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Abstract We provide the existence theorem of stationary subgame-perfect equi-
librium (SSPE) in a noncooperative coalitional bargaining game model with random
proposers. Our model contains a bargaining situation where the coalitional game is
nonsuperadditive. We also provide a necessary and sufficient condition for the exis-
tence of a pure-strategy SSPE satisfying the efficiency property when the discount
factor is close to one. Furthermore, we provide examples where the delay in agree-
ment occurs, even in a random-proposers model, when the game is nonsuperadditive.
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1 Introduction

This paper examines the existence and efficiency of a stationary subgame-perfect
equilibrium (SSPE) in a noncooperative coalitional bargaining game with random
proposers. A noncooperative coalitional bargaining model with random proposers
was first provided by Okada (1996). A bargaining model with random proposers is
common in the literature on legislative bargaining. Starting with Baron and Ferejohn’s
(1989) seminal work, a considerable number of studies have been undertaken concern-
ing legislative bargaining and a number of variants of the Baron–Ferejohn model have
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been provided (see, for example, Banks and Duggan 2000; Jackson and Moselle 2002;
Snyder et al. 2005; Eraslan and McLennan 2006).

In a noncooperative coalitional bargaining model, the bargaining situation is
described by an n-person coalitional game (N , v), where N is the set of players and
v is the characteristic function. A key feature in our model is that the characteristic
function v is not necessarily superadditive, unlike the superadditive game (N , v) was
assumed in Okada’s work. The superadditive game means that the coarsest coalition
structure consisting of the grand coalition {N } can generate the maximum total fea-
sible payoff for all players in N . Some economic environments, however, could not
be described by a class of superadditive games. Guesnerie and Oddou (1979, 1981)
and Greenberg and Weber (1986) have clearly shown that the coalitional games cor-
responding to the local public good economy are not necessarily superadditive when
the local public good is financed through a proportional income tax or a poll tax. The
coalitional form game of the local public good economy with congestion effects is not
superadditive, even if the tax system is flexible enough to adjust the contributions of
each individual, as shown in Mutuswami et al. (2004).1 Demange (2004) has examined
the hierarchical structure of organizations like firms, political parties, and transporta-
tion and telecommunication networks. She has pointed out that in some environments,
the union of coalitions may generate some inefficiencies due to congestion, increasing
the marginal cost of the dissemination of information, or increasing the marginal cost
of control. In these cases, the problem is represented by a nonsuperadditive game.

The problem of two-sided matching markets, the so-called roommate or the mar-
riage problem (see, for example, Gale and Shapley 1962; Roth and Sotomayor 1990),
can also be considered as a nonsuperadditive game. If we define the coalitional form
game such that only the worth of the coalitions consisting of two members is positive
and the worth of all other coalitions is zero, the game becomes a nonsuperadditive
game. However, since Shapley and Shubik (1972), the game corresponding to the two-
sided matching has been given by the superadditive cover of the above coalitional form
game, where the worth of large coalitions is determined entirely by the worth of the
pairwise combinations that the coalitions members can form. This is the well-known
assignment game.

Slikker and van den Nouweland (2000) have studied network formation when the
game is not necessarily superadditive. They focused on the effects that the costs of
establishing communication links has on the networks formed and showed that the
pattern of network structures as costs increase depends on whether the underlying
coalitional game is superadditive. Recent studies of the legislative bargaining game
also include cases of nonsuperadditive games (Jackson and Moselle 2002; a legislative
voting game over the division of a pie and a one-dimensional policy, Snyder et al. 2005;
a weighted majority voting game, Eraslan and McLennan 2006; a voting game with
arbitrary winning coalitions).2

1 Mutuswami et al. (2004) did not mention congestion effects explicitly. They provided a model where the
utility function and cost function of the local public good depend on the coalition to which the members
belong. This model can incorporate congestion effects.
2 I am grateful to an anonymous referee for identifying this work on bargaining in legislatures. As a result,
we find that voting games contain cases with a nonsuperadditive game.
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A noncooperative coalitional bargaining model is represented as an infinite-length
extensive game with perfect information and chance moves. Gomes (2005) showed
that the coalitional bargaining game is considered as a stochastic game with infinite
state spaces and asserted that the existence of SSPEs for stochastic games with infinite
state spaces is not trivial. Therefore, we first prove the existence of an SSPE in a nonco-
operative coalitional bargaining model with random proposers. Moreover, because the
bargaining game is not of finite-length but an infinite-length extensive form game with
perfect information, the existence of pure-strategy Nash equilibria is even unclear.3

We next clarify a necessary and sufficient condition for a pure-strategy efficient SSPE
to exist in the random-proposers bargaining model with a coalitional form game con-
taining the nonsuperadditive case. We show that the necessary and sufficient condition
is related to the notion of a C-stable solution (or the core of cooperative games with
coalition structures) introduced by Aumann and Dreze (1974), Guesnerie and Oddou
(1979, 1981) and Greenberg and Weber (1986).

