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Abstract In the literature, the outcome of contests is either interpreted as win
probabilities or as shares of the prize. With this in mind, we examine two approaches
to contest success functions (CSFs). In the first, we analyze the implications of con-
testants’ incomplete information concerning the ‘type’ of the contest administrator.
While in the case of two contestants this approach can rationalize prominent CSFs,
we show that it runs into difficulties when there are more agents. Our second approach
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interprets CSFs as sharing rules and establishes a connection to bargaining and claims
problems which is independent of the number of contestants. Both approaches provide
foundations for popular CSFs and guidelines for the definition of new ones.

Keywords Endogenous contests · Contest success function ·
Nash bargaining solution · Bargaining with claims

JEL Classification C72 · D72 · D74

“The strategic approach also seeks to combine axiomatic cooperative solutions
and non-cooperative solutions. Roger Myerson recently named this task the
‘Nash program’.” (Rubinstein 1985, p. 1151)

1 Introduction

A contest is a game in which players exert effort to win a certain prize. Contests
have been used to analyze a variety of situations including lobbying, rent-seeking and
rent-defending contests, advertizing, litigation, political campaigns, conflict, patent
races, arms races, sports events or R&D competition. A crucial determinant for the
equilibrium predictions of contests is the specification of the so-called contest success
function (CSF) which relates the players’ efforts and win probabilities. Justifications
for a particular CSF can be twofold. A justification can be on normative grounds,
because it is the unique CSF fulfilling certain axioms, or essential properties. A jus-
tification can also be positive when it can be shown that the CSF arises from the
strategic interaction of players, thereby yielding a description of situations when it
can be expected to be realistic. The purpose of the present paper is to contribute to our
understanding of CSFs in both dimensions.

Formally, a CSF associates, to each vector of efforts G, a lottery specifying for each
agent a probability pi of getting the object. That is, pi = pi (G) is such that, for each
contestant i ∈ N := {1, . . . , n}, pi (G) ≥ 0, and

∑n
i=1 pi (G) = 1.

The canonical example of a contest situation is rent-seeking. In a pioneering paper,
Tullock (1980) proposed a special form of the CSF, namely, given a positive scalar
R,

pi = G R
i∑n

j=1 G R
j

, for i = 1, . . . , n. (1)

Gradstein (1995, 1998) postulated the following variation of this form, where, given
qi > 0 for all i ∈ N ,

pi = Gi qi
∑n

j=1 G j q j
, for i = 1, . . . , n. (2)
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A generalization that comprises both previous functional forms is, given ai ≥ 0 for
all i ∈ N ,

pi = G R
i qi + ai

∑n
j=1(G

R
j q j + a j )

, for i = 1, . . . , n. (3)

A different functional form, the logit model, was proposed by Hirshleifer (1989),
where, given a positive scalar k,

pi = ekGi

∑n
j=1 ekG j

, for i = 1, . . . , n . (4)

Note that the four expressions (1)–(4) are specific instances of the following functional
form

pi = fi (Gi )
∑n

j=1 f j (G j )
, for i = 1, . . . , n. (5)

The so-called effectivity functions fi are usually interpreted as determining how
‘effective’ agent i’s effort is in affecting the win probability of agent i . Most papers
dealing with contest models in the literature analyze a CSF, which is a special case of
the additive form in (5) (Nitzan 1994; Konrad 2007). Consequently, the present paper
will be mainly concerned with deriving foundations for CSFs of this form. Notice,
for later reference, that in (5) the win probability of any contestant is responsive to
changes in the efforts of all other contestants, if the fi are strictly increasing.

However, there are also some CSFs in the literature, which are not special cases
of the form in (5). The first two consider the case of two contestants and build on the
idea that only differences in effort should matter—an idea introduced by Hirshleifer
in (4). Baik (1998) proposed the following form, given a positive scalar σ ,

p1 = p1(σG1 − G2) and p2 = 1 − p1. (6)

Che and Gale (2000) postulate the following piecewise linear difference-form

p1 = max

{

min

{
1

2
+ σ(G1 − G2), 1

}

, 0

}

and p2 = 1 − p1. (7)

Recently, Alcalde and Dahm (2007) proposed a CSF in which relative differences
matter. Given an ordered vector of efforts such that G1 ≥ G2 ≥ · · · ≥ Gn and a
positive scalar R, the serial CSF is defined as

pi =
n∑

j=i

G R
j − G R

j+1

j · G R
1

, for i = 1, . . . , n with Gn+1 = 0. (8)

123



84 L. Corchón, M. Dahm

In the literature, the outcome of contests has been interpreted to capture two dif-
ferent situations: as win probabilities or as shares of the prize.1 With this in mind, we
examine two approaches to CSFs.

In the first, we postulate the existence of a contest administrator who allocates the
prize to one of the contestants. However, contestants have incomplete information
about the type of the contest administrator. We show that this approach can generate
CSFs for any number of contestants. However, while in the case of two contestants this
approach can rationalize a large class of CSFs, we show that it runs into difficulties
when there are more agents.

