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Abstract This paper investigates the optimal (effort-maximizing) structure of multi-
stage sequential-elimination contests. We allow the contest organizer to design the
contest structure using two instruments: contest sequence (the number of stages, and
the number of contestants remaining after each stage), and prize allocation. When
the contest technology is sufficiently noisy, we find that multi-stage contests elicit
more effort than single-stage contests. For concave and moderately convex impact
functions, the contest organizer should allocate the entire prize purse to a single final
prize, regardless of the contest sequence. Additional stages always increase total effort.
Therefore, the optimal contest eliminates one contestant at each stage until the finale
when a single winner obtains the entire prize purse. Our results thus rationalize various
forms of multi-stage contests that are conducted in the real world.
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1 Introduction

A wide range of competitive events can be viewed as contests. In such contests, eco-
nomic agents expend scarce resources in order to win a limited number of prizes.
These contests appear in a diverse array of areas including influence politics, sports,
R&D races, college admissions and even labor market competition within firms. Due
to the ubiquity of contests, a huge body of economic literature has been developed
to uncover the various strategic aspects of these activities.1 A large proportion of the
existing literature views a contest as a static battle, under the conventional assumption
that a contestant can accomplish success in a single stroke (one-shot effort). In reality
however, many contests last several stages, and require contestants to endure a long
line of shots before they make the win.

Numerous examples are available to illustrate the multi-stage nature of most con-
tests. One of them is the “election of London” to host the 2012 Summer Olympic
Games: While nine cities initially submitted applications, only five (London, Madrid,
Moscow, New York and Paris) were shortlisted for the final election. In research tour-
naments, the procurement firms select the most attractive ideas from a larger pool of
proposals, and only the selected are eligible for further development.2 When recruit-
ing new faculty members, economics departments similarly interview a large number
of candidates, but extend on-campus visit invitations only to a small subset. In the
early stages of all the aforementioned scenarios, contestants strive mainly to avoid
elimination.

Central to the contest literature is the question of how the structure or the rule of
the contest impacts the total effort supplied by contestants. As argued by Gradstein
and Konrad (1999), “…contest structures result from the careful consideration of a
variety of objectives, one of which is to maximize the effort of contenders”. This study
follows in this strand of the literature, and explores effort-maximizing contest designs
in a setting that involves sequential elimination. We recognize that the equilibrium
level of effort supplied in this particular context depends on two major structural ele-
ments: the contest sequence (which indicates the number of stages, and the number of
remaining contestants in each stage), and the prize allocation rule (which spreads the
prize money among a set of prizes of differing ranks). A number of questions naturally
arise out of such an exploration: Firstly, given the sequence of a multi-stage contest
and a fixed sum of prize money, does a “winner-take-all” contest (that concentrates
the entire budget on the top prize awarded to the final winner) necessarily dominate
a contest that awards intermediate prizes or a second prize? Secondly, does a multi-
stage contest (that successively eliminates contestants) generate more effort than a

1 See Konrad (2007) for a thorough survey of theoretical work on contests.
2 See Fullerton and McAfee (1999).
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single-stage contest that demands only one-shot effort from each contestant? Thirdly,
how are the sequence of the contest and the allocation of prize money intertwined in
the way they impact the output of a contest?

These questions are particularly intriguing in the context of imperfectly discrimi-
natory contests with complete information. The standard Tullock model, as well as its
numerous variations, has been widely employed in the literature to model competitive
events where factors other than a contestant’s autonomous effort contribute to one’s
success. Unlike all-pay auctions with complete-information that fully dissipates the
rent (when contestants are identical), contestants in a Tullock contest could end up with
a positive surplus in one-shot competition—as long as the contest success function
is sufficiently “noisy” in converting the effort into winning probabilities. Because a
one-shot contest does not fully dissipate the rent, there is room in the context outlined
here for sophisticated contest design that will provide additional incentives for effort.

We attempt to answer these questions in a unified framework by considering N
identical contestants, who are eligible for a fixed total of prize money �0. The con-
testants are successively eliminated from the race through L stages,3 and survivors
in each stage compete against all others to advance further in the competition. We
allow the contest organizer to maximize the total effort by choosing the optimal con-
test sequence and optimally allocating the prize money: Non-negative prizes could be
available to contestants in any stage prior to the finale, as well as to all finalists.

As one could imagine, outcomes in various competitive events (such as sports and
art performance competition) could be influenced by not only autonomous efforts, but
also many other factors. In the process of determining winners, in order to mimic a
setting of multiple-prize contests with sufficient “noise” (imperfectly discriminatory
contests), we model the competition in each stage as a multi-winner nested contest as
suggested by Clark and Riis (1996, 1998a). This framework extends the basic Tullock
contest model and allows a block of prizes to be awarded to winners. Following Clark
and Riis (1998a), we measure the impact of a contestant on the winning probabilities
through a power function of his/her effort. We focus mainly on settings with a concave
impact function that exhibits decreasing return on effort.4 The results are summarized
as follows:

1. “Hierarchical Winner-Take-All Property”: it is optimal to award the entire prize
purse (only) to the contestant who wins the first prize in the finale, regardless of
the sequence of the contest.

2. Given that the entire prize purse is concentrated on the top of the hierarchical lad-
der, inserting an additional stage of elimination always increases the total effort
supplied by the contestants, regardless of the existing contest sequence.

As a consequence, the optimal contest that maximizes the total effort is organized
as a (N − 1)-stage “Pyramid” contest that eliminates one contestant at each stage,
and allows a single final winner to earn the entire prize purse. Thus, our study pro-
vides rationales for (i) the multi-stage contests widely observed in reality; and (ii) the

3 The contest reduces to a single-stage one when L = 1.
4 The concave impact functions are then modeled as power functions with exponential terms less than or
equal to one.
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winner-take-all principle commonly assumed in modeling rent-seeking competition
in a more general setting. To better understand the underlying logic of our results, and
to further explore the robustness and the limit of the generality of our main results,
we extend the basic model to allow for increasing return to effort.5 We find that multi-
stage contests could still prevail for moderately convex impact function. In addition,
we investigate whether stochastically eliminating one or more contestants within any
stage could elicit more effort. We show that in our setting, a stochastic elimination
rule does not increase the total supply of effort.

1.1 The relation to the literature

Baye et al. (1993) raise the question of “why politicians frequently ‘announce’ that
they have narrowed down a set of potential recipients of a ‘prize’ to a slate of finalists?”
While the process of shortlisting modeled by Baye et al. (1993) does not involve any
activity on the part of contestants, an increasing number of papers do in fact allow
contestants to compete actively for advancement toward the finale through a number
of stages.

The usual way of modeling the elimination/shortlisting process in multi-stage con-
tests is to divide remaining contestants into groups such that a single winner stands out
from each group. This strand of literature can be traced back to the seminal paper of
Rosen (1986). He considers a 2N -contestant N -stage sequential contest: In each stage,
two of the remaining contestants are matched for head-to-head confrontation, and the
winner of each pairwise battle survives into the next stage. Assuming an imperfectly
discriminatory contest technology,6 Rosen (1986) searches for a reward scheme that
maintains incentives along the ladder of the given hierarchical structure, and shows
that a disproportionate share of prize money should be allocated to the top prize. Our
paper is more closely related to studies that explore the optimal (effort-maximizing)
structure of multi-stage contests with complete information. While Rosen (1986) treats
the hierarchical contest as exogenously given, Gradstein and Konrad (1999) consider
the contest structure to be the endogenous choice of the contest organizer. The con-
test organizer is allowed to decide how many stages the contest includes, and how
remaining contestants are matched at each stage. They show that the optimality of a
contest design crucially depends on how discriminatory the (Tullock) contest is: an
N -stage contest emerges as the optimum when the contest is sufficiently noisy, i.e.,
the impact function f (e) = er in the ratio-form contest success function is concave
with an exponent r ≤ 1; while a single-stage contest prevails when r ≥ 1.7,8,9

5 In this paper, “increasing return” refers to impact functions that are modeled as power functions with
exponents greater than 1.
6 Rosen (1986) allows for a general impact function.
7 In Gradstein and Konrad (1999), multi-stage contests and static contests elicit the same amount of total
effort when r = 1.
8 Other papers contributing to the research agenda on multi-stage contests include Amegashie (1999, 2000),
Harbaugh and Klumpp (2005), Matros (2005), and Konrad and Kovenock (2006).
9 Moldovanu and Sela (2006) compare two-stage contests to static contests in an all-pay auction setting
with incomplete-information. They find that a two-stage contest elicits more effort if the effort-cost function
is convex.
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A distinct feature of our analysis is that we consider an elimination process that
“pools” rather than “matches” competitors in each preliminary stage. In contrast to
the aforementioned papers in which the contest consists of a series of single-winner
battles (in each battle a contestant meets a subset of remaining competitors), we let
remaining contestants confront “all others” in each stage to determine the set of survi-
vors for the next round.10 The competition in each stage can be modeled as a multiple-
winner contest. A handful of papers have examined contests that involve more than
one prize recipient. We adopt the multiple-winner multiple-loser nested Tullock con-
test as suggested by Clark and Riis (1996, 1998a). This framework is also adopted
by Yates and Heckelman (2001), Amegashie (2000) and Fu and Lu (2008a) to model
imperfectly discriminatory contests. By contrast, Fu and Lu (2008b) and Barut and
Kovenock (1998) have thoroughly analyzed multiple-winner perfectly discriminatory
contests (all-pay auctions).11

Amegashie (2000) compares the two elimination procedures (“pooling” contestants
and “matching” contestants) in a two-stage Tullock contest with linear contest tech-
nology, and concludes that the procedure of “pooling competition” generates more
effort.12 Our paper allows for a more general contest technology. We endogenize the
contest sequence and search for the optimal sequence of pooling competitions such
that total effort is maximized. We show that a “Pyramid” contest could emerge as the
optimum design, even if the impact function is moderately convex.