Chatterjee et al. (1993) show that a delay in agreement may occur in a stationary
equilibrium for an n-person coalitional bargaining model. This is in contrast to the
Rubinstein (1982) two-person alternating-offer model. In their model, a proposer is
determined in a fixed order over the players, and the first rejecter becomes the next
proposer. Okada (1996) points out that the delay in agreement is caused by their fixed
bargaining protocol and shows that no delay in agreement occurs in the bargaining
model where the proposer is randomly selected in every round (the random-proposers
model). In Okada’s paper, an n-person coalitional game (N , v) is assumed to be
superadditive. We provide examples where the delay in agreement occurs, even in
the random-proposers model when a coalitional form game is not superadditive. We
then discuss the delay in agreement in nonsuperadditive games.

The paper is organized as follows. In Sect. 2, we present a noncooperative coali-
tional bargaining game model with random proposers and provide examples of the
nonsuperadditive coalitional form game. In Sect. 3, we provide two existence theo-
rems for a stationary subgame-perfect equilibrium point of the bargaining game. In
Sect. 4, we show that the delay in agreement occurs because of nonsuperadditivity.
Section 5 concludes the paper.

2 Random-proposers model

The bargaining situation is described by an n-person coalitional form game (N , v)
with transferable utility. Here, N = {1, . . . , n} is the set of players and v : 2N → R is
the characteristic function. The characteristic function v is assumed to be 0-normalized
(v({i}) = 0 for all i ∈ N ) and satisfies

∑J
j=1 v(S j )>0 for some partition {S1, . . . , SJ }

of N . We allow the characteristic function to be nonsuperadditive, i.e., there exist two
disjoint coalitions S and T ∈ 2N such that v(S ∪ T ) < v(S) + v(T ). We state that
the grand coalition is universally efficient if v(N ) ≥ ∑K

k=1 v(Sk) for any partition
{S1, . . . , SK } of N . If the game is superadditive, the grand coalition N is universally

3 If the game is a finite-length extensive form game with perfect information, a pure-strategy Nash equi-
librium always exists. See, Corollary 1 in Kuhn (1953), p. 61.
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efficient. However, the grand coalition N is not necessarily universally efficient in
nonsuperadditive games.

Let us next explain the random-proposers model of bargaining. A payoff vector for
a coalition S is denoted by yS = (yS

i )i∈S ∈ R
|S|. A payoff vector yS for S is called

feasible if:

∑

i∈S

yS
i ≤ v(S).

We denote by Y S the set of all feasible payoff vectors for S.
Our noncooperative bargaining model proceeds as follows. In every round t =

1, 2, . . . , one player is selected as a proposer with equal probability among all players
which is still active in bargaining. Let N t be the set of all active players in round t . The
bargaining starts with all players in round 1, i.e., N 1 = N . The proposer i chooses a
coalition S (with i ∈ S ⊆ N t ) and a payoff vector yS ∈ Y S . All other players in S
sequentially accept or reject the proposal. If all the other players in the coalition accept
the proposal, then it is agreed upon and enforced. The remaining players outside S
can continue negotiations in the next round. Thus, N t+1 = N t\S. If some player in S
rejects the proposal, then negotiations go on to the next round and a new proposer is
randomly selected by the same rule, i.e., N t+1 = N t . The bargaining continues until
there is no coalition S of active players such that v(S) > 0. Note that players can
offer unacceptable proposals or reject any proposals. The delay of agreements occurs
in this case. The game could last forever under the possibility of delay.

When a proposal (S, yS) is agreed upon in round t , the payoff of every member
i ∈ S is δt−1 yS

i , where δ is a discount factor, and 0 ≤ δ < 1. For players who do
not belong to any coalitions, their payoffs are assumed to be zero. Every player has
perfect information.

Our model is formally represented as an infinite-length extensive form game with
perfect information and chance moves. We denote by�S(δ) the bargaining model with
the player set S ⊆ N . �S is used when the discount factor δ converges to one. Let
σi = {σ t

i }∞t=1 be a strategy for player i in �N (δ) and σ = (σ1, . . . , σn) be a strategy
combination. Here, σ t

i is the t th round strategy for player i . A history ht
i , for t ≥ 1, is a

sequence of all past actions before player i’s move in round t in �N (δ). When player i
is a proposer in round t , ht

i is a complete listing of actions in the previous t −1 rounds,
and when player i is a responder in round t , the proposals by other players in round
t is also included in ht

i . The t th round strategy σ t
i depends on the history ht

i of the
play of game up to round t and prescribes a proposal (S, yS) and a response function
assigning “yes” or “no”. The solution concept that we apply to our bargaining model
is a stationary subgame-perfect equilibrium point (SSPE).

Definition 1 (i) A strategy combination σ ∗ of the game �N (δ) is called a stationary
subgame-perfect equilibrium point (SSPE) if it is a subgame perfect equilibrium
point with the property that for every t = 1, 2, . . . , the t th round strategy of every
player depends only on the set N t of all active players and the proposal in round t .
(ii) A strategy combination σ ∗ of the game �N is called a limit SSPE if it is a limit
point of SSPEs of �N (δ) as δ → 1.
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For an SSPE σ of �N (δ) and every coalition S ⊆ N , let vS = (vS
i )i∈S denotes the

expected payoff vector of players for σ in the subgame �S(δ), and θ S = (T S
i )i∈S be

the collection of coalitions T S
i proposed by every player i on the plays of σ in �S(δ).

We denote the collection {(vS, θ S) | S ⊆ N } the configuration of the SSPE σ .

