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Abstract We give a complete characterization of preference domains over which
the plurality rule is strategy-proof. In case strategy-proofness is required to hold under
all tie-breaking rules, strategy-proof domains coincide with top-trivial ones where the
range of the plurality rule admits at most two alternatives. This impossibility virtu-
ally prevails when strategy-proofness is weakened so as to hold under at least one
tie-breaking rule: unless there are less than five voters, the top-triviality of a domain is
equivalent to the (weak) non-manipulability of the plurality rule. We also characterize
the cases with two, three or four voters.
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1 Introduction

When strategic voting is a concern, the implementation of social choice rules is
surrounded by a major impossibility established by Gibbard (1973) and Satterthwaite
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462 M. R. Sanver

(1975): there exists no strategy-proof and non-dictatorial social choice function.1 This
impossibility rests on the full domain assumption which allows any logically possible
ordering of alternatives as an individual preference. On the other hand, there are re-
stricted domains—such as those satisfying the single-peakedness condition of Black
(1948)—that admit non-dictatorial and strategy-proof social choice functions.

The possible escape from the Gibbard–Satterthwaite impossibility through domain
restrictions gives rise to two natural directions of research: One is the search for con-
ditions under which this impossibility fails or prevails. For example, Aswal et al.
(2003) introduce a linkedness condition and show that every linked domain exhib-
its the Gibbard–Satterthwaite impossibility.2 The second direction of research is to
take a domain over which the Gibbard-Satterthwaite impossibility fails and character-
ize the strategy-proof social choice functions defined over this domain. For example,
Moulin (1980) characterizes strategy-proof social choice rules defined over single-
peaked domains.3

More recently, Barbie et al. (2006) propose a third direction of research by picking
some social choice rule, namely the Borda Count, and exploring the domains over
which this given social choice rule is strategy-proof.4 They show that the Borda count
is strategy-proof over a domain � if and only if � is what they call a cyclic permu-
tation domain. We follow the same path for the plurality rule by giving a complete
characterization of the domains over which it is strategy-proof. As is in the analysis of
Barbie et al. (2006), we distinguish between strategy-proofness under any tie-breaking
rule (which we simply call “strategy-proofness”) and strategy-proofness under some
tie-breaking rule (which we call “essential strategy-proofness”). Nevertheless, our
negative findings make this distinction virtually insignificant: The plurality rule fails
essential strategy-proofness (hence strategy-proofness) on almost every interesting
domain.

Section 2 introduces the basic notions. Section 3 states our results. Section 4 makes
some concluding remarks.

2 Basic notions

Consider a finite set of alternatives A with # A ≥ 3. Let � be the set of complete,
transitive and antisymmetric binary relations over A. We refer to the elements of � as
orderings and for any ordering T ∈ �, we write h(T ) ∈ A for the alternative which

1 By a social choice function, we mean a resolute social choice rule that assigns a single outcome to each
profile of preferences. The Gibbard–Satterthwaite impossibility is for social choice functions whose ranges
admit at least three outcomes.
2 On the other hand, not every domain that exhibits the Gibbard–Satterthwaite impossibility has to be
linked. In fact, the literature seems to be missing a full characterization of domains which are dictatorial in
the Gibbard–Satterthwaite sense. Nevertheless, Nehring and Puppe (2005) characterize dictatorial domains
among all generalized single-peaked domains.
3 As a non-exhaustive list of research in the same direction, one can cite Demange (1982) and Barberà
et al. (1991, 1993).
4 A pioneer of this approach is Dasgupta and Maskin (2004) who ask for the domains over which the simple
majority rule satisfies certain desirable properties.
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is highest ranked by T , i.e., h(T ) T x for all x ∈ A. Any non-empty � ⊆ � is called
a domain. Let h(�) = {x ∈ A : x = h(T ) for some T ∈ �} be the set of alternatives
which are highest ranked by at least one ordering in �. We say that � is top-trivial
iff #h(�) = 1 or 2. So a top-trivial domain admits at most two alternatives which
are top-ranked by some ordering within the domain. This is a severe restriction which
rules out almost all interesting domains.