This paper is linked also to the literature on optimal prize allocation in which the
reward structure of a contest is treated as an endogenous choice. Most of these papers
assume that the contest organizer attempts to maximize overall effort. For this purpose,
Krishna and Morgan (1998) justify the winner-take-all principle in small two-stage
tournaments that concentrate the entire prize purse on the first prize in the top rank.
Similar results are obtained by Matros (2005) in a two-stage Tullock contest setting.
In addition, Moldovanu and Sela (2001) examine the optimal allocation of a prize
budget in a one-stage incomplete information all-pay auction. They find that a win-
ner-take-all contest maximizes the total effort for concave or linear cost functions.
Our paper departs from these studies in that the contest organizer is endowed with the
flexibility to design the contest by simultaneously choosing both the elimination (the
contest sequence) and prize allocation rules.

Our paper proceeds as follows. Section 2 sets up the model. In Sect. 3, we present
our results on optimal contest structures with concave impact function (r ≤ 1 for
impaction function f (e) = er ). In Sect. 4, we extend the basic setting by allowing
for a convex impact function (r > 1) and for stochastic elimination in order to check
for the robustness and generality of the results established in Sect. 3. We further discuss
possible future extensions to conclude the paper.

10 The aforementioned competition to host the Olympic games may serve as one example of a contest that
involves the pooling of contestants in the early stages.
11 In contrast to Clark and Riis (1998b), Barut and Kovenock (1998), Moldovanu and Sela (2001) and
Moldovanu et al. (2007) investigate multiple-winner all-pay auctions with incomplete information.
12 Fu and Lu (2008a) also provide theoretical evidence supporting the fact that a “pooling” competition
elicits more effort than any split contests.
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2 The model

2.1 Setup

There are N (≥3) risk-neutral contestants involved in a multi-stage contest. The contest
organizer has a total budget of �0 for prize allocation. Let L denote the number of stages
in the contest, and Nl denote the number of contestants in a stage l ∈ {1, 2, . . . , L},
with N1 ≡ N . In each “preliminary” stage l ∈ {1, 2, . . . , L − 1}, Nl contestants
participate, and Nl+1 of them survive and proceed to the next stage. Besides the “tick-
ets” to the next round, Nl nonnegative intermediate prizes W m

l , m ∈ {1, . . . , Nl} are
awarded in each stage l ∈ {1, 2, . . . , L − 1}. In the “final” stage L , NL surviving
contestants compete for NL nonnegative final prizes W m

L , m ∈ {1, . . . , NL}.13 The
sequence of a contest is therefore represented by a L-term non-increasing sequence
{N1, N2, . . . , NL} with N1 = N ≥ N2 ≥ · · · ≥ NL ≥ 1, which indicates the number
of stages and the number of remaining contestants in each stage.

In this study, we consider the competition in each stage to be a multiple-winner con-
test where each contestant competes against all others. Appropriately then, we adopt
the multiple-winner nested contest model suggested by Clark and Riis (1996, 1998a).
A number of prizes are given away in each stage l ∈ {1, 2, . . . , L}, and each remain-
ing contestant is eligible for only one prize. The contestants simultaneously exert their
one-shot efforts ei

l , i = 1, 2, . . . , Nl to increase their probabilities of winning. Once
a contestant is selected as a winner for a prize, he/she is immediately removed from
the pool, while the rest of the contestants are readied for the next draw. The effort
levels of the contestants remain fixed at their chosen levels while the draws are taking
place. The same set of effort entries (although excluding those of previous winners)
thus continue to be utilized to select the subsequent winner. This procedure is repeated
until the last prize is given away.14

We assume that in each stage of the contest, the “tickets” to the next stage and the
stage prizes are allocated in a sequential lottery process. We define �m

l to be the set of
remaining contestants up for the mth draw in stage l, with m ∈ {1, 2, . . . , Nl}. Denote
(e1

l , . . . , ei−1
l , ei+1

l , . . . , eNl
l ) by e−i

l . We assume that the conditional probability that
a contestant i ∈ �m

l is selected in the mth draw is given by the ratio-form contest
success function

p
(

ei
l , e−i

l ;�m
l

)
=
(

ei
l

)r
�
∑
j∈�m

l

(
e j

l

)r
, r ∈

(
0,

N

N − 1

]
, (1)

where the impact function f (ei ) = (ei
l )

r represents the contestants’ output in the con-
test, with r measuring the marginal impact of an increase in the contestants’ effort. This
particular form of success function, which projects effort entries into winning odds,
was axiomatized by Skaperdas (1996). It has been widely employed in the literature

13 Some final prizes are allowed to be zero.
14 Although this multiple-winner nested contest can be conveniently viewed as a sequential-lottery contest,
Fu and Lu (2008b) find that a unique (simultaneous) noisy ranking process exists that underpins this model.
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to model imperfectly discriminatory contests, in which the contestant who puts in the
greatest amount of effort may not end up winning, although such an effort would no
doubt increase his or her chances. The higher the r, the less noisy the selection pro-
cess. When r ≥ N

N−1 , a single stage winner-take-all contest fully dissipates the rent,
and is thus seen as the optimal contest. We thus consider the more interesting case of
r ∈ (0, N

N−1 ).
If all contestants who go up for a draw make zero effort, we assume that the winner

would be randomly picked from the pool. Moreover, we assume that if �m
l is reduced

to a singleton, i.e., only one contestant is up for the mth draw, then the only contestant
automatically wins. At stage l ∈ {1, 2, . . . , L}, the contestant selected in the mth draw
is awarded the prize W m

l . In addition, in a “preliminary” stage l ∈ {1, 2, . . . , L − 1},
the contestants who are selected in the first Nl+1 draws proceed to the (l + 1)th stage,
while the other Nl − Nl+1 contestants are eliminated. We define �l ≡ ∑Nl

m=1 W m
l to

be the sum of prizes awarded in stage l, and � ≡ ∑L
l=1 �l to be the entire prize purse

for the contest.

2.2 Symmetric equilibrium

For the sake of tractability, we focus on the symmetric equilibria in which all remain-
ing contestants follow the same strategy in each stage of the contest. We solve this
symmetric equilibrium through backward induction. Denoted by Vl is the conditional
(symmetric) equilibrium expected payoff of a representative contestant at stage l.
For the sake of descriptive convenience, we define VL+1 ≡ 0, NL+1 ≡ 1. At stage
l ∈ {1, 2, . . . , L}, a remaining contestant i rationally chooses his effort ei

l to maximize
his expected payoff

V i
l =

Nl+1∑
m=1

[
Pm

(
ei

l , e−i
l

)(
Vl+1 + W m

l

)]+
Nl∑

m=Nl+1+1

[
Pm

(
ei

l , e−i
l

)
W m

l

]
− ei

l , (2)

where Pm(ei
l , e−i

l ) is the probability that contestant i is selected in the mth draw.
In a symmetric Nash equilibrium, all remaining contestants choose the same effort

outlay el (nonnegative). For ease of notation, we define �l as �l ≡ ∑Nl+1
m=1[(1 −∑m−1

g=0
1

Nl−g )(Vl+1 +W m
l )]+∑Nl

m=Nl+1+1[(1−∑m−1
g=0

1
Nl−g )W m

l ]. The Kuhn–Tucker
conditions state that if el > 0, the following must be satisfied

r�l

Nlel
− 1 = 0. (3)

A unique symmetric interior equilibrium el = r�l
Nl

exists if �l ≥ 0; while a symmet-
ric corner solution equilibrium with el = 0 would emerge otherwise. In a symmetric
equilibrium, every contestant has the same chance of winning each component of the
total stage-award Nl+1Vl+1 + �l (including Nl stage prizes and Nl+1 tickets to the
next stage). Therefore, the conditional equilibrium expected payoff of a representative
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contestant at stage l is Vl = (Nl+1Vl+1 +�l)/Nl − el , where el is his/her equilibrium
effort at stage l. We summarize these results in the following proposition.15

Proposition 1 In the symmetric subgame perfect Nash equilibrium of the contest,
every remaining contestant in stage l ∈ {1, 2, . . . , L} exerts an effort

el =
{ r�l

Nl
if �l ≥ 0,

0 if �l < 0,
(4)

and the payoff Vl of a representative contestant at stage l is

Vl = Nl+1Vl+1 + �l

Nl
− el . (5)

Proof See Appendix. ��
From (4) and (5), el and Vl can be solved recursively from the last stage of the game

as we have VL+1 ≡ 0, NL+1 ≡ 1. Note that when r ∈ (0, N
N−1 ], it is easy to verify

that every Vl is nonnegative.16 Thus, the sign of �l depends on the prize allocation
rule {W m

l }Nl
m=1 in stage l. The terms 1 −∑m−1

g=0
1

Nl−g strictly decreases with m, i.e.,

the order of the draws. In addition,
∑Nl

m=1(1 −∑m−1
g=0

1
Nl−g ) always equals zero.17 It

implies that the coefficient 1 −∑m−1
g=0

1
Nl−g , which is assigned to a prize, is positive

for “earlier” draws, but turns negative when m is sufficiently large. Thus, when suffi-
ciently large prizes are awarded for the latest draws, a corner equilibrium solution may
emerge, as the contestants would prefer not to make positive effort (which increase
the odds of winning earlier prizes), but to wait for the more generous prizes awarded
in last draws.

However, we now argue that for the purpose of eliciting effort, there is no loss of gen-
erality to restrict our attention to only prize allocations that render interior equilibria,
i.e., �l ≥ 0 holds and the equilibrium solution el = r�l

Nl
applies. To illustrate, suppose

the current prize allocation {W m
l }Nl

m=1 makes �l < 0. Recall that 1 − ∑m−1
g=0

1
Nl−g

decreases with m and
∑Nl

m=1(1 − ∑m−1
g=0

1
Nl−g ) is always equals to zero. Thus, �l

would strictly increase if the prize money is hypothetically shifted from later prizes
toward the first prize W 1

l . Because �l is affine in {W m
l }Nl

m=1, by the continuity argu-

ment, an alternative prize allocation {W̃ m
l }Nl

m=1 always exists, which delivers exactly
�l = 0 . It reinstates the formula for an interior equilibrium of el = r�l

Nl
= 0, while the

equilibrium outcome is equivalent to that which arises from the initial prize allocation.
In particular, the alternative prize allocation {W̃ m

l }Nl
m=1 does not alter the contestants’

expected equilibrium payoff Vl in stage l, which represents the value of a “ticket” to

15 Please refer to the Appendix for detailed proof of these results. These findings are consistent with those
of Clark and Riis (1998a).
16 Detailed proof is available from the authors upon request.
17 To see this, rewrite

∑Nl
m=1(1 −∑m−1

g=0
1

Nl−g ) as Nl −∑Nl−1
g=0

Nl−g
Nl−g = 0.
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contestants in stage l − 1. This means that the alternative prize allocation {W̃ m
l }Nl

m=1
does not provide contestants in previous stages with a different incentive from that
provided by the initial allocation rule {W m

l }Nl
m=1. Hence, we can ignore all prize allo-

cations that yield �l < 0, and rely instead on the interior equilibrium of el = r�l
Nl

for
the rest of this paper.

