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Abstract Radner (Econometrica 36, 31–58 1968) proved existence of a compe-
titive equilibrium for differential information economies with finitely many states.
We extend this result to economies with infinitely many states of nature. Each agent
observes a public and a private signal. The publicly observed signal may take infini-
tely many values but, in order to get existence, we assume that private signals only
take finitely many values. Actually, there is no hope to get a general existence result
since Podczeck et al. (Vienna University Working Papers 2008) already proposed
non-existence results.
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296 C. Hervés-Beloso et al.

1 Introduction

For exchange economies under uncertainty, Arrow and Debreu (1954) proved that a
competitive equilibrium exists if agents have a complete and symmetric information
about a finite set of possible states of nature. Replicating the economy, Debreu and
Scarf (1963) proved that the core shrinks to the set of competitive equilibria as the
number of consumers becomes infinite. These results were generalized in several
directions.

Asymmetric information was introduced by Radner (1968) for competitive markets
and by Yannelis (1991) for the study of Pareto optimality and core. Agents arrange
contracts at the first period that may be contingent on the realized state of nature at the
second period. But after the realization of state, they do not necessarily know which
state of nature has actually occurred. Agents have incomplete information and this
information may differ across agents (differential information economies). Therefore
they are restricted to sign contracts that are compatible with their private information.
For an economy with differential information, Radner defined a notion of competitive
equilibrium (Walrasian expectations equilibrium) which is an analogous concept to the
Walrasian equilibrium in Arrow–Debreu model with symmetric information. There is
an important literature dealing with competitive solutions for differential information
exchange economies: Maus (2004) for economies with production and Einy et al.
(2001) for large economies with a continuum of agents.1 All these contributions deal
with either a finite dimensional commodity space or with a commodity space for which
the positive cone has a non-empty interior.

For models with symmetric information, the existence result in Arrow and Debreu
(1954) was generalized to economies with infinitely many states. Since the path-
breaking papers of Peleg and Yaari (1970) and Bewley (1972), many theorems have
been proved on the existence of competitive equilibrium with an infinite dimensional
commodity space for which the positive cone may have an empty interior. However,
nearly all2 require that the consumption possibility sets are the positive orthant. These
results cannot be applied to models with asymmetric information since informatio-
nally constrained consumption sets are in general subsets of strict subspaces of the
commodity space.

The main purpose of this paper is to extend the existence result in Arrow and Debreu
(1954) by considering both asymmetric information and infinitely many states of

1 See also Hervés-Beloso et al. (2005a,b); Einy et al. (2005); Graziano and Meo (2005); Correia-da-Silva
and Hervés-Beloso (2006, 2007a,b) and many others. Recently, there has been a resurgent interest on the
execution of contracts at the second period. At issue are questions of enforceability. Since information is
incomplete, some agents may have incentives to misreport their information and then contracts may not
be executable. For the interested readers we refer to Daher et al. (2007); Angeloni and Martins-da-Rocha
(2007) and Podczeck and Yannelis (2008).
2 See Bewley (1972); Magill (1981); Aliprantis and Brown (1983); Jones (1984); Mas-Colell (1986); Araujo
and Monteiro (1989); Yannelis and Zame (1986); Mas-Colell and Richard (1991); Podczeck (1996); Tourky
(1998); Deghdak and Florenzano (1999); Aliprantis et al. (2004, 2005) and many others. There is a notable
exception: in Podczeck and Yannelis (2008) consumption sets need not be the positive orthant of the
commodity space.

123



Asymmetric information and infinitely many states 297

nature.3 Uncertainty is represented by (�,F ,P), a probability space where� repre-
sents the possibly infinite set of states of nature. Each agent i’s private information is
represented by a sub-tribe F i of F and the set of possible consumption plans is the
cone L p

+(�,F i ,P) of p-integrable (1 ≤ p < +∞) and F i -measurable functions
from � to R+. When endowed with the norm topology, the cone L p

+(�,F ,P) may
have an empty interior. In the symmetric framework, the Riesz-Kantorovich formula
and properness assumptions are a powerful tool (see e.g., Aliprantis et al. 2001, 2004)
to prove existence of equilibrium when the positive cone of the commodity space has
an empty interior. However these techniques cannot be directly applied to the asym-
metric framework. This was already stressed in Podczeck and Yannelis (2008) where
uncertainty is represented by a finite set but for each possible state of nature, an infinite
dimensional spot market is considered. We differ from the aforementioned work since
we consider the polar case: uncertainty is represented by an infinite set of possible
states but for each state there is only one commodity available for consumption.

Even when there is an incomplete and asymmetric information about infinitely many
states of nature, it is straightforward to check that every competitive equilibrium is
actually a private Edgeworth equilibrium (see Yannelis 1991). In the symmetric case,
properness assumptions on preferences play a crucial role to prove that the converse is
true, i.e., every private Edgeworth equilibrium is a competitive equilibrium. Our main
contribution is to provide conditions on the information structure that are sufficient
for this decentralization result to be still valid when information is asymmetric.4 We
assume that each agent i knows at the first period that he will observe two signals at
the second period: a public signal κ and a private signal τ i . Agent i’s information is
then represented by the σ -algebra generated by the pair (κ, τ i ). We don’t impose any
restrictions on the publicly observed signal κ which may take infinitely many values.
However, we only provide existence results when the private signal τ i takes finitely
many values. Under suitable continuity conditions on preference relations, we prove
existence of a competitive equilibrium with a continuous price in Lq(F ,P). We let as
an open question the general case where both the public and the private signals may
take infinitely many values. However, there is no hope to get a very general existence
result since Podczeck et al. (2008) already proposed non-existence results.

The paper is organized as follows. Section 2 presents the model and the equilibrium
concepts. Conditions on the information structure are imposed in Sect. 3 and the
standard assumptions on preferences and initial endowments are introduced in Sect. 4.
Section 5 addresses existence of an Edgeworth equilibrium and its decentralization
as a competitive equilibrium. Finally, in the last section, we discuss an alternative
equilibrium concept by allowing for free-disposal.

