A8, each with measure 1/8. Let

(
Ai , A j

)
denote “the

agents in Ai are matched with the agents in A j .” Recall that given any C, C ′ ∈ B of
the same measure, there is an inverse measure preserving bijection from C onto C ′.
Using this fact, we can construct four matchings f1, . . . , f4 on [0, 1] such that each
fi is inverse measure-preserving and such that

f1 satisfies (A1, A2) (A3, A7) (A4, A8) (A5, A6)

f2 satisfies (A1, A5) (A2, A6) (A3, A4) (A7, A8)

f3 satisfies (A1, A2) (A3, A4) (A5, A6) (A7, A8)

f4 satisfies (A1, A6) (A2, A5) (A3, A8) (A4, A7) .

Let the sample probability space (�,�, ν) be the set {1, 2, 3, 4} with normalized
counting measure and let a random matching f : [0, 1] × � → [0, 1] be given by
f (x, i) = fi (x) for x ∈ [0, 1] and i ∈ �. Assume that there are just two types 0
and 1, and that the type assignment θ : [0, 1] → {0, 1} is given by θ(x) = 0 for
x ∈ ⋃4

j=1 A j , and θ(x) = 1 for x ∈ ⋃8
j=5 A j . Then, since in state 3 there is no

match between any agents of different types, f fails to satisfy (P7). On the other hand,
since each of the four matchings is equally likely, it is easy to check that f satisfies
(P6). Moreover, f is B ⊗ �-measurable. However, since there are only finitely many
sub-σ -algebras of �, f cannot satisfy independence conditions as in (P4) or (P8).

4 The main existence result

In this section we state our main theorem on existence of random matching. It is impor-
tant to note that in this theorem the space of agents cannot be [0, 1] with Lebesgue
measure (see Remark 8 for more on this). As already remarked in the introduction, by
not taking the space of agents to be [0, 1] with Lebesgue measure, we depart from the
approach in Alós-Ferrer (1999). The following notation applies in the sequel. For any
set X, #(X) denotes its cardinal; c denotes the cardinal of the continuum.
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Independent random matching 13

Theorem 1 There exists an atomless probability space (A,A , μ) of agents, a sample
probability space (�,�, ν), and a random matching f : A × � → A such that the
following hold.

(a) f satisfies (P1) to (P5).
(b) Given any type space (T,T ) and type assignment θ : A → T, f satisfies (P6)

to (P8).
(c) Let λ be the product measure on A × � defined from μ and ν. There is a Fubini

extension λ̄ of λ such that f is (	̄,A )-measurable, writing 	̄ for the domain of
λ̄; in particular, given any type space (T,T ) and type assignment θ : A → T ,
the type process θ ◦ f is (	̄,T )-measurable.

(d) The probability space (A,A , μ) of agents can be constructed with #(A) = c.

The proof is in Sect. 6.1. The following remarks comment on the theorem.

Remark 6 The theorem will be proved by showing that there is a random matching
on an atomless probability space (A,A , μ) of agents with #(A) = c such that (P1) to
(P4) are satisfied. By Remark 1 and Proposition 2, this establishes the entire theorem.

Remark 7 Note that Theorem 1 gives a random matching which is independent of
type spaces and type assignments. In particular, it gives a random matching such that
the important types mixing property is satisfied for every possible type assignment.

Moreover, our result applies to the case of infinitely many types. Indeed, recall that
given any atomless probability space (A,A , μ) and any Borel probability measure
γ on a Polish space Z , there is a mapping θ : A → Z which is inverse-measure-
preserving for μ and γ ; in other words, every such γ is the distribution of some
measurable mapping from A to Z . Consequently, Theorem 1 allows for any Borel
probability measure on a Polish space to be taken as type distribution.

In both of these aspects, our existence result for random matching improves on
that in Alós-Ferrer (1999). Another difference from Alós-Ferrer (1999) is that, in our
result, the random matching satisfies general independence. As pointed out in Sect. 2,
in a random matching model with a continuum population it may be natural to require
this property.

In regard to independence properties, Theorem 1 also differs from the existence
result for random matching in Duffie and Sun (2007, Theorem 2.4) where only pair-
wise independence in types is required, i.e., property (P8) of our paper, weakened to
pairwise independence.8 However, given that one wants random matchings to satisfy
independence properties, it seems more natural to require independence directly for
the matching process, as with property (P4), and to require stochastic independence
in the usual sense, rather than only pairwise independence.

Furthermore, unlike Duffie and Sun (2007), our result is not based on nonstandard
analysis. In particular, it does not depend on Loeb space constructions.9

8 Actually, Duffie and Sun (2007) speak of essential pairwise independence in types, which in our notation
means that for almost all x ∈ A, θ ◦ fx is stochastically independent of θ ◦ fx ′ for almost all x ′ ∈ A.
9 Built on their 2007 result, Duffie and Sun (2010) recently have constructed a random matching satisfying
pairwise independence in types for some type assignments where the space of agents is [0, 1] with an
extension of Lebesgue measure. However, in that result, the random matching is not universal with respect
to type assignments. Also, the measure preservation property fails.
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14 K. Podczeck, D. Puzzello

Remark 8 Theorem 1(d) says that the probability space (A,A , μ) of agents can be
constructed so that A may be identified as a set with the unit interval [0, 1] via a
bijection; that is, if one likes, one can take A = [0, 1] in Theorem 1. The point is that
the measure μ cannot be Lebesgue measure on [0, 1]. In fact, as noted in Alós-Ferrer
(1999, Proposition 3.1 and Corollary 3.2), if the space of agents is taken to be [0, 1]
with Lebesgue measure, then a random matching satisfying (P1) must fail (P3) and in
particular cannot satisfy (P7) for every possible type assignment.

We note here that one does not need to invoke (P1) to reach this negative conclusion.
In Remark 9 below we show that, in fact, (P3) alone cannot be satisfied by any random
matching when the space of agents is taken to be [0, 1] with Lebesgue measure. By
Proposition 1, this in turn implies that, with this choice of the space of agents, no
random matching can satisfy (P7) for every type assignment.