Our second approach interprets CSFs as sharing rules, and establishes a connection
to bargaining and claims problems, which is independent of the number of contes-
tants. The analysis exploits the observation that these problems are mathematically
related—but not equivalent—to the problem of assigning win probabilities in contests.
A main result here follows Dagan and Volij (1993), and shows that the class of CSFs
given in (5) can be understood as the weighted Nash bargaining solution where efforts
represent the weights of the agents. We turn then to the framework of bargaining with
claims (Chun and Thomson 1992) to incorporate explicitly the contestants’ efforts in
the description of the problem. This allows to associate prominent solution concepts
in this framework to the previously mentioned class of CSFs and to a generalized
version of Che and Gale’s difference-form contest (7).

Both approaches provide foundations for popular CSFs and guidelines for the def-
inition of new ones. In our view, both types of foundations complement each other
nicely. For instance, we show that (7) can be understood, on one hand, as contestants
trying to sway away the contest administrator’s decision in a setting analogous to
the model of a circular city by Salop (1979). On the other, we show that this CSF
is also related to the claim-egalitarian solution (Bossert 1993). Both approaches lend
support to an extension of this CSF to three contestants of the following form. Let
G1 ≥ G2 ≥ G3 and a and b be positive scalars. If G1 − G3 ≥ a then p3 = 0 and the
other contestants obtain win probabilities as in (7). Otherwise, let

pi = 1

3
+ b

(
2Gi − G j − Gk

)
, for i = 1, 2, 3 and i �= j, k. (9)

However, the requirement that for n = 2 the CSF reduces to (7) implies that (a, b) =
((3σ)−1, σ/2) in the first and (a, b) = ((2σ)−1, 2σ/3) in the second approach. This
underlines that the appropriate extension depends on the application and institutional
details the contest model is intended to capture.

Foundations for CSFs have been reviewed by Garfinkel and Skaperdas (2007) and
Konrad (2007). The most systematic approach has been normative and the seminal
paper is that by Skaperdas (1996). He proposed five axioms and showed that they are
equivalent to assuming a CSF of the form given in (5) with fi (·) = f (·) for all i ∈ N ,
where f (·) is a positive increasing function of its argument. Skaperdas also showed
that if in addition to the other five axioms the CSF is assumed to be homogeneous

1 A prominent example for the latter is Wärneryd (1998). He analyzes a contest among jurisdictions for
shares of the GNP and compares different types of jurisdictional organization.
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Foundations for contest success functions 85

of degree zero in G then we obtain (1).2 Our paper contributes to this literature indi-
rectly by making connections to related problems, which are well understood from a
normative point of view. For instance, we establish a relationship between Che and
Gale’s difference-form CSF (7) and the principle of equal sacrifice.

As for the positive approach, we are not aware of any work understanding CSFs as
sharing rules as our second approach does.3 However, our first approach is related to
other works. Assume that efforts are a noisy predictor of performance in the contest.
When noise enters additively in performance and is distributed as the extreme value
distribution, we obtain the logit specification (McFadden (1974)). This procedure was
generalized by Lazear and Rosen (1981) and Dixit (1987) to general distributions.4

Our approach that differs from these papers by changing performance to the broader
concept of utility and using a uniformly distributed one-dimensional random variable.

Epstein and Nitzan (2006) partially rationalize CSFs by analyzing how a contest
administrator rationally decides whether to have a contest and if a contest takes place
how he chooses among a fixed set of CSFs. In contrast, in our approach, the admin-
istrator chooses deterministically, but the contestants face a CSF because of their
uncertainty about the type of the administrator.

2 External decider

2.1 Two contestants

Assume that one person has to decide to award a prize to one of two contestants. In
this situation we have in mind contestants are uncertain about a characteristic of the
decider that is relevant for his decision. So contestants exert effort without knowing
the realization of the characteristic and then the decision-maker decides whom to give
the prize based both on the contestants’ efforts and his type.

Let� be the set of states of the world. Let θ be an arbitrary element of�. We assume
that � = [0, 1] and that θ is uniformly distributed. Let Vi be the decider’s payoff if
the prize is awarded to contestant i = 1, 2. Vi is assumed to depend on the state of
the world, i.e. Vi = Vi (θ). This may reflect the uncertainty in the contestants’ minds

2 An extension of Skaperdas’ result to nonanonymous CSFs is given by Clark and Riis (1998). Skaperdas
also axiomatized the logit model (4).
3 Anbarci et al. (2002) present a model in which a two-party conflict over a resource can either be settled
through bargaining over the resource or through a contest. The contest defines the disagreement point of the
bargaining problem to which three different bargaining solutions are applied (see also Esteban and Sákovics
2006). In contrast, in our framework, we interpret bargaining to be over win probabilities and derive CSFs
as bargaining rules.
4 Hillman and Riley (1989) came close to the idea of a contest administrator. They propose a ‘political
impact’ function that reflects the influence of a player as a function of her effort and a random variable.
They notice that for two agents it is possible to specify a functional form for this function, which yields the
Tullock probability function (see also Hirshleifer and Riley 1992). This was generalized by Jia (2007) to
n > 2. In related work, Fullerton and McAfee (1999) and Baye and Hoppe (2003) offer microfoundations
for a subset of CSFs of the form in (1) in the context of innovation tournaments and patent races following
an analogous procedure.
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about the preferences of the decider. We will assume the following single-crossing
property.

(SC) V1(θ) is decreasing in θ and V2(θ) is strictly increasing in θ .

