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Abstract This paper presents new methods to obtain purification results for
continuum games, which don’t make use of the “many more players than strategies”
assumption (Yannelis in Econ Theory (in press) 2007) or of Loeb spaces (Loeb and
Sun in Illinois J Math 50, 747–762, 2006). The approach presented doesn’t use non-
standard analysis; it is based on standard measure theory and in particular on the
super-nonatomicity notion introduced in Podczeck (J Math Econ (in press) 2007).
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1 Introduction

In rather general settings, games possess equilibria in mixed strategies. This is not so
for equilibria in pure strategies, unless some convexity assumptions are made on the
action sets and the preferences of players. The reason is that fixed point theorems are
needed to prove equilibrium existence.

Based on the convexifying effect of large numbers (as being manifested in
Liapounoff’s theorem), positive results about the existence of equilibria with pure
strategies were established, e.g., by Schmeidler (1973), Radner and Rosenthal (1982),
Milgrom and Weber (1985), Rustichini and Yannelis (1991), Yannelis and Rustichini
(1991), and Yannelis (2007). In Schmeidler (1973), Rustichini and Yannelis (1991),
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400 K. Podczeck

and Yannelis (2007), a convexifying effect is obtained by specifying the set of players
as an atomless measure space. In Radner and Rosenthal (1982), Milgrom and Weber
(1985), and Yannelis and Rustichini (1991), games with finitely many players are
considered, but the environment in the game involves some uncertainty or random-
ness, and a convexifying effect is obtained by modelling the domain of the randomness
(i.e. the state space) as an atomless probability space.

One approach to prove the existence of a pure strategy equilibrium in a game is a
two step procedure: first establish the existence of a mixed strategy equilibrium, and
then, using some convexifying effect of large numbers, “purify” this equilibrium, i.e.
construct a pure strategy equilibrium from the mixed strategy equilibrium obtained in
the first step. This approach was recently investigated by Khan et al. (2006), using the
classical Dvoretsky–Wald–Wolfowitz theorem on purification of maps to spaces of
probability measures on finite sets (see Dvoretsky et al. 1951, Theorem 4), a theorem
which in turn is based on Liapounoff’s theorem. In fact, as a corollary of the Dvoretsky–
Wald–Wolfowitz theorem, Khan et al. (2006, Corollary 1) established an abstract result
on purification of measure valued maps (see Remark 2 near the end of this section
for a statement) and showed it to provide a unifying tool for dealing with the problem
of purification of mixed strategies in finite action games, under both the setting with
incomplete information as formulated by Milgrom and Weber (1985) and the setting
with a continuum of players in the sense Schmeidler (1973), as well as for dealing
with the related problem of symmetrization of equilibria in finite action games in
distributional form in the sense of Mas-Colell (1984) and Khan and Sun (1991).

A natural question is whether the purification approach via the Dvoretsky–Wald–
Wolfowitz theorem is indeed limited to the context of finite action games. In regard
to this, Loeb and Sun (2006, Corollary 2.4) recently showed that this theorem and the
corollary of it presented by Khan et al. (2006) remain valid for maps to spaces of Borel
probability measures on arbitrary compact metric spaces, provided the domain is an
atomless Loeb probability space. (See Remark 1 below for a formal statement of this
result by Loeb and Sun 2006.)

By means of a counter example, it was also shown by Loeb and Sun (2006) that their
purification result does not hold when, instead of being an atomless Loeb probability
space, the domain space is specified to be the unit interval with Lebesgue measure. In
view of this, they concluded that their results, to quote the authors, “fail without the
use of Loeb measures.”