Let N be a finite set of voters with #N = n ≥ 2, confronted to make a collective
choice from A. The preference of any i ∈ N is denoted as Pi ∈ � while any P =
(P1, . . . , Pn) ∈ �N is a preference profile. Given some domain (of admissible prefer-
ences) � ⊆ �, we conceive a social choice rule as a mapping f : �N −→ 2A\{∅}.
Picking some tie-breaking rule T ∈ �, we write fT : �N −→ A for the refinement
of f through T .5

We say that i ∈ N manipulates fT : �N −→ A at P ∈ �N iff there exists
P ′ ∈ �N with Pj = P ′

j for all j ∈ N\{i} such that fT (P) Pi fT (P ′) fails. We say

that fT : �N −→ A is strategy-proof iff it is manipulated by no i ∈ N at no P ∈ �N .
We qualify f : �N −→ 2A\{∅} as strategy-proof iff fT : �N −→ A is strategy-
proof for every T ∈ �. We call f : �N −→ 2A\{∅} essentially strategy-proof iff
there exists T ∈ � such that fT : �N −→ A is strategy-proof.

For each P ∈ �N and each z ∈ A, we let n(z; P) = #{i ∈ N : h(Pi ) = z}.
A social choice rule f : �N −→ 2A\{∅} is the plurality rule iff f (P) = {x ∈ A :
n(x; P) ≥ n(y; P) for all y ∈ A} at each P ∈ �N . Throughout the paper, we restrict
our attention to the plurality rule. So f will always stand for the plurality rule and fT

will stand for its refinement through T ∈ �.

3 Results

We first show the equivalence between the top-triviality of a domain � and the (essen-
tial) strategy-proofness of the plurality rule. The result holds when there are at least
five individuals.

Theorem 3.1 Let n ≥ 5. Consider the plurality rule f : �N −→ 2A\{∅}. The
following three statements are equivalent:

(i) � is top-trivial.
(ii) f is strategy-proof.

(iii) f is essentially strategy-proof.

Proof We prove the theorem by establishing (i) �⇒ (ii) �⇒ (iii) �⇒ (i). As
(ii) �⇒ (iii) immediately follows from the definitions, we will show (i) �⇒ (ii) and
(iii) �⇒ (i).

To see (i) �⇒ (ii), take any top-trivial �. In case #h(�) = 1, the range of f
contains a unique alternative and strategy-proofness is vacuously satisfied. Now let
#h(�) = 2, i.e., h(�) = {x, y} for some distinct x, y ∈ A. Take any T ∈ �. Let

5 This refinement is made in the usual way: for each P ∈ �N , we have fT (P) T x for all x ∈ f (P). As
Sanver and Zwicker (2006) discuss in more details, such a refinement violates neutrality.
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x T y without loss of generality. Take any P ∈ �N , any i ∈ N and any P ′ ∈ �N

with Pj = P ′
j ∀ j ∈ N\{i}. As h(�) = {x, y}, we have n(z; P) = 0 ∀z ∈ A\{x, y}.

First consider the case n(x; P) > n(y; P). So fT (P) = x . If h(Pi ) = x , then
fT (P) Pi fT (P ′) holds. If h(Pi ) = y, then n(x; P ′) > n(y; P ′) hence fT (P ′) = x
implying fT (P) Pi fT (P ′). Thus no i ∈ N manipulates fT at P . The arguments of
the case n(x; P) > n(y; P), mutatis mutandis, establish the non-manipulability of
fT at P when n(y; P) > n(x; P). Finally, consider the case n(x; P) = n(y; P).
So f (P) = {x, y} and fT (P) = x . If h(Pi ) = x , then fT (P)Pi fT (P ′) holds. If
h(Pi ) = y, then n(x; P ′) ≥ n(y; P ′) hence fT (P ′) = x implying fT (P) Pi fT (P ′).
Thus no i ∈ N manipulates fT at P , showing (i) �⇒ (ii).