Taking into account the efforts, let Ui (Vi (θ),Gi ) be the decider’s payoff if the prize
is awarded to contestant i = 1, 2. This function is assumed to be increasing in both
arguments and for simplicity we will write Ui (θ,Gi ). For the sake of interpretation,
let Gi be interpreted as the level of advertizement (resp. quality) made (resp. provided)
by contestant i = 1, 2. Let

θ ′ =

⎧
⎪⎨

⎪⎩

1 if U1(θ,G1) > U2(θ,G2), ∀θ ∈ �
0 if U1(θ,G1) < U2(θ,G2), ∀θ ∈ �
{θ |U1(θ,G1) = U2(θ,G2)} otherwise.

(10)

Under our assumptions θ ′ is well-defined and unique. Moreover, θ ′ equals p1, the
probability that contestant 1 gets the prize. We now provide several examples in which
we solve for p1 as a function of G1 and G2. This way we obtain the CSF as arising
from the maximization of the payoff function of the decider.

In these examples, Vi (θ) enters either additively [in the spirit of McFadden (1974)]
or multiplicatively [as in Hillman and Riley (1989)]. In Examples 1 and 2, the effect
of a contestant’s advertizement is completely separated from the decider’s bias. The
function Ui (θ,Gi ) is additively separable in both arguments. Here, the merit of an
alternative in the decider’s eyes might be positive even when advertizing is zero,
and vice versa. Moreover, the marginal product of advertizing is independent of the
decider’s bias. This contrasts with the multiplicative form of Example 3 in which (i)
a prerequisite for the merit of an alternative is both that the decider likes it (at least a
little) and that advertizing is positive; and (ii) an increase of the decider’s bias raises
the marginal product of advertizing. Example 4 is a combination of these two extreme
cases in the sense that for one contestant the relationship is multiplicative, while for
the other the effect of advertizing is independent of the bias.

Example 1 Let U1(θ,G1) = V1(θ)+ a1G1 and U2(θ,G2) = V2(θ)+ a2G2, where
a1, a2 > 0. Thus, a1G1 − a2G2 = V2(θ) − V1(θ) ≡ z(θ), say. Since z(·) is invert-
ible, we get p1 = z−1(a1G1 − a2G2), which is the form in (6) considered by Baik
(1998). 5 Notice that this procedure is identical to the one used in models of spatial
differentiation to obtain the demand function (see Hotelling 1929).

Example 2 Let U1(θ,G1) = θ + 2σG1 − 1/2 and U2(θ,G2) = −θ + 2σG2 + 1/2,
where σ is a positive scalar. In this case, it is easily calculated that

p1 = max {min {1/2 + σ(G1 − G2), 1} , 0} .

We obtain (7), the family of difference-form CSFs analyzed by Che and Gale (2000).

5 Alternatively, we may assume that the payoff function of the decider is Ui = Vi (θ) − a j G j , i �= j ,
reflecting the disutility received from the effort made by contestant 2, if the prize is awarded to contestant 1.
The same applies to Example 2 and 3 by taking U1 = (1 − θ)/ f2(G2) and U2 = θ/ f1(G1).
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Example 3 Let U1(θ,G1) = (1 − θ) f1(G1) and U2(θ,G2) = θ f2(G2). Here, we
obtain p1 = f1(G1)/( f1(G1)+ f2(G2)). This is the additive CSF (5) for n = 2.

Example 4 Let U1(θ,G1) = f1(G1) and U2(θ,G2) = 2θ f2(G2) if θ ≤ 1/2, whereas
U2(θ,G2) = f2(G2)/(2(1−θ)) if 1/2 ≤ θ < 1. By analogous reasoning as before, we
obtain p1 = f1(G1)/(2 f2(G2)) if f1(G1) ≤ f2(G2) and p1 = 1− f2(G2)/(2 f1(G1))

otherwise. This expression is a generalization of the family of serial contests (8)
analyzed by Alcalde and Dahm (2007).

To derive a general result concerning what kind of CSFs can be derived from the
maximization of the payoffs of the decider we will now consider the class of CSF,
which are C

1 in R
n++. This leaves outside our study CSFs like (7), but includes (8)

when n = 2.
A difficulty in our study is that many well-known CSFs fail to be continuous when

Gi = 0 all i and constant in its own effort when G j = 0 all j �= i , e.g. (1). A way to
solve these problems is to stay away from the troublesome boundaries of R

n+ as we
do in Definitions 1 and 2.

Definition 1 pi = pi (G) is regular if for all G ∈ R
n++, ∂pi (G)/∂Gi > 0 and

∂pi (G)/∂G j < 0 for all j �= i .

Notice that the CSFs in (1)–(4) and (6) are regular. The one in (5) is regular if we
assume, as in Szidarovsky and Okuguchi (1997), that f

′
i (Gi ) > 0 and fi (0) = 0 for

all i ∈ N . The CSF given in (8) is regular if n = 2.

Definition 2 The CSF {p1(G), p2(G), . . . , pn(G)} is rationalizable if there is a list
of payoff functions Ui (θ,Gi ) strictly increasing on Gi , i = 1, 2, . . . , n such that for
any Ĝ ∈ R

n++,

pi (Ĝ) = probability{Ui (θ, Ĝi ) > U j (θ, Ĝ j ),∀ j �= i}, for i = 1, . . . , n.

We need the following assumption:

Assumption 1 pi → 1 when Gi → ∞ and pi → 0 when Gi → 0.