We assume that the effort accrues to the benefit of the contest organizer. Thus, the
contest organizer chooses the optimal sequence {Nl }L

l=1 and prize allocation {W m
l |m =

1, . . . , Nl; l = 1, . . . , L} to maximize the total effort E = ∑L
l=1 Nlel , subject to bud-

get constraints

� ≤ �0, (6)

and

�l ≥ 0, l = 1, . . . , L . (7)

As we have shown above, in a symmetric equilibrium, each remaining contestant
at stage l expects to receive a payoff Vl = (Nl+1Vl+1 + �l)/Nl − el . Thus, we
have

Nlel = Nl+1Vl+1 + �l − Nl Vl . (8)

Lemma 1 E = � − N V1.

Proof Summing up (8) over the L stages gives

E ≡
L∑

l=1

Nlel =
L∑

l=1

(Nl+1Vl+1 − Nl Vl) +
L∑

l=1

�l = � − N V1.

��
Lemma 1 is fairly intuitive, but is of essential importance in this paper. V1 not

only represents the payoff a representative contestant expects to receive in the first
stage, it also represents the payoff every contestant expects in the very beginning from
the entire series of competitions. Thus, N V1 represents the total surplus available to
the N contestants, which, by the risk neutrality of the contestants, is equivalent to the
difference between the prize purse � and the total effort E . Obviously, the optimal
contest structure that maximizes the total effort must minimize the net rent received
by the contestants. Thus, Lemma 1 allows us to focus on the minimization of V1 in
the subsequent analysis. This analysis is equivalent to the original effort maximization
problem that was detailed in the introduction.

Using (4) and (5), we are able to recursively solve for V1, viewing it as a function
of the prizes in the current and all future stages. The proof is omitted here for the sake
of brevity, but will be made available upon request.
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Lemma 2 V1 = ∑L
l=1{(

∏l
j=1

1
N j

)(
∏l−1

j=1[N j+1(1 − r) + r
∑N j+1−1

g=0
N j+1−g

N j −g ])
(
∑Nl

m=1 W m
l [(1 − r) + r

∑m
k=1

1
Nl−k+1 ])}.18

Lemma 2 writes V1 as a function affine in the set of prizes {W m
l }. Combining

Lemmas 1 and 2, we obtain the following result. Again, the proof is omitted for
brevity.

Proposition 2 A N-person L-stage sequential-elimination contest, with a sequence
{Nl}L

l=1, a prize allocation {W m
l |m = 1, . . . , Nl; l = 1, . . . , L} and a total prize purse

�, generates a total effort

E = � − N
L∑

l=1

⎧⎨
⎩

⎛
⎝

l∏
j=1

1

N j

⎞
⎠
⎛
⎝

l−1∏
j=1

⎡
⎣N j+1(1 − r) + r

N j+1−1∑
g=0

N j+1 − g

N j − g

⎤
⎦
⎞
⎠

×
⎛
⎝

Nl∑
m=1

W m
l

[
(1 − r) + r

m∑
k=1

1

Nl − k + 1

]⎞
⎠
⎫⎬
⎭ .

3 Concave impact functions (r ≤ 1)

In this section, we focus on the concave impact function f (e) = er with r ∈ (0, 1].
We first establish the optimality of the “hierarchical winner-take-all” principle, which
requires that all the prize money be allocated to the winner of the finale of each contest
sequence. We then establish that a full-sequence elimination process is optimal among
all possibilities, and that this requires exactly one contestant to be eliminated in each
stage until the last survivor receives the top prize.

3.1 The optimal prize allocation

Given the sequence of the contest, a contestant’s equilibrium surplus V1 depends
purely on the allocation of the prize purse. Lemma 2 shows that V1 can be written as a
weighted sum of the prizes awarded in the contest. Based on this result, we investigate
the optimal prize allocation rule that minimizes V1 and we first obtain the following
proposition.

Proposition 3 When r ∈ (0, 1], the optimal prize allocation requires W 1
l = �l and

W m
l = 0, ∀m > 1, l ∈ {1, 2, . . . , L}.

Proof We denote the weight on W m
l by Dm

l , i.e.,

Dm
l ≡ (

∏l
j=1

1
N j

) (
∏l−1

j=1[N j+1(1 − r) + r
∑N j+1−1

g=0
N j+1−g

N j −g ]) [(1 − r) + r
∑m

k=1
1

Nl−k+1 ]. Within a stage l, Dm
l contains the common component

18 We define
∏0

j=1[N j+1(1 − r) + r
∑N j+1−1

g=0
N j+1−g

N j −g ] ≡ 1.
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(
∏l

j=1
1

N j
)(
∏l−1

j=1[N j+1(1 − r) + r
∑N j+1−1

g=0
N j+1−g

N j −g ]), but differs in the other com-

ponent [(1 − r) + r
∑m

k=1
1

Nl−k+1 ]. It is straightforward to see that
∑m

k=1
1

Nl−k+1
strictly increases with m, which leads to that Dm

l strictly decreases with m, the index
for the order of the draw. Thus, to minimize V1, all the prize money available at stage
l should be allocated only to the first prize W 1

l . ��
Proposition 3 states that in each stage l, zero prize money should be assigned to W j

l
for j ≥ 2. This result is, in essence, not different from the standard “winner-take-all”
result in static contests. Obviously, in each stage of the contest, winning a higher-
ranked prize demands more effort from contestants. A more generous second prize
would weaken contestants’ incentive to compete for the first prize, and encourage
them to wait for the next draw. Assume that a prize purse �l is allocated to a stage l.
Within stage l, the contest organizer can encourage contestants to exert more effort by
concentrating the entire prize purse for this stage on the first prize, i.e., W 1

l = �l .19

How to allocate the prize purse �0 across stages remains to be investigated. Define

θl ≡ (
∏l

j=1
1

N j
)(
∏l−1

j=1[N j+1(1 − r) + r
∑N j+1−1

g=0
N j+1−g

N j −g ])[(1 − r) + r
Nl

], which

is the coefficient of W 1
l in the expression of V1. According to Proposition 3, we can

write V1 as the weighted sum of {�l}

V1 =
L∑

l=1

θl W
1
l , (9)

where W 1
l = �l for all l ∈ {1, 2, . . . , L}.

The weight θl represents the net rent one unit of prize W 1
l contributes to a contes-

tant. To minimize V1 in a given contest sequence, the prize purse must be concentrated
on the prize with the smallest weight. We show in the Appendix that θl decreases with
l when r ∈ (0, 1].20 We thus establish the following “Hierarchical Winner-Take-All”
principle for the optimal prize allocation.

Theorem 1 “Hierarchical Winner-Take-All” principle: When r ∈ (0, 1], for any
given contest sequence {Nl}L

l=1, it is optimal to allocate the entire prize purse to the
first prize in the final stage, i.e., W 1

L = �0.

Proof See Appendix. ��
From Theorem 1, it is clear that a multi-stage contest that maximizes the total

effort must combine all the resource into a single final prize and reward it to a single
final winner. The rule applies regardless of the sequence of the contest. The weight
θl decreases with l throughout the sequence, which implies that a prize at a higher
rung along the hierarchical ladder contributes less surplus to a contestant. Intuitively,
a prize at a higher rank in the hierarchy could demand more effort from a contestant,

19 This effect is consistent with the “winner-take-all” principle established by Clark and Riis (1998a). It is
easy to verify that Proposition 3 still holds when r ∈ (1, N

N−1 ).
20 θl is strictly decreasing with l when r ∈ (0, 1] if Nl is strictly decreasing.
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because he has to repeatedly exert his effort to climb toward this higher rank. Thus, all
resources should be allocated to the top prize to induce the greatest level of total effort.
As argued by Rosen (1986), a greater top prize “effectively extends the players’ hori-
zon”.21 Our results provide a rationale for the commonly assumed “winner-take-all”
principle in a multi-stage contest setting.

Theoretically however, moving prize money from a preliminary stage to the finale
generates two effects. On one hand, it increases the effort contestants would put into
the competition after this stage. On the other hand, it reduces the payoff to the contes-
tants in that stage as well as all stages prior to it, and therefore reduces the effort that
is put into those stages. Nevertheless, when the impact function f (e) = er exhibits
decreasing returns to effort (r ≤ 1), the increase in effort generated by the former
effect dominates the drop in effort due to the latter.

3.2 The optimality of multi-stage contests

Having established the “hierarchical winner-take-all” principle as the unique optimal
prize allocation rule, the optimal sequence of the contest (the number of stages and the
number of remaining contestants in each stage) that maximizes the total effort remains
to be established. Theorem 1 indicates that the allocation of the prize purse is inde-
pendent of the contest sequence when r ∈ (0, 1]. We therefore restrict our attention to
the contest structure with a single prize W 1

L = �0. Rewriting V1 by setting all prizes
other than W 1

L at zero yields

V1 = �0∏L
j=1

1
N j

⎧⎨
⎩

L−1∏
j=1

⎡
⎣N j+1(1 − r) + r

N j+1−1∑
g=0

N j+1 − g

N j − g

⎤
⎦
⎫⎬
⎭
[
(1 − r) + r

1

NL

]
.