In this paper, we show that the purification result of Loeb and Sun (2006) extends,
in fact, to a class of probability spaces that is much larger then the class of atomless
Loeb probability spaces. We call the probability spaces that make up this larger class
“super-atomless.” See Sect. 3 for the actual definition and for examples as well as
for some equivalent notions. Here we remark the following three points. First, the
definition of “super-atomless” involves only the measure algebra of a probability
space. In particular, our result will show that the purification results of Loeb and Sun
(2006) do not depend on any special property of an atomless Loeb probability space,
but only on the properties of its measure algebra. Second, our proofs do not rely on
any nonstandard analysis. Third, any atomless Borel probability measure on a Polish
space can be extended to a super-atomless probability measure (see the Appendix). In
particular, the class of super-atomless probability spaces contains countably separated

123



On purification of measure-valued maps 401

probability spaces, i.e. probability spaces that admit injective measurable mappings
to any uncountable Polish space. On the other hand, it is known that no atomless Loeb
probability space has the property of being countably separated (see Keisler and Sun
2002). Thus, there are super-atomless probability spaces that substantially differ from
atomless Loeb probability spaces.

We also show that in order for a purification result in the sense of Loeb and Sun
(2006) to hold, it is necessary that the probability space domain be super-atomless.
Thus the class of super-atomless probability spaces is exactly the class of probability
spaces for which such a result holds.

Remark 1 Here is the formal statement of the purification result established by Loeb
and Sun (2006, Corollary 2.4) (slightly reformulated here concerning notation).

Let (T, T , µ) be an atomless Loeb probability space, let A be a compact metric
space, and let MP (A) denote the set of all Borel probability measures on A. For
each k in a countable set K let µk be a finite signed measure on (T, T ) that is
absolutely continuous with respect to µ, and for each j in a countable set J let
ϕ j : T × A → R be a mapping such thatϕ j (·, a) is measurable for each a ∈ A,ϕ j (t, ·)
is continuous for each t ∈ T , and such that for some integrable function ρ j : T → R+,
|ϕ j (·, a)| ≤ ρ j for all a ∈ A. Then given any mapping f : T → MP (A) such that
f (·)(B) is measurable for each Borel subset B of A, there is a mapping g : T → A,
measurable for T and the Borel sets of A, such that for all k ∈ K , j ∈ J, and all
Borel subsets B of A,

(1)
∫

T

∫
A ϕ j (t, a) f (t)(da)µ(dt) = ∫

T ϕ j (t, g(t))µ(dt),
(2)

∫
T f (t)(B)µk(dt) = µk(g−1(B)),

(3) g(t) ∈ supp f (t) for almost all t ∈ T (where supp f (t) denotes the support of
the measure f (t)).

Remark 2 Corollary 1 in Khan et al. (2006) is the result quoted in the previous remark
with (T, T , µ) allowed to be any atomless probability space but with A required to
be a finite set and with J and K both being finite sets. (Of course, if A is finite, then
it suffices to assume for the functions ϕ j —as in the original statement of Khan et al.
(2006, Corollary 1)—that ϕ j (·, a) is integrable for each a ∈ A and each j ∈ J . We
also remark in this connection that given any countable set of finite atomless signed
measures µk on the measurable space (T, T ), there exists an atomless probability
measure µ on (T, T ) such that all the µk’s are absolutely continuous with respect
to µ.) A further reduction, taking for J the empty set and dropping conclusions (1)
and (3), gives the original Dvoretsky–Wald–Wolfowitz theorem.

The rest of this note is organized as follows. In the next section some notation and
terminology is introduced. In Sect. 3, the notion of a “super-atomless” probability
space is presented. Section 4 contains a preliminary result about weak∗-measurable
mappings, and Sect. 5 our purification results. In the Appendix it is shown, using a
result due to Fremlin (2005), that every atomless Borel probability measure on a Polish
space can be extended to a super-atomless probability measure.
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2 Notation and terminology

2.1 General notation

(a) If X is a Banach space then:
• X∗ denotes the dual space of X , endowed with the dual norm;
• 〈x, x∗〉 denotes the value of x∗ ∈ X∗ at x ∈ X ;
• (X∗,weak∗) means X∗ in its weak∗-topology.

(b) B(Z) denotes the Borel σ -algebra of a topological space Z .
(c) Let (T, T , µ) be a (positive) measure space.

