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Abstract In many contests, players can influence their chances of winning through
multiple activities or “arms”. We develop a model of multi-armed contests and axio-
matize its contest success function. We then analyze the outcomes of the multi-armed
contest and the effects of allowing or restricting arms. Restricting an arm increases
total effort directed to other arms if and only if restricting the arm balances the contest.
Restricting an arm tends to reduce rent dissipation because it reduces the discrimina-
tory power of the contest. But it also tends to increase rent dissipation if it balances the
contest. Less rent is dissipated if an arm is restricted as long as no player is excessively
stronger than the other with that arm. If players are sufficiently symmetric in an arm,
both players are better off if that arm is restricted. Nevertheless, players cannot agree
to restrict the arm if their costs of using the arm are sufficiently low.
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1 Introduction

In many real-life contests, players have more than one way to influence their chances of
winning. For example, firms may be able to obtain rents from the government not only
by improving their efficiency, but also by lobbying or even bribing government officials
(Tullock 1980; Krueger 1974). Within a firm, employees can attempt to influence
the promotion decisions of managers or executives by means other than quality or
quantity of work (Milgrom 1988; Eguchi 2005). Job seekers can invest in expensive
suits and engage in networking (Granovetter 1974; Montgomery 1991). In sports,
players can use drugs to enhance their athletic performance (Berentsen 2002; Maennig
2002). Researchers can increase their chances of publication by improving their paper’s
exposition as well as its content. And so on.

In this paper, we analyze contests in which players can affect their probability of
winning through engaging in multiple activities or multiple “arms” of activity. We
develop a simple model of two-player multi-armed contests, and provide an axiomati-
zation of the model’s contest success function. Our axiomatization of the multi-armed
contest follows and extends the axiomatization by Skaperdas (1996) and Clark and
Riis (1998) of the standard Tullock one-armed contest. The Tullock one-armed contest
is obtained as a special case of the multi-armed contest by imposing a tight common
cap on all arms but one. We analyze the outcomes of the multi-armed contest, inclu-
ding equilibrium effort levels and rent dissipation, and the effects on these outcomes
of allowing or restricting arms.

Many interesting results emerge. In the case of symmetric players, rent dissipation
is always higher if another arm is allowed into play. In general, if neither player
is significantly stronger than the other with an arm, then more rent is dissipated in
the contest with that arm than in the contest without it. Intuitively, an extra arm has
two potentially opposing effects. First, it raises total effort costs because it increases
the discriminatory power of the contest. But, second, it lowers total effort costs if it
unbalances the contest, and raises total effort costs if it balances the contest. As long
as an arm is not too asymmetric between players, it cannot sufficiently unbalance
the contest, and therefore it raises total effort costs. In this case, players’ total payoff
increases if use of the arm is restricted. Restricting an arm increases players’ efforts
with other arms if and only if restricting the arm balances the contest. Restricting an
arm yields a Pareto improvement if the arm is sufficiently symmetric between players.
However, players have a unilateral incentive to break any agreement to restrict an arm
if their costs of using the arm unrestricted are sufficiently low.

These findings suggest that rent dissipation might be a greater problem in contests in
which participants have more than one activity by which to influence the outcome. For
example, firms seeking rents from the government may be able to obtain them not only
by improving their own efficiency but also by lobbying government officials, which
may be a source of considerable rent dissipation for firms. The additional competition
over lobbying would increase the discriminatory power of the contests between the
firms, which would tend to increase total effort expenditures. Moreover, if the firms
with superior means of improving efficiency also have superior means of lobbying,
but their superiority in lobbying is not exceedingly great, then allowing lobbying
would unbalance the contests, which would reduce total effort spent on improving
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efficiency, but would not unbalance the contests enough to counter the effect of the
additional competition over lobbying; and as a result, total effort expenditures would
rise overall. Restricting lobbying would then not only reduce rent dissipation but also
increase total effort spent on efficiency improvements. However, government officials
may have little incentive to restrict competition in lobbying because lobbying directly
transfers rents to them. Firms could mutually agree to restrict competition on their
own, but this is unlikely if some firms have greater means of lobbying than others.
Efficient restrictions on lobbying may then be implementable only through the courts.

The rest of the paper is organized as follows. Section 2 briefly discusses related
literature. In Sect. 3, we axiomatize the contest success function of a multi-armed
contest model. In Sect. 4, we derive the equilibrium outcomes of the multi-armed
contest. In Sect. 5, we analyze the effects of allowing or restricting an arm on rent
dissipation and total efforts directed to other arms. We also derive conditions under
which both players are better off if an arm is banned, and conditions under which
players would not unilaterally violate a cap on the use of an arm. Section 6 summarizes
and suggests avenues for future research.

2 Related literature

Starting with the seminal contributions of Tullock (1980), Krueger (1974), Posner
(1975), and Bhagwati (1982), an extensive economics literature has formally analyzed
the properties of various types of contests. Nitzan (1994) and Tollison (1997) provide
detailed surveys. Among the more recent contributions, Skaperdas and Syropoulos
(1998) analyze contests with complementarity between effort and prize; Nti (1999)
analyzes contests with asymmetric prize valuations; Stein (2002) studies multi-player
asymmetric contests with a constant returns success function; Baik (2004) studies
two-player asymmetric contests where the success function depends on the ratio of
the players’ efforts and an exogenous measure of their relative ability; and Cornes
and Hartley (2005) examine multi-player asymmetric contests with general success
functions.

Our paper extends the contest literature by considering the possibility that players
might exert effort in more than one activity to increase their probability of winning
the contest. Most existing studies assume that players can affect their chances of
winning through only one arm. Important exceptions include the studies by Konrad
(2000), Chen (2003), Krakel (2005), and Amegashie and Runkel (2007) on sabotage
in contests. In their models, players exert effort to improve their own performance, but
also exert effort to sabotage their opponent’s performance. In our model, players exert
effort in multiple activities, each of which can improve their own performance (e.g.,
investment and lobbying by firms seeking government contracts). In the pioneering
conflict models of Hirshleifer (1991) and Skaperdas and Syropoulos (1997), competi-
tors allocate their endowments between two activities, production and appropriation,
but their probability of winning the final product depends only on their relative efforts
in appropriation.

A paper more closely related to ours is Epstein and Hefeker (2003). They analyze
a model of contests with two instruments, both of which can influence the outcome.
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26 M. Arbatskaya, H. M. Mialon

However, our model is different from theirs in several crucial respects. The contest
success function that we employ is different, and we provide an axiomatic justification
for it. Moreover, and perhaps most importantly, we allow players to be asymmetric
in every arm. Most of the results in our paper can only be obtained within this more
general framework. We also analyze players’ incentives to agree not to use an arm.
And our results apply more generally to contests with more than two arms.

In our paper, we analyze the effects of restricting use of an arm in contests with
more than one arm. Several papers analyze the effects of capping activity in contests,
with interesting results. Che and Gale (1998) study the effect of exogenous lobbying
caps on campaign expenditures in political contests, finding that caps can perver-
sely increase expenditures. Gavious et al. (2002) study endogenous bid caps in all-
pay contests, finding that caps increase the organizers’ profits if bidders’ marginal
costs are sufficiently increasing. These papers analyze caps in one-armed contests
only.