(10)

For description convenience, we assume that all candidates for the optimal contest
sequence end with NL = 1 without loss of generality. By the optimality of the “hier-
archical winner-take-all” principle in prize allocation, a single winner stands out in
the last stage of competition and takes over the entire prize purse. Thus, a L-stage
contest with NL > 1 is equivalent to a hypothetical (L + 1)-stage contest represented
by the sequence {{Nl}L

l=1, 1}, i.e., NL+1 = 1. In the hypothetical (L + 1)-stage con-
test, one contestant is selected at stage L to enter stage L + 1, but does not receive
a tangible prize in that stage. Thus, the “last man standing” in stage L + 1 would
automatically win �0 without exerting any additional effort. Consequently, we have
eL+1 = 0 and VL = �0, and Eq. (11) continues to apply. Thus, in the following anal-
ysis, we consider only contest sequences with NL = 1.22 We further assume that the

21 In the setting of Rosen (1986), the contest organizer has a different objective from that in our paper.
However, the intuition underlying his results applies in our scenario.
22 We construct this hypothetical sequence for technical convenience and generality. In the subsequent
analysis, we ask the question whether inserting a stage between two consecutive stages would increase total
effort. Without constructing this (equivalent) sequence with NL = 1, the analysis does not immediately
apply when we have more than two contestants remain in the last stage of competition and one more stage
is added to further narrow the set of finalists.
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contest sequence {Nl}L
l=1 is strictly decreasing. Obviously, when Nl = Nl+1, stage l

would not elicit positive effort without rewarding tangible prizes. Hence, eliminating
stage l does not affect V1. Based on these arguments, we can search for the opti-
mal contest sequence by considering only strictly decreasing sequences {Nl}L

l=1, with
N1 = N > N2 > · · · > NL = 1, without loss of generality.

We proceed with the following thought experiment. Suppose there exists an integer
J (< L) such that NJ − NJ+1 > 1, i.e., more than one contestant is eliminated in stage
J . It is therefore feasible to insert an additional stage between stage J and stage J +1.
Let M ∈ {NJ+1 + 1, . . . , NJ − 1} contestants be selected from the NJ contestants in
the J th stage. Let the M survivors compete for the NJ+1 “tickets” to move on to the
next stage. Does adding this additional stage necessarily elicit more effort?

The effect of this additional stage on the level of effort exerted is mixed. Although
the additional stage M creates an additional input of effort, it alters the contestants’
incentive to supply effort in the previous stages. Firstly, in stage J , the total effort
NJ eJ could either decrease or increase. On one hand, the additional stage reduces the
value of each “ticket” to the next stage (VM = (NJ+1VJ+1 − MeM )/M < VJ+1),
which tends to weaken contestants’ incentives to exert their effort; On the other hand,
the number of survivors in stage J increases from NJ+1 to M . Its impact on NJ eJ is
indefinite, because NJ eJ is not a monotonic function of the number of survivors.23

Thus, the overall effect of the additional stage on NJ eJ is ambiguous, as is its impact
on VJ , a contestant’ expected payoff in stage J . Secondly, as the direction of the
change in VJ remains obscure, the effort supplied in all stages prior to stage J could
either decrease or increase as well, because the effort in prior stages strictly increases
with VJ . Consequently, the ramifications of the additional stage cannot be intuitively
inferred. Nevertheless, the following theorem provides an unambiguous answer to the
question of whether the positive effects always outweigh the negative effects in the
context that is of interest in this paper.

Let E({Nl}) denote the set composed of all the elements in the sequence {Nl}.
Definition 1 Let {Nl} and {Ñl} be two contest sequences with N1 = Ñ1 = N , where
N is the number of contestants available for the contest. The sequence {Ñl} is more
complete than {Nl} if and only if E({Nl}) ⊂ E({Ñl}).

We show in the following theorem that any additional stage always increases the
total effort, regardless of the existing contest structure.

Theorem 2 When r ∈ (0, 1], the more complete the contest sequence, the higher the
total effort induced.

Proof See Appendix. ��
Theorem 2 is important as it establishes that an additional stage of competition

always increases the total effort. A contest sequence is not optimal, as long as it leaves

23 The following example shows that the component Nl+1 −∑Nl+1−1
g=0

Nl+1−g
Nl−g is not a monotonic func-

tion of Nl+1. Assume Nl = 5. Then Nl+1 − ∑Nl+1−1
g=0

Nl+1−g
Nl−g = 1.35 when Nl+1 = 2; Nl+1 −

∑Nl+1−1
g=0

Nl+1−g
Nl−g = 1.57 when Nl+1 = 3; Nl+1 −∑Nl+1−1

g=0
Nl+1−g

Nl−g = 1.28 when Nl+1 = 4.
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room for an additional stage, i.e., the difference between any two successive terms
in the sequence {Nl}L

l=1 exceeds one. Thus, the optimal contest sequence is repre-
sented by a N -term strictly decreasing arithmetic sequence {Nl |Nl = N − l + 1, l =
1, 2, . . . , N .}. The last term NN = 1 represents the unique final winner. In other words,
the contest asts for N − 1 stages, and one contestant is eliminated in each stage.24 We
call this a full-sequence “Pyramid” contest.

Theorem 3 Suppose r ∈ (0, 1]. In a setting with N contestants and a prize budget �0,
the effort-maximizing sequential contest with pooling competition in each stage lasts
for N − 1 stages. By eliminating one contestant in each stage, a single final winner
takes over the entire prize purse of �0.

Theorem 3 naturally stems from Theorems 1 and 2. We conclude that the optimal
contest must be organized as a “winner-take-all” full-sequence “Pyramid” contest.

Theorem 4 The optimally designed N-person contest with the total prize purse of �0,
i.e., the “winner-take-all” “Pyramid” contest, elicits an equilibrium total effort

E = �0

⎧⎨
⎩1 −

(
N∏

l=1

1

N − l + 1

)

×
⎛
⎝

N−1∏
l=1

⎡
⎣(N − l) (1 − r) + r

N−l−1∑
g=0

(N − l) − g

(N − l + 1) − g

⎤
⎦
⎞
⎠
⎫⎬
⎭ . (11)

Theorem 4 explicitly derives the equilibrium total effort in the optimally designed
N -person contest. The result directly arises from Lemma 1 and (11), as well as from
the fact that the optimal contest structure is represented by a full-sequence of integers
from N to 1, with a single winner taking over the entire prize purse.

4 Discussion and extensions

So far, we have shown that when the impact function f (e) = er exhibits decreasing
returns to effort (r ≤ 1), the contest would elicit more effort if the contestants have to
survive a longer line of shots before they win the final prize. To further understand the
logic underlying our theoretical results and inspect the robustness of our main results,
we extend our basic model to two alternative settings. Each of them illuminates one
particular aspect of the theory on multi-stage contests. We further discuss possible
future extensions to conclude this paper.

4.1 Extension 1: convex impact functions (r > 1)

We first extend our basic model to allow the contest technology to exhibit increas-
ing returns, i.e., we allow the parameter r to exceed 1. Gradstein and Konrad (1999)

24 In stage N − 1, two remaining contestants compete for one final prize.
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establish r = 1 as the “watershed” for the optimality of contest designs: multi-stage
contests would no longer dominate a static contest once the exponent reaches the
threshold. We consider a selection procedure that is different from theirs,25 and have
shown that with “pooling competition” in each stage, a multi-stage contest would
strictly dominate static contests even if r = 1. This raises a number of interesting
questions: In our setting, (1) can multi-stage contests still dominate one-stage contests
for strictly convex contest impact functions (r > 1)? and (2) to what extent would a
multi-stage contest continue to prevail?

In the subsequent analysis, we investigate these issues for the case of r ∈ (1, N
N−1 ).

Intuitively, a multi-stage contest may not increase effort if the impact function is
excessively convex. When r ≥ N

N−1 , the optimal contest design is self-evident. It is

well known in the literature that when r ≥ N
N−1 , a single-stage winner-take-all con-

test suffices to fully dissipate the rent (see Baye et al. 1994, 1999 ).26 In this case, a
static contest would be the optimal choice to maximize effort and no other mecha-
nisms would be in demand. Is it possible, therefore, to identify a visible upper bound
r̄ ∈ (1, N

N−1 ) such that as long as r < r̄ , a multi-stage contest would emerge as the

optimum? In the subsequent analysis, we first establish a bound r̄1 ∈ (1, N
N−1 ) such

that as long as r ≤ r̄1, the “hierarchical winner-take-all” prize allocation principle
remains valid. We argue that all multi-stage contests elicit more effort than single-
stage contests for any r that is lower than that of the upper bound. We then further
establish a smaller bound r̄2 ∈ (1, N

N−1 ) such that as long as r ≤ r̄2(< r̄1), the result
of Theorem 2 would hold and a full-sequence contest remains optimal.

4.1.1 “Hierarchical winner-take-all” principle

The proof of Proposition 3 indicates that the result does not lose its bite when r ∈
(1, N

N−1 ): the entire prize purse available to each stage must be concentrated on the

first prize of that stage. Thus, V1 can be written as V1 = ∑L
l=1 θl W 1

l as in Sect. 3. In
fact, it has indeed been implied that a “winner-take-all” (single-prize) structure can
always emerge as the optimum. Because L is finite, a complete ranking among all θls
exists. To minimize V1, the contest organizer only needs to allocate the entire prize
purse to a prize W 1

l with the smallest weight θl .
However, the “hierarchical winner-take-all ” principle established in Theorem 1

requires the entire prize purse to be concentrated on the first prize in the top rank
regardless of the contest sequence. It requires θL = minL

l=1{θl}, which implies that the
final prize W 1

L contributes the least surplus to contestants along the hierarchical lad-
der. However, in the case that there exists a minimum weight θl ′ such that l

′
< L , the

25 Gradstein and Konrad (1999) assume contestants are divided into groups in each stage and that a single
winner survives each group. In this paper, however, we allow remaining contestants to be pooled and to
compete against all others.
26 In this contest, when r = N

N−1 , a symmetric pure-strategy equilibrium exists and induces individual

effort e = r(N−1)

N2 �0 = �0
N , which fully dissipates the rent. When r exceeds N

N−1 , a mixed-strategy
equilibrium exists. In such an equilibrium, contestants can break-even on average and full rent-dissipation
emerges.
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prize money should be concentrated on the prize W 1
l ′ at the optimum. As a result, the

contest ends after stage l
′
and the rest of the sequence would be redundant. Obviously,

this could happen only if the size of r is sufficiently large. Consider the following
numerical example.