• For E ∈ T ,
– 1E denotes the characteristic function of E ;
– TE denotes the trace σ -algebra on E , i.e. TE ≡ {E ∩ F : F ∈ T };
– µE denotes the subspace measure on E , i.e. the restriction of µ to TE .

• “T –B(Z)-measurable” for a mapping f from T to a topological space Z
means f −1(B) ∈ T for each B ∈ B(Z).

(d) A function f from a topological space Y to a topological space Z is said to be a
Borel function if f −1(B) ∈ B(Y ) for each B ∈ B(Z).

2.2 Measure algebras1

Let (T, T , µ) be a (positive) measure space.
(a) The measure algebra of µ (or of (T, T , µ)) is the pair (A, µ̂) where A is the

quotient Boolean algebra of T for the equivalence relation on T given by E ∼ F if and
only if µ(E 
 F) = 0, and µ̂ : A → [0,∞] is the functional given by µ̂(a) = µ(E)
where E is any element of T determining a, i.e. any element of T whose equivalence
class under ∼ is a. In the following, for a ∈ A, the notation a = E• means a is
determined by E ∈ T .

(b) For a ∈ A, we denote by Aa the principal ideal in A generated by a, i.e.

Aa = {b ∈ A : µ(F �E) = 0 for E , F ∈ T with a = E• and b = F•}.

Note that if a = E• then, writing (AE , µ̂E ) for the measure algebra of the subspace
measure µE , Aa may be identified with AE . In particular, Aa may be viewed as a
Boolean algebra in its own right.

(c) The Maharam type of A is the least cardinal number of any subset B ⊂ A
which completely generates A, i.e. of any B ⊂ A such that the smallest order closed
subalgebra in A containing B is A itself.2 Similarly, for any a ∈ A, viewing Aa as a
Boolean algebra in its own right, the Maharam type of Aa is the least cardinal number
of any subset B ⊂ Aa which completely generates Aa .

1 For the material in this subsection, we refer to Fremlin (2002).
2 A subalgebra B of A is order-closed if, for the partial ordering ⊂• of A given by a ⊂• b if and only if
µ(E �F) = 0 for E , F ∈ T with a = E• and b = F•, any non-empty upwards directed subset of B has
its supremum in B in case the supremum is defined in A.
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(d) The Maharam type of the measure space (T, T , µ), or of the measure µ, is
defined to be the Maharam type of A.

(e) Given E ∈ T , the Maharam type of the subspace measure µE is the same as
the Maharam type of Aa if a ∈ A is determined by E . This is so because, writing
(AE , µ̂E ) for the measure algebra of µE , AE can be identified with Aa if a ∈ A is
determined by E , and the Maharam type of µE is, by the previous definition applied
to µE , just the Maharam type of AE .

(f) (T, T , µ), or the measure µ, is said to be Maharam-type-homogeneous if for
each non-zero a ∈ A (i.e. for each a ∈ A with µ̂(a) > 0), the Maharam type of the
principal ideal Aa is equal to the Maharam type of µ.

(g) In terms of Maharam types, the measure µ is atomless if and only if for each
non-zero a ∈ A the Maharam type of Aa is infinite. Indeed, by definition of the
sets Aa , µ is atomless if and only if for each non-zero a ∈ A the set Aa is infinite.
Now given a ∈ A, if a subset B ⊂ Aa is finite, then so is the smallest subalgebra of Aa

containing B (which follows by induction, see Fremlin (2002) 312 M, p. 24), and a
finite subalgebra of Aa is automatically order closed in Aa . Thus Aa is infinite if and
only if its Maharam type is infinite.

3 Super-atomless probability spaces

As noted in 2.2(g) in the previous section, a measure space (T, T , µ) is atomless if
and only if for each non-zero element a of its measure algebra (A, µ̂) (i.e. each a ∈ A
with µ̂(a) > 0) the Maharam type of the principle ideal Aa is infinite. Thus, a natural
way to strengthen the condition that a measure space be atomless is to require that
for each non-zero element a of its measure algebra the Maharam type of the principle
ideal Aa be uncountable. We call a measure space that satisfies this strengthening of
non-atomicity “super-atomless.”