We now show (iii) �⇒ (i). Let � fail top-triviality. Hence there exist Px , P y, Pz ∈
� with h(Px ) = x, h(P y) = y, h(Pz) = z for distinct x, y, z ∈ A. We will show
that f fails essentially strategy-proofness. Take any (tie-breaking rule) T ∈ � and let,
without loss of generality, x T y T z. We complete the proof by showing that fT fails
strategy-proofness under the following four exhaustive cases:

Case 1: n is even (hence n ≥ 6) and x Pz y.
Pick P ∈ �N with P1 = Pz , Pi = Px ∀i ∈ {2, . . . , n

2 } and Pi = P y ∀i ∈
{ n

2 + 1, . . . , n}. As n ≥ 6, f (P) = {y} thus fT (P) = y. Now consider the profile
P ′ ∈ �N where Pi = P ′

i ∀i ∈ N\{1} while P ′
1 = Px . Note that f (P ′) = {x, y} and

fT (P ′) = x . As x Pz y, thus x P1 y, 1 ∈ N manipulates fT at P .
Case 2: n is even (hence n ≥ 6) and y Pz x .
Pick P ∈ �N with P1 = P2 = Pz , Pi = P y ∀i ∈ {3, . . . , n

2 + 1} and Pi = Px

∀i ∈ { n
2 + 2, . . . , n}. Remark that n(z; P) = 2 and n(x; P) = n(y; P) = n

2 − 1.
As n ≥ 6, n(x; P) = n(y; P) ≥ n(z; P), hence {x, y} ⊆ f (P) and fT (P) = x .
Now consider the profile P ′ ∈ �N where Pi = P ′

i ∀i ∈ N\{1} while P ′
1 = P y . So

n(y; P ′) > n(x; P ′) > n(z; P ′) and fT (P ′) = y. As y Pz x , thus y P1 x , 1 ∈ N
manipulates fT at P .

Case 3: n is odd and x Pz y.
Pick P ∈ �N with P1 = P2 = Pz , Pi = Px∀i ∈ {3, . . . , n+1

2 } and Pi = P y

∀i ∈ { n+3
2 , . . . , n}. Remark that n(z; P) = 2, n(x; P) = n−3

2 and n(y; P) = n−1
2 ,

thus n(y; P) = n(x; P)+1. Moreover, as n ≥ 5, n(y; P) ≥ n(z; P), hence y ∈ f (P)

but x /∈ f (P), implying fT (P) = y. Now consider the profile P ′ ∈ �N where
Pi = P ′

i ∀i ∈ N\{1} while P ′
1 = Px . Note that f (P ′) = {x, y} and fT (P ′) = x . As

x Pz y, thus x P1 y, 1 ∈ N manipulates fT at P .
Case 4: n is odd and y Pz x .
Pick P ∈ �N with P1 = Pz , Pi = Px ∀i ∈ {2, . . . , n+1

2 } and Pi = P y ∀i ∈
{ n+3

2 , . . . , n}. Remark that n(z; P) = 1 and n(x; P) = n(y; P) = n−1
2 . Moreover, as

n ≥ 5, n(x; P) = n(y; P) > n(z; P), hence f (P) = {x, y} and fT (P) = x . Now
consider the profile P ′ ∈ �N where Pi = P ′

i ∀i ∈ N\{1} while P ′
1 = P y . Note that

f (P ′) = {y} and fT (P ′) = y. As y Pz x , thus y P1 x , 1 ∈ N manipulates fT at P .
	


Theorem 3.1 announces that in a society with at least five individuals, strategy-
proofness and essential strategy-proofness are equivalent conditions for the plurality
rule. Moreover, these conditions are satisfied by the plurality rule if and only if it is
defined over a domain that admits at most two alternatives that are top-ranked by some
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admissible ordering—hence allowing at most two alternatives within the range of the
plurality rule.

We now turn to societies which consist of three or four individuals. We first show
that over a domain � with #h(�) ≥ 4, no refinement of the plurality rule is strategy-
proof.

Proposition 3.1 Let n ∈ {3, 4}. If #h(�) ≥ 4 then fT : �N −→ A fails strategy-
proofness for any T ∈ �.