It is easy to check that Tullock’s CSF (1) satisfies Assumption 1 (A.1 in the sequel).
Also the additive CSF (5) satisfies A.1 when fi (Gi ) are strictly positive for strictly
positive values of efforts, fi → ∞ when Gi → ∞ and fi → 0 when Gi → 0. It
is fulfilled by the serial CSF in (8) and the form in (6) includes cases where A.1 is
satisfied. Now we can prove the following:

Proposition 1 If A.1 holds and p1(G1,G2) is regular, it is rationalizable by a pair
of payoff functions fulfilling the single crossing condition. If p1(G1,G2) is ratio-
nalizable by a pair of payoff functions fulfilling the single crossing condition and
∂pi (G)/∂G j �= 0 for all i, j , it is regular.

Proof Suppose p1(G1,G2) is regular. Notice that this implies that for any G ∈ R
2++,

pi ∈ (0, 1). Let f (p1,G1,G2) ≡ p1− p1(G1,G2). Fix p1 and G2, say p̄1 and Ḡ2. By
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88 L. Corchón, M. Dahm

A.1, we have that f ( p̄1,G1, Ḡ2) < 0 for G1 sufficiently large and f ( p̄1,G1, Ḡ2) > 0
for G1 sufficiently close to zero. By the intermediate value theorem, there is a G1 such
that f ( p̄1,G1, Ḡ2) = 0. By the definition of a regular CSF this value of G1, say Ḡ1,
is unique. This means that there is a unique function H such that G1 = H(p1,G2).
Since ∂ f (p1,G1,G2)/∂G1 < 0, by the implicit function theorem H is continuous
in the neighborhood of ( p̄1, Ḡ2). Since this point is arbitrary, H is continuous for all
(p1,G2). Let U1 = G1 and U2 = H(θ,G2). Because p1(G1,G2) is regular, H is
strictly increasing on θ and G2. Also U1 is strictly increasing on G1 and constant on
θ ; so, the SC assumption holds. By construction, θ ′ (as defined in Eq. 10) equals p1;
thus, p1(G1,G2) is rationalizable.

Assume now that p1(G1,G2) is rationalizable by a list of payoff functions fulfilling
the single crossing condition (SC). Rationalizability implies that for any (Ĝ1, Ĝ2) we
have p1(Ĝ1, Ĝ2) = θ ′ (as defined in Eq. 10). Moreover, as U1 is strictly increasing on
G1 and by the single crossing condition (SC) U2 is strictly increasing on θ , we have
that p1 is strictly increasing in G1. The opposite holds when G2 is increased; so, the
result follows from ∂pi (G)/∂G j �= 0. 
�

We show now that the condition that the partial derivatives do not vanish cannot be
dispensed with.

Example 5 Consider the following smooth difference-form contest between two con-
testants:

p1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if G1 − G2 ≥ 1

1
2 + 1

2 e

{
−(G1−G2−1)2

1−(G1−G2−1)2

}

if 1 > G1 − G2 ≥ 0

1
2 e

{
−(G1−G2)

2

1−(G1−G2)
2

}

if 0 ≥ G1 − G2 > −1

0 if −1 ≥ G1 − G2

and p2 =1 − p1. (11)

As in (7), the win probability might be zero–even for positive effort. Contrary to
(7) it is C

1. Notice that for |G1 − G2| ≤ 1, p1 is strictly monotonic. However,
when G1 = G2 the derivative vanishes. So, this CSF is not regular. Define U1 =
G1 + √

(− ln x)/(1 − ln x) − a, where (x, a) = (2θ, 0) if 0 < θ ≤ 1/2 and
(x, a) = (2θ − 1, 1) if 1/2 < θ ≤ 1.6 Let U2 = G2. Notice that SC holds. Straight-
forward manipulations show that this pair of utility functions rationalizes the smooth
difference-form contest in (11).

2.2 More than two contestants

In the case of three contestants, the previous argument does not yield microfounda-
tions for the additive CSF (5). There are two reasons for that, which are explained
in Propositions 2 and 3 below. The first result shows that it might be impossible to

6 One might also define U1 = G1 + 1, when θ = 0.
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Foundations for contest success functions 89

partition � in n nonempty intervals, which is what is implied by the SC assumption.
The second result shows that even if such a partition is assumed, the win probability
of a given contestant might not be responsive to changes in the efforts of all other
contestants, as in (5). First, we need the following assumption:

Assumption 2 Ui (θ,Gi ) are continuous and Ui (θ,Gi ) → ∞ when Gi → ∞,
i = 1, 2, . . . , n.

This assumption (A.2 in the sequel) is fulfilled in the payoff functions used in
Examples 1 and 2 before. In the case of Examples 3 and 4, this assumption is fulfilled
if fi (Gi ) → ∞ when Gi → ∞, which is the case in (1). Thus, it looks like a pretty
harmless assumption. However, its consequences are not.

Proposition 2 Under Assumption A.2, and when n = 3, the additive CSF (5) cannot
be obtained from payoff maximization when SC holds for players 1 and 2.