3 For Pareto optimality and core concepts, there is already an extensive literature dealing with both asym-
metric information and infinitely many states of nature. See, among others, Yannelis (1991); Koutsougeras
and Yannelis (1993); Balder and Yannelis (1993); Page (1997) and Balder and Yannelis (2006).
4 The non-emptiness of the set of Edgeworth equilibria, and then the existence of a competitive equilibrium,
follows from standard arguments: see e.g. Florenzano (2003).
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2 The model

We consider a pure exchange economy with a finite set I of agents and, for convenience,
one good. The economy extends over two periods t ∈ {0, 1} with uncertainty on the
realized state of nature in the second one represented by a probability space (�,F ,P).
Each agent i knows at t = 0 that at t = 1 he will have an incomplete and private
information in the sense that he will only observe the outcome of random variables
measurable with respect to a sub-tribe F i of F . The family (F i )i∈I is denoted
by F . At t = 0, there is an anonymous market for consumption plans (or contingent
contracts) in L p

+(F ,P) where p ∈ [1,+∞). Each agent i knows that, contingent to
the realization of the state ω, he will have at t = 1 an initial endowment ei (ω) ≥ 0
of the unique good. The random variable ei is assumed to belong to L p(F i ,P) and
the family (ei )i∈I is denoted by e. At t = 0, agents make contracts on redistribution
of their initial endowments before the state of nature is realized. As in Radner (1968),
these contracts have to be consistent with their private information, i.e., we assume
that each agent i chooses a consumption plan in a subset Xi of L p

+(F i , P). In the
second period agents carry out previously made agreements, and consumption takes
place. For discussions on the interpretation of this model and on the enforceability of
contracts at t = 1, we refer to (Daher et al. 2007, Sect. 2), (Angeloni and Martins-
da-Rocha 2007, Sect. 6) and (Podczeck and Yannelis 2008, Sect. 4). Agent i’s (strict)
preference relation on consumption plans is represented by a correspondence Pi from
Xi to Xi . The economy is then defined by the collection

E = (F , X, e, P)

where X is the family (Xi )i∈I and P is the family (Pi )i∈I . The vector subspace
of L p(F ,P) generated by the family X is denoted by X and the space of linear
functionals defined on X is denoted by X �. The space X represents the commodity
space and X � the price space. The set Xi represents the consumption set and a
vector x ∈ Xi represents a possible consumption plan for agent i . If x ∈ Xi the set
Pi (x) ⊂ Xi represents the set of strictly preferred consumption plans by agent i ∈ I .
An allocation x = (xi )i∈I is a family of consumption plans xi ∈ Xi . An allocation x
is said feasible if

∑

i∈I

xi =
∑

i∈I

ei .

The aggregate initial endowment
∑

i∈I ei is denoted by e. We now recall some pro-
perties a feasible allocation may satisfy.

Definition 2.1 A feasible allocation x is:

1. weakly Pareto optimal if there is no feasible allocation y satisfying yi ∈ Pi (xi )

for each i ∈ I ;
2. a core allocation, if it cannot be blocked by any coalition in the sense that there is no

coalition S ⊆ I and some (yi )i∈S ∈ ∏
i∈S Pi (xi ) such that

∑
i∈S yi = ∑

i∈S ei ;
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3. an Edgeworth equilibrium if there is no 0 �= λ ∈ (Q∩[0, 1])I and some allocation
y such that yi ∈ Pi (xi ) for each i ∈ I with λi > 0 and

∑
i∈I λ

i yi = ∑
i∈I λ

i ei ;
4. an Aubin equilibrium if there is no 0 �= λ ∈ [0, 1]I and some allocation y such

that yi ∈ Pi (xi ) for each i ∈ I with λi > 0 and
∑

i∈I λ
i yi = ∑

i∈I λ
i ei .

Remark 2.1 The reader should observe that these concepts are “price free” in the sense
that they are intrinsic property of the commodity space. It is proved in (Florenzano,
2003, Propositions 4.2.6) that the set of Aubin equilibria and the set of Edgeworth
equilibria coincide provided that for each i ∈ I , the set Pi (xi ) is open5 in Xi or
Pi (xi ) = {y ∈ Xi : Ui (y) > Ui (xi )} for a concave utility function Ui .

We denote by ‖·‖p the standard norm in L p(F ,P) defined by

∀y ∈ L p(F ,P), ‖y‖p :=
⎡

⎣
∫

�

| y(ω) |p
P(dω)

⎤

⎦

1
p

,

and let q be the (extended) real number in (0,∞] satisfying 1
q + 1

p = 1.
We now recall the concept of competitive (or Walrasian expectations) equilibrium.

Definition 2.2 A couple (x, p) is said to be a competitive equilibrium if x is a feasible
allocation and p ∈ X � is a price such that p(xi ) = p(ei ) and if yi ∈ Pi (xi ) then
p(yi ) > p(ei ). If a function ψ ∈ Lq(F ,P) representing the price p, in the sense that

∀x ∈ X , p(x) = 〈ψ, x〉 = E[ψx]

exists, then (x, p) is said to be a continuous competitive equilibrium.

3 The information structure

The commodity space X is a subspace of L p(∨i∈I F i ,P), where ∨i∈I F i is the
coarsest tribe containing each F i . Therefore, without any loss of generality, we may
assume that

Assumption (I) The tribe F coincides with ∨i∈I F i .

We denote by F c the common knowledge information, i.e., F c is the meet of the
family (F i )i∈I :

F c = {A ∈ F : ∀i ∈ I, A ∈ F i }.

For each x ∈ L p(F ,P), we write x ≥ 0 if x ∈ L p
+(F ,P), we write x > 0 if x ≥ 0

and x �= 0, and we write x � 0 if P{x > 0} = 1. A vector x � 0 is said strictly
positive.

As in Radner (1968) and Mas-Colell (1986), we don’t allow for restrictions on
possible consumption bundles.

5 In a linear topology on X .
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300 C. Hervés-Beloso et al.

Assumption (II) For each i , the set Xi coincides with L p
+(F i ,P).

Under Assumptions I and II, the commodity space X coincides with the space

Σ :=
∑

i∈I

L p(F i ,P).

We now introduce the two main restrictions on the information structure F .

Assumption (III) There exist

(a) a measurable space (S,S ) and a measurable mapping κ : � → S,
(b) for each i , a finite set T i and a measurable mapping τ i : � → T i ,

such that the information available for each agent i comes from the observation of κ
and τ i , i.e.

F i = σ(κ, τ i )

in the sense that F i is the coarsest tribe containing σ(κ) = {κ−1(A) : A ∈ S } and
σ(τ i ) = {(τ i )−1(C) : C ⊂ T i }.

The set 2T of subsets of T = ∏
i∈I T i is denoted by T . We denote by P

κ×τ the
probability on S ⊗ T defined by

∀(A, B) ∈ S × T , P
κ×τ (A × B) = P({κ ∈ A} ∩ {τ ∈ B})

where τ is the measurable mapping from � to T defined by τ (ω) = (τ i (ω))i∈I . We
let P

κ and P
τ be the marginal probabilities defined on S and T by

∀A ∈ S , P
κ(A) = P{κ ∈ A} and ∀B ∈ T , P

τ (B) = P{τ ∈ B}.

Observe that if P
κ(A)Pτ {t} = 0 then P

κ×τ (A × {t}) = 0. This implies that given
t ∈ T , the measure

P
κ×τ (., t) : A �−→ P

κ×τ (A × {t})

defined on S is absolutely continuous with respect to the measure P
τ {t}Pκ . In parti-

cular there exists a P
κ -integrable and strictly positive function ψ(., t) : S → (0,∞)

such that

∀A ∈ S , P
κ×τ (A × {t}) =

∫

A

ψ(s, t)Pτ {t}Pκ(ds).