Definition Let (T, T , µ) be a measure space, with measure algebra (A, µ̂). The mea-
sure µ (or the measure space (T, T , µ)) is said to be super-atomless if for each
non-zero a ∈ A the principal ideal in A generated by a has an uncountable Maharam
type.

Remark 3 An equivalent definition of “super-atomless” (as stated in Podczeck 2007)
is to say that a measure space (T, T , µ) is super-atomless if for any E ∈ T with
µ(E) > 0 the Maharam type of the subspace measure µE is uncountable. (See 2.2(e)
in the previous section.)

Here are some examples of super-atomless probability spaces.

– Let κ be an uncountable cardinal and let νκ be the usual measure on the product
space {0, 1}κ , i.e. νκ is the product measure on {0, 1}κ , each of whose factors is
the coin flipping measure. According to Fremlin (2002, Theorem 331K, p. 129),
νκ is Maharam-type-homogeneous with Maharam type κ , which implies that νκ is
super-atomless since κ is uncountable.

– Let κ be an uncountable cardinal and let λκ be the product measure on [0, 1]κ ,
each of whose factors is Lebesgue measure on [0, 1]. Then λκ is Maharam-type-
homogeneous with Maharam type κ (see Fremlin 2002, 334Y, p. 161, and note for
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this reference that the Maharam type of Lebesgue measure on [0, 1] is ℵ0). Thus
λκ is super-atomless.

– Any atomless Loeb probability space is super-atomless. This fact can be deduced
from the material in Jin and Keisler (2000, Sects. 2,3, and 5).

In the Appendix, we shall show, based on a result due to Fremlin (2005), that any
atomless Borel probability measure on a Polish space can be extended to a super-
atomless probability measure. That is to say, given a Polish space Z and an atomless
Borel probability measure λ on Z , there is a super-atomless measure µ on Z such
that, writing T for the domain of µ, T ⊃ B(Z) and µ agrees with λ on B(Z).
Thus, in particular, Lebesgue measure on [0, 1] can be extended to a super-atomless
measure. Note that a super-atomless probability space obtained in this way is countably
separated, i.e. admits injective measurable functions to the set of real numbers and
hence to any uncountable Polish space. To put this in contrast with Loeb spaces, we
remark that it is shown in Keisler and Sun (2002) that if (T, T , µ) is any atomless Loeb
measure space, Z any Polish space, f : T → Z any T − B(Z)-measurable mapping,
and ν denotes the image measure ofµ under f on B(Z), then for ν-almost every z ∈ Z
the inverse image f −1({z}) has a cardinality at least as large as that of the continuum.
In particular, there is no atomless Loeb probability space (T, T , µ) so that T may be
identified with the unit interval [0, 1] in such a way that the domain of µ includes the
Borel σ -algebra of [0, 1]. Thus, the class of super-atomless probability spaces contains
members that differ in a substantial way from atomless Loeb probability spaces.

In the proof of Theorem 1 we shall make use of the follow fact.

Fact Let (T, T , µ) be a probability space. Then the following are equivalent.

(i) The measure µ is super-atomless.
(ii) For every E ∈ T with µ(E) > 0, the subspace of L1(µ) consisting of the

elements of L1(µ) vanishing off E is non-separable.