3 Existence theorems

3.1 Existence and C-stable solution

Let us establish the existence theorem for an SSPE in the general random-proposers
bargaining model. If mixed strategies with respect to the proposal of a coalition are
allowed, the existence of a SSPE is guaranteed. We can prove the existence of SSPEs
without mixing randomly the strategies with respect to the proposals of feasible payoff
allocations and the responses, {accpet, reject}, to a proposal. By allowing the mixed
strategies with respect to only the proposal of a coalition S, we can ensure the continu-
ous correspondences of proposals by each player through Berge’s maximum theorem.

Theorem 1 If mixed strategies with respect to the choice of a coalition by each pro-
poser are allowed, there exists a stationary subgame-perfect equilibrium point of the
game �N (δ).

Proof This existence theorem can be proved in the same line as the proof of Theorem
2.1 in Ray and Vohra (1999) by Berge’s maximum theorem and Kakutani’s fixed point
theorem. Therefore, we omit the proof. 	


Denote the set of all partitions of S by:

�(S) =
{

{S1, . . . , SK }
∣
∣
∣

K⋃

k=1

Sk = S, and Si ∩ S j = ∅, i = j

}

.

An element π S = {S1, . . . , SK } ∈ �(S) is called a coalition structure of S. The
function on �(S) is defined by:

V (π S; S) =
K∑

k=1

v(Sk).

Definition 2 A coalition structure π is called an efficient coalition structure of S if
V (π; S) ≥ V (π ′; S) for all π ′ ∈ �(S).

We now provide some examples of nonsuperadditive games.

Example 1 (the local public good economy) Let us consider an economy with one
local public good and one private good. We assume that one unit of the private good
can be transformed into one unit of the public good. Each individual i ∈ N is endowed
with the same amount I of the private good and has a quasilinear utility function with
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congestion effects: ui (g)− c(|S|)+ xi , where ui (g) is the utility from the local public
good g and xi is the consumption of the private good, whereas c(|S|) is the disutility
from congestion (here, |S| denotes the cardinality of the coalition S). The coalitional
form game (N , v) associated with the local public good economy is defined by, for
each S ⊂ N :

v(S) = max
g∈R

{
∑

i∈S

ui (g)− |S|c(|S|)+ |S|I − g

}

.

The value v(S) denotes the maximum total payoff for the members of coalition S by
producing the local public good. If c(|S|) is substantially increasing with respect to
|S|, forming the grand coalition will not necessarily maximize the total payoff and v
is not superadditive.

Example 2 (cost sharing in Demange 2004) A firm needs to allocate various common
costs among its units and solve the problem of coordination. We consider a service to
be provided to units. The game v is defined by v(S) = max(0,

∑
i∈S bi −c(S)), where∑

i∈S bi is the aggregate benefit of coalition S for the service and c(S) is the cost of
provision. Demange (2004) argues that if congestion exists, and there is an increasing
marginal cost of the dissemination of information, or an increasing marginal cost of
control, v may be nonsuperadditive.

Example 3 (network formation in Slikker and van den Nouweland 2000) In the net-
work formation game with costs for establishing links, the worth of coalition S of
players is defined by:

vg,c(S) =
∑

C∈π(S,g)
v(C)− c|g(S)|,

where v(C) is the value of component C , g(S) is the restriction of graph g to S,π(S, g)
is the set of all components of network g(S) and |g(S)| is the number of communi-
cation links. In a symmetric three-player game with v(C) = w|C| (where |C | is the
number of players in component C), the game belongs to the class of nonsuperadditive
games if w2 > w3.

Example 4 (roommate problem in Gale and Shapley 1962)4 The set N consists of
n people who can be matched in pairs (as roommates in a college dormitory). Each
person ranks the n − 1 others in order of preference. The situation is considered as a
game in which only the worth of the coalitions of two people exists and the worth of
other coalitions containing more than three people is zero. Thus, the coalitional form
game v is defined by:

v({i, j}) = αi j if {i, j} ⊂ N , i = j,

v(S) = 0 if |S| = 2.

4 We would like to thank an anonymous referee for providing useful hints concerning the roommate prob-
lem. In addition, the referee also suggest one of the examples of the delay in agreements (Example 6).
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Then, the game becomes nonsuperadditive. However, the coalitional form game ṽ
corresponding to the roommate problem has been commonly given by the superaddi-
tive cover of v; ṽ({i, j}) = αi j and ṽ(S) = max[αi1 j1 +αi2 j2 +· · ·+αik jk ] for S such
that |S| = 2, with the maximum to be taken over all arrangements of 2k distinct pairs
in S. See, for example, Shapley and Shubik (1972).

Let us define the efficiency of a SSPE for �N .

Definition 3 A SSPE σ of the game �N (δ) is called subgame coalitional efficient
if, for every subgame �S(δ), every player i ∈ S proposes the coalition which is a
component of the efficient coalition structure of S in σ . A limit subgame coalitional
efficient SSPE of �N is defined to be a limit of subgame coalitional efficient SSPEs
of �N (δ) as δ → 1.

The notion of subgame coalitional efficiency requires that the efficient coalition
structure is formed in all subgames �S(δ). This notion is stronger than the Pareto effi-
ciency of the expected payoff vector for n players in �N (δ). Note that, by Lemma 1 in
the Appendix, the proposal by every player is accepted immediately in every subgame
coalitional efficient SSPE of �N (δ). Therefore, the subgame coalitional efficiency
implies no-delay of agreements in the bargaining game.