Assumption (IV) There exists ε > 0 such that

dP
κ×τ

dPκ ⊗ dPτ
≥ ε

or equivalently ψ(s, t) ≥ ε for P
κ ⊗ P

τ -a.e. (s, t).
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Remark 3.1 If the public information is independent of the private information, i.e.,
the mappings κ and τ are P-independent, then Assumption IV is automatically satisfied
since we have dP

κ×τ = dP
κ ⊗ dP

τ . Note that we do not assume that the family of
private signal functions (τ i )i∈I is pairwise independent. Two different agents i �= j
may have the same information F i = F j . It then follows that σ(κ) is a subtribe of
F c but the inclusion may be strict (e.g. if τ i = τ j for every pair (i, j)).

We let L0(F ,P) be the space (of P-equivalent classes of) real valued and
F -measurable functions. If x ∈ L0(F ,P) then from Assumption I, there exists a
unique (up to P

κ×τ -equivalent classes) S ⊗ T -measurable function

fx : S × T −→ R

such that

x(ω) = fx (κ(ω), τ (ω)) for P–a.e. ω ∈ �.

We denote by F : x �→ Fx the mapping from L0(F ,P) to L0(S ⊗T ,Pκ×τ ) defined
by Fx := fx . Observe that if x belongs to L p(F ,P) then

∫

�

|x(ω)|p
P(dω) =

∫

S×T

|Fx(s, t)|pψ(s, t)Pκ(ds)Pτ (dt).

4 Assumptions

It is straightforward to check that every competitive equilibrium is an Edgeworth equi-
librium. In order to prove the converse, we consider the following list of assumptions
that an economy may satisfy.

Definition 4.1 A differential information economy is said standard if Assumptions I
and II and the following Assumptions C and P are satisfied.

Assumption (C) There exists a strictly positive function a in L p
+(F c,P) such that

for each i ∈ I ,

(C.1) the preference Pi is irreflexive,6 strictly monotone,7 with weakly-open lower
sections,8and ‖·‖p-open convex upper sections;9

(C.2) there exists µ > 0 such that e ≤ µa;
(C.3) there exists bi ∈ L p

+(F c,P) such that 0 �= bi ≤ ei and a = ∑
i∈I bi .

6 In the sense that for each xi ∈ Xi , xi �∈ Pi (xi ).
7 In the sense that for each x ∈ Xi , x + L p

+(F i ,P) ⊂ Pi (x) ∪ {x}.
8 In the sense that for each y ∈ Xi , the set (Pi )

−1
(y) = {x ∈ Xi : y ∈ Pi (x)} is σ -open in Xi , where σ

is the weak topology σ(L p(F ,P), Lq (F ,P)).
9 In the sense that for each x ∈ Xi , the set Pi (x) is convex and open for the ‖.‖p-topolgy.
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Remark 4.1 Observe that under Assumptions C.2 and C.3, the aggregate initial endow-
ment e belongs to the order interval [a, µa].10 When the information is symmetric, i.e.,
F i = F for every i ∈ I , then Assumptions C.2 and C.3 are automatically satisfied if
for every i ∈ I , the initial endowment ei is not zero. When F has finitely many atoms
(e.g. if the state space � is finite) then Assumptions C.2 and C.3 are automatically
satisfied if for every i ∈ I , the initial endowment ei is strictly positive.

Assumption (P) For each feasible allocation x and for each i ∈ I , there exists a
convex set P̂i (xi ) ⊂ L p(F i ,P) with a non-empty ‖·‖p-interior in L p(F i ,P) such
that

P̂i (xi ) ∩ Axi ∩ L p
+(F i ,P) ⊂ Pi (xi )

for some subset Axi ⊂ L p(F i ,P) radial at xi and such that

∀y ∈ P̂i (xi ), ∀α ∈ (0, 1], αy + (1 − α)xi ∈ P̂i (xi ).

Assumption P is taken from Podczeck (1996) and related to properness conditions
introduced by Mas-Colell (1986).

Remark 4.2 When F has finitely many atoms, Assumption P is automatically satis-
fied. Indeed, it is sufficient to pose

P̂i (xi ) = xi + L p
+(F i ,P) \ {0}.

We consider now preference relations defined by utility functions. Consider the
following conditions on utility functions.

Assumption (U) For each i ∈ I there exists a function Ui : Xi → R such that

∀xi ∈ Xi , Pi (xi ) = {yi ∈ Xi : Ui (yi ) > Ui (xi )}.
Moreover there exists a strictly positive function a in L p

+(F c,P) such that for each
i ∈ I ,

(U.1) the function Ui is continuous for the ‖.‖p-topology, quasi-concave and strictly
increasing;11

(U.2) there exists µ > 0 such that e ≤ µa;
(U.3) there exists bi ∈ L p

+(F c,P) such that 0 �= bi ≤ ei and a = ∑
i∈I bi ;

(U.4) for each xi ∈ Xi , there exists a vector ∇Ui (xi ) �= 0 in Lq(F i ,P) such that

∀v ∈ Si (xi ), lim
t↓0

Ui (xi + tv)− Ui (xi )

t
= 〈∇Ui (xi ), v〉

where Si (xi ) = {v ∈ L p(F i ,P) : xi + tv ∈ Xi for some t > 0}.

10 If a and b are two vectors in L p(F ,P) then the order interval [a, b] is the set of all vectors x in L p(F ,P)

satisfying a ≤ x ≤ b.
11 That is for each x, y in Xi , if y > x then Ui (y) > Ui (x).
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Remark 4.3 Note that since Ui is increasing then ∇Ui (xi ) belongs to Lq
+(F i ,P).

Observe that Assumptions U.2 and U.3 are just repetition of C.2 and C.3.

We claim that Assumption U implies Assumptions C and P.

Proposition 4.1 If an economy satisfies Assumption U then it satisfies Assumptions C
and P.

Proof Consider an economy satisfying Assumption U. It is straightforward to check
that Assumptions U.1 to U.3 imply Assumption C. Now fix i ∈ I , xi ∈ Xi and consider
the following set

P̂i (xi ) = {yi ∈ Ei : 〈∇Ui (xi ), yi − xi 〉 > 0}.

This set is convex, non-empty and ‖·‖p-open. It is now straightforward to prove that
Assumption U4 implies Assumption P. ��

We consider hereafter the special case of separable utility functions.

Definition 4.2 A family U = (Ui )i∈I of utility functions from Xi to R is said sepa-
rable if for each i ∈ I there exists V i : �× R+ → R+ such that

(a) the function V i is F i ⊗ B(R+)-measurable;
(b) for almost everyω ∈ �, V i (ω, .) : R+ → R+ is continuous, concave and strictly

increasing;12

(c) for every x ∈ L p
+(F i ,P), the function ω �→ V i (ω, x(ω)) belongs to L1(F i ,P)

and

Ui (x) =
∫

�

V i (ω, x(ω))P(dω).