Proof Let U ′
3(G3) = max U3(θ,G3), θ ∈ �. The maximum exists and varies contin-

uously with G3 (by Berge’s maximum theorem). By taking G1 and G2 large enough,
say G ′

1 and G ′
2, the property (SC) and A.2 imply that there is a θ̄ , such that

U1(θ,G ′
1) > U

′
3(G3), ∀θ ∈ [0, θ̄ )

U2(θ,G ′
2) > U ′

3(G3), ∀θ ∈ (θ̄ , 1].

Thus, player 3 never obtains the prize. Moreover, because U ′
3(·) is continuous in G3,

small variations in G3 do not affect neither p1 nor p2, thus the result. 
�
Similar results can be obtained for n > 3 by extending suitably the SC condition.

However, as the next result shows, even weak generalizations of the SC condition
cause lack of rationalizability of the additive CSF (5) even if Assumption A.2 is not
postulated. First let us consider the following generalization of SC.

Definition 3 A collection of payoff functions Ui (θ,Gi ) i = 1, 2, . . . , n satisfies the
Generalized Single Crossing (GSC) condition when for all G, there is a permutation
in the set of agents i, j, . . . , k and a partition of �, (�i ,�i j ,� j , . . . , �r ,�rk,�k)

such that �s = {θ | Us(θ,Gs) > Ur (θ,Gr ), ∀r �= s}, s = i, j, . . . , k, �sh =
{θ | Us(θ,Gs) = Uh(θ,Gh)}, with all �sh singletons for s, h = i, j, . . . , k.

Notice that, when n = 2, GSC is implied by SC.

Proposition 3 When the utility functions satisfy the GSC and are continuous, the
additive CSF (5) cannot be obtained from payoff maximization.

Proof We will prove the result for n = 3. The extension to n > 3 is straightforward.
Without loss of generality, let the permutation of N be 1, 2, 3. Then,

U1(θ,G1) > U j (θ,G j ), j = 2, 3, ∀θ ∈ �1

U2(θ,G2) > U j (θ,G j ), j = 1, 3, ∀θ ∈ �2

U3(θ,G3) > U j (θ,G j ), j = 1, 2, ∀θ ∈ �3.
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Thus, p1 = length �1, p2 = length �2 and p3 = length �3. It is clear that p1 (resp.
p3) does not depend on G3 (resp. G1) for small variations of this variable. Thus, the
required functional form cannot be obtained in this case. 
�

Notice that the results in Propositions 2 and 3 do not depend on F(θ) being uniform.
The reason is that given an interval [a, b] different distributions assign different prob-
ability mass F(b) − F(a). However, in these results, it is crucial that the delimiters
a and b do not depend on the effort of one contestant. When there are two agents,
delimiters depend on both contestants, because each agent competes with the other,
but when there are three or more agents, some agents may compete with a subset of
other agents and not with all of them.

Albeit this difficulty in deriving the additive CSF (5) for more than three contes-
tants, contestants’ uncertainty about the type of the contest administrator seems to
be a reasonable approach to CSFs. Therefore, it is an important research program
to find CSFs that are rationalizable according to Definition 2 and to work out the
consequences of these new functional forms on equilibrium, comparative statics, etc.
We show now that although this route appears to be promising, it is not free from
difficulties. We will work out two examples and we will show that in both cases, the
following holds7

• CSFs are neither differentiable nor concave.
• Despite the symmetric nature of basic data, no symmetric Nash equilibrium exists.

Example 6 Let U1(θ,G1) = (1−θ)G1, U2(θ,G2) = G22/3 and U3(θ,G3) = θG3.
Notice that if G1 = G2 = G3, p1 = p2 = p3 = 1/3. We will compute the best reply
of contestant 1.
If G22/3 < G3, we have two cases: first, if G1 < G22/3, then p1 = 0; second, if
G1 ≥ G22/3, then

p1 =
{
(G1 − G22/3) /G1 if G1 < (G3G22/3) / (G3 − G22/3)

G1/(G1 + G3) otherwise.

If G22/3 ≥ G3, we again have two cases

p1 =
{

0 if G1 < G22/3

(G1 − G22/3) /G1 otherwise.

In a symmetric equilibrium Ĝ we have G1 ≥ G22/3 and G1 < (G3G22/3) /
(G1 − G22/3). Thus, contestant 1 maximizes V (G1 − G22/3)/G1 − G1, where V
is the value of the prize. If the equilibrium is symmetric, it must be at positive level
of effort. Thus, the maximum is interior and the first-order condition yields the best
reply, namely G1 = (V G22/3)1/2.
For Ĝ1 = Ĝ2, this yields Ĝ1 = V 2/3. We now have to make sure that this payoff is
larger than the payoff associated to G1 = 0 (yielding a p1 and a payoff equal to 0).
This is equivalent to Ĝ2 ≤ V 27/100, which contradicts Ĝ1 = Ĝ2 = V 2/3.

7 This may also happen for n = 2 (see Che and Gale 2000).
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Example 6 can be criticized, because the existence of endpoints (0 and 1) makes
contestants nonsymmetric. For instance, if G1 = G2 = G3, a variation of G2 affects
p1 and p3, but a variation of G1 only affects p2. Thus, we now adapt the model
of Salop (1979) of a circular city to our framework. Here, symmetry of the effects
of efforts is restored, since each contestant affects the win probability of all other
contestants.