The next theorem (Theorem 2) characterizes the situation where there exists a pure
strategy and limit subgame coalitional efficient SSPE in �N . To characterize, we use
the notion of a Nash bargaining solution. Let us define the Nash bargaining solution
of the bargaining problem with coalition S and its worth v(S). Because v({i}) = 0
for every player i , the disagreement point is the origin of R

|S|. The Nash bargaining
solution of (S, v(S)) is defined as a solution of the maximization problem:

max
(yi )i∈S

∏

i∈S

yi subject to
∑

i∈S

yi ≤ v(S).

In transferable utility games (N , v), the Nash bargaining solution of (S, v(S)) implies
an equal share allocation among the members of coalition S. Thus, player i ∈ S
receives the payoff of v(S)/|S|.
Definition 4 Given a coalition structure π(S) = {S1(S), . . . , SK (S)}, a payoff allo-
cation vS∗ = (vS∗

i )i∈S is called the Nash-bargaining-solution payoff allocation under
coalition structure π(S) if (vS∗

j ) j∈S�(S) is generated by the Nash bargaining solution
of (S�(S), v(S�(S))), � = 1, . . . , K .

Note that an efficient coalition structure of each S is expressed by π∗(S) =
{S∗

1 (S), . . . , S∗
K S (S)} in Theorem 2.

Theorem 2 (i) There exists a pure strategy and limit subgame coalitional efficient
SSPE of �N if and only if:

for all S ⊆ N and i ∈ S, the component S∗
� (S) of the efficient coalition structure

and the Nash-bargaining-solution payoff allocation vS∗ constitute a solution of:

max
y,T ⊂S,i∈T

yi subject to y ∈ v(T ) and y j ≥ vS∗
j for j ∈ T, j = i, (1)
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where i ∈ S∗
� (S).

(ii) The expected equilibrium payoff vector in �S is given by the Nash-bargaining-
solution payoff allocation under the efficient coalition structure π∗(S) for all S ⊆ N.

Proof See Appendix. 	

Theorem 2 shows that a pure strategy and limit subgame coalitional efficient SSPE

exists if and only if each individual obtains the maximum payoff by forming coalition
S∗

k (S) under the condition that other individual j must be guaranteed to get his or her
payoff v(S∗

� (S))/|S∗
� (S)|, where S∗

� (S) ∈ π∗(S) and j ∈ S∗
� (S).

We introduce the notion of a C-stable solution considered in Aumann and Dreze
(1974), Guesnerie and Oddou (1979, 1981) and Greenberg and Weber (1986).5

Definition 5 A C-stable solution of (S, v) is a payoff vector y such that y is feasible
for some coalition structure π ∈ �(S) and is not blocked by a coalition T ⊆ S.

The notion of a C-stable solution is an extension of the core concept. If a coalition
structure π is assumed to be {N }, then the C-stable solution belongs to the core. As
shown in Aumann and Dreze (1974), the set of C-stable solutions coincides with the
core of the superadditive cover game of v if the set of C-stable solution is not empty.

There is a relationship between Theorem 2 and a C-stable solution. It is easy to
see that the condition in Theorem 2 states that for every coalition S ⊆ N , the Nash-
bargaining-solution payoff allocation under coalition structure π∗(S) belongs to the
set of C-stable solutions of (S, v). Therefore, Theorem 2 (i) can be restated as the
following corollary:

Corollary 1 There exists a pure strategy and limit subgame coalitional efficient SSPE
of �N if and only if for every coalition S ⊆ N, the Nash-bargaining-solution payoff
allocation under the efficient coalition structure π∗(S) belongs to the set of C-stable
solutions of the underlying game (S, v).

4 Delay of agreements

The delay of agreements in equilibrium may occur when the coalitional game is not
superadditive, even if the random-proposers bargaining model is adopted. We provide
two examples.

Example 5 We consider a four-person game; N = {1, 2, 3, 4}:

v({1, 2, 3, 4}) = 120, v({1, 2}) = v({1, 3}) = v({1, 4}) = 50,

v({i, j}) = 100, for i, j = 2, 3, 4,

and v(others) = 0. This game is not superadditive. Assume that the discount fac-
tor is almost one. Now consider the following strategies for the players. If the set of