3 Axiomatization of K -armed contests

Consider two players, each having several arms (or activities) by which to influence
the outcome of an all-pay contest. Player i ∈ {1, 2} exerts effort xik ∈ R+ in activity
k ∈ {1, . . . , K } to increase her chances of winning a prize that each player values at
v > 0.1 The marginal cost of effort for player i in the kth arm is constant and denoted
by cik > 0. Players can be asymmetric in each arm. Let xi denote the vector of player
i’s efforts with each arm in a K -armed contest, where xi = (xi1, . . . , xi K ).

Player i’s payoff in a K -armed contest with constant marginal costs of effort is
then:

�i (x1, x2) = pi (x1, x2) v −
K∑

k=1

cik xik, (1)

where pi (x1, x2) is player i’s contest success function (CSF), or player i’s winning
probability as a function of both players’ efforts in each of the activities, (x1, x2) ∈
R

2K+ , i = 1, 2.
Skaperdas (1996) and Clark and Riis (1998) axiomatize the CSF for one-armed

symmetric and asymmetric contests, respectively. Extending the work by Skaperdas
and Clark and Riis, we axiomatize the CSF for multi-armed contests. Our approach
to axiomatizing the CSF for two-player multi-armed contests is to consider a contest
with three potential players, i ∈ I ≡ {1, 2, 3}, and examine subcontests between any
two of these players. Let x = (x1, x2, x3) ∈ R

3K+ denote the vector of three players’
efforts in all arms and x−i denote the vector of all but player i’s efforts in all arms.
Let p(2)

i (x1, x2) and p(3)
i (x1, x2, x3) be player i’s winning probabilities in a two-

player and a three-player contest, respectively. To simplify, we will use the same
notation pi to denote player i’s winning probabilities in a two-player and a three-player

1 We use the standard notations R+ and R++ for nonnegative and positive real number sets, respectively.
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contest, and distinguish between them by the number of arguments, that is, p(2)
i (x1, x2)

= pi (x1, x2) and p(3)
i (x1, x2, x3) = pi (x1, x2, x3). Let pi (x1, x2, x3 = 0) be player

i’s winning probability when player 3’s vector of efforts x3 is replaced with x3 = 0. To
derive results for the two-player contest from the three-player contest, we will assume
that the ratio of the winning probabilities of any two players is independent of the
efforts of the third player (independence from irrelevant alternatives) and that player
i’s CSF in a two-player contest is equal to player i’s CSF in a three-player contest
where the third player is inactive, i.e., pi (x1, x2, x3 = 0) = pi (x1, x2) for i = 1, 2.
We will formally state these properties as axioms below.

We first introduce the following basic axioms for multi-armed contests:

Axiom 1 (i) For all i ∈ I and x ∈ R
3K+ , pi (x) ≥ 0 and

∑
i∈I pi (x) ≤ 1.

(ii) For all i ∈ I , if xi ∈ R
K++ and x−i ∈ R

2K+ , then pi (x) > 0.
(iii) For all i ∈ I , if xi = 0 and x−i ∈ R

2K+ , then pi (x) = 0.
(iv) If xi ∈ R

K++ and x−i ∈ R
2K+ for some i ∈ I , then

∑
i∈I pi (x) = 1.

According to Axiom 1 (i), no matter what efforts players are choosing, any player’s
probability of winning is nonnegative, and the sum of all players’ probabilities of
winning cannot exceed one because there is only one prize to allocate. According to
Axiom 1 (ii), if player i puts in positive effort in all arms, then no matter what efforts
other players are choosing, player i’s probability of winning is positive. Axiom 1
(iii) states that if a player puts no effort in all arms, i.e., is inactive, then the player’s
probability of winning is zero no matter what efforts other players are choosing.
Axiom 1 (iv) states that, as long as there is a player who puts positive efforts in all
arms, the players’ winning probabilities sum to one.

Additionally, we introduce the following two choice axioms:

Axiom 2 For all i �= j �= k ∈ I , the odds ratio
pi (x)

p j (x)
does not depend on xk for

xi ∈ R
K+ , x j ∈ R

K++, and xk ∈ R
K+ .

Axiom 3 For all i = 1, 2 and (x1, x2) ∈ R
2K+ , pi (x1, x2) = pi (x1, x2, x3 = 0).

Axiom 2 is a version of the independence from irrelevant alternatives property for
contests. It says that the ratio of any two players’ winning probabilities is independent
of the third player’s efforts. Axiom 3 says that in a two-player contest, the CSFs of
players 1 and 2 are the same as their CSFs in a three-player contest in which the third
player is inactive.

Note that Axiom 1 states basic properties of CSFs for three-player contests,
pi (x1, x2, x3). By Axiom 3, CSFs for two-player contests are the same as the CSFs for
corresponding three-player contests with an inactive third player, i.e., pi (x1, x2) =
pi (x1, x2, x3 = 0) for i = 1, 2 and (x1, x2) ∈ R

2K+ . Setting x3 = 0 in the statements
of Axiom 2, and using Axiom 3, we obtain the corresponding statements for CSFs
in two-player contests. More precisely, if Axiom 3 holds, then Axiom 1 (ii) holds
for two-player contests, that is, for all i = 1, 2, if xi ∈ R

K++ and x−i ∈ R
K+ , then

pi (x1, x2) > 0, and Axiom 1 (iii) also holds for two-player contests, that is, for all
i = 1, 2, if xi = 0 and x−i ∈ R

K+ , then pi (x1, x2) = 0. If Axiom 3 holds and
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Axiom 1 (iii) hold, then Axiom 1 (i) holds for two-player contests, that is, for all
i = 1, 2 and (x1, x2) ∈ R

2K+ , pi (x1, x2) ≥ 0 and p1(x1, x2) + p2(x1, x2) ≤ 1, and
Axiom 1(iv) also holds for two-player contests, that is, if xi ∈ R

K++ and x−i ∈ R
K+

for some i = 1, 2, then p1(x1, x2) + p2(x1, x2) = 1. Thus, under Axiom 3, if the
CSF properties stated in Axiom 1 hold for three-player contests, then they also hold
for two-player contests.

We now show that Axioms 1 through 3 imply the logit (additive) representation of
players’ CSFs in two-player K -armed contests:

Lemma 1 Assume Axioms 1 through 3 hold. Then player i’s CSF in a two-player
K -armed contest has the logit form

pi (x1, x2) = fi (xi )

f1 (x1) + f2 (x2)
(2)

if x1 ∈ R
K++ or x2 ∈ R

K++; and if x1 ∈ R
K+\R

K++ and x2 ∈ R
K+\R

K++, then pi (x1, x2)

is such that pi (x1, x2) ≥ 0 , p1(x1, x2) + p2(x1, x2)≤1, and pi (x1, x2)=0 if xi =0.
Player i’s production function fi (xi ) satisfies fi (xi ) ≥ 0 for xi ∈ R

K+ , fi (0) = 0,
and fi (xi ) > 0 for xi ∈ R

K++, i = 1, 2.

Proofs of all results are presented in the “Appendix”. Two additional axioms are
formulated for two-player K -armed contests:

Axiom 4 For all i = 1, 2 and k ∈ {1, 2, . . . , K }, pi (x1, x2) is nondecreasing in xik

for (x1, x2) ∈ R
2K+ and continuous and strictly increasing in xik for (x1, x2) ∈ R

2K++.

Axiom 5 For all i = 1, 2, k ∈ {1, 2, . . . , K }, and λ > 0,

pi (x11, . . . , λx1k, . . . , x1K , x21, . . . , λx2k, . . . , x2K ) = pi (x1, x2)

if (x1, x2) ∈ R
2K++.