Example 7 Suppose that three contestants are symmetrically distributed at locations
(l1, l2, l3) = (0, 1/3, 2/3) on the unit circle, which is now our set of states of the
world. Assume that Ui (θ,Gi ) = u − k |li − θ | + Gα

i , where u, k and α are pos-
itive scalars and α ≤ 1. Notice that when effort levels are similar, the relevant
competition is pairwise: 1 competes only with 2 (resp. 3) for θ ∈ [0, 1/3] (resp.
θ ∈ [2/3, 1]), while only 2 and 3 compete for θ ∈ [1/3, 2/3]. Thus, the state of the
world for which, given efforts, the decider is indifferent between candidates 1 and 2
is

θ12 = 1

6
+ 1

2k

(
Gα

1 − Gα
2

)
.

A similar reasoning in the case of 1 and 3 yields

θ13 = 5

6
+ 1

2k

(
Gα

3 − Gα
1

)
.

This implies that p1 = θ12 + 1 − θ13. To determine the CSF in general, suppose
without loss of generality that G1 ≥ G2 ≥ G3. If Gα

1 − Gα
3 ≥ k/3, then we obtain a

generalized version of Che and Gale’s two-player contest [given in (7)]

p1 = min

{
1

2
+ 1

k
(Gα

1 − Gα
2 ), 1

}

, p2 = 1 − p1 and p3 = 0;

and otherwise

pi = 1

3
+ 1

2k

(
2Gα

i − Gα
j − Gα

k

)
, for i = 1, 2, 3 and i �= j, k.

Assume α < 1. A symmetric equilibrium Ĝ requires that Ĝ1 maximizes 1’s payoffs,
given Ĝ2 and Ĝ3 and that Ĝ1 = Ĝ2 = Ĝ3. Thus, Ĝ1 maximizes p1V − G1, where
V is the value of the prize. If the maximum is interior, Ĝ1 = (αV/k)1/(1−α). Thus,
if payoffs of 1 for this value of efforts are negative, 0 effort is the best reply and no
symmetric equilibrium exists.

Note that it is straightforward to extend the last example to more than three con-
testants. The so derived CSF can be seen as an extension of Che and Gale’s linear
difference-form [given in (7)] to more than two contestants [see (9)].
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2.3 An alternative notion of rationalizability

The simple setting considered so far might be adapted in several ways to yield the
additive CSF (5) when there are more than three contestants: (i) The type of the
contest administrator might be multidimensional; (ii) the distribution function might
be nonuniform; (iii) the rationalizability notion might be different. Given that (i)
and (ii) have already be explored (e.g. in Hillman and Riley 1989), we pursue now
(iii).

Consider a situation where a contest administrator cares not only about the effort
of the winner of the contest but also about the effort of others. One might think of
the promotion of workers in a firm based on their performance or of firms competing
for a research prize based on R&D investment, which generates new knowledge. In
such a situation, the type of the decider represents how much he values the effort of a
particular contestant relative to the others. We present an example yielding a special
case of the additive CSF (5) for three contestants. This example can easily be extended
to more agents and to more general effectivity functions.

Example 8 Let U1 = (1 − θ)G1 − θ(G2 + G3), U3 = θG3 − (1 − θ)(G1 + G2) and
normalize U2 = 0. We have that

U1 ≥ U2 ⇔ θ ≤ θ12 ≡ G1

G1 + G2 + G3
,

U1 ≥ U3 ⇔ θ ≤ θ13 ≡ 2G1 + G2

2(G1 + G2 + G3)
,

U3 ≥ U2 ⇔ θ ≥ θ23 ≡ G1 + G2

G1 + G2 + G3
.

This yields

p1 = θ12 = G1

G1 + G2 + G3
,

p2 = θ23 − θ12 = G2

G1 + G2 + G3
,

p3 = 1 − θ23 = G3

G1 + G2 + G3
.

3 CSFs as sharing rules

Inspired by the second interpretation of the outcome of a contest as shares of the
prize, we establish now a connection to bargaining and claims problems. This can be
interpreted as contestants bargaining over all possible assignments of win probabili-
ties or over shares. If no agreement is reached, all win probabilities are zero. In our
approach, a variation in effort only affects the share of the prize. A more complete
theory might consider that the size of the prize is also affected. This allows taking
into account the opportunity cost of effort (see Anbarci et al. 2002; Garfinkel and
Skaperdas 2007).
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3.1 ‘Classical’ bargaining

A contest problem is a vector f (G) = ( f1(G1), . . . , fn(Gn))with at least two entries,
each of which is strictly positive.8 Since we consider a fixed vector of efforts G, we
will simply use the notation fi instead of fi (Gi ) and f instead of f (G). An alloca-
tion in a contest problem is a n-tuple p = (p1, . . . , pn) ∈ R

n with 0 ≤ pi ≤ 1 and∑n
i=1 pi = 1. A CSF is a function that assigns a unique allocation to each contest

problem.
We define now a bargaining problem associated with each contest problem. A bar-

gaining problem is a pair (S, d) where S ⊂ R
n is a compact convex set, d ∈ S, and

there exists s ∈ S such that si > di , i = 1, . . . , n. The set S, the feasible set, consists
of all utility vectors attainable by the n contestants through unanimous agreement.
The disagreement point d is the utility vector obtained if there is no agreement. In our
context, it seems natural to define

S =
{

p ∈ R
n

∣
∣
∣
∣
∣
0 ≤ pi ≤ 1 and

n∑

i=1

pi ≤ 1

}

and d = 0.