Similarly, by Proposition 3, if one would like to have a random matching that satis-
fies independence and proportionality properties, as well as some joint measurability
property with respect to agents and sample points, then [0, 1] with Lebesgue measure
is also not the appropriate choice of the probability space of agents.

Of course, there are economic contexts where it has a specific meaning that the
space of agents is taken to be [0, 1] with Lebesgue measure, e.g., contexts where
geographical location of agents matters. In such contexts our result does not apply.

Frequently, however, as for instance in standard general equilibrium models, it is of
no economic significance whether or not the space of agents is [0, 1] with Lebesgue
measure. Indeed, if a large set of negligible agents is modeled as an atomless probabil-
ity space just to establish that any single agent has strictly no influence on aggregate
levels, then, to quote Hildenbrand (1974, p. 113), the σ -algebra should be considered
as “only been introduced for technical reasons” and, conceptually, “be considered …as
the set of all subsets” of the set of agents.10 Under this view, any atomless probability
measure on [0, 1] is as good as any other in modeling a large set of negligible agents,
and a particular choice, e.g. according to our Theorem 1, of a σ -algebra, or probability
measure, on the set of agents should not be discussed in terms of economic meaning,
but should be seen as a technical device having to do some job.

Remark 9 That (P3) cannot be satisfied by any random matching if the space of agents
is (0, 1) with Lebesgue measure [regardless of whether or not (P1) is satisfied] may
be seen as follows. Let B be the Borel σ -algebra of [0, 1], let μ be Lebesgue mea-
sure on [0, 1], and let C ⊂ B be a countable algebra generating B. Suppose there
would be a random matching f : [0, 1] × � → [0, 1] such that (P3) is satisfied with
respect to μ. Pick any E2 ∈ B with μ(E2) = 1/2. Then (P3) implies that there is a
ȳ ∈ � such that μ(E1 ∩ f −1

ȳ (E2)) = μ(E1)μ(E2) for all E1 ∈ C . Note that for any

y ∈ �, {E1 ∈ B : μ(E1 ∩ f −1
y (E2)) = μ(E1)μ(E2)} is a monotone class. It follows

that μ(E1 ∩ f −1
ȳ (E2)) = μ(E1)μ(E2) for all E1 ∈ B. But this is impossible. To

10 In particular, then, it should not be considered an essential point whether or not the σ -algebra is countably
generated. Further, the σ -algebra need not be derived from any topological structure on the set of agents,
and hence, in case of [0, 1] as set of agents, it should also not be considered an essential point whether or
not the sub-intervals of [0, 1] belong to the σ -algebra.
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Independent random matching 15

see this, take E1 to be any member of B which differs from f −1
ȳ (E2) by a null set if

μ( f −1
ȳ (E2)) > 0, and take E1 = [0, 1] otherwise.

5 A uniqueness result

In the introduction we mentioned the observation in Molzon and Puzzello (2010) that a
random matching is not uniquely determined by measure preservation, proportionality,
and mixing properties. In this section we will address this issue. It will turn out that the
crucial properties to get uniqueness of random matching are general proportionality
and general independence. Some additional notation is needed.

Notation Given a probability space (A,A , μ) of agents, MA ⊂ AA denotes the set of
all matchings on A, i.e., the set of all fixed point free involutions on A; further, writing
γ̄ for the product probability measure on AA defined from μ, γ denotes the restriction
of γ̄ to the σ -algebra generated by the measurable cylinders in AA, γA the subspace
measure on MA induced from γ , and �A the domain of γA. Given in addition a sample
probability space (�,�, ν) and a random matching f : A × � → A, φ : � → MA

denotes the mapping defined by setting φ(y) = fy for y ∈ �.

Now, given a probability space (A,A , μ) of agents, the following theorem shows
that if a random matching exists, then, in terms of distributions on (MA, �A), it is
unique subject to (P2) and (P4).

Theorem 2 Let (A,A , μ) be a probability space of agents. Then if (�,�, ν) is any
sample probability space and f : A × � → A is a random matching, the mapping
φ is (�, �A)-measurable, and if f satisfies (P2) and (P4), the distribution of φ on
(MA, �A) is γA.

Proof It suffices to show that φ, viewed as a mapping from � to AA, has the property
that φ−1(Z) ∈ � whenever Z is a measurable cylinder in AA, and that if f satisfies
(P2) and (P4) then ν(φ−1(Z)) = γ (Z) for any such Z . Thus let Z be a measurable
cylinder in AA. Then for some finite collection x1, . . . , xn of distinct members of A,
together with members B1, . . . , Bn of A , we have Z = E x1

B1
∩· · ·∩ E xn

Bn
where E xi

Bi
=

{z ∈ AA : z(xi ) ∈ Bi }, i = 1, . . . , n. Note that for each i = 1, . . . , n, φ−1(E xi
Bi

) =
f −1
xi

(Bi ), because for any y ∈ �,

φ(y) ∈ E xi
Bi

⇔ φ(y)(xi ) ∈ Bi ⇔ fy(xi ) ∈ Bi ⇔ fxi (y) ∈ Bi .

Now by definition of random matching, fx is (�,A )-measurable for any x ∈ A.
It follows that φ−1

(
E xi

Bi

) ∈ � for each i = 1, . . . , n, and hence that φ−1(Z) ∈ �.
Moreover, if f satisfies (P2) and (P4), then

ν
(
φ−1(Z)

) = ν
(
φ−1(E x1

B1

) ∩ · · · ∩ φ−1(E xn
Bn

))

= ν
(

f −1
x1

(B1) ∩ · · · ∩ f −1
xn

(Bn)
)
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16 K. Podczeck, D. Puzzello

=
n∏

i=1

ν( f −1
xi

(Bi )) by (P4)

=
n∏

i=1

μ(Bi ) by (P2)

= γ
(

E x1
B1

∩ · · · ∩ E xn
Bn

)
= γ (Z),

the first equality in the previous line by the definition of product measure since the
elements x1, . . . , xn of A are distinct. This completes the proof. ��

As noted in Proposition 1, if a random matching satisfies (P6) and (P8) for any
type assignment with a finite type space, then it satisfies (P2) and (P4). Therefore, the
above uniqueness result can equivalently be stated in the following way in terms of
type assignments.