Axiom 4 says that each player’s success probability is continuous and strictly increa-
sing with that player’s efforts in each activity if the efforts by both players in every
activity are positive; and otherwise, each player’s success probability is nondecreasing
with that player’s efforts in each activity. Axiom 5 is the homogeneity property, which
states that an equiproportionate change in both players’ efforts in an activity does not
affect players’ success probabilities. Note that if a CSF is homogeneous in each arm,
it is invariant to changes in units of measurement for each arm. That is, the probability
of a player’s winning is the same regardless of whether an arm’s effort is measured in,
say, hours or minutes.

Proposition 1 below shows that if Axioms 1 through 5 hold, players’ CSFs have
the logit representation with Cobb-Douglas (CD-type) production functions:

Proposition 1 Assume Axioms 1 through 5 hold. Then in a two-player K -armed
contest, player i’s CSF is pi (x1, x2) = fi (xi ) / ( f1 (x1) + f2 (x2)) with production
functions of CD-type fi (xi ) = γi

∏K
k=1 xαk

ik if x1 ∈ R
K++ or x2 ∈ R

K++, where γi > 0
and αk > 0; and if x1 ∈ R

K+\R
K++ and x2 ∈ R

K+\R
K++, then pi (x1, x2) is such that
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pi (x1, x2) ≥ 0, p1(x1, x2)+ p2(x1, x2) ≤ 1, pi (x1, x2) = 0 if xi = 0, and pi (x1, x2)

is nondecreasing in xik; i = 1, 2; k ∈ {1, 2, . . . , K }.
To further specify the winning probabilities at the boundaries, one can assume that
each player’s probability of winning is zero when both players have zero effort in at
least one arm.

Axiom 6 For all i = 1, 2, pi (x1, x2) = 0 if x1 ∈ R
K+\R

K++ and x2 ∈ R
K+\R

K++.

The symmetry or anonymity assumption on CSFs further restricts the form of the
CSF.

Axiom 7 For any (x1, x2) ∈ R
2K+ , p1(x1, x2) = p2(x2, x1).

CSFs are symmetric if players’ efforts, but not their identities, determine their
chances of winning. With CD-type CSFs, symmetry requires γi = γ , i = 1, 2. If
γ1 �= γ2, then for the same effort levels in each of the arms, the two players have
different probabilities of winning. Then players’ success probabilities depend on their
identities.

If Axioms 6 and 7 hold in addition to Axioms 1 through 5, then player i’s CSF is

pi (x1, x2) =
⎧
⎨

⎩

fi (xi )

f1 (x1) + f2 (x2)
if x1 ∈ R

K++ or x2 ∈ R
K++

0 if x1 ∈ R
K+\R

K++ and x2 ∈ R
K+\R

K++
, (3)

where fi (xi ) = γ
∏K

k=1 xαk
ik , i = 1, 2.

In the case of two arms, fi (xi ) = γ xα1
i1 xα2

i2 . Player i’s payoff in the two-armed
contest is

�i (x11, x12,x21, x22) =
(

xα1
i1 xα2

i2

xα1
11 xα2

12 + xα1
21 xα2

22

)
v − ci1xi1 − ci2xi2 (4)

for (x11, x12) ∈ R
2++ or (x21, x22) ∈ R

2++, and �i (x11, x12,x21, x22) = −ci1xi1 −
ci2xi2 otherwise.

A standard Tullock one-armed contest is obtained as the limit of the two-armed
contest with the second arm set equal to a common arbitrarily small value x2:

�i (x11, x12) = lim
x2→0

�i (x11, x2,x21, x2)

= lim
x2→0

(
xα1

i1 xα2
2

xα1
11 xα2

2 + xα1
21 xα2

2

)
v − ci1xi1 − ci2x2

=
(

xα1
i1

xα1
11 + xα1

21

)
v − ci1xi1. (5)

In general, a Tullock one-armed contest is obtained from the K -armed contest by
restricting K − 1 arms to common arbitrarily small caps xk , k ∈ {2, . . . , K }.
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4 Solution to K -armed contest

Suppose Axioms 1–7 hold. Then player i’s payoff in the two-player K -armed contest is

�i (x1, x2)=
⎧
⎨

⎩

f (xi )

f (x1)+ f (x2)
v−ci xi if x1 ∈R

K++ or x2 ∈R
K++

−ci xi if x1 ∈R
K+\R

K++ and x2 ∈R
K+\R

K++
, (6)

where f (xi ) = ∏K
k=1 xαk

ik is a homogeneous of degree α = ∑K
k=1 αk CD-type

influence production function, xi = (xi1, . . . , xi K ) is the vector of player i’s efforts
in all activities, and ci = (ci1, . . . , ci K ) is the vector of player i’s marginal costs of
effort; ci xi = ∑K

k=1 cik xik ; cik > 0, αk > 0, i = 1, 2, k ∈ {1, . . . , K }.
Let θk be player 2’s relative strength in activity k , θk ≡ (c1k/c2k)

αk , and �K be
player 2’s overall strength in the K -armed contest, �K ≡ ∏K

k=1 θk . Player 1’s relative
strength in activity k and overall strength are then θ−1

k and �−1
K , respectively. Player 1

has a stronger arm k (is more efficient in activity k) than player 2 when θk < 1. Player
1 is stronger overall in the K -armed contest when �K < 1. For example, if θk < 1
for all k ∈ {1, . . . , K }, player 1 is stronger in each arm (player 1 has an absolute
advantage), and stronger overall, �K < 1.

We say that the K th arm balances the contest when the favorite in the (K − 1)-
armed contest has a higher overall strength than the favorite in the K -armed contest.

That is, max
{
�K−1,�

−1
K−1

}
> max{�K ,�−1

K }. When the inequality is reversed, the

introduction of the K th arm unbalances the contest. Addition of the K th arm tends to
balance the contest if one player is stronger overall in the (K − 1)-armed contest and
the other player is stronger in the additional K th arm.

Players i = 1, 2 simultaneously and independently decide on effort levels and
the Nash equilibrium is a vector of players’ efforts in all K activities, x∗ ≡ (

x∗
1, x∗

2

)
,

which maximize each player’s payoff given the equilibrium effort levels chosen by the
opposing player; x∗

i ∈ R
K+ , i = 1, 2. Let X∗

k denote the equilibrium total effort by the
two players in arm k: X∗

k ≡ x∗
1k + x∗

2k . Denote by C∗ the total cost of effort expended

in the equilibrium by the two players with all of their arms: C∗ ≡ ∑2
i=1

∑K
k=1 cik x∗

ik .
Rent dissipation is then defined as D∗ ≡ C∗/v. Player i’s equilibrium probability
of winning and payoff in the K -armed contest are denoted by p∗

i and �∗
i . The total

equilibrium payoff is �∗ ≡ �∗
1 + �∗

2 = v (1 − D∗).
As shown by Baye et al. (1994, 1996), a pure-strategy Nash equilibrium does

not exist in Tullock one-armed contests if the discriminatory power of the contest
is greater than two, and the solution has to be sought in mixed strategies in this
case.2 Similarly, in the K -armed contest, there is no pure-strategy equilibrium for
α > 2, where α = ∑K

k=1 αk . We restrict our attention to cases where a pure-strategy
equilibrium exists.