Proof Let #h(�) ≥ 4. Take any distinct a, b, c, d ∈ h(�) and any T ∈ � where,
without loss of generality, a T bT c T d. We will show that fT fails strategy-proofness
for the cases of n = 3 and n = 4 separately.

First let n = 3. Pick some P = (P1, P2, P3) ∈ �N with h(P1) = b, h(P2) = c,
h(P3) = d. So f (P) = {b, c, d} and fT (P) = b. For fT to be strategy-proof, we must
have bP2 a, as otherwise 2 ∈ N manipulates fT at P by pretending some Q2 ∈ �

with h(Q2) = a. Now take P ′ = (P ′
1, P ′

2, P ′
3) ∈ �N with h(P ′

1) = a, h(P ′
3) = b

and P ′
2 = P2 (hence h(P ′

2) = c and bP ′
2 a). So f (P ′) = {a, b, c} and fT (P ′) = a.

However, 2 ∈ N manipulates fT at P ′ by pretending some P ′′
2 ∈ � with h(P ′′

2 ) = b,
showing that fT fails strategy-proofness.

Now let n = 4. Pick some P = (P1, P2, P3, P4) ∈ �N with h(P1) = a, h(P2) = b,
h(P3) = c, h(P4) = d. So f (P) = {a, b, c, d} and fT (P) = a. For fT to be strat-
egy-proof, we must have a P2 c, as otherwise 2 ∈ N manipulates fT at P by pre-
tending some Q2 ∈ � with h(Q2) = c. Now take P ′ = (P ′

1, P ′
2, P ′

3, P ′
4) ∈ �N with

h(P ′
1) = a, h(P ′

3) = h(P ′
4) = c and P ′

2 = P2 (hence h(P ′
2) = b and a P ′

2 c). So
f (P ′) = {c} and fT (P ′) = c. However, 2 ∈ N manipulates fT at P ′ by pretending
some P ′′

2 ∈ � with h(P ′′
2 ) = a, showing that fT fails strategy-proofness. 	


Proposition 3.1 paves the way to a full characterization of the domains over which
the plurality rule is (essentially) strategy-proof when n = 3 or 4. We first give a couple
of definitions: We say that a domain � is restricted for x ∈ h(�) iff #h(�) = 3 and
for each T ∈ � we have x T y for some y ∈ h(�)\{x}. When # A = 3, a restricted
domain is one where each alternative is top-ranked by some admissible ordering while
some x ∈ A is ranked last by no admissible ordering.6 The condition becomes more
demanding when #A > 3, as it requires precisely three alternatives, say a, b, and
c, which are top-ranked by some admissible ordering. Moreover, there must exist
x ∈ {a, b, c} such that no admissible ordering ranks x last among {a, b, c}.

In case � is restricted for x ∈ h(�) while y T z ⇐⇒ y T ′ z ∀y, z ∈ h(�)\{x}
and ∀T, T ′ ∈ � with h(T ) = h(T ′) = x , we qualify � as strongly restricted.

Theorem 3.2 Let n = 4. Consider the plurality rule f : �N −→ 2A\{∅}.
(i) f is essentially strategy-proof iff � is top-trivial or strongly restricted.

(ii) f is strategy-proof iff � is top-trivial.

Proof We first prove the “if” part of (i). It is straightworward to see that the top-
triviality of � implies the strategy-proofness of fT at each T ∈ �. Now let � be

6 This is a particular case of the value-restriction condition that Sen (1966) identifies—hence our nomen-
clature. As Sen (1966) shows, value-restricted domains ensure the existence of a Condorcet winner.
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strongly restricted. Thus h(�) = {x, y, z} for some distinct x, y, z ∈ A. Let, without
loss of generality, � be strongly restricted for x while y T z ∀T ∈ � with h(T ) = x .
Pick some τ ∈ � such that z τ y τ x . We establish the essential strategy-proofness of
f by showing the strategy-proofness of fτ . Remark that fτ is non-manipulable at any
P ∈ �N with #{h(Pi ) : i ∈ N } ≤ 2. So we complete the proof by showing that fτ is
non-manipulable at any P = (P1, P2, P3, P4) ∈ �N with #{h(Pi ) : i ∈ N } = 3 . Let,
without loss of generality, h(P1) = x , h(P2) = y and h(P3) = z. Note that we have
x P1 y P1 z and as � is strongly restricted for x we have y P2 x P2 z and z P3 x P3 y.
We establish the non-manipulability of fτ at P under the following three exhaustive
cases:

Case 1: h(P4) = z.
So f (P) = {z} and fτ (P) = z. As fτ (P) = h(P3) = h(P4), neither 3 ∈ N ,

nor 4 ∈ N manipulates fτ at P . As { fτ (Q1, P2, P3, P4) ∈ A : Q1 ∈ �} =
{ fτ (P1, Q2, P3, P4) ∈ A : Q2 ∈ �} = {z}, 1, 2 ∈ N do not manipulate fτ at P .

Case 2: h(P4) = y
So f (P) = {y} and fτ (P) = y. As fτ (P) = h(P2) = h(P4), 2, 4 ∈ N do not

manipulate fτ at P . As { fτ (Q1, P2, P3, P4) ∈ A : Q1 ∈ �} = {y, z} while x P1 y P1
z, 1 ∈ N does not manipulate fτ at P . As { fτ (P1, P2, Q3, P4) ∈ A : Q3 ∈ �} = {y},
3 ∈ N does not manipulate fτ at P .

Case 3: h(P4) = x
So f (P) = {x} and fτ (P) = x . As fτ (P) = h(P1) = h(P4), 1, 4 ∈ N do not

manipulate fτ at P . As { fτ (P1, Q2, P3, P4) ∈ A : Q2 ∈ �} = {x, z} while y P2 x
P2 z, 2 ∈ N does not manipulate fτ at P . As { fτ (P1, P2, Q3, P4) ∈ A : Q3 ∈ �} =
{x, y} while z P3 x P3 y, 3 ∈ N does not manipulate fτ at P .

Thus fτ is strategy-proof, showing the essential strategy-proofness of f .
To prove the “only if” part of (i), let � be neither top-trivial nor strongly restricted.

So either #h(�) > 3 or #h(�) = 3 while � is strongly restricted for no a ∈ h(�).
In the former case, we know by Proposition 3.1 that fT is manipulable for any T ∈
�, hence f fails essential strategy-proofness. Now consider the latter case where
#h(�) = 3 and � is strongly restricted for no a ∈ h(�) = {x, y, z}. Take any
τ ∈ � and let, without loss of generality, xτ y τ z. Recalling that � is not strongly
restricted for x , we will show that fτ fails strategy-proofness under the following three
exhaustive cases:

Case 1: There exist T, T ′ ∈ � with h(T ) = h(T ′) = x while y T z and z T ′ y.
Take some P = (P1, P2, P3, P4) ∈ �N with h(P1) = x P1 y P1 z, h(P2) = y,

h(P3) = h(P4) = z. So f (P) = {z} and fτ (P) = z. However, 1 ∈ N manipulates
fτ at P by pretending some P ′

1 ∈ � with h(P ′
1) = y.

Case 2: y T z ⇐⇒ y T ′ z ∀T, T ′ ∈ � with h(T ) = h(T ′) = x and x T yT z
∀T ∈ � with h(T ) = x .

Take some P = (P1, P2, P3, P4) ∈ �N with h(P1) = x , h(P2) = y and h(P3) =
h(P4) = z. So f (P) = {z} and fτ (P) = z. However, 1 ∈ N manipulates fτ at P by
pretending some P ′

1 ∈ � with h(P ′
1) = y.

Case 3: y T z ⇐⇒ y T ′ z ∀T, T ′ ∈ � with h(T ) = h(T ′) = x and x T zT y
∀T ∈ � with h(T ) = x .