Corollary 2 Let (A,A , μ) be a probability space of agents. Then if (�,�, ν) is any
sample probability space and f : A × � → A is a random matching satisfying (P6)
and (P8) for every type assignment with a finite type space, the distribution of φ on
(MA, �A) is γA.

6 Remaining proofs

6.1 Proof of Theorem 1

Let ω1 be the least uncountable ordinal. For each ξ < ω1, choose a subset Kξ ⊂ ω1
with #(Kξ ) = #(ξ) such that η > ξ for each η ∈ Kξ , and then choose a bijection
ρξ : ξ → Kξ . Define hξ : ω1 → ω1 by setting

hξ (η) =
⎧
⎨

⎩

ρξ (η) for η < ξ

ρ−1
ξ (η) for η ∈ Kξ

η for η �∈ ξ ∪ Kξ .

Then for each ξ < ω1, hξ is an involution on ω1.
Consider the product space {0, 1}ω1 . Let λ be the usual measure on {0, 1}ω1 , and

let 	 denote the domain of λ. Recall that λ is complete. For each ξ < ω1, define a
mapping φ̂ξ : {0, 1}ω1 → {0, 1}ω1 by setting, for each x ∈ {0, 1}ω1 ,

φ̂ξ (x) = x ◦ hξ .

(Thus, φ̂ξ (x) is the element in {0, 1}ω1 that is given by φ̂ξ (x)(η) = x(hξ (η)) for
η < ω1.) Then for each ξ < ω1, φ̂ξ is inverse-measure-preserving for λ, and since hξ

is an involution, φ̂ξ is an involution, too. (To see that φ̂ξ is an involution, observe that
for each x ∈ {0, 1}ω1 ,

φ̂ξ (φ̂ξ (x)) = φ̂ξ (x ◦ hξ ) = (x ◦ hξ ) ◦ hξ = x ◦ (hξ ◦ hξ ) = x .
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Independent random matching 17

To see that φ̂ξ is inverse-measure-preserving for λ, observe that whenever I is a finite
subset of ω1, we have

λ
({

x ∈ {0, 1}ω1 : x(hξ (η)) = 1 for every η ∈ I
}) = 2−#(I ),

because hξ is an injection.)
We claim that given E1, E2 ∈ 	, for all but countably many ξ < ω1 the sets E1 and

φ̂−1
ξ (E2) are stochastically independent, i.e., λ(E1 ∩ φ̂−1

ξ (E2)) = λ(E1)λ(φ̂−1
ξ (E2)).

To see this, pick any E1, E2 ∈ 	. There is an E ′
1 ∈ 	 which differs from E1 by a null

set and is determined by coordinates in a countable subset of ω1, say D1, and there
is an E ′

2 ∈ 	 which differs from E2 by a null set and is determined by coordinates
in a countable subset of ω1, say D2. Then by choice of φ̂ξ , for each ξ < ω1 the set
φ̂−1

ξ (E ′
2) is determined by coordinates in hξ (D2). As ω1 has uncountable cofinality,

we can find a β < ω1 such that η < β for every η ∈ D1 ∪ D2. Then by choice of hξ ,
for each ξ < ω1 with ξ > β, we have η > β for every η ∈ hξ (D2). Hence for each
ξ < ω1 with ξ > β, D1∩hξ (D2) = ∅, which implies that the sets E ′

1 and φ̂−1
ξ (E ′

2) are

stochastically independent, E ′
1 being determined by coordinates in D1, and φ̂−1

ξ (E ′
2)

by coordinates in hξ (D2). Since φ̂ξ is inverse-measure-preserving for λ, the fact that
E ′

1 and E ′
2 differ by null sets from E1, E2, respectively, implies that φ̂−1

ξ (E ′
2) differs

by a null set from φ̂−1
ξ (E2), and E ′

1 ∩ φ̂−1
ξ (E ′

2) by a null set from E1 ∩ φ̂−1
ξ (E2).

Consequently E1 and φ̂−1
ξ (E2) are stochastically independent for each ξ < ω1 with

ξ > β, and thus the claim above is established.
As each φ̂ξ is inverse-measure-preserving forλ, it follows that given any E1, E2 ∈ 	

we have λ(E1 ∩ φ̂−1
ξ (E2)) = λ(E1)λ(E2) for all but countably many ξ < ω1.

Let

A = {
x ∈ {0, 1}ω1 : for some α < ω1, x(ξ) = 1 for all ξ < ω1 with ξ > α

}
.

Evidently A is expressible as the union of ω1 sets of cardinal c, so #(A) = c. Also,
A has full outer measure for λ, by the fact that every non-negligible member of 	

includes a non-empty set that is determined by coordinates in some countable subset
of ω1, together with the fact that ω1 has uncountable cofinality.

Let μ be the subspace measure on A induced from λ, and let A denote its domain.
Then, as A has full outer measure for λ, (A,A , μ) is a probability space. Clearly, as
λ is complete and atomless, so is μ.