Proposition 2 There exists a unique Nash equilibrium of the two-player K-armed
contest for α ∈ (0, 1] and for α ∈ (1, 2] and �K ∈ [(α − 1) , (α − 1)−1]. In the

2 Cornes and Hartley (2005) provide general conditions for the existence and uniqueness of pure-strategy
equilibrium in rent-seeking games.
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equilibrium, player i’s effort in activity k is x∗
ik = αk

cik
v�K (1 + �K )−2, player i’s

cost of effort in activity k is cik x∗
ik = αkv�K (1 + �K )−2, the total effort in activity

k is X∗
k = x∗

1k + x∗
2k = αkv

(
1

c1k
+ 1

c2k

)
�K (1 + �K )−2, and rent dissipation is

D∗ = C∗/v = 2α�K (1 + �K )−2 ∈ (0, 1]; i = 1, 2, k ∈ {1, . . . , K }.
The discriminatory power, α = ∑K

k=1 αk , increases as additional arms are introdu-
ced. Thus, the restriction on the relative overall strength of players that guarantees the
existence of the unique pure-strategy equilibrium becomes more stringent with more
arms. By focusing on cases where a pure-strategy equilibrium exists, we implicitly
focus on multi-activity contests in which the number of activities over which players
compete is not too large.

From Proposition 2’s proof, player i’s equilibrium payoff is �∗
i = p∗

i v − ci x∗
i with

p∗
i =

(
1 + ∏K

k=1

(
cik
c jk

)αk
)−1

and ci x∗
i = αv�K (1 + �K )−2, i = 1, 2. Clearly, �∗

i ,

x∗
ik , and C∗ are proportional to v , i = 1, 2, k ∈ {1, . . . , K }. Corollary 1 provides

other comparative statics.3

Corollary 1 For two contests with the same overall players’ strength, the one with
the higher discriminatory power, α, has higher equilibrium total cost of effort and rent
dissipation. For two contests with the same α, the one that is more balanced (i.e., in
which the stronger player has a smaller overall strength) has higher total cost and
rent dissipation. For any given α, total cost and rent dissipation are maximized, and
the total payoff is minimized, when players are symmetric overall, �K = 1. Player i’s
effort with each arm decreases with i’s marginal cost of that arm. Player i’s cost of
effort with each arm and payoff depend only on the overall relative strength of players
and not on the levels of costs.

We now turn to the effects of allowing or restricting arms in multi-armed contests.

5 K -armed versus (K − 1)-armed contest

Consider the multi-armed contest analyzed above. Suppose the use of the K th arm is
restricted by a common arbitrary small cap x K , which is binding for both players.4 We
compare the outcomes with and without the restriction, that is, we analyze the effects
of allowing or restricting the K th arm, holding the other K − 1 arms the same (that
is, their marginal costs are the same and they are equally influential with or without
the restriction).

5.1 Rent dissipation and total payoff

The addition of arm K has two effects on the total cost of effort and rent dissipation.
First, it increases the discriminatory power of the contest, α = ∑K

k=1 αk , which

3 Nti (1997) provides comparative statics for the standard one-armed contest.
4 With a common cap on an arm, both players still choose positive efforts with every arm, because if
any player were to choose zero effort with at least one arm, then the player could increase her payoff by
increasing by epsilon her effort with each of those arms for which she had chosen zero effort.
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tends to increase effort cost and rent dissipation (see Corollary 1). Second, it can
balance or unbalance the contest. If no player has an absolute advantage and the
overall favorite in the K -armed contest has a lower relative strength than the favorite
in the (K − 1)-armed contest, then arm K balances the contest. In this case, arm K
unambiguously increases effort cost and rent dissipation. But if the overall favorite in
the K -armed contest has a higher relative strength than the favorite in the (K − 1)-
armed contest, as would be the case, for example, when one of the players has an
absolute advantage, then arm K unbalances the contest, which tends to reduce effort
cost and rent dissipation.

The K -armed and (K − 1)-armed contests cannot be ranked unambiguously with
respect to the total effort cost, rent dissipation, or the total payoff. However, in the
following proposition, we present the necessary and sufficient conditions for the total
effort cost and rent dissipation to be higher, and the total payoff to be lower, in the
K -armed contest. In the proposition, we use notation α(K ) = ∑K

k=1 αk and α(K−1) =∑K−1
k=1 αk to distinguish between the discriminatory power of K -armed and (K − 1)-

armed contests.

Proposition 3 The equilibrium total payoff is lower while the total cost of effort
and rent dissipation are higher in the K -armed contest than in the (K − 1)-armed
contest if and only if the asymmetry in the players’ relative strength in the K th arm is
sufficiently small: θK ∈ (g1(�K−1), g2(�K−1)), where 0 < g1(�K−1) <

α(K−1)

α(K )
< 1

and 1 <
α(K )

α(K−1)
< g2(�K−1) < ∞.

The exact expressions for the boundaries g1(�K−1) and g2(�K−1) are presented
in the “Appendix”. The total payoff is lower in the K -armed than in the (K − 1)-
armed contest as long as neither player is excessively stronger than the other with
arm K , that is, for intermediate values of players’ relative strength in arm K , θK ∈
(g1(�K−1), g2(�K−1)). Arm K then reduces the total payoff because it cannot suffi-
ciently unbalance the contest to counter its effect on the discriminatory power of the
contest. In this case, the total payoff unambiguously increases if the players cannot
use arm K .

In special cases, we can obtain further results on the extent of rent dissipation
in K -armed contests. According to Proposition 2, the equilibrium rent dissipation
in the K -armed contest is D∗ = 2α�K (1 + �K )−2, where α = ∑K

k=1 αk and
�K = ∏K

k=1 (c1k/c2k)
αk . If players are symmetric in arm K , rent dissipation is

necessarily higher in the contest with arm K than in the one without it. If players
in a K -armed contest have equal overall strength, �K = 1, then D∗ = α/2 ≤ 1,
where the inequality is satisfied since α ≤ 2 is necessary for the existence of the
pure-strategy equilibrium. As additional symmetric arms are introduced, the discrimi-
nating power of the contest, α = ∑K

k=1 αk , grows until it approaches 2, in which case
complete rent dissipation occurs.

In the standard symmetric two-player one-armed contest, full dissipation occurs
only if the given discriminatory power of the contest is equal to (or exceeds) 2.5 In the

5 See Baye et al. (1999) for an analysis of the conditions for full or over-dissipation in the symmetric
Tullock one-armed contest.
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symmetric two-player multi-armed contest, the discriminatory power of the contest
depends on the number of arms, and full dissipation occurs if the number of arms is
large enough for the discriminatory power of the contest to reach 2.

When players are symmetric in the costs of all arms, c1k = c2k = ck for k ∈
{1, . . . , K }, the total equilibrium effort with arm k is X∗

k ≡x∗
1k + x∗

2k = αkv
2ck

. In the
symmetric contest, total effort with an arm is unaffected by the introduction of other
arms. In the special case where all arms are also equally influential, αk = α0 for k ∈
{1, . . . , K }, the pure-strategy equilibrium exists if and only if K ≤ 2/α0. The amount
of rent dissipation in the K -armed contest is D∗ = Kα0/2 ≤ 1. Rent dissipation is
growing in proportion with the number of arms. For example, rent dissipation in the
two-armed contest is twice as high as rent dissipation in the one-armed contest, which
has the lowest rent dissipation of all.