As � is not strongly restricted for x , (∃ P y ∈ � with h(P y) = y while z P y

x) or (∃Pz ∈ � with h(Pz) = z while y Pz x). So let, without loss of generality,
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there exist some P y ∈ � with h(P y) = y while z P y x . Note that � is not strongly
restricted for z ∈ h(�). Thus, (∃T ∈ � with h(T ) = y while x T z) or (∃T, T ′ ∈ �

with h(T ) = h(T ′) = z while x T y and y T ′x). In the former case, take some
P = (P1, P2, P3, P4) ∈ �N with h(P1) = x , h(P2) = y P2 x P2 z, h(P3) =
h(P4) = z. So fτ (P) = z and 2 ∈ N manipulates by pretending some P ′

2 ∈ � with
h(P ′

2) = x . In the latter case, take some P = (P1, P2, P3, P4) ∈ �N with h(P1) = x ,
h(P2) = h(P3) = y, h(P4) = z P4 x P4 y. So fτ (P) = y and 4 ∈ N manipulates by
pretending some P ′

4 ∈ � with h(P ′
4) = x .

Thus fτ fails strategy-proofness, showing that f fails essential strategy-proofness.
We now show (i i). We leave the “if” part to the reader. To see the “only if” part,

let � fail top-triviality. If � is not strongly restricted, then we know by part (i) that f
fails essential strategy-proofness hence f fails strategy-proofness. Now let � fail top-
triviality but be strongly restricted. We write h(�) = {x, y, z} and let � be restricted
for x , without loss of generality. Pick some τ ∈ � with x τ y τ z and consider some
P = (P1, P2, P3, P4) ∈ �N with h(P1) = x , h(P2) = y, h(P3) = h(P4) = z. So
f (P) = {z} and fτ (P) = z. Note that { fτ (P1, Q2, P3, P4) ∈ A : Q2 ∈ �} = {x, z}.
Moreover, � is strongly restricted for x , thus x P2 z. So, 2 ∈ N manipulates fτ at
P by pretending some P ′

2 ∈ �N with h(P ′
2) = x . Hence fτ fails strategy-proofness

showing that f is not strategy-proof. 	

Theorem 3.3 Let n = 3. Consider the plurality rule f : �N −→ 2A\{∅}.
(i) f is essentially strategy-proof iff � is top-trivial or restricted.

(ii) f is strategy-proof iff � is top-trivial.

Proof We first prove the “if” part of (i). Check that when � is top-trivial, fT is
strategy-proof at any T ∈ �. Now let � be restricted for x ∈ h(�) = {x, y, z}.
Take some T ∈ � with x T y T z. We establish the essential strategy-proofness of f
by showing the strategy-proofness of fT . Remark that fT is non-manipulable at any
P ∈ �N with #{h(Pi ) : i ∈ N } ≤ 2. So we complete the proof by showing that fT

is non-manipulable at any P = (P1, P2, P3) ∈ �N with #{h(Pi ) : i ∈ N } = 3. Let,
without loss of generality, h(P1) = x , h(P2) = y, h(P3) = z. So f (P) = {x, y, z}
and fT (P) = x . As fT (P) = h(P1), 1 ∈ N does not manipulate fT at P . Note that
{ fT (P1, Q2, P3) ∈ A : Q2 ∈ �} = {x, z}. Moreover, � is restricted for x , thus x
P2 z. Hence, 2 ∈ N does not manipulate fT at P . Note also that { fT (P1, P2, Q3) ∈
A : Q3 ∈ �} = {x, y}. As � is restricted for x , we have x P3 y. Hence, 3 ∈ N
does not manipulate fT at P . Thus fT is strategy-proof, showing that f is essentially
strategy-proof.

To prove the “only if” part of (i), let � be neither top-trivial nor restricted. So either
#h(�) > 3 or #h(�) = 3 but � is restricted for no a ∈ h(�). In the former case, we
know by Proposition 3.1 that fT is manipulable for any T ∈ �, hence f fails essential
strategy-proofness. Now consider the latter case where #h(�) = 3 and � is restricted
for no a ∈ h(�) = {x, y, z}. Take any T ∈ � and let, without loss of generality, x
T y T z. As � is not restricted for x , (∃ P y ∈ � with h(P y) = y while z P y x) or
(∃ Pz ∈ � with h(Pz) = z while y Pz x). Assume, without loss of generality, the
former case and take some P = (P1, P2, P3) ∈ �N with h(P1) = x , h(P3) = z and
P2 = P y . So f (P) = {x, y, z} and fT (P) = x . However, 2 ∈ N manipulates fT at P
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by pretending some P ′
2 ∈ � with h(P ′

2) = z. Thus, fT is not strategy-proof, showing
that f is not essentially strategy-proof.