Example 1 Consider N = 20 and the contest sequence {20,19,18,17,16,2}. When
r = 1.0248, the values of θls are given by (θ1 = 0.001318, θ2 = 0.001249, θ3 =
0.001178, θ4 = 0.001105, θ5 = 0.001032, θ6 = 0.000942). θ6 = 0.000942 turns out
to be the minimum. When r =1.04, the values of θls are given by (θ1 = 0.00060, θ2 =
0.00063, θ3 = 0.00065, θ4 = 0.000656, θ5 = 0.000652, θ6 = 0.000746). θ1 =
0.00060 turns out to be the minimum.

This example, among many others, shows that θL can be the minimum when r is
relatively small, but θ1 will be the minimum when r approaches N

N−1 . Thus, when r

is excessively large, all subsequent prizes elicit less effort than W 1
1 , i.e., the first prize

awarded in the first stage. In this particular case, the “hierarchical winner-take-all”
principle no longer holds and a single-stage contest dominates all other organizing
rules for the given contest sequence. Nevertheless, we can establish the following
upper bound r̄1(> 1) such that the “hierarchical winner-take-all” principle holds if
r < r̄1.

Proposition 4 The “hierarchical winner-take-all ” principle holds for anyr ∈ (1, r̄1),
where r̄1 = 2N+1

2N .

Proof See Appendix. ��
Proposition 4 states that it is optimal to concentrate the entire prize purse on the

first prize in the top rank, regardless of the contest sequence, for any r ∈ (1, r̄1).
As Rosen (1986) argues, moving the prize money toward the top of the hierarchy

would effectively extend the horizon of the competition. The “hierarchical winner-
take-all” principle established by Theorem 1 confirms that such an allocation rule
elicits more effort. However, as indicated by Example 1, this principle may not hold
when r is excessively large, i.e., when the contest technology is sufficiently discrimi-
natory. Thus, if the contest organizer is able to control the course of the competition,
a part of the given contest sequence would be redundant and the contest does not have
to last that long. However, when the sequence of a contest is fixed such that the contest
organizer is unable to flexibly adjust the course of the competition, spreading the prize
money toward intermediate prizes could increase the output of the contest.

It is worth pointing out, however, that r̄1 is a rather conservative upper bound for the
principle to hold. For Proposition 4 to hold, a sufficient (but not necessary) condition
is to have the weights on W 1

l decrease with l. This property would require a much less
stringent condition:

Nl+1−1∑
g=0

1

Nl − g
≥ Nl+1

Nl
[
Nl+1 − (Nl+1 − 1)r

] . (12)
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Unfortunately, the sign of
∑Nl+1−1

g=0
1

Nl−g − Nl+1
Nl [Nl+1−(Nl+1−1)r ] depends on subtle inter-

action among Nl , Nl+1 and r . Identifying an upper bound of r for (13) to hold is diffi-
cult to do without losing efficiency, as the property of the sum

∑Nl+1−1
g=0

1
Nl−g remains

obscure. Few restrictions can be imposed effectively on Nl and Nl+1.

4.1.2 The optimality of multi-stage contests

In the case of r ∈ (0, 1] that corresponds to a concave impact function, all the prize
money should be allocated to the top prize regardless of the sequence of the contest.
We have shown, however, that this principle may not hold and that the two main struc-
tural elements of a contest, i.e., contest sequence and the prize allocation rule, could
interact subtly when r is sufficiently large. In Example 1, when r = 1.04, to maximize
the total effort, all prize money should be allocated to the first prize awarded in the first
stage. To increase the effort, the contest would be reduced to a static contest where 20
contestants exert one-shot effort to vie for the single prize. Thus, when r is sufficiently
large, the legitimacy of a multi-stage contest could be called into question if the prize
money can be flexibly distributed among all possible prizes. The contest sequence and
the prize allocation rule represent the two sides of the same coin, which is exemplified
by the following theorem.

Theorem 5 All winner-take-all multi-stage contests elicit more effort than the single-
stage winner-take-all contest for any r ∈ (1, r̄1).

Proof Consider a single-stage contest with N persons competing for a single prize
�0. From the literature, one would expect that each contestant in a single-stage
winner-take-all contest expects to receive a payoff of

V = θ1�0, where θ1 = 1

N

(
(1 − r) + r

N

)
. (13)

In any L-stage contest where L ≥ 2 and Nl strictly decreases with l, a contestant’s
expected surplus V1 is

V1 =
L∑

l=1

θl�l , L ≥ 2. (14)

As Nl strictly decreases with l, θl too strictly decreases with l in accordance with the
proof of Proposition 4. Thus, V1 ≤ V . For this reason, all hierarchical winner-take-all
multi-stage contests must strictly dominate their single-stage counterparts in terms of
effort induction. ��

Theorem 5 states a sufficient condition for the optimality of multi-stage contests.
It shows that as long as the “hierarchical winner-take-all” principle holds, any multi-
stage contest would dominate a single-stage one, regardless of its contest sequence.
Thus, all multi-stage contests could increase the output of the contest—even when
the impact function is moderately convex (r ∈ (1, r̄1)). In fact, this result directly
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stems from Proposition 4. Note that the weight assigned to the first prize in the first
stage W 1

l is constant regardless of the sequence of the contest. It also represents the
weight on the unique prize of a one-stage “winner-take-all” contest. When r ∈ (1, r̄1),
θl strictly decreases as the hierarchical ladder ascends. It naturally follows that a
prize awarded in a later stage contributes less to a contestant’s surplus, and a multi-
stage contest that requires contestants to win the prize through more stages would
induce more effort. This result is in contrast to the findings of Gradstein and Konrad
(1999) and the difference lies mainly in the ways that elimination procedures are
modeled.

It should be noted again that the bound r̄1 is rather conservative. The following
example demonstrates that a single stage contest may not be optimal even when
r > r̄1.

Example 2 Consider again the case of N = 20 and the contest sequence {20,19,18,
17,16,2}. In this case, r̄1 = 1.025. When r = 1.0366, the values of θls are given by
(θ1 = 0.0007625, θ2 = 0.0007715, θ3 = 0.000769, θ4 = 0.000757, θ5 = 0.000737,

θ6 = 0.00079). θ5 = 0.000737 turns out to be the minimum.

Next, we further establish an upper bound for r such that the “Pyramid” contest
can be optimal.

Theorem 6 A full-sequence winner-take-all Pyramid contest maximizes the total
effort for r ∈ (1, r̄2], where r̄2 = 1 + 1

8N 2 . It lasts for N − 1 stages while elimi-
nating one contestant at each stage, and a single winner takes over the entire prize
purse of �0.

Proof See Appendix. ��

Bound r̄2 is also very conservative. Consider a contest with N = 10, and r̄2 =
801/800. When r = 1.088 > r̄2, our numerical results show that a full-sequence
winner-take-all Pyramid contest continues to be optimal.

Unfortunately, it is analytically difficult to characterize the exact form of the opti-
mal contest sequence when r > r̄2. The analysis of the model heavily involves the
harmonic series { 1

Nl−g }Nl+1−1
g=1 , and it is mathematically difficult to derive a tracta-

ble form of the sum of such a series. Gradstein and Konrad (1999) in their setting
establish “r = 1” as the “the watershed” level for the optimality of multi-stage con-
tests. It remains an open question whether such a visible “watershed” r̄ ∈ (1, N

N−1 )

also exists in our setting, such that a full sequence maximizes the total effort when
r ∈ (0, r̄), while a single-stage one does otherwise. Nevertheless, ample numerical
evidence exists to show that such a threshold r exists at least for N ≤ 15. In these
cases, r varies to the total number of contestants N , and it equalizes the first weight
θ1 and the last weight θN in a full sequence, i.e., θ1(r) = θN (r).

Recall that when r ≥ N
N−1 , the optimal contest can take the form of a single-stage

winner-take-all contest. Since N
N−1 converges monotonically to one as N approaches

to infinity, a single-stage winner-take-all contest would be optimal for any r > 1 when
N is sufficiently large.
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4.2 Extension 2: stochastic elimination

Our results imply that the effort supplied in a contest could increase as the elimination
process is slowed down by adding additional stages. Thus, a naturally compelling
extension is to allow for stochastic elimination in each stage, as this would further
extend the horizon of the game. In other words, instead of committing to knocking out
one player in each round of competition, elimination occurs with a fixed probability,
such that a round of competition may end up with no real outcome. We now examine
the ramifications of this alternative rule.

Consider a full-sequence winner-take-all contest with N (≥3) risk-neutral contes-
tants. If l(≥2) contestants remain in a particular stage, then one of them is to be elim-
inated and l − 1 contestants advance to the next stage. However, given the stochastic
elimination rule, the process of elimination could imply many rounds of competition.
In each round, contestants submit their effort outlays simultaneously, and the event
of elimination occurs with a probability pl ∈ (0, 1]. The complementary event takes
place with a probability of 1 − pl , where no contestant is eliminated. The same rule
governs the competition in subsequent rounds until the “knock-out” is realized. We
consider this stochastic elimination process (from l contestants to l − 1) to be a sub-
contest of the whole game. The contestants have to repeat their attempts until the
“knock-out” takes place, and the timing of this is unforeseen. The entire contest thus
consists of N − 1 such subcontests.