5.2 Productive and unproductive arms

The analysis so far has not distinguished arms according to whether their use is more
or less socially desirable. One can think of many real-world contests in which one
of the influencing activities is less socially desirable than the others. For example,
employees can influence their chances of promotion by paying court to managers
(socially wasteful), as well as by working hard along various dimensions (socially
desirable). An interesting question for the organizers of such contests, and society
more broadly, is whether restricting the less productive activity increases effort in the
other more productive activities.

Letting the K th arm be the least productive arm, we can ask whether total effort
with the other more productive K − 1 arms decreases when arm K is allowed into
play. Proposition 3 states that the answer depends only on whether arm K balances
the contest.

Proposition 4 A restriction on the K th arm reduces total effort with the K −1 arms if

and only if the K th arm balances the contest, max
{
�K−1,�

−1
K−1

}
> max{�K ,�−1

K }.
If arm K balances the contest (because the overall favorite with K arms has a

lower relative strength than the favorite with K − 1 arms), allowing arm K increases
total effort with the other K − 1 arms. If arm K unbalances the contest (because the
overall favorite with K arms has a higher relative strength than the favorite with K −1
arms), then it reduces total effort with the other K − 1 arms. If arm K is symmetric
between players, then it neither balances nor unbalances the contest and therefore does
not affect total effort with the other K − 1 arms. As a matter of policy, if an arm is
unproductive while other arms are productive, and the goal is to maximize total effort
with productive arms, then the unproductive arm should not be restricted if and only
if it balances the contest.

5.3 Pareto optimality

We have compared contest outcomes with and without the restriction on the use of
the K th arm. But under what conditions would both players prefer to ban arm K ?
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Intuitively, if a player has a big advantage with an arm, she may not be better off if that
arm is banned. Would there ever be a case for a Pareto improvement? Proposition 5
provides the necessary and sufficient conditions for banning the K th arm to be a Pareto
improvement.

Proposition 5 A player prefers to ban the K th arm if the player’s relative strength
with the K th arm is not too great. For θK ∈ (g3(�K−1), g4(�K−1)), the (K − 1)-
armed contest Pareto dominates the K -armed contest, where 0 < g3(�K−1) < 1 and
1 < g4(�K−1) < ∞.

The exact expressions for g4(�K−1) and g3(�K−1) =
(
g4(�

−1
K−1)

)−1
are derived

in the “Appendix”. Both players favor the (K −1)-armed contest if they are symmetric
in arm K . In this case, arm K does not balance or unbalance the contest in favor of any
one of the players, so that neither player is worse off if play is restricted to the K − 1
arms. Moreover, arm K increases the players’ effort costs, so both players are strictly
better off if play is restricted to the K − 1 arms. A player is only better off when the
K th arm is allowed if the arm sufficiently shifts the balance of power in her favor,
which requires arm K to be sufficiently asymmetric between the players. In general,
if the asymmetry between players in an arm is sufficiently small, then they both prefer
not to use the arm.

5.4 Prisoners’ dilemma

We have shown that both players are better off when the K th arm is banned if the K th
arm is sufficiently symmetric between the players. But even in this case, an agreement
by the players to restrict arm K to a common cap x K is not guaranteed. Proposition 6
provides conditions under which both players have incentive to unilaterally deviate
from such an agreement.

Proposition 6 Consider an agreement to restrict the K th arm to a common cap
x K > 0. Player i has a unilateral incentive to deviate from this agreement by choosing
a higher effort level with the K th arm if ci K < v αK

x K

�K−1
[1+�K−1]2 .

Players tend to break the agreement to restrict arm K when the value of the prize is
high, the cap is tight, the capped arm is influential, players’ costs of effort with the
capped arm are low, and there is balance of power in the (K − 1)-armed contest.

Consider player i’s incentive to break the agreement to cap arm K . Given that
player j adheres to the cap, i might do strictly better by choosing an effort level with
arm K that is higher than permitted by the cap. Given that j’s effort levels are fixed,
i’s success probability strictly increases if she increases her effort level with arm K
above the cap (by Axiom 4). Player i also incurs a cost to increase her effort level
with arm K , but as long as the value of the prize is sufficiently high or her cost of
effort with arm K is sufficiently low, her benefit of increasing effort with arm K above
the cap outweighs her cost, in which case she strictly prefers to break the agreement.
Moreover, by Proposition 5, both players’ payoffs are strictly lower in the K -armed
than in the (K − 1)-armed contest if players are sufficiently symmetric in arm K .
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Therefore, if arm K is sufficiently symmetric between the players, both players end
up using arm K to their own detriment in equilibrium.

6 Conclusion

In many contests, including those between firms for government contracts, between
employees for promotion, between job candidates for employment, between academics
for publication, and between athletes for championships, participants can engage in
more than one activity to increase their chances of winning. To analyze the implications
of this important aspect of many contests, we developed and axiomatized a simple
model of multi-armed contests. We then studied how allowing or restricting arms
affects equilibrium outcomes. Our main findings may be summarized as follows.

Allowing an additional arm into play reduces effort put into arms that are already
in play if and only if the additional arm unbalances the contest. An additional arm
tends to increase rent dissipation because it increases the discriminatory power of the
contest, but it also tends to reduce rent dissipation if it unbalances the contest. If the
additional arm is symmetric between players, it cannot unbalance the contest, and
therefore it always increases rent dissipation. In general, an additional arm increases
rent dissipation unless players are very asymmetric in that arm. As long as this is not
the case, the additional arm increases total effort costs and reduces the players’ joint
payoffs. If players are sufficiently symmetric in an arm, each one is better off if the
arm is not allowed into play, but they nevertheless end up using the arm in equilibrium.

These results have policy implications. In many contests, players can influence
the outcome through more than one arm, but one of the arms (e.g., lobbying) is less
socially productive than others. According to our results, it is entirely possible that
the unproductive arm would unbalance the contests, reducing effort with the more
productive arms, but not enough to counter its effect on the contest’s discriminatory
power, so that rent dissipation would increase and total payoffs would decline. And
players could not even agree not to use the unproductive arm, creating a substantial
welfare loss that could not be avoided without market intervention.

Interesting avenues for further research include axiomatization and analysis of a
wider class of contest success functions for multi-armed contests by relaxing the
homogeneity assumption (Axiom 5) employed in the paper. We axiomatized the gene-
ral additive representation for two-player multi-armed contests in Lemma 1, and this
axiomatization could easily be extended to multi-player contests. Analyzing multi-
player multi-armed contests with general success functions is a promising avenue for
further inquiry.

7 Appendix

Proof of Lemma 1 Assume that either x1 ∈ R
K++ or x2 ∈ R

K++. Without loss of
generality, let player 2 be the player with positive efforts in all arms. We therefore
consider x1 ∈ R

K+ , x2 ∈ R
K++, and x3 ∈ R

K+ . From Axiom 1 (ii), p2(x) > 0.

The independence from irrelevant alternatives (Axiom 2) implies that
p1(x)

p2(x)
does not
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depend on x3. That is, the odds ratio
p1(x)

p2(x)
is the same whether we replace x3 with

x3 = 0, x3 = 1, or any other vector x3 ∈ R
K+ . Hence,

p1(x)

p2(x)
= p1(x1, x2, x3 = 0)

p2(x1, x2, x3 = 0)
= p1(x1, x2, x3 = 1)

p2(x1, x2, x3 = 1)
, (B1)

where p2(x1, x2, x3 = 0) > 0 and p2(x1, x2, x3 = 1) > 0 by Axiom 1 (ii) since
x2 ∈ R

K++.
We can rewrite the odds ratio as

p1(x1, x2, x3 = 1)

p2(x1, x2, x3 = 1)
= p1(x1, x2, x3 = 1)

p3(x1, x2, x3 = 1)

p3(x1, x2, x3 = 1)

p2(x1, x2, x3 = 1)
, (B2)

where p3(x1, x2, x3 = 1) > 0 by Axiom 1 (ii) since x3 = 1 ∈ R
K++.