We now show (i i). To see the “if” part, we refer to Theorem 3.1 where we show for
n ≥ 5 that the top-triviality of � implies the strategy-proofness of f . The arguments
of that proof are independent of n , thus apply to n = 3 as well. To see the “only
if” part of (i i), let � fail top-triviality. If � is not restricted, then we know by part
(i) that f fails essential strategy-proofness hence f fails strategy-proofness. Now let
#h(�) = 3 and � be restricted for x ∈ h(�) = {x, y, z}. Pick some T ∈ � with z T y
T x . Consider some P = (P1, P2, P3) ∈ �N with h(P1) = x , h(P2) = y, h(P3) = z.
So f (P) = {x, y, z} and fT (P) = z. Note that { fT (P1, Q2, P3) ∈ A : Q2 ∈ �} =
{x, z}. Moreover, � is restricted for x , thus x P2 z. So, 2 ∈ N manipulates fT at P
by pretending some P ′

2 ∈ �N with h(P ′
2) = x . Hence fT fails strategy-proofness

showing that f is not strategy-proof. 	

Our last result is for the case of two individuals. We first give a definition: We

say that a domain � is semi-single-peaked with respect to τ ∈ � iff x T y holds
for every T ∈ � and for every x, y ∈ h(�)\{h(T )} with y τ x τ h(T ). Notice that
semi-single-peakedness restricts the ordering of the alternatives in h(�) that are on
one side of the peak. This is a two-fold weakening of the single-peakedness condition
of Black (1948) which is concerned with all alternatives and both sides of the peak.

Theorem 3.4 Let n = 2. Consider the plurality rule f : �N −→ 2A\{∅}.
(i) f is essentially strategy-proof iff � is semi-single-peaked.

(ii) f is strategy-proof iff � is top-trivial.

Proof We first prove (i). To show the “if” part, let � be semi-single-peaked with
respect to τ ∈ �. We show the essential strategy-proofness of f by showing the
strategy-proofness of fτ . Take any P = (P1, P2) ∈ �N . The reader can check that
if h(P1) = h(P2), then no i ∈ N manipulates fτ at P . Now let h(P1) = x and
h(P2) = y for some distinct x, y ∈ A. Let x τ y, without loss of generality. Hence
fτ (P) = x = h(P1) and 1 ∈ N does not manipulate fτ at P . We now show that
2 ∈ N does not manipulate fτ at P either. Take any z ∈ { fτ (P1, Q2) ∈ A : Q2 ∈ �}.
We have z τ x , thus z τ x τ y. As y = h(P2) for P2 ∈ � and � is semi-single-peaked
with respect to τ , we have x P2 z, showing that 2 ∈ N does not manipulate fτ at P .

To show the “only if” part of (i), let � fail semi-single-peakedness. Take any
τ ∈ �. We will show that fτ is not strategy-proof, hence f fails essential strategy-
proofness. As � fails semi-single-peakedness, there exists P = (P1, P2) ∈ �N such
that x τh(P1) τ h(P2) and x P2 h(P1) for some x ∈ h(�)\{h(P1), h(P2)}. Note
that fτ (P) = h(P1) and 2 ∈ N manipulates fτ at P by pretending P ′

2 ∈ � with
h(P ′

2) = x .
We now prove (i i). To show the “if” part, let � be top-trivial. Take any T ∈ �.

We will show that fT is strategy-proof. Take any P = (P1, P2) ∈ �N . If h(P1) =
h(P2), then fT (P) = h(Pi ) for both i ∈ N , hence no i ∈ N manipulates fT at P .
Now let h(P1) = x and h(P2) = y for some distinct x, y ∈ A. Let x T y, without loss
of generality. Hence fT (P) = x = h(P1) and 1 ∈ N does not manipulate fT at P .
As � is top-trivial, we have h(�) = {x, y}. So { fT (P1, Q2) ∈ A : Q2 ∈ �} = {x} .
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Hence 2 ∈ N does not manipulate fT at P either, establishing the strategy-proofness
of f .