For each ξ < ω1 let φ̃ξ be the restriction of φ̂ξ to A. Note that by construction,
for each ξ < ω1 and each x ∈ {0, 1}ω1 , φ̂ξ (x) and x agree in all but countably many
coordinates in ω1. Consequently, for each ξ < ω1, whenever x ∈ A then φ̃ξ (x) ∈ A,
again using the fact that ω1 has uncountable cofinality. Thus since φ̂ξ is an involution
on {0, 1}ω1 , φ̃ξ is an involution on A. By the fact that A has full outer measure for
λ, the properties of the functions φ̂ξ , ξ < ω1, also imply that, for each ξ < ω1, φ̃ξ

is inverse-measure-preserving for μ, and that, given any E1, E2 ∈ A , for all but
countably many ξ < ω1 we have μ(E1 ∩ φ̃−1

ξ (E2)) = μ(E1)μ(E2).
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18 K. Podczeck, D. Puzzello

We will now modify the mappings φ̃ξ so as to make them fixed point free. Pick any
ξ < ω1 with ξ ≥ ω. Let

�ξ = {
x ∈ {0, 1}ω1 : x(η) = x(hξ (η)) for each η < ω1

}

and let �A
ξ = �ξ ∩ A. Then by the definitions of φ̂ξ and φ̃ξ ,�

A
ξ is exactly the set of

fixed points of φ̃ξ . Now by the definition of hξ ,

{η < ω1 : η < ξ} ∩ hξ ({η < ω1 : η < ξ}) = ∅.

Hence since ξ ≥ ω,�ξ is a λ-null set in {0, 1}ω1 (directly from the definition of λ

to be the usual measure on {0, 1}ω1 ), and thus �A
ξ is a μ-null set in A. Finally, �A

ξ is
an infinite subset of A. (To see this, note that by definition of hξ , for some countable
D ⊂ ω1 we have hξ (η) = η for all η < ω1 with η /∈ D, and let B be the set of those
x in A for which x(η) = 1 for all η < ω1 with the exception of exactly one η < ω1
with η /∈ D. Then B is an infinite subset of A, and since hξ is a bijection we must
have B ⊂ �A

ξ .)
Now by the fact that any infinite set can be partitioned into two sets of the same

cardinality, we can choose a fixed point free involution κξ : �A
ξ → �A

ξ . As �A
ξ is the

set of fixed points of φ̃ξ , the restriction of φ̃ξ to A\�A
ξ is an involution on A\�A

ξ .
Therefore, defining φξ : A → A by

φξ (x) =
{

κξ (x) if x ∈ �A
ξ

φ̃ξ (x) if x ∈ A\�A
ξ ,

φξ is a fixed point free involution on A. As φξ agrees with φ̃ξ on the complement of
a μ-null set, φξ is inverse-measure-preserving for μ.

Doing this construction for all ξ < ω1 with ξ ≥ ω, and then letting φξ = φω for
ξ < ω, we get a family 〈φξ 〉ξ<ω1 of fixed point free involutions on A, each of them
inverse-measure-preserving for μ. Moreover, given any E1, E2 ∈ A , for all but count-
ably many ξ < ω1 we have μ(E1 ∩ φ−1

ξ (E2)) = μ(E1)μ(E2), by the corresponding

property of the family 〈φ̃ξ 〉ξ<ω1 , because φξ agrees with φ̃ξ on the complement of a
μ-null set for ω ≤ ξ < ω1.

Now choose a family 〈xξ 〉ξ<ω1 of elements of A so that given any countable D ⊂ A,
for some ξ < ω1 we have both xξ /∈ D and φξ (xξ ) /∈ D. Such a choice is possible.
Indeed, by transfinite recursion on ω1 choose a family 〈xξ 〉ξ<ω1 as follows. Let x0 be
an arbitrary point of A. Given that 〈xη〉η<ξ has been chosen, where ξ < ω1, consider
the set Aξ = {xη, φη(xη) : η < ξ}. Then Aξ is countable, so, because A is uncount-
able and φξ is a bijection, we can choose an xξ in A such that both xξ /∈ Aξ and
φξ (xξ ) /∈ Aξ . This completes the recursion. The result is a family 〈xξ 〉ξ<ω1 of distinct
elements of A such that the family 〈φξ (xξ )〉ξ<ω1 also consists of distinct elements.
Thus 〈xξ 〉ξ<ω1 is a family as desired.
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Let ν̄ be the complete product probability measure on AA defined from μ, and let
�̄ denote the domain of ν̄. For each ξ < ω1 let

Nξ = {
y ∈ AA : (a) y is a fixed point free involution on A,

(b) y(xξ ) = φξ (xξ ),

(c) y � A\N = φξ � A\N for some μ–null set N ⊂ A
}
,

and then let � = ⋃
ξ<ω1

Nξ .
From (c) in the definition of Nξ , each y ∈ � is inverse-measure-preserving for μ.

From (b) in that definition, each Nξ is a ν̄-null set in AA because, μ being atomless,
singletons in A are μ-null sets.

On the other hand, � has full outer measure for ν̄. To see this, note first that it
suffices to show that � intersects every non-negligible subset of AA that is determined
by coordinates in some countable subset of A (since every non-negligible element of
�̄ includes such a set). Thus let E be a non-negligible subset of AA, determined by
coordinates in a countable subset of A, say D.

As D is countable and (A,A , μ) is atomless, the set of all y in AA such that y � D
is injective is an element of �̄ with ν̄-measure 1 (see Fremlin 2001, 254V). Also,
since a countable subset of A is a μ-null set in A, for each x ∈ A the set of all y in
AA such that y(x) ∈ D is a ν̄-null set in AA, and hence (using again the fact that D
is countable) the set of all y in AA such that D ∩ y(D) = ∅ belongs to �̄ and has
ν̄-measure 1. Consequently, because E is non-negligible, there is an element of E , say
y0, such that y0 � D is a bijection onto y0(D) and such that D ∩ y0(D) = ∅.

Set D′ = y0(D). Then D ∪ D′ is countable, so we can choose a countably infinite
subset H of A with H ∩ (D ∪ D′) = ∅. Set C = H ∪ D ∪ D′. Then C is again
countable, so by choice of the family 〈xξ 〉ξ<ω1 , there is a ξ < ω1 such that xξ /∈ C as
well as φξ (xξ ) /∈ C . Fix such a ξ and set C ′ = C ∪ φξ (C). Using the fact that φξ is
an involution, we may see that xξ /∈ C ′.