The function V i is called the kernel of Ui . The left derivative of V i (ω, .) in t > 0 is
denoted by V i−(ω, t) and the right derivative is denoted by V i+(ω, t). We denote by
V i+(ω, 0) the extended real number limt→0 V i+(ω, t) (we may have V i+(ω, 0) = ∞).
If x ∈ L p

+(F i ,P) then we denote by V i−(x) the function in L0(F i ,P) defined by

V i−(x) : ω �−→ V−(ω, x(ω))

and V i+(x) the function in L0(F i ,P) defined by

V i+(x) : ω �−→ V+(ω, x(ω)).

12 A function f : R+ → R+ is strictly increasing if for each x, y ∈ R+, whenever x > y implies
f (x) > f (y).
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Proposition 4.2 If U is a family of separable utility functions such that

∀x ∈ Xi , V i+(x) ∈ Lq(F i ,P) and V i−(x) ∈ Lq(F i ,P)

then Assumption U.4 is satisfied with

∀x ∈ Xi , ∀h ∈ L p(F i ,P), 〈∇V i (x), h〉 = E[V i+(x)h+ − V i−(x)h−].

For related results about properness of separable utility functions, we refer to Le Van
(1996) and Aliprantis (1997).

5 Decentralizing Edgeworth equilibrium allocations

As a consequence of Proposition 5.2.2 in Florenzano (2003), we get the following
non-emptiness result.

Proposition 5.1 For every standard differential information economy, the set of Edge-
worth equilibria is non-empty.

Proof We let

X̂ =
{

x ∈
∏

i∈I

Xi :
∑

i∈I

xi = e

}

be the set of attainable allocations. In order to apply Proposition 5.2.2 in Florenzano
(2003), it is sufficient to prove that the set X̂ is compact for the weak-topology.13 Note
that

X̂ ⊂
∏

i∈I

[0, e] ∩ L p
+(F i ,P).

Since [0, e] is a weakly compact subset of L p(F ,P) and L p
+(F i ,P) is a weakly

closed subset of L p(F ,P), we get the desired result. ��

The main result of the paper is the following.

Theorem 5.1 Consider a standard differential information economy. Assume that
Assumptions III and IV are satisfied, then for every Edgeworth equilibrium x there
exists ψ ∈ Lq(F ,P) such that (x, 〈ψ, ·〉) is a competitive equilibrium with a conti-
nuous price.

13 The weak topology on L p(F ,P) is the topology σ(L p(F ,P), Lq (F ,P)).

123



Asymmetric information and infinitely many states 305

The proof of Theorem 5.1 follows from Propositions 5.2 and 5.3 below.

Remark 5.1 Until now we assumed that there is only one good per state. This is only
for the sake of simplicity. Actually, with no cost, we can include the case where there
is, state by state, a finite set G of goods. In that case, each agent i chooses, contingent to
each stateω, a bundle x(ω) = (x(ω, g))g∈G in R

G+ such that the function x : � → R
G+

is F i -measurable and p-integrable.14 The space of F -measurable and p-integrable
functions from � to a subset V of R

G is denoted by L p(F ,P, V ). To each vector x
in L p(F ,P,RG+) we can associate the function x̂ : �× G → R+ by posing

∀(ω, g) ∈ �× G, x̂(ω, g) = x(ω, g).

It is then natural to consider an artificial probability space (�̂, F̂ , P̂) defined by

�̂ = �× G, F̂ = F ⊗ 2G and P̂ = P ⊗ U

where U is the uniform probability on G.15 It is straightforward to check that x̂ belongs
to L p

+(F̂ , P̂). Reciprocally, if y is a function in L p
+(F̂ , P̂), then we can consider the

function ỹ in L p(F ,P,RG+) defined by

∀ω ∈ �, ỹ(ω) = (y(ω, g))g∈G .

If we consider the artificial information structure (F̂ i )i∈I defined by

∀i ∈ I, F̂ i = F i ⊗ 2G

then it is straightforward to extend Theorem 5.1 to the case of finitely many goods per
state.

Remark 5.2 When (F ,P) has finitely many atoms, we get as a corollary of Theo-
rem 5.1 the existence result in Radner (1968). When the information is symmetric,
i.e., when F i = F for each i ∈ I , we get as a corollary of Theorem 5.1 the existence
result in Araujo and Monteiro (1989).

For technical reasons, we consider the following concept of competitive quasi-
equilibrium.

Definition 5.1 A couple (x, p) is said to be a (non-trivial) competitive quasi-
equilibrium if x is a feasible allocation and p ∈ X � is a price with p(e) > 0 and
such that p(xi ) = p(ei ) and if yi ∈ Pi (xi ) then p(yi ) ≥ p(ei ). If there exists
ψ ∈ Lq(F ,P) representing the price p, i.e., p = 〈ψ, ·〉 then (x, p) is said to be a
competitive quasi-equilibrium with a continuous price.

14 In the sense that each g-th coordinate function ω → x(ω, g) belongs to L p(F i ,P). Since the set G is
finite, a function x is p-integrable if and only if it is Bochner p-integrable for any norm we may consider
on R

G .
15 The probability U plays no role and can be replaced by any probability on G with full support.
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Obviously a competitive quasi-equilibrium is a competitive equilibrium. We pro-
pose hereafter conditions under which the converse is true.

Proposition 5.2 Consider a standard economy, then every competitive quasi-
equilibrium is actually a competitive equilibrium.

Proof Let (x, p) be a competitive quasi-equilibrium of a standard economy. In parti-
cular we have that for each i ∈ I ,

p(xi ) = p(ei ) and ∀yi ∈ Pi (xi ), p(yi ) ≥ p(ei ).

Since preferences are strictly monotone, we have that p(z) ≥ 0 for each z ∈ L p
+(F i ,P).

Now we know that p(e) = ∑
i p(ei ) > 0. Therefore there exists j ∈ I such that

p(e j ) > 0. We first prove that if y j ∈ Pi (x j ) then p(y j ) > p(e j ). Assume by way of
contradiction that p(y j ) = p(e j ). From Assumption C.1, there exists α ∈ (0, 1) such
that αy j still lies in P j (x j ). Therefore p(αy j ) = αp(y j ) ≥ p(e j ): contradiction.
Therefore for every 0 �= z ∈ L p

+(F j ,P), we have p(z) > 0. In particular, since for
each i ∈ I the vector bi belongs to L p

+(F c,P) \ {0}, we have p(ei ) ≥ p(bi ) > 0 for
each i ∈ I . Following the previous argument, we can prove that for every i ∈ I , if
yi ∈ Pi (xi ) then p(yi ) > p(ei ). ��

We say that any economy is quasi-standard if it satisfies Assumptions I, II, P, C.1
and C.2 together with C.3′ defined by

(C.3′) there exists b = (bi )i∈I ∈ ∏
i∈I L p

+(F i ,P) such that bi ≤ ei , a = ∑
i∈I bi

and for some j ∈ I , e j > 0.