A bargaining solution is a function ψ assigning to each bargaining problem (S, d)
a unique element in S. We are interested in the weighted Nash solution with
weights α.

Definition 4 Let αi > 0 for all i = 1, . . . , n. The α-asymmetric Nash solution is
defined as

ψα = arg max
p∈S

n
�

i=1
(pi − di )

αi .

In this framework, it is natural that the effort of a contestant determines his
bargaining position. Suppose that efforts affect the exponents of the weighted Nash
bargaining solution as defined before. For simplicity, let α = f . The next result is
parallel to one obtained by Dagan and Volij (1993) in a different framework.9

Proposition 4 The α-asymmetric Nash solution for α = f induces the additive CSF
(5).

Proof Let f be a contest problem; consider the associated bargaining problem and
let ψα = p∗. The first-order conditions of the maximization problem defining the
asymmetric Nash solution with d = 0 imply that

p∗
j = α j

αi
p∗

i , for all i, j ∈ N .

8 If fi (Gi ) = 0 for some contestant i , assign zero win probability to this agent and consider the reduced
vector in which the entry corresponding to agent i is missing.
9 In the literature, the weighted Nash solution has also been interpreted as a decider maximizing a payoff
function. This is another example of the connections between the approaches taken in Sect. 2 and here.
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Given the Pareto optimality of the asymmetric Nash solution, we have that
∑n

j=1
p j =1. This implies p∗

i = αi/
∑n

j=1 α j . 
�
Since the preceding result sheds light on the additive CSF (5) from a very different

angle than the approach of the previous section, it is of interest on its own right. How-
ever, it also opens the door to understand CSFs as the outcome of strategic bargaining
models based on Rubinstein’s alternating offers game. Since it is well known that
under certain conditions the asymmetric Nash solution can be supported by such a
game, it follows that alternative conditions thought to reflect reasonable properties of
underlying institutional details can yield alternative CSFs.

3.2 Bargaining with claims

It might seem odd that, while the effort vector f defines a contest problem, this
information is not used in the description of the associated bargaining problem (S, d).
If we want to incorporate this information in the description of the problem, the rel-
evant framework is the one of bargaining problems with claims (Chun and Thomson
1992).10 A contest-bargaining problem is then a triple (S, d, f ) with the following
interpretation: contestants bargain over all possible assignments of win probabilities.
The contestants’ effectivity functions translate individual effort into an ‘aspiration
point’ f . Thus, f (G) measures the social merit that society or the decider awards to
the vector of efforts G.

If no unanimous agreement is reached, all win probabilities are zero. A contest-
bargaining solution φ assigns to each such triple a unique element in S. A maximal
point p of S is a point such that

∑n
j=1 p j = 1. The proportional solution is defined

as follows.

Definition 5 The proportional solution φP is defined as the maximal point p of S on
the segment connecting the disagreement point d and the aspiration point f .

Proposition 5 The proportional solution induces the additive CSF (5).

Proof Let f be a contest problem; consider the associated bargaining problem with
claims and let φP = p∗. The line that passes through the two points d and f is
the set of vectors x of the form x = (1 − t)d + t f , with t ∈ R. Since d = 0,
x = t f . Given that p∗ is a maximal point, we have that t = 1/

∑n
j=1 f j . This

implies p∗
i = fi/

∑n
j=1 f j . 
�

The richer description of bargaining problems with claims has allowed to define an
alternative solution that also explicitly builds on the aspiration point f . Bossert (1993)
analyzes the claim-egalitarian solution. For the purpose of the next proposition, it suf-
fices to consider the case of two contestants. The following definition is adapted to
our context, because in contest problems there is no upper bound on individual effort
levels, that is, f .

10 Notice that a contest problem is not equivalent to a bargaining problem with claims. One important
difference is that in contest problems there is no upper bound on individual effort levels, that is, f .
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Definition 6 Let n = 2 and fh ≥ fl , h, l = 1, 2. The claim-egalitarian solution φE

is defined as the maximal point p of S such that fh − ph = fl − pl if fh − fl ≤ 1.
Otherwise ph = 1 and pl = 0.

The claim-egalitarian solution selects a point on the Pareto frontier of S such that
the loss of each contestant compared with his aspiration level is the same for all agents
(if such a point exists). This is an egalitarian solution in the sense that the absolute
amount each agent has to give up is equalized across contestants. The next proposition
says that this idea is the same as saying that only differences in effort matter.

Proposition 6 For n = 2, the claim-egalitarian solution induces a generalization of
Che and Gale’s difference-form CSF, that is,

φE
i = pCG ′

i (G) = max

{

min

{
1

2
+ 1

2

(
fi − f j

)
, 1

}

, 0

}

for i = 1, 2.

Proof The fact that if | fi − f j | ≥ 1 then φE
i = pCG ′

i (G) is obvious. Suppose
| fi − f j | ≤ 1. Since p j = 1 − pi , we have fi − pi = f j − (1 − pi ). Rearranging
yields the desired expression. 
�

Notice that when fi (Gi ) = 2σGi , for i = 1, 2, where σ is a positive scalar, we
obtain (7), the class of linear difference-form functions analyzed by Che and Gale
(2000). Notice that it is straightforward to extend the last result to more than two con-
testants [see (9)].11 Interestingly, this recommendation differs in the minimal effort
necessary to obtain a nonzero share and in the marginal effect of effort from the one
based on Example 7.