Also by the fact that φξ is an involution, we have φξ (C ′) = C ′ and therefore
φξ (A\C ′) = A\φξ (C ′) = A\C ′. Thus φξ � A\C ′ is a fixed point free involution
on A\C ′.

Note that by choice of C , the set C ′\(D ∪ D′) is infinite. Hence, since an infinite set
can be partitioned into two sets of the same cardinality, we can choose a fixed point
free involution ζ : C ′ \(D ∪ D′) → C ′ \(D ∪ D′).

Now as y0 � D is a bijection onto D′, and D ∩ D′ = ∅, we get a fixed point free
involution y1 : A → A by setting, for x ∈ A,

y1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

y0(x) if x ∈ D
y−1

0 (x) if x ∈ D′
ζ(x) if x ∈ C ′ \(D ∪ D′)
φξ (x) if x ∈ A\C ′.

In particular, then, since xξ /∈ C ′, we have y1(xξ ) = φξ (xξ ). Thus y1 ∈ �, because
the countable set C ′ is a μ-null set in A. On the other hand, y1 agrees with y0 on D,
and since y0 ∈ E and E is determined by coordinates in D, we have y1 ∈ E . Thus
� ∩ E �= ∅, proving that � has full outer measure for ν̄.
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Let ν be the subspace measure on � induced from ν̄, and let � denote its domain.
Then, as � has full outer measure for ν̄, (�,�, ν) is a probability space. Note that
Nξ is a ν-null set in � for each ξ < ω1.

Now let f : A × � → A be defined by setting

f (x, y) = y(x), x ∈ A, y ∈ �.

Further, for each x ∈ A, let πx be the coordinate projection y �→ y(x) : AA → A.
Then, by definition of product measure, for each x ∈ A, πx is inverse-measure-pre-
serving for ν̄ and μ, and the family 〈πx 〉x∈A is stochastically independent. Evidently
f (x, ·) agrees with πx on � for each x ∈ A, and since � has full outer measure
for ν̄, it follows that for each x ∈ A, fx ≡ f (x, ·) is inverse-measure-preserving
for ν and μ, and that the family 〈 fx 〉x∈A is stochastically independent. On the other
hand, for each y ∈ �, fy is the same as y. Hence, for each y ∈ �, fy is a fixed
point free involution on A, and by what was noted following the definition of the sets
Nξ above, fy is inverse-measure-preserving for μ. As was also noted above, given
any E1, E2 ∈ A , we have μ(E1 ∩ φ−1

ξ (E2)) = μ(E1)μ(E2) for all but countably
many ξ < ω1. By (c) in the definition of the sets Nξ , this means that, given any
E1, E2 ∈ A , there is a countable D ⊂ ω1 such that whenever y ∈ �\⋃

ξ∈D Nξ then

μ(E1 ∩ f −1
y (E2)) = μ(E1)μ(E2). As each Nξ is a null set in �, it follows that, given

any E1, E2 ∈ A , we have μ(E1 ∩ f −1
y (E2)) = μ(E1)μ(E2) for almost all y ∈ �.

Taken together, these properties of f mean that f is a random matching satisfying
(P1) to (P4). By Remark 1 in Sect. 2, (P5) is also satisfied and, given any type space
(T,T ) and type assignment θ : A → T , (P6)–(P8) are satisfied as well. Thus, (a) and
(b) of the theorem hold. By Proposition 2, (c) of the theorem holds, and the choice of
A shows that (d) is true. This completes the proof. ��

6.2 Proof of Proposition 2

The following notation will be used in the sequel.

Notation If H is a subset of A × � then for x ∈ A, Hx denotes the x-section of
H , and for y ∈ �, Hy denotes the y-section of H . Thus, if x ∈ A, then Hx =
{y ∈ � : (x, y) ∈ H}; similarly, for y ∈ �, Hy = {x ∈ A : (x, y) ∈ H}.

For convenience, we first establish a lemma.

Lemma Let (A,A , μ) and (�,�, ν) be probability spaces, and (A × �,	, λ) the
corresponding product probability space. Let M be the set of all M ⊂ A × � for
which Mx is a null set in � for almost all x ∈ A, and My a null set in A for almost all
y ∈ �. Further, let 〈Ji 〉i∈I be a family of sets, and 〈Hi, j 〉i∈I, j∈Ji a family of subsets
of A × �. Suppose:

(a) For all x ∈ A and all y ∈ �, Hi, j
x ∈ � and Hi, j

y ∈ A for each i ∈ I and j ∈ Ji .
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(b) For each i ∈ I there is a real number αi > 0 such that whenever j1, . . . , jn are
finitely many distinct members of Ji , then given B ∈ A ,

μ
(
B ∩ Hi, j1

y ∩ · · · ∩ Hi, jn
y

) = μ(B)αi 2
−n

for almost all y ∈ �, and given C ∈ �,

ν
(
C ∩ Hi, j1

x ∩ · · · ∩ Hi, jn
x

) = ν(C)αi 2
−n

for almost all x ∈ A.
(c) Hi, j ∩ Hi ′, j ′ = ∅ whenever i �= i ′.

Then λ has a Fubini extension λ̄ such that M ∪ {Hi, j : i ∈ I, j ∈ Ji } ⊂ 	̄, writing
	̄ for the domain of λ̄.