We present hereafter the main technical result of the paper.

Proposition 5.3 Consider a quasi-standard economy satisfying Assumptions III and
IV. For every Edgeworth equilibrium x there existsψ ∈ Lq(F ,P) such that (x, 〈ψ, ·〉)
is a competitive quasi-equilibrium with a continuous price.

Proof For notational convenience, we denote by L , Li and Lc, the vector spaces
L(F ,P), L(F i ,P) and L p(F c,P). Let x = (xi )i∈I be an Edgeworth equilibrium
of a quasi-standard differential information economy. From Proposition 4.2.6 in
Florenzano (2003), the allocation x is an Aubin equilibrium and thus

0 �∈ G(x) := co
⋃

i∈I

[
Pi (xi )− {ei }

]
.

Let a be the strictly positive function in Lc+ satisfying Assumption C. For each i ∈ I ,
we let Li (a) be the subspace of Li defined by

Li (a) := L(a) ∩ Li =
⋃

λ>0

λ[−a, a] ∩ Li .

Observe that from Assumption C.2, for each i ∈ I , ei and xi belong to Li+(a). Let
Σ(a) := ∑

i∈I Li (a), we endow Σ(a) with the topology σ for which a base of
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0-neighborhoods is

{
∑

i∈I

αi [−a, a] ∩ Li : αi ∈ (0, 1), ∀i ∈ I

}
.

Observe that the topology σ is Hausdorff and locally convex. From Assumption C we
have

xi + a + a + [−a, a] ∩ Li ⊂ xi + a + Li+ ⊂ Pi (xi ).

Therefore

2a + 1

#I

∑

i∈I

[−a, a] ∩ Li ⊂ G(x).

We have proved that G(x)∩Σ(a) is a non-empty convex subset ofΣ(a) such that 2a
belongs to its σ -interior. It then follows from a classical separation theorem that there
exists p ∈ (Σ(a), σ )′ such that p(a) > 0 and satisfying

∀i ∈ I, ∀yi ∈ Pi (xi ) ∩ Li (a), p(yi ) ≥ p(ei ). (1)

Applying Assumption C, we get that p(xi ) ≥ p(ei ) for every i ∈ I . Since x is feasible,
this implies that

∀i ∈ I, p(xi ) = p(ei ). (2)

Moreover, from strict monotonicity of preferences we have p(z) ≥ 0 for every z ∈
Li+(a).

Claim 5.1 For each i ∈ I , there exists π i ∈ (Li , ‖·‖p)
′ such that

∀z ∈ Li+(a), π i (z) ≤ p(z) and ∀z ∈ Li+(xi ), π i (z) = p(z). (3)

The proof of this claim is standard (for a similar result we refer, among others,
to Podczeck (1996) and Deghdak and Florenzano (1999)) and is postponed to
Appendix A.2. Note that from Assumption C.2, the ideal

Li (xi ) =
⋃

λ≥0

λ[−xi , xi ]

is a subspace of Li (a). For each i ∈ I , we let Mi be defined by16

Mi = sup{|π i (z)| : z ∈ Li and ‖z‖p ≤ 1}.

16 Since π i belongs to (Li , ‖·‖p)
′, it can be represented by a vector ψ in Lq (F i ,P). The real number Mi

coincides with ‖ψ‖q .
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We propose now to prove that for each i ∈ I , the functional p is ‖·‖p-continuous on
Li (a).

Claim 5.2 There exists M > 0 such that for each i ∈ I ,

∀x ∈ Li (a), |p(x)| ≤ M ‖x‖p . (4)

Proof For each i ∈ I , we let �i := {ω ∈ � : xi (ω) ≥ (1/#I )a(ω)}. The set �i

belongs to F i and since

∑

i∈I

xi =
∑

i∈I

ei ≥
∑

i∈I

bi = a,

we have
⋃

i∈I �
i = �. Let h ∈ Lc+(a) = L(a)∩ L p

+(F c,P), then for each i ∈ I , the
vector h1�i belongs to Li+(xi ). Indeed, since h belongs to Lc+(a), there exists λ > 0
such that 0 ≤ h ≤ λa, implying that h1�i ≤ (#I )λxi . It then follows from (3) that

p(h) ≤
∑

i∈I

p(h1�i ) =
∑

i∈I

π i (h1�i )

≤
[

sup
i

Mi
] ∑

i∈I

∥∥h1�i

∥∥

≤ ‖h‖p (#I )

[
sup

i
Mi

]
. (5)

Now fix i ∈ I and x ∈ Li (a). There exists µ > 0 such that |x | ≤ µa. Following
Proposition A.1, there exists y ∈ Lc+ such that |x | ≤ y. It follows that |x | ≤ (µa)∧ y.
This implies from (5) that

|p(x)| ≤ p(|x |) ≤ p((µa) ∧ y)

≤ (#I )

[
sup

i
Mi

]
‖(µa) ∧ y‖p

≤ (#I )

[
sup

i
Mi

]
‖y‖p .

It follows that

|p(x)| ≤ (#I )

[
sup

i
Mi

]
ρ(x)

where

ρ(x) := inf{‖y‖p : y ∈ Lc+ and |x | ≤ y}.
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Applying Proposition A.1, if we let

M := 1

[ε inf Pτ (T0)]
1
p

(#I )

[
sup

i
Mi

]

then |p(x)| ≤ M ‖x‖p. ��

As a consequence of the previous claim, we can prove that the linear functional p
is η-continuous on Σ(a) where η is the norm defined on Σ(a) by

η(x) = inf

{
∑

i∈I

∥∥∥xi
∥∥∥

p
: (xi )i∈I ∈

∏

i∈I

Li (a) and
∑

i∈I

xi = x

}
.

Indeed, if x ∈ Σ(a) then for every sum decomposition x = ∑
i∈I xi with xi ∈ Li (a)

for each i , we have

|p(x)| ≤
∑

i∈I

|p(xi )| ≤ M
∑

i∈I

∥∥∥xi
∥∥∥

p
.

It then follows that |p(x)| ≤ Mη(x), i.e., p is η-continuous on Σ(a). From Propo-
sition A.4, we know that x �→ η(x) is ‖·‖p-continuous on Σ(a), implying that p is
actually ‖·‖p-continuous on Σ(a).