To show the “only if” part of (i i), let � fail top-triviality. If � fails semi-single-
peakedness as well, then we know by part (i) that f fails essential strategy-proofness
hence f fails strategy-proofness. Now let � be semi-single-peaked with respect to
some T ∈ �. Let, without loss of generality, x T y T z for some distinct x, y, z ∈
h(�). Pick some τ ∈ � such that y τ x τ z. Consider some P = (P1, P2) ∈ �N

with h(P1) = x , h(P2) = z. So f (P) = {x, z} and fτ (P) = x . Note that y ∈
{ fτ (P1, Q2) ∈ A : Q2 ∈ �}. Moreover, � is semi-single-peaked with respect to
T , thus y P2 x . So, 2 ∈ N manipulates fτ at P by pretending some Q2 ∈ �N with
h(Q2) = y. Hence fτ fails strategy-proofness showing that f is not strategy-proof.

	


We close the section by thanking an anonymous referee who remarked that when
n = 2, fT is a generalized median voter scheme à la Moulin (1980) with h(T )

being the fictitious voter. Of course, part (i) of Theorem 3.4 neither implies nor is
implied by Moulin (1980). For, while Moulin (1980) shows the strategy-proofness
of all generalized median voter schemes over single-peaked domains, Theorem 3.4
establishes the strategy-proofness of a given generalized median voter scheme over
larger domains, namely those which are semi-single-peaked.

4 Concluding remarks

We give a complete characterization of the domains over which the plurality rule is
(essentially) strategy-proof. Our results are strongly negative: No matter how many
alternatives or individuals the social choice problem admits, the plurality rule is
strategy-proof over a domain � if and only if its range over � admits at most two
alternatives. Moreover, weakening strategy-proofness to essential strategy-profness
does not bring a noticeable improvement of the situation: as long as the social choice
problem admits at least five individuals, essential strategy-proofness of the plurality
rule again coincides with the top-triviality of the domain over which it is defined.7

The case of two, three or four individuals is slightly more permissive: With three or
four individuals, the range of the plurality rule can be extended to three outcomes
without violating essential strategy-proofness as long as it is defined over a (strongly)
restricted domain. This is quite an insignificant relaxation of top-triviality. On the other
hand, the divergence between strategy-proofness and essential strategy-proofness is
stronger in the case of two individuals: Domains over which the plurality rule is essen-
tially strategy-proof are characterized by a semi-single-peakedness condition satisfied
by a variety of domains -including the single-peaked ones. In any case, the general
picture is negative: With no restictions over the size of the social choice problem, the
(essential) strategy-proofness of the plurality rule is equivalent to the top-triviality of
the domain over which it is defined. In other words, the plurality rule can be rendered

7 Thus, for social choice problems that admit at least five individuals, strategy-proofness and essential
strategy-proofness are equivalent conditions for the plurality rule.
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strategy-proof through a domain restriction if and only if its range contains at most
two outcomes.

As a case in point, the plurality rule is never strategy-proof over rich domains.8

On the other hand, as Barbie et al. (2006) show, (rich) cyclic permutation domains
ensure the strategy-proofness of the Borda count. Thus, one can claim that over rich
domains the Borda count is less manipulable than the plurality rule. This claim is
compatible with Saari (1990) who shows, within a particular environment, that among
all scoring rules, the Borda Count is least susceptible to manipulation. Nevertheless,
by abandoning richness, one can construct a top-trivial domain over which the Borda
count is manipulable but the plurality rule is not. After all, as Aleskerov and Kurbanov
(1999) suggest, determining criteria for degree of strategy-proofness is not a simple
task.9

To what extent our findings about the plurality rule apply to the more general class
of tops-only rules, i.e., social choice rules that depend only on the top preferences of
voters? As strategy-proofness implies tops-onlyness in a variety of environments,10

an answer to this question can pave the way to more general results in characterizing
the domains over which a given social choice rule is strategy-proof.
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