Proof Let F be the set of subsets F of A × � such that the integrals
∫

A ν̄(Fx ) dμ(x)

and
∫
�

μ̄(Fy) dν(y) are well-defined and equal, writing μ̄ and ν̄ for the completions
of μ and ν respectively. Then F is a Dynkin class (i.e., ∅ ∈ F and F is closed under
complements and countable disjoint unions) as may easily be checked. In addition, (a)
to (c) imply that whenever B1 ×C1, . . . , Bn ×Cn are finitely many measurable rectan-
gles in A×� and F1, . . . , Fm are finitely many elements of M ∪{Hi, j : i ∈ I, j ∈ Ji },
then the intersection

(B1 × C1) ∩ · · · ∩ (Bn × Cn) ∩ F1 ∩ · · · ∩ Fm

belongs to F . Therefore, by the monotone class theorem, there is a σ -algebra 	̄ ⊂
F which contains all the measurable rectangles in A × � and all the members of
M ∪ {Hi, j : i ∈ I, j ∈ Ji }. In particular, we must have 	 ⊂ 	̄. Define λ̄ : 	̄ → R

by setting λ̄(F) = ∫
A ν̄(Fx ) dμ(x) for F ∈ 	̄. Using the monotone convergence

theorem, we may see that λ̄ is a probability measure on A × �.
This completes the proof of the lemma.

Proof of Proposition 2 Using Maharam’s theorem, we can choose a countable parti-
tion 〈Ai 〉i∈I of A into non-negligible measurable sets so that for each i ∈ I there is
a family 〈Fi, j 〉 j∈Ji of measurable subsets of A, with Fi, j ⊂ Ai for all j ∈ Ji , such
that all of (i)–(iii) below hold, writing μi for the probability measure on Ai obtained
by normalizing the subspace measure induced by μ on Ai :

(i) For each i ∈ I, μi (Fi, j ) = 1/2 for all j ∈ Ji .
(ii) For each i ∈ I , the family 〈Fi, j 〉 j∈Ji is stochastically independent for μi .

(iii) Denoting by A ′ the sub-σ -algebra of A generated by {Fi, j : i ∈ I, j ∈ Ji }, for
any B ∈ A there is a B ′ ∈ A ′ such that B ′ differs from B by a μ-null set.

For each i ∈ I and j ∈ Ji , let Hi, j = f −1(Fi, j ). We will show that the family
〈Hi, j 〉i∈I, j∈Ji satisfies the conditions of the lemma above.

Clearly 〈Hi, j 〉i∈I, j∈Ji satisfies (c) of these conditions. As earlier, write fx for f (x, ·)
and fy for f (·, y). Note that for each i ∈ I and j ∈ Ji , the sections Hi, j

x and Hi, j
y
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satisfy

Hi, j
x = f −1

x

(
Fi, j ) and Hi, j

y = f −1
y

(
Fi, j )

for all x ∈ A and y ∈ � respectively. Thus, in particular, (a) of the above lemma is
satisfied by the family 〈Hi, j 〉i∈I, j∈Ji .

For each i ∈ I set αi = μ(Ai ). Fix any i ∈ I , and let j1, . . . , jn be distinct members
of Ji . Note that (i) and (ii) imply:

μ
(
Fi, j1 ∩ · · · ∩ Fi, jn

) = αi 2
−n . (∗)

Consider any B ∈ A . As f satisfies (P3) by hypothesis, for almost all y ∈ �

we have

μ
(
B ∩ f −1

y

(
Fi, j1 ∩ · · · ∩ Fi, jn

)) = μ(B)μ
(
Fi, j1 ∩ · · · ∩ Fi, jn

)
.

Using this fact together with (∗), we may see that for almost every y ∈ �,

μ
(
B ∩ Hi, j1

y ∩ · · · ∩ Hi, jn
y

) = μ
(
B ∩ f −1

y

(
Fi, j1

) ∩ · · · ∩ f −1
y (Fi, jn )

)

= μ
(
B ∩ f −1

y

(
Fi, j1 ∩ · · · ∩ Fi, jn

))

= μ(B)μ
(
Fi, j1 ∩ · · · ∩ Fi, jn

)

= μ(B)αi 2
−n .

Now consider any C ∈ �. For each x ∈ A let �x be the sub-σ -algebra of � gen-
erated by fx , and let �C be the sub-σ -algebra of � generated by C . By hypothesis,
f satisfies (P4), i.e., the family 〈�x 〉x∈A is stochastically independent. By Fremlin
(2008, 5A6-272W), it follows that there is a countable D ⊂ A such that for each
x ∈ A\ D , �C and �x are stochastically independent. Since (A,A , ν) is atomless
by hypothesis, this means that �C and �x are stochastically independent for almost
every x ∈ A. Now for each x ∈ A, we have f −1

x (Fi, j1 ∩ · · · ∩ Fi, jn ) ∈ �x , and it
follows that for almost all x ∈ A,

ν
(
C ∩ f −1

x

(
Fi, j1 ∩ · · · ∩ Fi, jn

)) = ν(C)ν
(

f −1
x

(
Fi, j1 ∩ · · · ∩ Fi, jn

))
.

Using this fact together with (∗) and the hypothesis that f satisfies (P2), i.e., that for
each x ∈ A, fx is inverse-measure-preserving for μ and ν, we may conclude that for
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almost all x ∈ A,

ν
(
C ∩ Hi, j1

x ∩ · · · ∩ Hi, jn
x

) = ν
(
C ∩ f −1

x

(
Fi, j1

) ∩ · · · ∩ f −1
x

(
Fi, jn

))

= ν
(
C ∩ f −1

x

(
Fi, j1 ∩ · · · ∩ Fi, jn

))

= ν(C)ν
(

f −1
x

(
Fi, j1 ∩ · · · ∩ Fi, jn

))

= ν(C)μ
(
Fi, j1 ∩ · · · ∩ Fi, jn

)

= ν(C)αi 2
−n .

Thus (b) of the above lemma is also satisfied by the family 〈Hi, j 〉i∈I, j∈Ji .
Now let

G = { f −1(N ) : N is a μ–null set in A}.

Then for each M ∈ G , and each x ∈ A, the section Mx is a ν-null set in �, by the
facts that M = f −1(N ) implies Mx = f −1

x (N ) and fx is inverse-measure-preserving.
Also, by (P3) with E1 = A, for each M ∈ G , My is a μ-null set in A for almost all
y ∈ �.