Since a is strictly positive, the space Li (a) is ‖·‖p-dense in Li . This implies that the
spaceΣ(a) is ‖·‖p-dense inΣ . Indeed, let x ∈ Σ . There exists a sum decomposition
x = ∑

i∈I xi where xi ∈ Li for each i . The space Li (a) is ‖·‖p-dense in Li . Therefore
there exists a sequence (xi

n)n∈N of vectors in Li (a) which ‖·‖p-converges to xi . Let
xn be the vector in Σ defined by xn = ∑

i∈I xi
n . Since

‖x − xn‖p ≤
∑

i∈I

∥∥∥xi − xi
n

∥∥∥
p

we get that the sequence (xn)n∈N is ‖·‖p-converging to x .
The linear functional p is ‖·‖p-continuous on Σ(a) which is a subspace of

L p(F ,P). From (Aliprantis and Border, 1999, Lemma 6.13) we get the existence
of a ‖·‖p-continuous linear functional π which extends p. We claim that (x, π) is a
competitive quasi-equilibrium with a continuous price. Fix i ∈ I and y ∈ Pi (xi ).
There exists a sequence (yn)n∈N in Li (a) which is ‖·‖p-converging to y. The corres-
pondence Pi has ‖·‖p-open upper sections. It follows that for every n large enough,
we have yn ∈ Pi (xi ) ∩ Li (a). Applying (1), we have p(yn) ≥ p(ei ) and passing to
the limit, we get π(y) ≥ π(ei ) = p(ei ). Now since a = ∑

i∈I bi , there exists j ∈ J
such that p(b j ) > 0, which implies by Assumption C.3 that π(e j ) = p(e j ) > 0. ��
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6 Competitive equilibrium with free disposal

In the literature of asymmetric information, it is quite common to use the concept of
competitive equilibrium with free disposal.

Definition 6.1 A couple (x, p) is said to be a competitive equilibrium with free dis-
posal if x is an allocation satisfying

∑

i∈I

xi ≤
∑

i∈I

ei

and if p ∈ X � is a price such that p(xi ) = p(ei ) and if yi ∈ Pi (xi ) then p(yi ) >

p(ei ).

Remark 6.1 Obviously a competitive equilibrium is a competitive equilibrium with
free disposal. Note that markets may not clear but the value of the disposal

∑
i∈I ei −xi

under the price p is zero.

Remark 6.2 There is no measurability constraint on the disposal
∑

i∈I ei − xi . This
assumption may be problematic in the context of asymmetric information. Indeed, as
it was shown in Glycopantis et al. (2003), the free disposal assumption may destroy
the incentive compatibility of the competitive equilibrium and thus the resulting trades
(contracts) need not be enforceable (see also Angeloni and Martins-da-Rocha 2007).

As a corollary of Proposition 5.3, we get the following existence result.

Theorem 6.1 Consider a standard economy satisfying Assumptions III and IV. There
exists a competitive equilibrium with free disposal (x, p) such that the price p can be
represented by a non-negative functional ψ in Lq(F ,P), i.e., p = 〈ψ, ·〉.
Proof Let E = (F i , Xi , ei , Pi )i∈I be a standard economy. Fix � �∈ I and consider
E � the economy defined by

E � = (F j , X j , e j , P j ) j∈J

where J = I ∪ {�}, F � = F , X� = L p
+(F ,P), e� = 0 and

∀x� ∈ L p
+(F ,P), P�(x�) = {y ∈ L p

+(F ,P) : E[y] > E[x]}.

It is straightforward to check that the economy E � is quasi-standard. Applying
Proposition 5.3 there exists a competitive quasi-equilibrium ((x j ) j∈J , p) of E � where
p is a continuous price represented by a vector ψ ∈ Lq(F ,P). Note first that

∑

i∈I

xi ≤ x� +
∑

i∈I

xi =
∑

j∈J

e j = e� +
∑

i∈I

ei =
∑

i∈I

ei .

We already know that for every j ∈ J

p(x j ) = p(e j ) and y j ∈ P j (x j ) �⇒ p(y j ) ≥ p(e j ).
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Since x� + L p
+(F ,P) \ {0} ⊂ P�(x�) we have p(z) ≥ 0 for every z ∈ L p

+(F ,P),
implying that ψ is actually non-negative. Since p(x�) = p(e�) = 0, the value of the
excess

∑
i∈I ei −xi is zero. Since ((x j ) j∈J , p) is a competitive quasi-equilibrium there

exists k ∈ I such that p(ek) > 0. It is now straightforward to prove that ((xi )i∈I , p)
is a competitive equilibrium with free-disposal of E . ��

A Appendix

We denote by E the subspace of all vectors x ∈ L p(F ,P) such that there exists
y ∈ L p

+(F c,P) satisfying |x | ≤ y, i.e.,

E := {x ∈ L p(F ,P) : ∃y ∈ L p
+(F c,P), |x(ω)| ≤ y(ω) for P-a.e. ω ∈ �}.

We endow E with the norm ρ defined by

∀x ∈ E, ρ(x) := inf{‖y‖p : y ∈ L p
+(F c,P) and |x | ≤ y}.

It is straightforward to check that the ρ-topology is stronger than the ‖.‖p-topology
restricted to E , more precisely

∀x ∈ E, ‖x‖p ≤ ρ(x).

Moreover, the ρ-topology and the ‖.‖p-topology coincide in L p(F c,P), more preci-
sely

∀x ∈ L p(F c,P), ‖x‖p = ρ(x).

Proposition A.1 Under Assumptions I–IV, the topological spaces (L p(F ,P), ‖.‖p)

and (E, ρ) coincide, more precisely

∀x ∈ L p(F ,P),
[
ε inf P

τ (T0)
] 1

p ρ(x) ≤ ‖x‖p ≤ ρ(x),

where

inf P
τ (T0) = inf{P{τ = t} : t ∈ T0} with T0 = {t ∈ T : P{τ = t} > 0}.

Proof We have

∫

S×T

|Fx(s, t)|pψ(s, t)Pκ(ds)Pτ (dt) =
∫

S

P
κ(ds)

∫

T

|Fx(s, t)|pψ(s, t)Pτ (dt)

≥ ε

∫

S

P
κ(ds)

∑

t∈T0

|Fx(s, t)|p
P{τ = t}

≥ ε inf P
τ (T0)

∫

S

P
κ(ds)

{
max
t∈T0

|Fx(s, t)|
}p

.
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If we let y be the function defined by y(ω) := maxt∈T0 |Fx(κ(ω), t)| for every ω ∈ �,
then y belongs to L p

+(σ (κ),P) ⊂ L p
+(F c,P) and satisfies

|x | ≤ y and ‖x‖p ≥ [
ε inf P

τ (T0)
] 1

p ‖y‖p .

We then get the desired result. ��
We introduce on Σ = ∑

i∈I L p(F i ,P) the following norm χ :

χ(x) = inf

{
∑

i∈I

∥∥∥xi
∥∥∥

p
: (xi )i∈I ∈

∏

i∈I

L p(F i ,P) and
∑

i∈I

xi = x

}
.

It is straightforward to check that the χ -topology is stronger that the ‖·‖p-topology
restricted to Σ , more precisely

∀x ∈
∑

i∈I

L p(F i ,P), ‖x‖p ≤ χ(x).

Moreover, the χ -topology and the ‖·‖p-topology coincide in L p(F c,P) since

∀x ∈ L p(F c,P), ‖x‖p = χ(x).

We propose hereafter a description of χ -continuous linear functionals defined on
the space Σ .