We use V (l) to denote the conditional expected payoff of a representative con-
testant when there are l contestants who survived from the previous stage, l ∈ {N ,

N − 1, . . . , 1}.27 Assume an impact function f (ei ) = er
i , with r ∈ (0, N

N−1 ). For any
l ≥ 2, a representative remaining contestant i solves the following problem

Maxei
l
V i

l = pl

l−1∑
m=1

Pm

(
ei

l , e−i
l

)
V (l − 1) + (1 − pl)V (l) − ei

l

=
l−1∑
m=1

Pm

(
ei

l , e−i
l

)
(pl V (l − 1)) + (1 − pl)V (l) − ei

l , (15)

where Pm(·, ·) is defined in Sect. 2.2.
The l-person contest would be repeated until the “knock-out” occurs. This elimina-

tion process mimics an infinitely repeated game with a positive continuation probabil-
ity. To avoid complication, we focus on the case that contestants play the symmetric
stage Nash equilibrium in every round of competition in this subcontest (from l con-
testants to l − 1). Let e∗

k denote the individual equilibrium effort and V ∗
k denote the

conditional individual payoff in stage k of a full-sequence contest of Sect. 3. As defined
in Sects. 3.2 and 4.1, Nk = N − k + 1 contestants remain in the game and compete
to advance further up the hierarchy.

Proposition 5 Consider a full-sequence contest composed of N −1 subcontests, with
each of which eliminating one contestant. In a subcontest (l → (l −1)), l(≥2) persons

27 As the final winner gets �0 without having to exert any effort, we must have V (1) = �0.
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compete for l − 1 tickets, and the elimination probability is pl ∈ (0, 1], l = 2, . . . , N.
In the symmetric Nash equilibrium, each contestant exerts an effort

ẽ pl
l = ple

∗
N−l+1, (16)

in each round of the subcontest contest (l → (l − 1)). The payoff V (l) of a represen-
tative contestant is given by

V (l) = V ∗
N−l+1, l = 2, . . . , N . (17)

Proof See Appendix. ��
From Proposition 5, the entire process of the subcontest (l → (l−1)) thus generates

a total expected effort

El→(l−1) =
∞∑

k=0

(1 − pl)
klẽ pl

l = lẽ pl
l

1

pl
= le∗

N−l+1, l = 2, . . . , N . (18)

Equation (18) shows that the total expected effort supplied in any subcontest does
not depend on the probability of elimination pl ∈ (0, 1]. This further implies that on
average, stochastic elimination does not affect the total equilibrium effort generated by
the contest for any elimination probability pl > 0. We therefore obtain the following.

Theorem 7 Allowing for stochastic elimination does not change the total equilibrium
effort generated on average by the full-sequence winner-take-all “Pyramid” contest.

Two comments must be made. Firstly, the result will not hold if more sophisticated
equilibria, such as those involving trigger strategies, are allowed for in the stochastic
elimination game. However, the symmetric Nash equilibrium has already been repre-
sented as the most favorable outcome (in the viewpoint of the contest organizer) as
other equilibria could only reduce effort outlay. We therefore conclude that allowing
for stochastic elimination does not benefit the contest organizer.

Secondly, our analysis showed that the efficiency of a Pyramid contest cannot be
improved through random elimination. The reasoning, however, continues to apply to
any contest sequence. Without loss of generality, consider a winner-take-all contest
with sequence {N1, N2, . . . , NL} where N1 = N > N2 > · · · > NL = 1. Let Vl

be the conditional equilibrium individual payoff in stage l of this contest. Imagine
that in each round of the subcontest (Nl → Nl+1), Nl − Nl+1 of the Nl contestants
are simultaneously eliminated with probability pl ∈ (0, 1]. Similar to the previous
full-sequence contest setting, we have

V (Nl) = Vl , l = 1, 2, . . . , L , (19)

where V (Nl) is the expected payoff of a remaining contestant in any round of the
subcontest (Nl → Nl+1). Hence, Theorem 7 and its implications remain valid.

Equation (19) reveals why stochastic elimination cannot increase the rent-
dissipation rate over the extended horizon. Vl represents a contestant’s conditional
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expected payoff when Nl remain in the contest with the sequence {N1, N2, . . . , NL }
without stochastic elimination. However, we see that a contestant’s conditional ex-
pected payoff in each round of the elimination process V (Nl) equals exactly Vl . An
additional round of competition with a subcontest does not vary the payoff a contes-
tant expects from the future, i.e., the value of the ticket V (Nl+1), while this repeatable
process discounts future prizes, which, as evidenced by (15), weakens the contestants’
incentives to exert effort in each round of competition. Consequently, this repeatable
process does not provide additional incentives to the contestants to supply effort.

4.3 Further extensions

In this paper, we allow the contest organizer to design the optimal contest using two
instruments: the contest sequence and the allocation of a fixed total prize purse. When
the impact function takes the form f (e) = er , and the size of r remains in a moderate
range, we show (1) that the contest organizer must allocate the entire prize purse to a
single final prize, regardless of the contest sequence; and (2) that a multi-stage contest
elicits more effort than a single-stage contest. When a sufficiently “noisy” contest
technology (r is sufficiently small) is in place, a “Pyramid” contest that eliminates
one contestant in each stage would emerge as the optimum. Our results therefore pro-
vide a rationale for the multi-phase sequential competition that is widely observed in
reality.

Our analysis provides important insights into the optimal design of multi-stage con-
tests, but leaves open tremendous possibilities for future extension. First, we do not
consider the cost of organizing the contest. The contest organizer may be concerned
about the additional costs that could arise from additional stages, and this concern
should indeed be taken into account in future research into the optimal design of
multi-stage contests. Secondly, we do not consider the heterogeneity in the abilities
and preferences of the contestants. One interesting but technically challenging exten-
sion is to allow for contestants of differing private types. While we do not believe
that an extension in this direction will vary the main theme of our results, it would be
intriguing to investigate the efficiency of a multi-stage contest in serving as a screening
mechanism when contestants have private information about their abilities.28 Finally,
our model assumes that the contestants’ effort affects only the outcome of the sub-
contest in the current stage. One may extend this model by allowing for “accumulat-
able” effort, in which case effort made in the current stage can be carried over into
future stages such that it continues to influence a contestant’s likelihood of winning.

Appendix

Proof of Proposition 1 The subgame perfect Nash equilibrium can be solved through
backward induction. In stage l, a representative remaining contestant i rationally
chooses his effort ei

l to maximize his expected payoff (2). Since we consider the

28 Rosen (1986) considers the effect of heterogeneous types. Only numerical cases are discussed due to
tractability.
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symmetric equilibrium, we assume all contestants other than i exert the same effort e′
l

without loss of generality. Under this simplification,

Pm

(
ei

l , e−i
l

)
= (N − 1)!

(N − m)!

[
m−1∏
k=1

(
e′

l

)r
(
ei

l

)r + (N − k)
(
e′

l

)r
]

×
(
ei

l

)r
(
ei

l

)r + (N − m)
(
e′

l

)r .

(A.1)

From (A.1),
∂ Pm (ei

l ,e
−i
l )

∂ei
l

is given by

∂ Pm

(
ei

l , e−i
l

)

∂ei
l

= (N − 1)!
(N − m)!

[
m−1∏
k=1

(e′
l)

r

(ei
l )

r + (N − k)(e′
l)

r

]
× r(ei

l )
r−1(N − m)(e′

l)
r

[(ei
l )

r + (N − m)(e′
l)

r ]2

−
{

(N − 1)!
(N − m)! ×

[
m−1∏
k=1

(e′
l)

r

(ei
l )

r + (N − k)(e′
l)

r

]
× (ei

l )
r

(ei
l )

r + (N − m)(e′
l)

r

×
m−1∑
k=1

r(ei
l )

r−1

(ei
l )

r + (N − k)(e′
l)

r

}
. (A.2)

In a symmetric equilibrium with ei
l = el , we obtain

∂ Pm (el , . . . , el)

∂ei
l

=
(

1 −∑m−1
g=0

1
Nl−g

)
r

Nlel
. (A.3)

From (2), the first order condition for an interior equilibrium is

Nl+1∑
m=1

[
∂ Pm(el , . . . , el)

∂ei
l

(V l+1+W m
l )

]
+

Nl∑
m=Nl+1+1

[
∂ Pm(el , . . . , el)

∂ei
l

W m
l

]
− 1 = 0.

(A.4)

(A.3) and (A.4) give that if el > 0, then it must satisfy r�l
Nl el

− 1 = 0, where �l =∑Nl+1
m=1[(1 −∑m−1

g=0
1

Nl−g )(Vl+1 + W m
l )] +∑Nl

m=Nl+1+1[(1 −∑m−1
g=0

1
Nl−g )W m

l ]. Fol-

lowing this result, we have that el = r�l
Nl

if �l > 0, whereas el = 0 if �l ≤ 0. These
results can be alternatively written as in (4). Each symmetric contestant has the same
chance of winning each component of the total stage-award Nl+1Vl+1 +�l (including
Nl stage prizes and Nl+1 tickets to the next stage) in a symmetric equilibrium. There-
fore, the equilibrium expected payoff of a representative contestant at stage l is given
by Vl = (Nl+1Vl+1 + �l)/Nl − el . ��
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Proof of Theorem 1 The proof proceeds in two steps.

Step 1: The optimal prize allocation requires the entire prize purse � ≤ �0 to be allo-
cated to the first prize in the last stage, i.e., W 1

l = 0, for l ∈ {1, 2, . . . , L −1},
and WL = �. From (10), we have at the optimal prize allocation V1 =∑L

l=1 θl W 1
l . Next, we show that for any l ∈ {1, 2, . . . , L − 1}, shifting

resources from W 1
l toward W 1

l+1 further reduces V1. This property holds if and
only if {θl} is a decreasing sequence. We therefore compare θl with θl+1 for l ∈
{1, 2, . . . , L−1}. Ignoring the common element (

∏l
j=1

1
N j

)(
∏l−1

j=1[N j+1(1−
r)+ r

∑N j+1−1
g=0

N j+1−g
N j −g ])29 contained in both of the two terms, we only need

to compare [(1 − r) + r
Nl

] to 1
Nl+1

[Nl+1(1 − r) + r
∑Nl+1−1

g=0
Nl+1−g

Nl−g ][(1 −
r) + r

Nl+1
]. We have

θl − θl+1∝
[
(1 − r) + r

Nl

]

− 1

Nl+1

⎡
⎣Nl+1(1 − r) + r

Nl+1−1∑
g=0

Nl+1 − g

Nl − g

⎤
⎦
[
(1 − r) + r

Nl+1

]

=
[
(1−r) + r

Nl

]
−
⎡
⎣(1−r) + r

∑Nl+1−1
g=0

Nl+1−g
Nl−g

Nl+1

⎤
⎦
[
(1−r) + r

Nl+1

]
.