5 In Aumann and Dreze (1974), the set of C-stable solutions is called the core of cooperative games with
coalition structures.
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active players is N = {1, 2, 3, 4}, player 1 proposes ({1, 2}, (50, 0)), player 2 does
({2, 3}, (100 − 125/3, 125/3)), player 3 does ({3, 4}, (100 − 125/3, 125/3)), and
player 4 does ({2, 4}, (125/3, 100 − 125/3)). The response rule for players is as fol-
lows. Player 1 accepts a proposal y1 if and only if y1 ≥ 25. Player 2, 3, 4 accepts a
proposal if and only if y j ≥ 125/3 for j = 2, 3, 4. When the set of active players
is {1, i}, i = 2, 3, 4, a player selected as a proposer proposes ({1, i}, (25, 25)), and
accepts any proposal if he or she is offered a payoff equal to or greater than 25. When
the set of active players is {i, j}, i, j = 2, 3, 4, every player proposes ({i, j}, (50, 50))
and accepts any proposal if his or her payoff is equal to or greater than 50. When this
strategy is employed, the expected payoff of player 1 is 25 and the expected payoff of
player 2, 3, 4 is 125/3. It is easy to see that the strategies construct an SSPE in the bar-
gaining game model. First, according to a two-person bargaining game with random
proposers, these strategies clearly compose a subgame perfect equilibrium point in
the subgame when only two players are still active. Next consider a bargaining game
where four players are active. We can check the optimality of the response rule for
every player. If player 1 rejects an offer in the four-person bargaining, negotiations go
to the next round, and his or her expected payoff is 25. Thus, it is optimal for him or
her to accept any offer in the four-person bargaining if he or she receives at least 25.
Similarly, it is optimal for player 2, 3, 4 to accept the offer in the four-person bargain-
ing if he or she can get at least 125/3. Given the response rule of the other players,
player 2 can obtain (100−125/3) by proposing coalition {2, 3} and {2, 4}. He or she
then can receive 25 by proposing {1, 2}. If he or she proposes a four-person coalition
{1, 2, 3, 4}, he or she obtain only 35/3 (= (120−25−250/3)). Thus, it is optimal to
propose {2, 3} while demanding (100−125/3). We can check the optimality of the pro-
posals of players 3 and 4 in the same manner. If player 1 proposes ({1, 2}, (50, 0)), then
player 2 rejects the proposal, and negotiations go to the next round. Then, player 1 gets
the expected payoff of 25. In order to form a four-person coalition {1, 2, 3, 4}, player
1 has to guarantee the continuation payoff 125/3 for players 2, 3 and 4 respectively.
Because v({1, 2, 3, 4}) = 120 < 125/3 + 125/3 + 125/3, player 1 could not make
a feasible proposal for {1, 2, 3, 4}. Moreover, he or she obtains at most (50−125/3)
(< 25) by proposing an acceptable offer for {1, i}, i = 2, 3, 4. Therefore, it is optimal
for player 1 to have his or her proposal rejected in round 1. Thus, a delay in agreement
occurs when player 1 is selected as a proposer in round 1.

Let us give an intuitive explanation for the delay of agreement in the above example.
If a game is superadditive, every player can get at least the expected payoff by propos-
ing the grand coalition when he or she is a proposer. This leads no delay in agreement
in a noncooperative coalitional bargaining model with random proposers. However,
when a game is not superadditive, forming the grand coalition does not ensure the
expected payoff for a proposer. In the example, the sum of expected equilibrium pay-
offs of all players (25+125/3+125/3+125/3) (=150) could not be feasible in the
grand coalition because v({1, 2, 3, 4}) = 120. Each player benefits from forming a
smaller coalition than the grand coalition in order to avoid congestion. Moreover, it is
important for each player when and with whom to form a coalition. In our example, if
player i (i = 1) and player 1 remain at bargaining after player j and k ( j, k = 1) form
a two-person coalition, then player i can obtain only 25. On the other hand, players
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j and k can get at least 125/3. Thus, player i , i = 2, 3, 4, has an incentive to form a
two-person coalition {i, j} with player j = 2, 3, 4 in the first round. Because player
1 is in a weaker position in the bargaining than players 2, 3 and 4, he or she cannot
benefit in the bargaining with the three strong players in round 1. Therefore, he or she
optimally waits for a two-person coalition of strong players to be formed.

Example 6 Let us recall the roommate problem. There are four people: a, b, c, and d,
with the following preferences: person a prefers b to c and does c to d as a roommate,
person b prefers c to a and does a to d, person c prefers a to b and does b to d,
and person d is indifferent between the three other people. Note that person d is the
last choice of everyone else. It is well known that no stable matching exists in this
example; see Gale and Shapley (1962). Assume that person a, b, c obtains 30 if he
or she is matched with a person at the first rank in his or her preferences, 20 if he or
she is matched with a person at the second rank, and 10 if he or she is matched with
a person at the third rank. Person d obtains the payoff of 20 whichever persons he
chooses. Then, if the coalitional form game (N , v) is defined as follows:

v({a, b}) = v({b, c}) = v({a, c}) = 50,

v({i, d}) = 30, i = a, b, c,

and v(others) = 0, the game is nonsuperadditive. It is easy to see that the set of C-sta-
ble solutions (equivalently, the core of the assignment game) is empty. Let us consider
similar strategies to those in Example 5, assuming that the discount factor is almost
one. When four people are active, person a, b, c, as a proposer offers to be matched
with his or her most favorite person and 65/3 as a payoff to his or her partner. Person
d proposes ({a, d}, (0, 30)). Moreover, person a, b, c accepts a proposal if and only if
his or her offered payoff is equal to or greater than 65/3, and person d accepts a pro-
posal if his or her payoff is equal to or greater than 15. When two people remain in the
game, every person as a proposer offers half of its worth of the two-persons-coalition
and accepts a proposal if and only if his or her offered payoff is equal to or greater
than a half of its worth. We can check the above strategy combination is an SSPE of
�N in the same manner as in Example 5. In the SSPE, person d’s proposal is always
rejected in the first round and the delay in agreement occurs with positive probability.
We should mention that the argument in the example crucially depends on the prefer-
ences of person d, although Gale and Shapley (1962) assumed that the preferences of
person d are arbitrary.

Lemma 1 in the Appendix and Corollary 1 have some implications in the delay of
agreements. First, we can interpret Lemma 1 as a sufficient condition under which no
delay in agreements occurs in every SSPE of the coalitional bargaining game.