We may now appeal to the lemma above to find a Fubini extension of λ such that,
denoting by 	̄ its domain, 	̄ contains every member of G and every member of
〈Hi, j 〉i∈I, j∈Ji . In view of (iii) above, it follows that f is (	̄,A )-measurable. This
completes the proof. ��

6.3 Proof of Proposition 1

(a) We have to show that whenever x1, . . . , xn are distinct members of A and E1,. . ., En

are members of A , then

ν
(

f −1
x1

(E1) ∩ · · · ∩ f −1
xn

(En)
) =

n∏

i=1

ν
(

f −1
xi

(Ei )
)
.

Thus let such x1, . . . , xn and E1, . . . , En be given. There is a finite partition P of
A into measurable subsets such that for each i = 1, . . . , n, Ei is the union of members
of P . Let the finite type space (T,T ) be given by setting T = P and T = 2P ,
and let the type assignment θ : A → T be the mapping that takes an x ∈ A to that
element of P which contains x . Evidently θ is (A ,T )-measurable and we have
θ−1(θ(Ei )) = Ei for each i = 1, . . . , n. Now the hypothesis implies that

ν
(

f −1
x1

(θ−1(θ(E1)))∩. . .∩ f −1
xn

(θ−1(θ(En)))
)=

n∏

i=1

ν
(

f −1
xi

(θ−1(θ(Ei )))
)
,

and since θ−1(θ(Ei )) = Ei for each i = 1, . . . , n, we have the desired conclusion.
(b) Consider any E1, E2 ∈ A . Let the type space (T,T ) be given by setting T =
{0, 1, 2, 3} and T = 2T , and let the type assignment θ : A → T be given by setting
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θ(x) = 0 for x ∈ E1\E2, θ(x) = 1 for x ∈ E1 ∩ E2, θ(x) = 2 for x ∈ E2\E1, and
θ(x) = 3 for x ∈ A\(E1 ∪ E2). Then the hypothesis implies that there is a ν-null set
N ⊂ � such that for each y ∈ �\N ,

μ
(
θ−1({0, 1}) ∩ f −1

y (θ−1({1, 2}))) = μ
(
θ−1({0, 1}))μ(

θ−1({1, 2})).

By the choice of θ , this means μ(E1∩ f −1
y (E2)) = μ(E1)μ(E2) for each y ∈ �\N .

(c) Fix any E ∈ A . Let (T,T ) = ({0, 1}, 2{0,1}) and let θ : A → T be given by
θ(x) = 1 if x ∈ E and θ(x) = 0 if x ∈ A\E . Then, for every x ∈ A, the hypothesis
implies ν

(
f −1
x (θ−1({1}))) = μ(θ−1({1})) and thus ν( f −1

x (E)) = μ(E). ��

6.4 Proof of the claim in Remark 2

Suppose C ⊂ T is a countable algebra generating T and, for any y ∈ � and any
B1, B2 ∈ T , let Py(B1, B2) stand for the statement

“μ
(
θ−1(B1) ∩ (θ ◦ fy)

−1(B2)
) = τ(B1)τ (B2).”

Since C is countable, (P7) implies that there is a null set N ⊂ Y such that for any
y ∈ �\N , Py(B1, B2) is true for all B1, B2 ∈ C . Fix any y ∈ �\N and any B2 ∈ C .
The set {B1 ∈ T : Py(B1, B2) is true} is readily seen to be a monotone class, and
it follows that this set is T . As B2 was an arbitrary member of C , this means that
Py(B1, B2) is true for all B1 ∈ T and all B2 ∈ C . Now fix any B1 ∈ T . The set
{B2 ∈ T : Py(B1, B2) is true} is again a monotone class, and it follows that this set
is T . As B1 was an arbitrary member of T , it follows that Py(B1, B2) is true for all
B1, B2 ∈ T . Thus, as y was an arbitrary point in �\N , (P7’) holds. ��

7 Examples

Our paper provides foundations also to random matching models with infinitely many
types. This section provides examples that show this is very important. Models with
infinitely many types are not uncommon in economics. Examples 2 and 3 describe
random matching models that require a continuum of types. Example 4 shows what
could go wrong if the notion of type is not appropriately defined. It also clarifies
that our existence result allows for a correct definition of types also for models with
infinitely many types.11

Example 2 Evolutionary game theory
In economics, most work of evolutionary game theory focuses on populations of

agents who are randomly matched to play a game with repeated rounds. In these envi-
ronments, types are identified with strategies. Thus, games with continuous strategy
spaces involve random matching with a continuum of types. Examples can be found
in Sandholm (2001); Oechssler and Riedel (2002); Hofbauer et al. (2008). In these

11 Examples 3 and 4 are taken from Molzon and Puzzello (2009).
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games, the distribution of strategies in the population is given by a probability distri-
bution on the strategy space S, written as τ . Let R(s, s′) denote the payoff function to
a player selecting strategy s when his partner/opponent chooses strategy s′. Then, the
expected payoff to a player selecting strategy s is written as

E(s, τ ) =
∫

S

R
(
s, s′) dτ

(
s′) .

This expression makes implicit use of the types proportional law (P6) with a continuum
of types.

Example 3 Monetary theory
We start by describing the aspects of the model of Molico (2006) [see also Zhu

(2005)] that are relevant to random matching. Time is discrete and the population
A = [0, 1] consists of a continuum of infinitely lived agents whose discount factor is
β ∈ (0, 1). Let τt (E) the measure of agents whose money holdings are in E ⊂ [0,∞)

at the beginning of period t . In this model, the agent’s type is given by his money
holdings, and thus there may be a continuum of types. In every period agents are
randomly and bilaterally matched. An agent is the buyer in his match with probability
α, the seller with probability α, and neither with probability (1 − 2α).