(A.5)

Note that Nl+1−g
Nl−g ≤ Nl+1

Nl
for g ≥ 0. Thus we have

RHS of (A.5) ≥
[
(1 − r) + r

Nl

]
−
[
(1 − r) + r Nl+1

Nl

] [
(1 − r) + r

Nl+1

]

= r(1 − r) (Nl+1 − 1)

(
1

Nl+1
− 1

Nl

)
≥ 0.

Thus, we show that the weight on W 1
l decreases along the path. It follows

that in order to minimize V1, the budget allocated to prizes in an earlier stage
(l < L) should be shifted toward W 1

L . Thus we conclude that the optimal
prize allocation requires W 1

L = �.

Step 2: � = �0, i.e., the contest organizer uses up the entire budget on prizes. The
total effort E can be reduced to the following form given the optimal prize
allocation rule we obtained from step one.

29 This term is positive for any r ∈ (0, N
N−1 ).

123



374 Q. Fu, J. Lu

E = �

⎧
⎨
⎩1 − N

⎛
⎝

L∏
j=1

1

N j

⎞
⎠
⎛
⎝

L−1∏
j=1

⎡
⎣N j+1(1 − r) + r

N j+1−1∑
g=0

N j+1 − g

N j − g

⎤
⎦
⎞
⎠

×
[
(1 − r) + r

NL

]⎫⎬
⎭ .

Note that

N

⎛
⎝

L∏
j=1

1

N j

⎞
⎠
⎛
⎝

L−1∏
j=1

⎡
⎣N j+1(1−r) + r

N j+1−1∑
g=0

N j+1−g

N j −g

⎤
⎦
⎞
⎠
[
(1−r) + r

NL

]

= N

NL

[
(1 − r) + r

NL

] L−1∏
j=1

⎧⎨
⎩

1

N j

⎡
⎣N j+1(1 − r) + r

N j+1−1∑
g=0

N j+1 − g

N j − g

⎤
⎦
⎫⎬
⎭

<
N

NL

[
(1 − r) + r

NL

] L−1∏
j=1

1

N j

[
N j+1(1 − r) + r N j+1

]

= (1 − r)+ r

NL
≤ 1,

we have that E increases strictly with �. As a consequence, the entire budget
�0 should be allocated to W 1

L in order to maximize the total effort. ��

Proof of Theorem 2 Denote by E0 the total efforts in the original contest {Nl}, while
by EM the total effort in the hypothetical contest after one additional stage M is
inserted. We only need to show EM > E0.

Denote by Ṽ1 the equilibrium expected payoff that the N contestants anticipate at
the first stage of the contest after the additional stage is inserted. By Lemma 1, we
only need to show Ṽ1 < V1.

Under the optimal prize allocation rule we have characterized in Theorem 1, (4)
and (5) lead to

V1= VJ+1∏J
l=1 Nl

×
J∏

l=1

⎡
⎣Nl+1(1 − r) + r

Nl+1−1∑
g=0

Nl+1 − g

Nl − g

⎤
⎦.

Similarly, we obtain the expected payoff Ṽ1 after stage M is hypothetically inserted,
which is given by
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Ṽ1 = VJ+1

M
∏J

l=1 Nl
×
⎧
⎨
⎩

J−1∏
l=1

⎡
⎣Nl+1(1 − r) + r

Nl+1−1∑
g=0

Nl+1 − g

Nl − g

⎤
⎦
⎫
⎬
⎭

×
⎡
⎣M(1 − r) + r

M−1∑
g=0

M − g

NJ − g

⎤
⎦×

⎡
⎣NJ+1(1 − r) + r

NJ+1−1∑
g=0

NJ+1 − g

M − g

⎤
⎦ .

To establish Ṽ1 < V1, we need to show the following sufficient and necessary condition
is satisfied:

1

M

⎡
⎣M(1 − r) + r

M−1∑
g=0

M − g

NJ − g

⎤
⎦×

⎡
⎣NJ+1(1 − r) + r

NJ+1−1∑
g=0

NJ+1 − g

M − g

⎤
⎦

< NJ+1(1 − r) + r
NJ+1−1∑

g=0

NJ+1 − g

NJ − g
. (A.6)

Rearrange LHS of (A.6), and we obtain

1

M

⎡
⎣M(1 − r) + r

M−1∑
g=0

M − g

NJ − g

⎤
⎦×

⎡
⎣NJ+1(1 − r) + r

NJ+1−1∑
g=0

NJ+1 − g

M − g

⎤
⎦

= NJ+1(1 − r)2+N J+1r(1 − r) ×
∑M−1

g=0
M−g
NJ −g

M
+ r(1 − r) ×

NJ+1−1∑
g=0

NJ+1 − g

M − g

+ r2

∑M−1
g=0

M−g
NJ −g

M

NJ+1−1∑
g=0

NJ+1 − g

M − g
.

Because M−g
NJ −g is decreasing in g and NJ+1 < M ,

∑M−1
g=0

M−g
NJ −g

M <

∑NJ+1−1
g=0

M−g
NJ −g

NJ+1
must

hold, which leads to

LHS of (A.6) < NJ+1(1 − r)2 + r(1 − r)

NJ+1−1∑
g=0

M − g

NJ − g
+ r(1 − r)

×
NJ+1−1∑

g=0

NJ+1 − g

M − g
+ r2

∑NJ+1−1
g=0

M−g
NJ −g

NJ+1

NJ+1−1∑
g=0

NJ+1 − g

M − g
.
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By Chebyshev Sum Inequality, 1
NJ+1

(
∑NJ+1−1

g=0
M−g
NJ −g )(

∑NJ+1−1
g=0

NJ+1−g
M−g )≤∑NJ+1−1

g=0
NJ+1−g

NJ −g . Thus, we obtain

LHS of (A.6)

< NJ+1(1 − r)

⎡
⎣(1 − r) + r

∑NJ+1−1
g=0

M−g
NJ −g

NJ+1
+ r

∑NJ+1−1
g=0

NJ+1−g
M−g

NJ+1

⎤
⎦

+
⎡
⎣r

NJ+1−1∑
g=0

NJ+1 − g

NJ − g
− r(1 − r)

NJ+1−1∑
g=0

NJ+1 − g

NJ − g

⎤
⎦

≤ NJ+1(1 − r)

⎡
⎣(1 − r) + r

NJ+1

NJ+1−1∑
g=0

(
M − g

NJ − g
+ NJ+1 − g

M − g
− NJ+1 − g

NJ − g

)⎤
⎦

+ r
NJ+1−1∑

g=0

NJ+1 − g

NJ − g
.

Simple algebra would verify M−g
NJ −g + NJ+1−g

M−g − NJ+1−g
NJ −g < 1. We therefore obtain

LHS of (A.6) < NJ+1(1 − r)

[
(1 − r) + r NJ+1

NJ+1

]
+ r

NJ+1−1∑
g=0

NJ+1 − g

NJ − g

= RHS of (A.6).

��
Proof of Proposition 4 It is sufficient to show weights θl decrease with l when r ∈
(1, r̄1). For this purpose, we only need to compare the weight θl on W 1

l to the weight

θl+1 on W 1
l+1, where θl = (

∏l
j=1

1
N j

)(
∏l−1

j=1[N j+1(1−r)+r
∑N j+1−1

g=0
N j+1−g

N j −g ])[(1−

r)+ r
Nl

]. Recall (A.5):θl − θl+1 ∝ [(1 − r)+ r
Nl

]− [(1 − r)+ r
∑Nl+1−1

g=0
Nl+1−g

Nl −g

Nl+1
][(1 −

r) + r
Nl+1

]. Rearrange the RHS, and we obtain

RHS of (A.5) =
(

1 − Nl − 1

Nl
r

)
−
⎛
⎝1 − Nl+1 −∑Nl+1−1

g=0
Nl+1−g

Nl−g

Nl+1
r

⎞
⎠

×
(

1 − Nl+1 − 1

Nl+1
r

)
.

Note Nl+1 −∑Nl+1−1
g=0

Nl+1−g
Nl−g = (Nl − Nl+1)

∑Nl+1−1
g=0

1
Nl−g . We thus have
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RHS of (A.5)

= (Nl − Nl+1)
∑Nl+1−1

g=0
1

Nl−g

Nl+1
r− Nl − Nl+1

Nl Nl+1
r− (Nl+1 − 1)(Nl − Nl+1)

∑Nl+1−1
g=0

1
Nl−g

N 2
l+1

r2

= (Nl − Nl+1)r

N 2
l+1

⎧
⎨
⎩
[
Nl+1 − (Nl+1 − 1)r

] Nl+1−1∑
g=0

1

Nl − g
− Nl+1

Nl

⎫
⎬
⎭ .

Because (Nl−Nl+1)r
N 2

l+1
> 0, the sign of the last expression is the same as that of [Nl+1 −

(Nl+1 − 1)r ]∑Nl+1−1
g=0

1
Nl−g − Nl+1

Nl
. In other words, θl − θl+1 ≥ 0 if and only if

Nl+1−1∑
g=0

1

Nl − g
≥ Nl+1

Nl
[
Nl+1 − (Nl+1 − 1)r

] . (A.7)

Note that 1
Nl−g is increasing and convex in g. By Jensen’s inequality,

∑Nl+1−1
g=0

1
Nl−g ≥

Nl+1

Nl− Nl+1−1
2

. Thus, (A.7) must hold if Nl+1

Nl− Nl+1−1
2

≥ Nl+1
Nl [Nl+1−(Nl+1−1)r ] , which is equiv-

alent to

2Nl(Nl+1−1) − 2Nl(Nl+1−1)r ≥ −(Nl+1−1).

When r ≤ 2N+1
2N ≤ 2Nl+1

2Nl
, the last expression must hold.