Furthermore, we can again use Axiom 2 by setting x2 = 1 in the odds ratio
p1(x1, x2, x3 = 1)

p3(x1, x2, x3 = 1)
and x1 = 1 in the odds ratio

p2(x1, x2, x3 = 1)

p3(x1, x2, x3 = 1)
to obtain

p1(x1, x2, x3 = 1)

p2(x1, x2, x3 = 1)
= p1(x1, x2 = 1, x3 = 1)

p3(x1, x2 = 1, x3 = 1)

p3(x1 = 1, x2, x3 = 1)

p2(x1 = 1, x2, x3 = 1)

= f1 (x1)

f2 (x2)
, (B3)

where

f1 (x1) ≡ p1(x1, x2 = 1, x3 = 1)

p3(x1, x2 = 1, x3 = 1)
≥ 0

and

f2 (x2) ≡ p2(x1 = 1, x2, x3 = 1)

p3(x1 = 1, x2, x3 = 1)
> 0,

and all the denominators are again positive by Axiom 1 (ii).
When player 3 is inactive, that is, x3 = 0, then by Axiom 1 (iii), p3(x1, x2, x3 =

0) = 0, and by Axiom 1 (iv),

p1(x1, x2, x3 = 0) + p2(x1, x2, x3 = 0) = 1. (B4)

Therefore,

p1(x1, x2, x3 = 0)

p2(x1, x2, x3 = 0)
= p1(x1, x2, x3 = 0)

1 − p1(x1, x2, x3 = 0)
= f1 (x1)

f2 (x2)
(B5)

by (B1), (B3), and (B4). Solving for p1(x1, x2, x3 = 0), we obtain p1(x1, x2, x3

= 0) = f1 (x1)

f1 (x1) + f2 (x2)
, and thus p2(x1, x2, x3 = 0) = f2 (x2)

f1 (x1) + f2 (x2)
by

123



Multi-activity contests 37

Axiom 1 (iv), for any x1 ∈ R
K+ and x2 ∈ R

K++, where f1 (x1) ≥ 0 and f2 (x2) > 0.
From Axiom 1 (iii), if x1 = 0, then p1(x) = 0 and therefore f1 (0) = 0.

When x1 ∈ R
K+ and x2 ∈ R

K+\R
K++, pi (x1, x2) is such that pi (x1, x2) ≥ 0 and

p1(x1, x2) + p2(x1, x2) ≤ 1 by Axiom 1 (i) and pi (x1, x2) = 0 if xi = 0 by Axiom 1
(iii). Finally, by Axiom 1, pi (x1, x2) = pi (x1, x2, x3 = 0) for any (x1, x2) ∈ R

2K+ .
To summarize, if Axioms 1–3 hold, then player i’s CSF in a two-player K -armed
contest has the logit form if x1 ∈ R

K++ or x2 ∈ R
K++; and if x1 ∈ R

K+\R
K++ and

x2 ∈ R
K+\R

K++, pi (x1, x2) is such that pi (x1, x2) ≥ 0, p1(x1, x2) + p2(x1, x2) ≤ 1,
and pi (x1, x2) = 0 if xi = 0. Player i’s production function fi (xi ) satisfies fi (xi ) ≥ 0
for xi ∈ R

K+ , fi (0) = 0, and fi (xi ) > 0 for xi ∈ R
K++, i = 1, 2. 	


Proof of Proposition 1 First assume that (x1, x2) ∈ R
2K++. Suppose players’ contest

success functions are homogeneous of degree 0 in every activity (Axiom 5). Then,
the odds ratio of players’ winning probabilities is homogeneous of degree 0 in every
activity as well, that is,

p1(λ1x11, . . . , λK x1K , λ1x21, . . . , λK x2K )

p2(λ1x11, . . . , λK x1K , λ1x21, . . . , λK x2K )
= p1(x1, x2)

p2(x1, x2)
(B6)

for anyλk > 0. Note that the denominators are positive by Axiom 1(ii) since x2 ∈ R
K++.

According to Lemma 1, Axioms 1–3 guarantee the logit representation of the CSF,
which implies that the odds ratio can be written as a ratio of players’ production
functions:

p1(x1, x2)

p2(x1, x2)
= f1 (x1)

f2 (x2)
, (B7)

where f2 (x2) > 0. By Axiom 4, player 1’s CSF is continuous and strictly increasing
in x1k for x1 ∈ R

K++. Axiom 4 and Axiom 1(iv) imply that player 2’s CSF is strictly

decreasing in x1k for x1 ∈ R
K++. Hence, the odds ratio

p1(x1, x2)

p2(x1, x2)
is strictly decreasing

in x1k for x1 ∈ R
K++. From (B7), the production function f1 (x1) is continuous, strictly

increasing in x1k for x1 ∈ R
K++ as well.

Employing the homogeneity of the odds ratio, we obtain

f1 (λ1x11, . . . , λK x1K )

f2 (λ1x21, . . . , λK x2K )
= p1(λ1x11, . . . , λK x1K , λ1x21, . . . , λK x2K )

p2(λ1x11, . . . , λK x1K , λ1x21, . . . , λK x2K )

= p1(x1, x2)

p2(x1, x2)
= f1 (x1)

f2 (x2)
(B8)

for any λk > 0. It follows that

f1 (λ1x11, . . . , λK x1K ) f2 (x2) = f2 (λ1x21, . . . , λK x2K ) f1 (x1) . (B9)

Setting x2 = 1 and defining λ ≡ (λ1, . . . , λK ) and φ1(λ) ≡ f2 (λ)

f2 (1)
, we arrive at the

functional equation
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f1 (λ1x11, . . . , λK x1K ) = φ1(λ) f1 (x1) . (B10)

The unique strictly increasing solution to this functional equation is f1 (x1) =
γ1

∏K
k=1 xαk

1k and φ1(λ) = ∏K
k=1 λ

αk
k , where γ1 and αk are positive constants; k ∈ {1, 2,

. . . , K }. See Corollary 3 in Aczél (1987, p. 55). From φ1(λ) = f2 (λ)

f2 (1)
and φ1(λ) =

∏K
k=1 λ

αk
k , it follows that, f2 (x2) = f2 (1)

∏K
k=1 xαk

2k . Therefore, both players’ produc-

tion functions belong to a class of CD-type production functions: fi (xi )=γi
∏K

k=1 xαk
ik

for (x1, x2) ∈ R
2K++, where αk, γi > 0; i ∈ {1, 2}, and k ∈ {1, 2, . . . , K }.