Proposition A.2 A linear functional π ∈ Σ� is χ -continuous if and only if there
exists a family (ψ i )i∈I with ψ i ∈ Lq(F i ,P) such that

∀x ∈ Xi , π(x) = 〈ψ i , x〉 = E[ψ i x]

and such that the family (ψ i )i∈I is consistent in the sense that

∀(i, k) ∈ I × I, E[ψ i : F c] = E[ψk : F c].

Proof Let π ∈ Σ� be a χ -continuous linear functional onΣ . Denote by π i the restric-
tion of π to the space L p(F i ,P). Since χ(x) = ‖x‖p for every x ∈ L p(F i ,P), the
linear functional π i is ‖·‖p-continuous and there exists ψ i ∈ Lq(F i ,P) representing
π i in the sense that

∀x ∈ L p(F i ,P), π i (x) = 〈ψ i , x〉 = E[ψ i x].

Consider two agents i and k. The restrictions of π i and πk to L p(F c,P) coincide
with the restriction of π to the same space. It follows that

∀z ∈ L p(F c,P), 0 = E[(ψ i − ψk)z] = E[zE[ψ i − ψk : F c]]

implying that E[ψ i − ψk : F c] = 0.
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We now prove that the converse is true. Let π ∈ Σ� be a linear functional such that
for each i there exists ψ i ∈ Lq(F i ,P) representing π on L p(F i ,P). Let x ∈ Σ . For
any sum decomposition x = ∑

i∈I xi with xi ∈ L p(F i ,P) we have

|π(x)| ≤
∑

i∈I

|π(x)| ≤
∑

i∈I

∥∥∥ψ i
∥∥∥

q

∥∥∥xi
∥∥∥

p
.

It then follows that

|π(x)| ≤
[

max
i∈I

∥∥∥ψ i
∥∥∥

q

]
χ(x).

We have thus proved that π is χ -continuous. ��

Let π be a χ -continuous linear functional defined onΣ . We know that it is possible
to represent the restriction of π to L p(F i ,P) by a vector ψ i ∈ Lq(F i ,P). There is a
natural question to ask: Is it possible to find a common representation ψ ∈ Lq(F ,P)

of the linear functional π when defined on the whole space Lq(F ,P)? The answer is
trivially yes if one of the following conditions is satisfied:

(a) the σ -algebra F is a finite algebra;
(b) the union ∪i∈I F i coincides with F , i.e. for every event A ∈ F , there exists at

least one agent that can discern this event;
(c) the information structure is conditionally independent (see Daher et al. (2007)

for details).17

Actually the answer is also yes under Assumptions III and IV. In order to prove
this result, we first provide a sufficient condition for the ‖·‖-continuity on Σ of the
function χ .

Proposition A.3 Under Assumption III, the mapping x �→ χ(x) is ‖·‖p-continuous
on Σ provided that there exists β > 0 such that

max
t∈T0

ψ(s, t) ≤ β min
t∈T0

ψ(s, t), for P
κ -a.e. s. (6)

17 The information structure (F i )i∈I is conditionally independent if for each pair (i, k) of agents with i �= k
and for every pair of events Ai ∈F i and Ak ∈F k , we have that P(Ai ∩ Ak : F c) = P(Ai : F c)P(Ak : F c)

almost everywhere. When the information structure is conditionally independent we can prove (see Daher
et al. 2007) that the vector ψ ∈ Lq (F ,P) represents π on the whole space L p(F ,P) where ψ is defined
by

ψ = ψc +
∑

i∈I

[
ψ i − ψc

]

where ψc = E[ψ i : F c] for any i .
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Proof of Proposition A.3 18 Let x be a vector in Σ and denote by Fx the function
defined on S × T by

Fx(s, t) =
⎧
⎨

⎩

x
(
(κ × τ )−1(s, t)

)
if (s, t) ∈ Im(κ × τ )

0 if (s, t) �∈ Im(κ × τ )

where

Im(κ × τ ) = {(s, t) ∈ S × T : ∃ω ∈ �, s = κ(ω) and t = τ (ω)}.

Since x is σ(κ, τ )-measurable, this function is well defined and is S ⊗T -measurable.
Moreover, since x belongs to L p(F ,P) the function Fx belongs to L p(S ⊗T ,Pκ×τ ).
More precisely, we have

‖x‖p
p =

∫

�

|x(ω)|p
P(dω) =

∫

S×T

|Fx(s, t)|p
P
κ×τ (ds × dt).

Applying Assumption III, we obtain

‖x‖p
p =

∫

S

P
κ(ds)

∑

t∈T

|Fx(s, t)|pψ(s, t)Pτ {t}.

We denote by T0 the trace of the σ -algebra T on T0 and for each i , we denote by
T i

0 the sub σ -algebra of T0 generated by the projection mapping t �→ t i . The space∑
i∈I L0(T i ,P) is generated by the family

{
1A : A ∈

⋃

i∈I

T i
0

}
.

There exists a sub-family A of ∪i∈I T
i

0 such that the family

{1A : A ∈ A }

is a minimal generating family of
∑

i∈I L0(T i ,Pτ ), in other words the family
{1A : A ∈ A } is generating and linearly independent. Since the mapping

R
A −→ ∑

i∈I L0(T i
0 ,P

τ )

(αA)A∈A �−→ ∑
A∈A αA1A

18 An important part of the arguments of the proof is inspired by those used in Podczeck and Yannelis
(2008).
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is a linear bijection, then it is continuous whatever the norms we consider on each
space. It follows that there exists 0 < m < M < ∞ such that

∀α ∈ R
A , m p

∫

T

∣∣∣∣∣∣

∑

A∈A

αA1A(t)

∣∣∣∣∣∣

p

P
τ (dt) ≤

∑

A∈A

|αA|p

≤ M p
∫

T

∣∣∣∣∣∣

∑

A∈A

αA1A(t)

∣∣∣∣∣∣

p

P
τ (dt).

For each s ∈ S, the mapping t �→ Fx(s, t) belongs to
∑

i∈I L0(T i ,Pτ ), implying
that there exits α(s) ∈ R

A such that

∀(s, t) ∈ S × T, Fx(s, t) =
∑

A∈A

αA(s)1A(t).

The set A can be decomposed in a partition (A i )i∈I where A i ⊂ T i
0 for each i . It

then follows that

Fx(s, t) =
∑

i∈I

⎡

⎣
∑

A∈A i

αA(s)1A(t)

⎤

⎦ .

We denote by xi the function defined on � by

∀ω ∈ �, xi (ω) =
∑

A∈A i

αA(κ(ω))1A(τ (ω)).

It is straightforward to check that

x =
∑

i∈I

xi and xi ∈ L p(F i ,P), ∀i ∈ I.