Lemma 1′ If payoff configurations in every SSPE of�N (δ) are feasible in the efficient
coalition structure π∗(S), then no delay in agreements arises in the SSPE.

If the game is superadditive, the efficient coalition structure of S is {S} itself, and
all proposed payoff vectors are feasible in v(S), regardless of the coalition chosen
by any proposer. The payoff configuration in every SSPE is then trivially feasible in
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the efficient coalition structure {S}. Therefore, no delay occurs in every SSPE of the
coalitional bargaining model with random proposers when the game is superadditive.

In Example 5, the equilibrium expected payoff vector (v∗
1 , v

∗
2 , v

∗
3 , v

∗
4) is given by

(25, 125/3, 125/3, 125/3). Because the efficient coalition structure of N is {{1, 2},
{3, 4}}, the expected payoff vector is not feasible in the efficient coalition structure:
v∗

1 +v∗
2 = 25+125/3 > 50 = v({1, 2}). In Example 6, the equilibrium payoff vector

(65/3, 65/3, 65/3, 15) for person a, b, c, and d is also not feasible in the efficient
coalition structure.

Next let us consider Corollary 1 in relation to the delay of agreements. Note that,
by Lemma 1, delay of agreement never occurs in every (limit) subgame coalitional
efficient SSPE. Therefore, a sufficient condition for the existence of a limit subgame
coalitional efficient SSPE can be regarded as a sufficient condition for the existence
of a SSPE in which no delay in agreement arises. Thus, Corollary 1 can be restated as
follows:

Corollary 1′ If the discount factor δ is almost one and the Nash-bargaining-solution
payoff allocation under the efficient coalition structure of S is in the set of C-stable
solutions of the game (S, v) for every coalition S ⊆ N, there exists at least one pure
strategy SSPE of �N in which no delay in agreement occurs.

Note that, even if the conditions in Corollary 1′ are satisfied, (other) SSPEs with
delayed agreements may exist together. If the SSPE payoff allocation is unique,
then there is no inefficient SSPE of �N involving the delay under the conditions in
Corollary 1′.

5 Conclusion

We have extended a random-proposers bargaining model to nonsuperadditive games
and shown that a SSPE exists in the bargaining model. We provided a necessary and
sufficient condition for the existence of a pure strategy and limit subgame coalitional
efficient SSPE. The condition is that for each coalition S, the Nash bargaining solu-
tion payoff allocation under the efficient coalition structure is in the set of C-stable
solutions of the game (S, v). When the set of C-stable solutions of the game is empty,
our result shows that there is no pure strategy and efficient SSPE in the bargaining
model.

The uniqueness of SSPE payoff allocations is an open question in the random-
proposers model with nonsuperaddtive games. In addition, we need to clarify the
relationship between the C-stable solution and the delay in agreements in equilib-
rium. It is noteworthy that the set of C-stable solutions is empty in our examples of
the delay in agreement (Examples 5 and 6).

Appendix

Proof of Theorem 2

We provide two lemmas before giving the proof of Theorem 2. In addition, we focus
on a class of payoff configurations in these lemmas.
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Definition 6 Payoff configurations {vS | S ⊆ N } are called feasible in the efficient
coalition structure π∗(S) = {S∗

1 (S), . . . , S∗
K S (S)} if, for every S:

∑

j∈S∗
� (S)

vS
j ≤ v(S∗

� (S)), � = 1, . . . , K S .

The first lemma shows that in every pure strategy SSPE whose payoff configuration
is feasible in the efficient coalition structure, an agreement is made in the first round.

Lemma 1 In every pure strategy SSPE σ of �N (δ) with {(vS, θ S) | S ⊆ N } such that
the payoff configuration is feasible in the efficient coalition structure, every player
i ∈ N proposes in round 1 a solution (Si , ySi ) to the maximization problem:

max
yi ,S;i∈S

⎛

⎝v(S)−
∑

j∈S, j =i

yi
j

⎞

⎠

subject to yi
j ≥ δvN

j , for all j ∈ S, j = i. (2)

Moreover, the proposal (Si , ySi ) is accepted in σ .

Proof Let xi = (xi
1, . . . , xi

n) be the expected equilibrium payoff vector when player
i becomes the proposer at round 1. By definition of �N (δ), vN

i = ∑
k∈N xk

i /n for all
i ∈ N . We denote by mi the maximum value of (2). We will prove that xi

i = mi .
(xi

i ≤ mi ): Suppose that player i proposes (S, yS) in round 1 such that yS
i > mi .

Since mi is the maximum value of (2), for some j ∈ S with j = i , yS
j < δvN

j . Let j∗
be the last responder of such a kind. Two cases can happen in equilibrium: (i) some
responder after j∗ rejects i’s proposal, and (ii) otherwise. In the case of (ii), since his
or her continuation payoff is δvN

j∗ , it is optimal for j∗ to reject i’s proposal. Therefore,
whichever cases happens, i’s proposal is rejected and the game goes on to round 2.
Then, player i obtains the discounted payoff δvN

i .
Because we are focusing on a SSPE with payoff configurations that are feasible in

the efficient coalition structure, we have:
∑

j∈S∗
� (N )

vN
j ≤ v(S∗

� (N )), for � = 1, . . . , K N .