Next, consider the case where one player has positive efforts in all arms and the
other has zero efforts in some arms. Without loss of generality, consider x1 ∈ R

K+\R
K++

and x2 ∈ R
K++. For (x1, x2) ∈ R

2K++, player 1’s production function is f1 (x1) =
γ1

∏K
k=1 xαk

1k . Holding x2 ∈ R
K++ fixed, if for any arm k, x1k → 0, then f1 (x1) → 0

and therefore p1 (x1, x2) → 0. According to Axiom 4, player 1’s CSF is nondecrea-
sing in x1k for x1 ∈ R

K+ and from Axiom 1 (i), p1 (x1, x2) is nonnegative. Hence,
p1 (x1, x2) = 0, and therefore p2 (x1, x2) = 1 from Axiom 1 (iv), when player 1 has
zero effort in some arm, i.e., there exists k ∈ {1, 2, . . . , K } such that x1k = 0. Lastly, if
both players have zero efforts in some arms, then pi (x1, x2) is such that pi (x1, x2) ≥ 0
and p1(x1, x2) + p2(x1, x2) ≤ 1 by Axiom 1(i), pi (x1, x2) = 0 if xi = 0 by Axiom 1
(iii), and pi (x1, x2) is nondecreasing in xik by Axiom 4, i = 1, 2, k ∈ {1, 2, . . . , K }.

To summarize, if Axioms 1 through 5 hold, then for x1 ∈ R
K++ or x2 ∈ R

K++, player

i’s CSF has the logit form with CD-type production functions fi (xi ) = γi
∏K

k=1 xαk
ik ,

where αk, γi > 0; and if x1 ∈ R
K+\R

K++ and x2 ∈ R
K+\R

K++, then pi (x1, x2) is such
that pi (x1, x2) ≥ 0, p1(x1, x2) + p2(x1, x2) ≤ 1, pi (x1, x2) = 0 if xi = 0, and
pi (x1, x2) is nondecreasing in xik ; i = 1, 2; k ∈ {1, 2, . . . , K }. 	


Proof of Proposition 2 We are looking for the equilibrium
(
x∗

1, x∗
2

)
in the K -armed

contest with marginal costs ci = (ci1, . . . , ci K ), i = 1, 2. By Axiom 6, it is never
a best response for a player to put zero efforts in some but not all arms, and it can
be easily shown that having zero efforts in all arms cannot be part of an equilibrium
either. Therefore, we can restrict our attention to xi ∈ R

K++, i = 1, 2. The optimal
interior solution for player i maximizing payoff (6) can be found by first deriving
the cost function C∗

i (zi ) as min {ci xi } subject to the constraint f (xi ) = zi , and then
solving the reduced one-armed contest with the derived cost function

πi (z1, z2) =
(

zi

z1 + z2

)
v − C∗

i (zi ). (B11)

The cost function for the CD-type production function f (xi ) is C∗
i (zi ) = σi z

1
α

i , where

σi = α
∏K

k=1

(
αk
cik

)− αk
α

and α = ∑K
k=1 αk . The conditional demand for activity k is

x∗
ik = ∂C∗

i (zi )/∂cik = αk
cik

σi
α

z
1
α

i .
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Player i’s payoff in the reduced one-armed contest is then

πi (z1, z2) =
(

zi

z1 + z2

)
v − σi z

1
α

i . (B12)

Using substitution x̃i = z
1
α

i , the payoff can also be written as

�̃i (̃x1, x̃2) =
(

x̃α
i

x̃α
1 + x̃α

2

)
v − σi x̃i . (B13)

The reduced one-armed contest has a discriminatory power α = ∑K
i=1 αi and the

relative strength of players in the one-armed contest equals players’ overall relative

strength in the original K -armed contest,

(
σi

σ j

)α

= ∏K
k=1

(
cik
c jk

)αk
, j �= i = 1, 2.

The first-order condition for player 1’s maximization of payoff (B12) yields z2v

(z1 + z2)
−2 = (σ1/α) z

1
α
−1

1 . Dividing both sides of the expression by the similar

condition for player 2, we obtain z2/z1 = (σ1/σ2) (z1/z2)
1
α
−1. Hence, z2/z1 =

(σ1/σ2)
α = �K , which together with the first-order condition for player 1 implies

that z
1
α

1 = (αv/σ1)�K (1 + �K )−2. Similarly, z
1
α

2 = (αv/σ2)�−1
K

(
1 + �−1

K

)−2 =
(αv/σ2)�K (1 + �K )−2. The interior equilibrium in the one-armed contest (B12) is

x̃∗
i = z

1
α

i = α
v

σi

(
σi/σ j

)α

(
1 + (

σi/σ j
)α)2 = α

v

σi

�K

(1 + �K )2 , (B14)

where �K = ∏K
k=1

(
c1k
c2k

)αk
; i = 1, 2. Thus, player i’s effort with arm k is

x∗
ik = αk

α

σi

cik
z

1
α

i = αk

cik
v

�K

(1 + �K )2 . (B15)

Therefore,

cik x∗
ik = αkv

�K

(1 + �K )2 (B16)

for any k ∈ {1, . . . , K }, i = 1, 2. The total equilibrium effort with arm k is

X∗
k ≡ x∗

1k + x∗
2k = αkv

(
1

c1k
+ 1

c2k

)
�K

(1 + �K )2 . (B17)

In the equilibrium, the cost of effort is the same across players, ci x∗
i = αv �K

(1+�K )2

for i = 1, 2. The total cost of effort and rent dissipation are C∗ = ∑2
i=1

∑K
k=1 cik x∗

ik
= 2αv�K (1 + �K )−2 and D∗ = 2α�K (1 + �K )−2. Players’ total payoff is �∗
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= v − C∗ = v
(
1 − 2α�K (1 + �K )−2). Player i’s probability of winning is p∗

i =
(

1 +
(

x̃∗
j /x̃∗

i

)α)−1 = (
1 + (

σi/σ j
)α)−1

, where j �= i = 1, 2. That is, p∗
1 = (

1+
�K

)−1 and p∗
2 =

(
1 + �−1

K

)−1
, and thus, the overall stronger player has a higher

than 50 percent chance of winning. Player i’s equilibrium payoff is �∗
i = p∗

i v −
ci x∗

i ; that is, �∗
1 = v (1 + (1 − α) �K ) (1 + �K )−2 and �∗

2 = v
(

1 + (1 − α) �−1
K

)

(
1 + �K

−1
)−2

. Both players’ payoffs are nonnegative for α ∈ (0, 1], and for α ∈
(1, 2] when �K ∈ [

(α − 1) , (α − 1)−1].
Lastly, note that the second-order sufficient condition for player 1 in the reduced

one-armed contest (B12) is satisfied if and only if ∂2π1/∂z2
1 < 0, or equivalently,

−2vz2 (z1 + z2)
−3 −σ1

(
(1 − α) /α2

)
z

1
α
−2

1 < 0. In the equilibrium, z2 = �K z1 and

z
1
α

1 = (αv/σ1) �K (1 + �K )−2, and the second-order condition for player 1 can be
written as −2 (1 + �K )−1 − (1 − α) α−1 < 0. The inequality is always satisfied for
α ∈ (0, 1], and it is equivalent to inequality �K < α+1

α−1 for α > 1. Nonnegativity of

player 1’s payoff implies �K ≤ 1
α−1 < α+1

α−1 for α > 1. Similarly, the second-order
sufficient condition for player 2 always holds for α ∈ (0, 1], and for α > 1 whenever
�−1

K < α+1
α−1 . Nonnegativity of player 2’s payoff implies �−1

K ≤ 1
α−1 < α+1

α−1 for
α > 1. Hence, the second-order conditions are satisfied for both players when their
payoffs are nonnegative. 	