��

Proof of Theorem 6 By Proposition 3, we write V1 as V1 = ∑L
l=1 θl W 1

l . Because L
is finite, a complete ranking among all θls exists. To minimize V1, the contest organizer
only needs to allocate the entire prize purse to a prize W 1

l with the smallest weight θl .
We follow the logic in 4.1.1. An optimal contest must award the entire prize purse to
the first winner in its last stage. It is either a multi-stage contest under the “hierarchical
winner-take-all” rule or a single stage one. Thus, when r ∈ (1, N

N−1 ), there is no loss
of generality to assume “hierarchical winner-take-all” in searching for optimal contest
sequence.

Clearly, for any contest sequence with “hierarchical winner-take-all”, if NL > 1,

we can always add another (hypothetical) stage with NL+1 = 1. The new hypothetical
sequence will induce the same amount of effort as the original one does. Therefore,
there is no loss of generality to consider contest sequence with NL = 1 and winner-
take-all for the optimal contest.

To show Theorem 6, we only need to show that when r ∈ (1, r̄2], any contest
sequence is dominated by the full sequence.

We first show that when r ∈ (1, r̄2], if NL−1 > 2 then inserting a stage with M = 2
contestants increases effort induced. For this purpose, from (A.6) we need to show
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⎡
⎣(1 − r) + r

1

M

M−1∑
g=0

M − g

NJ − g

⎤
⎦
⎡
⎣(1 − r) + r

1

NL

NL−1∑
g=0

NL − g

M − g

⎤
⎦

≤
⎡
⎣(1 − r) + r

1

NL

NL−1∑
g=0

NL − g

NL−1 − g

⎤
⎦, (A.8)

where NL = 1, M = 2. (A.8) holds if

r ≤
1 − 1

NL

∑NL −1
g=0

NL −g
M−g − 1

M

∑M−1
g=0

M−g
NL−1−g + 1

NL

∑NL −1
g=0

NL −g
NL−1−g

1 − 1
NL

∑NL −1
g=0

NL −g
M−g − 1

M

∑M−1
g=0

M−g
NL−1−g + 1

NL

1
M

(∑M−1
g=0

M−g
NL−1−g

) (∑NL −1
g=0

NL −g
M−g

)

= 1 +
1

NL−1
− 1

4

(∑1
g=0

2−g
NL−1−g

)

1
2 − 1

4

∑1
g=0

2−g
NL−1−g

.

As

1 +
1

NL−1
− 1

4

(∑1
g=0

2−g
NL−1−g

)

1
2 − 1

4

∑1
g=0

2−g
NL−1−g

≥ 1 + 2

NL−1
− 1

2

⎛
⎝

1∑
g=0

2 − g

NL−1 − g

⎞
⎠

≥ 1 + 1

4N
> r̄2= 1+ 1

8N 2 ,

(A.8) must hold when r ∈ (1, r̄2].
We now consider a sequence with NL−1= 2. In this case, we show that if it is

feasible to insert an additional stage with M ∈ {NJ+1 + 1, . . . , NJ − 1} contestants
between stage J and stage J +1, then this additional stage increases effort induced. For
this purpose, we only need to show that (A.6) holds for r ∈ (1, r̄2]. Since NL−1 = 2
and NL = 1, we must have NJ+1 ≥ 2 (A.6) holds if and only if

r ≤
1 − 1

NJ+1

∑NJ+1−1
g=0

NJ+1−g
M−g − 1

M

∑M−1
g=0

M−g
NJ −g + 1

NJ+1

∑NJ+1−1
g=0

NJ+1−g
NJ −g

1 − 1
NJ+1

∑NJ+1−1
g=0

NJ+1−g
M−g − 1

M

∑M−1
g=0

M−g
NJ −g + 1

NJ+1

1
M

(∑M−1
g=0

M−g
NJ −g

) (∑NJ+1−1
g=0

NJ+1−g
M−g

)

= 1 +
1

NJ+1

∑NJ+1−1
g=0

NJ+1−g
NJ −g − 1

NJ+1

1
M

(∑M−1
g=0

M−g
NJ −g

) (∑NJ+1−1
g=0

NJ+1−g
M−g

)
(

NJ −M
M

∑M−1
g=0

1
NJ −g

) (
M−NJ+1

NJ+1

∑NJ+1−1
g=0

1
M−g

) . (A.9)

Note that if a1 > a2 > a3 > · · · > an, and b1 > b2 > b3 > · · · > bn , then we have30

n
n∑

g=1

ai bi −
⎛
⎝

n∑
g=1

ai

⎞
⎠
⎛
⎝

n∑
g=1

bi

⎞
⎠ ≥ (an−1−an)

⎡
⎣

n∑
g=1

(bi−bn)

⎤
⎦. (A.10)

30 The proof is available from the authors upon request.
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From (A.10), we have

1 +
1

NJ+1

∑NJ+1−1
g=0

NJ+1−g
NJ −g − 1

NJ+1

1
M

(∑M−1
g=0

M−g
NJ −g

) (∑NJ+1−1
g=0

NJ+1−g
M−g

)
(

NJ −M
M

∑M−1
g=0

1
NJ −g

) (
M−NJ+1

NJ+1

∑NJ+1−1
g=0

1
M−g

)

≥ 1 +
1

NJ+1

NJ+1−1∑
g=0

NJ+1−g
NJ −g − 1

NJ+1

1
M

(∑M−1
g=0

M−g
NJ −g

) (∑NJ+1−1
g=0

NJ+1−g
M−g

)

NJ −M
NJ − M−1

2

M−NJ+1

M− NJ+1−1
2

≥ 1 + 1

NJ+1

NJ+1−1∑
g=0

NJ+1 − g

NJ − g
− 1

NJ+1

1

NJ+1

⎛
⎝

NJ+1−1∑
g=0

M − g

NJ − g

⎞
⎠

×
⎛
⎝

NJ+1−1∑
g=0

NJ+1 − g

M − g

⎞
⎠,

which can be further rewritten as

1 +
(

1

NJ+1

)2
⎡
⎣NJ+1

NJ+1−1∑
g=0

NJ+1 − g

NJ − g

−
⎛
⎝

NJ+1−1∑
g=0

M − g

NJ − g

⎞
⎠
⎛
⎝

NJ+1−1∑
g=0

NJ+1 − g

M − g

⎞
⎠
⎤
⎦

≥ 1 +
(

1

NJ+1

)2
⎡
⎣
(

2

NJ − M + 2
− 1

NJ − M + 1

)

×
⎛
⎝

NJ+1−1∑
g=0

(
NJ+1 − g

M − g
− 1

M − NJ+1 + 1

)⎞
⎠
⎤
⎦

≥ 1 +
(

1

NJ+1

)[(
2

NJ − M + 2
− 1

NJ − M + 1

)]

×
[
(NJ+1 − 1)

((
2

NJ − M + 2
− 1

NJ − M + 1

))]

= 1 + NJ+1 − 1

NJ+1

[
1

NJ − M + 2

(
1 − 1

(NJ − M + 1)

)]2

.

Note that 1+ NJ+1−1
NJ+1

[ 1
NJ −M+2 (1 − 1

(NJ −M+1)
)]2≥ 1+ 1

2 ( 1
N

1
2 )2 = 1+ 1

8N 2 = r̄2,

because NJ+1≥ 2. We then obtain
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1 +
1

NJ+1

∑NJ+1−1
g=0

NJ+1−g
NJ −g − 1

NJ+1

1
M (
∑M−1

g=0
M−g
NJ −g )(

∑NJ+1−1
g=0

NJ+1−g
M−g )

(
NJ −M

M

∑M−1
g=0

1
NJ −g )(

M−NJ+1
NJ+1

∑NJ+1−1
g=0

1
M−g )

≥ 1 + 1

8N 2 = r̄2.

Therefore, (A.9) must hold when r ∈ (1, r̄2]. Thus, when NL−1 = 2, inserting an
additional stage always increases effort induced. To summarize, we have shown that
the full sequence dominates any other sequence when r ∈ (1, r̄2]. ��

Proof of Proposition 5 Applying Proposition 1 to program (15) leads to that the
equilibrium effort is

ẽ pl
l =r

l

l−1∑
m=1

⎡
⎣
⎛
⎝1 −

m−1∑
g=0

1

l − g

⎞
⎠ pl V (l − 1)

⎤
⎦ , l = 2, . . . , N . (A.11)

From (A.11) and (15), we have

V (l) = pl

(
l − 1

l
V (l − 1)

)
+ (1 − pl)V (l) − ẽ pl

l , l = 2, . . . , N .

We thus have

V (l) = l − 1

l
V (l − 1)−r

l

l−1∑
m=1

⎡
⎣
⎛
⎝1 −

m−1∑
g=0

1

l − g

⎞
⎠ V (l − 1)

⎤
⎦ .

As l = NN−l+1, we have

V (l) = NN−l+1 − 1

NN−l+1
V (NN−l+1 − 1)− r

NN−l+1

×
NN−l+1−1∑

m=1

⎡
⎣
⎛
⎝1 −

m−1∑
g=0

1

NN−l+1 − g

⎞
⎠ V (NN−l+1 − 1)

⎤
⎦ .

As V (1) = V ∗
N = �0, we have

V (2) = NN−1 − 1

NN−1
�0− r

NN−1

NN−1−1∑
m=1

⎡
⎣
⎛
⎝1 −

m−1∑
g=0

1

NN−1 − g

⎞
⎠�0

⎤
⎦

= NN−1 − 1

NN−1
�0−e∗

N−1

= V ∗
N−1.
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Similarly, we have

V (l) = NN−l+1 − 1

NN−l+1
V (NN−l+1 − 1) − r

NN−l+1

×
NN−l+1−1∑

m=1

⎡
⎣
⎛
⎝1 −

m−1∑
g=0

1

NN−l+1 − g

⎞
⎠ V (NN−l+1 − 1)

⎤
⎦

= NN−l+1 − 1

NN−l+1
V (NN−l+1 − 1) − e∗

N−l+1

= V ∗
N−l+1, l = 3, . . . , N .

Since V (l) = V ∗
N−l+1, (A.11) leads to that

ẽ pl
l = ple

∗
N−l+1, l = 2, . . . , N .

��
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