Thus, the pair (S∗
� (N ), (v

N
j ) j∈S∗

� (N )
) satisfies the constraints of the problem (2). This

implies that vN
i ≤ mi . Since v({i}) ≥ 0 for all i ∈ N , every player i surely obtains

more than zero as a payoff when i becomes the proposer. Therefore, xi
i ≥ 0. The

responder also rejects the proposal where his or her payoff is less than zero. Thus,
xi

k ≥ 0. We have vN
i ≥ 0. Hence, δvN

i ≤ vN
i ≤ mi . Player i obtains only δvN

i , even
if he or she proposes a payoff greater than mi . This implies xi

i ≤ mi .
(xi

i ≥ mi ): Because (S∗
� (N ), (v

N
j ) j∈S∗

� (N )
) is a feasible solution of the problem (2),

(S∗
� (N ), (δv

N
j ) j∈S∗

� (N )
) is also a feasible solution. Therefore, mi ≥ vN

i ≥ δvN
i . Sup-

pose that mi = 0. Then, vN
i = 0, and the payoff combination (0, (δvN

j ) j∈S∗
� (N )\{i}) is
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feasible for S. Two cases are possible: (i) If vN
j = 0 for all j ∈ S∗

� (N )\{i}, then there

exists a feasible payoff combination (yi , (δv
N
j ) j∈S∗

� (N )\{i}) such that yi > 0, (ii) if

vN
j > 0 for some j ∈ S∗

� (N )\{i}, then δvN
j < vN

j . Thus, some (y j , (δv
N
j ) j∈S∗

� (N )\{i})
such that y j > 0 become feasible solution. Because mi is the maximum value of (2),
we must have mi > 0. Any solution (S, yS) satisfies yS

i = mi and yS
j = δvN

j for

j ∈ S, j = i . For any ε > 0, define zS such that:

zS
i = mi − ε, zS

j = yS
j + ε

|S| − 1
, j ∈ S, j = i.

If player i proposes (S, zS), then it is accepted by all j ∈ S, j = i . Therefore,
xi

i ≥ zS
i = mi − ε. Since ε is arbitrary, we conclude xi

i ≥ mi .
Finally, we show that i’s proposal is accepted in round 1. It is sufficient to prove

δvN
i < mi . Suppose that δvN

i = mi . It follows from δvN
i ≤ vN

i ≤ mi that mi = vN
i =

0. This contradicts to mi > 0. 	

We next present a necessary and sufficient condition for the existence of a pure

strategy SSPE of �N (δ).

Lemma 2 For ψ = {(vS, θ S) | S ⊆ N } such that vS = (vS
i )i∈S, θ S = (T S

i )i∈S and
the payoff configuration {vS | S ⊆ N } is feasible in the efficient coalition structure,
there exists a pure strategy SSPE σ of �N (δ) with ψ if and only if, for every S ⊆ N
and for every i ∈ S,

(i) the coalition T S
i constitutes a solution of:

max
T ;i∈T,yi

⎛

⎝v(T )−
∑

j∈T, j =i

yi
j

⎞

⎠

subject to yi
j ≥ δvS

j , for all j ∈ S, j = i, (3)

and
(ii) the expected payoff vector vS = (vS

i )i∈S satisfies:

vS
i = 1

|S|

⎧
⎪⎨

⎪⎩
v(T S

i )− δ
∑

j∈T S
i , j =i

vS
j

⎫
⎪⎬

⎪⎭
+ 1

|S|δ
∑

k:i∈T S
k ,k =i

vS
i + 1

|S|δ
∑

m:i /∈T S
m

v
S\T S

m
i ,

(4)

where vT
i is defined to be zero when T = ∅.

Proof (only if): We can apply Lemma 1 to every subgame�S(δ). Then (i) in Lemma 2
is proved. In the subgame �S(δ), every player i makes a proposal for the payoff
allocation xi = (xi

j ) j∈T S
i

such that:
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xi
i = v(T S

i )−
∑

j∈T S
i , j =i

δvS
j , xi

j = δvS
j , j ∈ T S

i , j = i. (5)

Since this proposal is accepted in round 1, we can obtain (4) by the definition of�S(δ).
(if): Define the strategy combination σ of�N (δ) such that, in every subgame�S(δ),

every player i ∈ S proposes a solution (T S
i , xi ) of the problem (3) satisfying (5), and

accepts any proposal (T, yT ) if and only if yT
i ≥ δvS

i . It is easy to see that σ is a local
optimal strategy. 	


Let us now turn to the proof of Theorem 2. By the definition of subgame coali-
tional efficient SSPE, the equilibrium payoff configuration is feasible in the efficient
coalition structure. Therefore, we can use Lemmas 1 and 2 to prove Theorem 2.

Proof of Theorem 2 (i) (only if). Assume that a pure strategy and limit subgame coa-
litional efficient SSPE of�N exists. By (ii) in Lemma 2 and T S

i = S∗
� (S), the expected

equilibrium payoff of subgame �S(δ) satisfies that for every coalition S ⊂ N and for
every i ∈ S∗

� (S):

vS
i = 1

|S|

⎡

⎣v(S∗
� (S))− δ

∑

k∈S∗
� (S),k =i

vS
k

⎤

⎦ + |S∗
� (S)| − 1

|S| δvS
i

+
⎡

⎣
KS∑

j=1

|S∗
j (S)|
|S| δv

S\S∗
j (S)

i − |S∗
� (S)|
|S| δv

S\S∗
� (S)

i

⎤

⎦ .