The trading rule is determined by means of Nash bargaining. We follow Molico
(2006) and denote by qt (mb, ms) and dt (mb, ms) the amount of output and the amount
of money determined by bargaining in a match where the buyer has mb money holdings
and the seller has ms money holdings. Note that the payoff only depends on types.

The expected lifetime utility of an agent who enters period t with m money holdings
is given by

Vt (m) = α

∞∫

0

{u [qt (m, ms)] + βVt+1 [m − dt (m, ms)]} dτt (ms)

+α

∞∫

0

{−c [qt (mb, m)] + βVt+1 [m + dt (mb, m)]} dτt (mb)

+ (1 − 2α) βVt+1(m).

The state of the system at any time is defined by the distribution τt , whose law of
motion depends on the proportion of sellers and the proportion of buyers. With x
denoting the proportion of buyers and sellers during a period, the law of motion for
the distribution of money in Molico (2006) can be written as

τt+1(B) = α

∫ ∫

mb−dt (mb,ms)∈B

dτt (mb)dτt (ms)

+α

∫ ∫

ms+dt (mb,ms)∈B

dτt (mb)dτt (ms) + (1 − 2α)τt (B)
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where the first and second terms are the measure of consumers and producers whose
post-trade money holdings are in B. The last term accounts for those agents who do
not trade and thus their money holdings remain in B.

The expressions above suggest that the expected payoff and the law of motion
equations implicitly postulate a matching process that satisfies properties (P6) and
(P7) with a continuum of types.

Example 4 On the notion of type in economics
It is intuitive that if the notion of type in a random matching model does not capture

all payoff relevant characteristics of agents, then the model may fail to give proper
predictions on aggregate outcomes. We make this intuition precise by providing a
simple example with finitely many agents.

Suppose there is an even number of agents, say 8, of two types, “a” and “b.” Denote
the set of agents by

A = {a1, ..., a4, b1, ..., b4} .

Let MA denote the set of all possible matchings on this set of agents, and let elements
of MA be denoted by ϕ. The randomness of matching will be modeled by placing a
probability distribution on the set MA.

Each agent x ∈ A is endowed with a non-negative amount kx of some input. Sup-
pose that production of a certain good occurs only when agents of opposite type meet,
and that in this case the production of agent x depends on his input and the input
of the agent with whom agent x is matched. A simple specification capturing such a
complementarity of inputs is, denoting by Fx (ϕ) the production amount of agent x
given ϕ,

Fx (ϕ) =
{

f
(
min{kx , kϕ(x)}

)
if x and ϕ(x) have different types

0 if x and ϕ(x) have the same type,

where f : R+ → R+ is an increasing function with f (0) = 0.
We now consider two distinct probability distributions on MA. The two distributions

are described in the tables below, listing the matchings and corresponding probabili-
ties. Matchings that do not appear are assigned probability 0. The notation

(
x, x ′) is

used to denote that agent x is paired with agent x ′.

Distribution I
Matching Probability

(a1, a2)(a3, b3)(a4, b4)(b1, b2) .5
(a1, b1)(a2, b2)(a3, a4)(b3, b4) .5
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Distribution II
Matching Probability

(a1, a2)(a3, b3)(a4, b4)(b1, b2) .25
(a1, a2)(a3, b1)(a4, b2)(b3, b4) .25
(a1, b1)(a2, b2)(a3, a4)(b3, b4) .25
(a1, b3)(a2, b4)(a3, a4)(b1, b2) .25

Note that both distributions satisfy property (P6) (types proportional law) since any
individual agent has probability .5 of being matched with a type “a” agent and prob-
ability .5 of being matched with a type “b” agent. Both distributions also satisfy the
types mixing property (P7) since for each listed matching, exactly one-half of the type
“a” agents are matched with type “a” agents and one-half are matched with type “b”
agents. Now, suppose that agents are given initial endowments as described in the
following table:

Input endowments
Agent a1 a2 a3 a4 b1 b2 b3 b4
Input 1 1 0 0 0 0 1 1

In the case of Distribution I, nothing can be produced. For both matchings, either two
agents of the same type are paired or a pair involves one agent with 0 resource. In the
case of Distribution II, if one of the first three matchings is realized, no production takes
place because two agents of the same type meet or agents of opposite type meet but one
of them has 0. However, if the fourth matching is realized (and this occurs with proba-
bility .25) then agents a1, a2, b3, and b4 all produce an amount f (min{1, 1}) = f (1).
Thus, if payoffs depend on production output, these distributions could give rise to
very different predictions about expected aggregate outcomes.

Now as shown in Molzon and Puzzello (2010), if individual payoff functions depend
only on types, then the information contained in the types proportionality property is
all one needs to know about the matching process to make predictions about expected
aggregate payoff outcomes; in particular, these outcomes do not depend on the actual
choice of the random matching, i.e., the distribution on the set of matchings [see Theo-
rems 4.2 and 4.3 in Molzon and Puzzello (2010)]. The point in the example is that this
is actually true only if the notion of type includes all payoff relevant attributes of the
agents; otherwise, in addition to types proportionality, the choice of the random match-
ing could indeed be relevant. Now in models with a continuum of agents, infinitely
types could matter just because different agents could have different payoff relevant
attributes.12 If this is the case, then it is necessary to formulate the model in terms of an
infinite type space to avoid the problem that aggregate outcomes could depend on the
actual choice of the random matching. Our results provide mathematical foundations
to such models.

12 See the introduction for references to such models.
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8 Concluding remarks

This paper provides existence and uniqueness results for random matchings on con-
tinuum populations with infinitely many types. Our results suggest that there is a
trade-off between the choice of the measure space of agents and the strength of the
random matching properties one could hope for. In particular, if one needs to model
the population as a continuum endowed with Lebesgue measure, then one should be
ready to face impossibility results regarding desirable properties of random matching
[see Alós-Ferrer (1999)]. However, if the Lebesgue structure does not have substantive
economic implications for the model at hand, then our results can be interpreted as
providing solid foundations to a large class of random matching models, including
those with infinitely many types.
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