Proof of Corollary 1 Equilibrium total cost of effort and rent dissipation are given
by D∗ = C∗/v = 2α�K (1 + �K )−2; they increase with α when �K is held
constant. Since ∂C∗/∂�K = 2αv (1 − �K ) (1 + �K )−3 � 0 if and only if �K � 1,
C∗ and D∗ are maximized (and �∗ is minimized) at �K = 1. Taking the deri-
vative ∂x∗

1k/∂c1k and simplifying, we obtain that ∂x∗
1k/∂c1k < 0 whenever −1 +

(1 − �K ) (1 + �K )−1 αk < 0, or �K >
αk−1
αk+1 . This inequality holds because �K ≥

α −1 >
αk−1
αk+1 under the parameter conditions that guarantee the existence of the equi-

librium in Proposition 2. By similar arguments, ∂x∗
2/∂c2 < 0. Player i’s cost of effort

with each arm depends only on the prize value v, the arm’s influence parameter αk ,
and the overall relative strength of players �K . Lastly, player i’s equilibrium payoff
depends only on the prize value v, the discriminating power of the contest α, and the
overall relative strength of players �K . 	


Proof of Proposition 3 The total cost of effort is C∗(K − 1) = 2α(K−1)v�K−1
(1 + �K−1)

−2 in the (K − 1)-armed contest and C∗(K ) = 2α(K )v�K (1 + �K )−2

in the K -armed contest. Thus, C∗(K ) > C∗ (K − 1) if and only if α(K )θK

(1 + �K−1θK )−2 > α(K−1) (1 + �K−1)
−2, where �K = �K−1θK . The inequality is

equivalent to θK − bθ
1/2
K + �−1

K−1 < 0, where b = √
α(K )/α(K−1)

(
1 + �−1

K−1

)
> 0.

This inequality can be stated as θK ∈ (g1(�K−1), g2(�K−1)) since it is equiva-
lent to �K−1(θ

1/2
K − √

g1(�K−1))(θ
1/2
K − √

g2(�K−1)) < 0, where g1(�K−1) ≡(
1
2

(
b −

√
b2 − 4�−1

K−1

))2

> 0, g2(�K−1) ≡
(

1
2

(
b +

√
b2 − 4�−1

K−1

))2

< ∞,
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and b2 − 4�−1
K−1 ≥ 0. Inequality C∗(K ) > C∗ (K − 1) always holds if θK ∈(

α(K−1)

α(K )
,

α(K )

α(K−1)

)
. The comparison with respect to rent dissipation is exactly the same

since rent dissipation is D∗ = C∗/v. And, the conditions for the total payoff com-
parison are reversed since the total payoff is inversely related to rent dissipation,
�∗ = v (1 − D∗). 	


Proof of Proposition 4 Total effort with arm k is αkv
(

1
c1k

+ 1
c2k

)
�K (1 + �K )−2 in

the K -armed contest, and total effort with arm k is αkv
(

1
c1k

+ 1
c2k

)
�K−1

(1 + �K−1)
−2 in the (K − 1)-armed contest, where k ∈ {1, . . . , K −1}. Hence, total

effort with arm k is higher in the K -armed contest if and only if θK (1 + �K−1θK )−2 >

(1 + �K−1)
−2, where we use �K = �K−1θK . The inequality is equivalent to (1−θK )(

�2
K−1θK − 1

)
> 0. When the K th arm is symmetric, θK = 1, the total effort with

arm k is not affected by the introduction of the K th arm. If θK < 1, the total effort
with arm k is higher in the K -armed contest if and only if θK > �−2

K−1. If θK > 1,

the condition is reversed: θK < �−2
K−1. Therefore, total effort with arm k is higher in

the K -armed contest whenever θK is between 1 and �−2
K−1. This is equivalent to the

condition that �K is between �K−1 and �−1
K−1, and it holds whenever the K th arm

balances the contest, max
{
�K−1,�

−1
K−1

}
> max{�K ,�−1

K }. 	


Proof of Proposition 5 From the proof of Proposition 2, player 1’s equilibrium payoff
in the K -armed contest is �∗

1(K ) = v
(
1 + (

1 − α(K )

)
�K

)
(1 + �K )−2. Let A ≡

�∗
1 (K − 1) = v

(
1 + (

1 − α(K−1)

)
�K−1

)
(1 + �K−1)

−2 be player 1’s equilibrium
payoff in the (K − 1)-armed contest, which does not depend on the K th arm’s para-

meters. �∗
1(K ) is a decreasing function of θK . To see this, note that

d�∗
1(K )

dθK
=

−v (1 + �K )−3 ((
1 − α(K )

)
(�K − 1) + 2

)
�K
θK

. The inequality
(
1−α(K )

)
(�K −1)

+ 2 > 0 holds for α(K ) ∈ (0, 1], and it holds for α(K ) ∈ (1, 2] since �K < 1
α(K )−1 <

α(K )+1
α(K )−1 . Since �∗

1(K ) is decreasing in θK , there exists a critical level for θK , g4 (�K−1),

such that �∗
1 (K ) ≥ �∗

1 (K − 1) if and only if θK ≤ g4 (�K−1).
Inequality �∗

1 (K ) ≥ �∗
1 (K − 1) is equivalent to v

(
1 + (

1 − α(K )

)
�K

) −
A (1 + �K )2 ≥ 0. The quadratic inequality can be written as �2

K − 2b�K − c ≤ 0,

where b = v
A

1−α(K )

2 − 1 and c = v
A − 1 > 0, and it holds for �K ≤ b +√

b2 + c. Hence, �∗
1 (K ) ≥ �∗

1 (K − 1) whenever θK ≤ g4(�K−1), where the cri-

tical level g4(�K−1) is defined as g4(�K−1) = �−1
K−1

(
b + √

b2 + c
)

> 0 with

b = (1−α(K ))(1+�K−1)
2

2(1+(1−α(K−1))�K−1)
− 1 and c = (1+�K−1)

2

1+(1−α(K−1))�K−1
− 1. Similarly, �∗

2 (K )

≥ �∗
2 (K − 1) whenever θ−1

K ≤ g4(�
−1
K−1), or θK ≥ g3(�K−1) ≡ 1

g4(�
−1
K−1)

. There-

fore, for the range of players’ relative strength in arm K , θK ∈ (g3(�K−1), g4(�K−1))

⊂ (0,∞), the (K − 1)-armed contest Pareto dominates the K -armed contest. 	

Proof of Proposition 6 If players honor an agreement to restrict the use of the K th
arm to a common cap x K > 0, the contest reduces to the (K − 1)-armed contest.
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Suppose both players continue to choose the optimal efforts with the (K − 1) arms,
and player 2 honors the agreement regarding arm K by choosing effort x K with the
K th arm. Then, player 1 chooses x1K to maximize

xαK
1K

xαK
1K + �K−1xαK

K

v − c1K x1K =
(

1 + �K−1xαK
K x−αK

1K

)−1
v − c1K x1K .

(B18)

Player 1 marginally benefits from breaking the agreement and increasing her effort
with arm K above the agreed upon level x K (holding efforts with all other arms at
x∗

1k , k = 1, . . . , K − 1) whenever

∂�1

∂x1K
|x1K =x K = αK (1 + �K−1)

−2 �K−1x−1
K v − c1K > 0. (B19)

Therefore, player 1 prefers to unilaterally break the agreement if c1K < v αK
x K

�K−1
[1+�K−1]2 . Similarly, for player 2. 	
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