Note that vS
i depends on v

S\S∗
h (S)

i , h = 1, . . . , K S . On the equilibrium plays of the
SSPE, a player selected as a proposer proposes coalition S∗

� (S) (a component of the effi-
cient coalition structure) and a solution of the maximization problem (3) in Lemma 2,
and the proposal is accepted. Players in S∗

� (S) then leave the game and the remaining
players continue negotiations in the next round. Finally, some S∗

m(S) remains as active
players and a proposer offers S∗

m(S) and a solution of the maximization problem in the
subgame �S∗

m (S)(δ). This proposal is accepted and the game ends. Subgames where
active players consist of the components of the efficient coalition structure emerge
on the equilibrium path. Therefore, we can derive the expected equilibrium payoff
vector (vS

i )i∈S explicitly by following a procedure such as backward induction of the
subgames.

Let us start with the subgame �S∗
� (S), where S∗

� (S) ∈ π∗(S). The expected equilib-

rium payoff v
S∗
� (S)

i satisfies that for i ∈ S∗
� (S):

v
S∗
� (S)

i = 1

|S∗
� (S)|

⎡

⎣v(S∗
� (S))−

∑

j∈S∗
� (S), j =i

δv
S∗
� (S)

j

⎤

⎦ + |S∗
� (S)| − 1

|S∗
� (S)|

δv
S∗
� (S)

i . (6)
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It is easily seen that (6) has a solution vS∗
� (S) = (v(S∗

� (S))/|S∗
� (S)|, . . . , v(S∗

� (S))/|S∗
� (S)|) for any δ. The solution is equal to the Nash bargaining solution of (S∗

� (S),
v(S∗

� (S))).
Stepping back one round to the subgame �S∗

� (S)∪S∗
m (S), we have that for i ∈ S∗

� (S):

v
S∗
� (S)∪S∗

m (S)
i = 1

|S∗
� (S) ∪ S∗

m(S)|

⎧
⎨

⎩

⎡

⎣v(S∗
� (S))−

∑

j∈S∗
� (S), j =i

δv
S∗
� (S)∪S∗

m (S)
j

⎤

⎦

+ (|S∗
� (S)| − 1)δv

S∗
� (S)∪S∗

m (S)
i + |S∗

m(S)|δvS∗
� (S)

i

⎫
⎬

⎭
.

From the above equation system and v
S∗
� (S)

i = v
S∗
� (S)

j for every i, j ∈ S∗
� (S), we obtain

that:

v
S∗
� (S)∪S∗

m (S)
i = v

S∗
� (S)∪S∗

m (S)
j for all i, j ∈ S∗

� (S).

By repeatedly applying the same procedure, we can see that vS
i = vS

j for all i, j ∈
S∗
� (S).

Moreover, as δ → 1, v
S∗
� (S)∪S∗

m (S)
i converges to v

S∗
� (S)

i for all i ∈ S∗
� (S). It is then

easy to see that for every i ∈ S∗
� (S), as δ goes to 1:

vS
i → v

S∗
� (S)

i = v(S∗
� (S))/|S∗

� (S)|.

This implies that the expected equilibrium payoff vector converges to the Nash-
bargaining-solution payoff allocation under the efficient coalition structure.

By (i) of Lemma 2 and the above discussion ((ii) of Lemma 2 as δ → 1), we have
the (only if) part of Theorem 2 (i).

(if). Suppose that the condition (1) holds. From (ii) of Lemma 2, the expected
payoff vector (vS

i )i∈S satisfies the equations system (4). We can easily see that each
δvS

i is monotone increasing with δ and converges to the Nash bargaining solution
v(S∗

� (S))/|S∗
� (S)| for i ∈ S∗

� (S) as δ goes to 1. Moreover, δvS
i is continuous in δ.

Therefore, for any δ sufficiently close to 1, we have the following inequalities; for
i ∈ S∗

� (S):

v(S∗
� (S))− δ

∑

k∈S∗
� (S),k =i

vS
k ≥ max

T ;i∈T

⎧
⎨

⎩
v(T )− δ

∑

k∈T,k =i

vS
k

⎫
⎬

⎭
. (7)

Let us define the strategy combination σ ∗ of �N (δ). In every subgame �S(δ), every
player i ∈ S∗

� (S) proposes S∗
� (S) and the payoff vector yi such that yi

i = v(S∗
� (S))−∑

k∈S∗
� (S),k =i yi

k and yi
j = δvS

j for j ∈ S∗
� (S). He or she accepts any proposal yT

i if

and only if yT
i ≥ δvS

i . From the above inequalities (7) and Lemma 2, σ ∗ becomes
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an SSPE of �N (δ). Thus, as δ → 1, we have a pure strategy and limit subgame
coalitional efficient SSPE of �N with the payoff configurations generated by the
Nash-bargaining-solution payoff allocation under π∗(S).

Proof of Theorem 2 (ii) As shown in the proof of the (only if) part of Theorem 2
(i), the expected equilibrium payoff vector converges to the Nash-bargaining-solution
payoff allocation under the efficient coalition structure for each S. This implies
Theorem 2 (ii). 	
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