Definition 6 equalizes losses based on absolute claims. This creates the ‘kink’ and
the nonresponsiveness of Che and Gale’s CSF to effort when the difference in aspi-
ration levels is high enough. Considering relative claims, this can be avoided. Notice
that fi/ fh (for i = 1, . . . , n) indicates the percentage contestant i’s aspiration level
fi constitutes of the highest level fh .

Definition 7 Let n = 2 and w.l.o.g. denote fh = max{ f1, f2}. The relative
claim-egalitarian solution φRE is defined as the maximal point p of S such that
f1/ fh − p1 = f2/ fh − p2.

The relative claim-egalitarian solution selects a point on the Pareto frontier of S
such that the loss of each contestant compared with this ‘relative claim point’ is the
same for all agents. The next proposition relates this idea to the serial CSF.12

11 For n = 3 and f1 ≥ f2 ≥ f3, it is natural to require the following. If f1 − f2 ≥ 1, then p1 = 1
and p2 = p3 = 0. If f1 − f3 ≥ 1 > f1 − f2, then φE is the maximal point p of S such that p3 = 0
and f1 − p1 = f2 − p2. Lastly, when f1 − f3 < 1, then φE is the maximal point p of S such that
f1 − p1 = f2 − p2 = f3 − p3.

12 This reasoning can easily be extended to more contestants. However, the requirement that fi / fh − pi =
fi+1/ fh − pi+1 for all i = 1, . . . , n − 1 does not always yield well defined win probabilities. A way out
is the following. Consider an ordered vector f1 ≥ f2 ≥ · · · ≥ fn and rescale the ‘relative claim point’ to
make the pairwise comparisons fi /(i · fh) − pi = fi+1/(i · fh) − pi+1 for all i = 1, . . . , n − 1. This
coincides with Definition 7 when there are two agents and yields a generalization of the serial CSF for any
number of contestants.
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Proposition 7 For n = 2 and f1 ≥ f2, the relative claim-egalitarian solution induces
a generalization of the serial CSF, that is,

φRE
i = pS′

i (G) =
2∑

j=i

f j − f j+1

j · fh
for i = 1, 2 and f3 = 0.

Proof W.l.o.g. assume f1 ≥ f2. We have that 1− p1 = f2/ f1 − p2 = f2/ f1 −1+ p1.
This can be rewritten as p1 = 1 − f2/(2 f1) = ( f1 − f2)/ f1 + f2/(2 f1). Since φRE

must be a maximal point, we obtain p2 = f2/(2 f1). 
�

4 Concluding remarks

In line with two prominent interpretations of the outcome of contests, this paper has
investigated foundations for prominent CSFs based on two different approaches. The
first analyzes the implications of contestants’ incomplete information concerning the
‘type’ of the contest administrator. The second understands CSFs as sharing rules
and makes a connection to bargaining and claims problems. Both approaches provide
foundations for popular CSFs and guidelines for the definition of new ones. The results
of this paper suggest two lines for future research on CSFs.

On the normative side, the implications of linking the problem of assigning win
probabilities in contests to bargaining, claims and taxation problems are twofold.

It might yield an improved understanding of existing CSFs. For instance, pro-
portionality principles have been defended at least since the philosophers of ancient
Greece. Therefore, it seems possible to obtain different characterizations of the addi-
tive CSF (5) using ideas of characterizations of proportionality stressed in these related
problems.13

It suggests guidelines for the definition of new CSFs, since different normative
principles might lead to the formulation of different classes of CSFs. A case in point
here is the claim-egalitarian solution that gives a recommendation as to how to extend
the difference-form functions analyzed by Che and Gale (2000) to more than two
contestants.

On the positive side, the implications for future research parallel the normative
ones.

Solution concepts in bargaining, claims and taxation problems that can be related to
popular CSFs might yield rationales for the latter. An example is to link contests with
the Bilateral Principle that has proved a fruitful way to incorporate Luce’s Choice
Axiom into game theory. Dagan et al. (1997) have provided a game form captur-
ing the non-cooperative dimension of the consistency property of bankruptcy rules.14

13 Note that the class of problems in which win probabilities are assigned has a particularly simple structure.
This implies that a characterization of a solution for a larger class of problems does not need to characterize
a solution for contests.
14 Notice that a contest problem is not equivalent to a bankruptcy problem in which the estate is equal
to one, since in contest problems there is no lower bound on the sum of individual effort levels, that is,∑n

j=1 f j .
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An adaptation of their result in our framework shows that the additive CSF (5) can be
supported by a pure strategy subgame perfect equilibrium of a certain non-cooperative
game.

By incorporating realistic details of contest situations, novel CSFs can be derived.
Examples are the recommendation of the circular model in Example 7 as to how to
extend Che and Gale’s difference-form function to more than two contestants or the
effects of modifying Rubinstein’s alternating offers bargaining game.

Lastly, we remark that there is no straightforward generalization of the single-cross-
ing property that would generalize the results of Sect. 2.1 to more than two contestants.
In any case, there might be a way to allow for conditional preferences over subsets of
players (e.g. in the spirit of Luce’s Choice Axiom) that would allow for a representation
theorem. We leave this to future research.
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