We denote by ψ and ψ the functions defined on S by

∀s ∈ S, ψ(s) = max
t∈T0

ψ(s, t) and ψ(s) = min
t∈T0

ψ(s, t).
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Observe that

∥∥∥xi
∥∥∥

p

p
=

∫

S

P
κ(ds)

∫

T

∣∣∣∣∣∣

∑

A∈A i

αA(s)1A(t)

∣∣∣∣∣∣

p

ψ(s, t)Pτ (dt)

≤ 1

m

∫

S

P
κ(ds)ψ(s)

∑

A∈A i

|αA(s)|p

≤ 1

m

∫

S

P
κ(ds)ψ(s)

∑

A∈A

|αA(s)|p

≤ M

m

∫

S

P
κ(ds)ψ(s)

∫

T

∣∣∣∣∣∣

∑

A∈A

αA(s)1A(t)

∣∣∣∣∣∣

p

P
τ (dt)

≤ β
M

m

∫

S

P
κ(ds)ψ(s)

∫

T

∣∣∣∣∣∣

∑

A∈A

αA(s)1A(t)

∣∣∣∣∣∣

p

P
τ (dt)

≤ β
M

m
‖x‖p

p .

It then follows that

χ(x) ≤
∑

i∈I

∥∥∥xi
∥∥∥

p
≤ (#I )

[
β

M

m

]1/p

‖x‖p .

��
Since the set T is finite, we can prove that the function ψ is uniformly bounded.

Lemma A.1 For every t ∈ T0 we have ψ(s, t)Pτ {t} ≤ 1 for P
κ -a.e. s ∈ S. In other

words,
∀t ∈ T0, P

κ {ψ(·, t)Pτ {t} > 1} = 0. (7)

Proof of Lemma A.1 Fix t ∈ T0 and let At be the set in S defined by

At = {s ∈ S : ψ(s, t)Pτ {t} > 1}. (8)

Assume by way of contradiction that P
κ(At ) > 0. It then follows that

P
κ×τ (At × {t}) =

∫

At

ψ(s, t)Pτ {t}Pκ(ds)

>

∫

At

P
κ (ds)

> P
κ(At ) = P

κ×τ (At × T ). (9)
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We thus obtain the following contradiction

P
κ×τ (At × {t}) > P

κ×τ (At × T ). (10)

��

Combining Lemma A.1 and Proposition A.3, it is straightforward to prove the
following equivalence result.

Corollary 1 Under Assumptions III and IV, the two norms ‖·‖p and χ are equivalent
in Σ , i.e., they define the same topology on Σ .

A.1 Ideals

If a belongs to L p
+(F c,P) we recall that L(a) is the vector subspace of L p(F ,P)

defined by

L(a) := {x ∈ E : ∃µ > 0, |x(ω)| ≤ µa(ω) for P–a.e. ω ∈ �}.

For each i ∈ I , the space L p(F i ,P) is denoted by Li (a). On Σ(a) = ∑
i∈I Li (a),

we let η be the norm defined by

∀x ∈ Σ(a), η(x) = inf

{
∑

i∈I

∥∥∥xi
∥∥∥

p
: (xi )i∈I ∈

∏

i∈I

Li (a) and
∑

i∈I

xi = x

}
.

We obviously have

∀x ∈ Σ(a), ‖x‖p ≤ χ(x) ≤ η(x).

Actually these three norms define the same topology on Σ(a).

Proposition A.4 Under Assumptions III and IV, the two norms ‖·‖p and η are equi-
valent in Σ(a), i.e., they define the same topology on Σ(a).

Proof of Proposition A.4 The arguments are very similar to those used to prove Corol-
lary 1. Only the proof of Proposition A.3 deserves some attention. Let x be a vector
in Σ(a). Since a belongs to L p(F c,P)+, there exists a function h ∈ L p

+(S ,Pκ )

such that Fa(s, t) ≤ h(s) for every (s, t). Following the notations in the proof of
Proposition A.3, the mapping

R
A −→ ∑

i∈I L0(T i
0 ,P

τ )

(αA)A∈A �−→ ∑
A∈A αA1A
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is a linear bijection. Therefore, it is continuous whatever the norms we consider in
each space. It follows that there exists 0 < � < ∞ such that

∀α ∈ R
A , max

A∈A
|αA| ≤ � sup

t∈T0

∣∣∣∣∣∣

∑

A∈A

αA1A(t)

∣∣∣∣∣∣
.

For each s ∈ S, the mapping t �→ Fx(s, t) belongs to
∑

i∈I L0(T i ,Pτ ), implying
that there exits α(s) ∈ R

A such that

∀(s, t) ∈ S × T, Fx(s, t) =
∑

A∈A

αA(s)1A(t).

Since there exists µ > 0 such that |Fx(s, t)| ≤ µh(s) for every t ∈ T0, we deduce
that

∀A ∈ A , αA(s) ≤ µ�h(s).

The set A can be decomposed in a partition (A i )i∈I where A i ⊂ T i
0 for each i . It

then follows that

Fx(s, t) =
∑

i∈I

⎡

⎣
∑

A∈A i

αA(s)1A(t)

⎤

⎦ .

We denote by xi the function defined on � by

∀ω ∈ �, xi (ω) =
∑

A∈A i

αA(κ(ω))1A(τ (ω)).

Since αA(s) ≤ µ�h(s) for every A ∈ A and each s ∈ S, we get that |xi | ≤ µ�a. It
is then straightforward to check that

x =
∑

i∈I

xi and xi ∈ Li (a), ∀i ∈ I.

The rest of the proof follows almost verbatim. ��

A.2 Proof of Claim 5.1

In order to prove Claim 5.1, we will need the following convexity result due to
Podczeck (1996). We also refer to (Aliprantis et al. 2004, Lemma 4.3) for a proof.

Lemma A.2 Let (Z , τ ) be an ordered topological vector space, let M be a vector
subspace of Z (endowed with the induced order), let Y be an open and convex subset
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of Z such that Y ∩ M+ �= ∅ and let z ∈ clY ∩ M+. If p is a linear functional on M
satisfying

∀y ∈ Y ∩ M+, p(y) ≥ p(z)

then there exists some π ∈ (Z , τ )′ such that

∀m ∈ M+, π(m) ≤ p(m) and p(z) = π(z).

Proof of Claim 5.1 We proved the existence of a linear functional p ∈ (Σ, σ)′ with
p(a) > 0 and satisfying19

∀i ∈ I, p(xi ) = p(ei ) and ∀yi ∈ Pi (xi ) ∩ Li (a), p(yi ) ≥ p(ei ).

Fix yi ∈ P̂i (xi ) ∩ Li (a)+, then for α > 0 small enough

αyi + (1 − α)xi ∈ P̂i (xi ) ∩ Axi ∩ Li+(a) ⊂ Pi (xi ) ∩ Li (a),

in particular p(yi ) ≥ p(xi ). Applying Lemma A.2 with (Z , τ ) = (Li , ‖·‖p), M =
Li (a), Y = P̂i (xi ) and z = xi , we get Claim 5.1. ��
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