Proof Note first that for each E ∈ T the subspace of L1(µ) as specified in (ii)
can be identified, in terms of the subspace measure µE , with the space L1(µE ). By
hypothesis, for each E ∈ T , µE is a finite measure, so by Fremlin (2002, 365X(p),
p. 349) L1(µE ) is non-separable if and only if the Maharam type ofµE is uncountable.
Thus the equivalence (i)⇔(ii) follows by Remark 3 above. ��
Remark 4 The notions of a saturated probability space and of an ℵ1-atomless proba-
bility space, which can be found in Hoover and Keisler (1984), are equivalent to the
notion of a super-atomless probability space. A probability space (T, T , µ) is called
ℵ1-atomless by Hoover and Keisler (1984) if T is atomless over any of its countably ge-
nerated sub-σ -algebras, where T being atomless over a sub-σ -algebra A ⊂ T means
that given any D ∈ T with µ(D) > 0 there is D0 ∈ T , with D0 ⊂ D, such that—
denoting by µ(D|A) and µ(D0|A) the conditional probabilities given A of D and
D0, respectively—for some A ∈ A with µ(A) > 0, 0 < µ(D0|A)(t) < µ(D|A)(t)
for almost all t ∈ A.

The probability space (T, T , µ) is called saturated, or rich, if it is atomless and if
given any two Polish spaces X and Y , any Borel probability measure τ on X × Y , and
any Borel measurable mapping f : T → X whose distribution is equal to the marginal
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of τ on X , there is a Borel measurable mapping g : T → Y such that τ is equal to the
distribution of the mapping ( f, g) : T → X × Y .

It is not hard to see that ℵ1-atomless and super-atomless are equivalent properties
of a probability space, and according to Hoover and Keisler (1984, Corollary 4.5), a
probability space is ℵ1-atomless if and only if it is saturated.

In our view, among these three equivalent notions that of a super-atomless proba-
bility space, a notion which is defined solely in measure algebraic terms, is the most
transparent one, and the one which leads most easily to examples (see in particular
the Appendix).

4 An abstract purification result

We find it convenient to prepare out treatment of purification of measure-valued maps
by establishing some general result about weak∗-measurable functions from a proba-
bility space to the dual of an arbitrary separable Banach space. Given a probability
space (T, T , µ) and a Banach space X , recall that a function f : T → X∗ is said
to be weak∗-measurable if for each x ∈ X the function 〈x, f (·)〉 is measurable. The
following lemma recalls a fact that is basic for our treatment and is needed in particular
for Theorem 1 below.

Lemma 1 Let (T, T , µ) be a probability space, X a Banach space, h : T → X
a Bochner integrable function, and f : T → X∗ a weak∗-measurable function such
that ess supt∈T ‖ f (t)‖ < ∞. Then the function 〈h(·), f (·)〉 is integrable.

Proof Recall that h being a Bochner integrable function means that h is the point-
wise limit almost everywhere of a sequence of measurable simple functions and that∫

T ‖h(t)‖µ(dt) < ∞. The former fact implies, by weak∗-measurability of f , that
〈h(·), f (·)〉 is measurable for the µ-completion of T . Now if for some K > 0,
‖ f (t)‖ ≤ K for almost all t ∈ T , then

∫
T |〈h(t), f (t)〉|µ(dt) ≤ ∫

T K‖h(t)‖µ(dt)
whence

∫
T |〈h(t), f (t)〉|µ(dt) < ∞ by the second of the facts noted above. ��

The following theorem can be viewed as an abstract purification result for mappings
to the dual of an arbitrary separable Banach space. The fact stated in this theorem is
the core of our result about measure-valued mappings.

Theorem 1 Let (T, T , µ) be a probability space, let X be a separable Banach space,
let C be a convex and weak∗-compact subset of X∗, and let f : T → X∗ be a weak∗-
measurable function such that f (t) ∈ C for almost all t ∈ T . Let I be a countable set,
and for each i ∈ I let hi : T → X be a Bochner integrable function. Assume that µ
is super-atomless. Then there exists a weak∗-measurable function f̃ : T → X∗ such
that

(i) f̃ (t) is an extreme point of C for almost all t ∈ T ;
(ii)

∫
T

〈
hi (t), f̃ (t)

〉
µ(dt) = ∫

T 〈hi (t), f (t)〉µ(dt) for all i ∈ I (all these integrals
being well defined).

Proof Note first that C is a norm-bounded subset of X∗ by hypothesis. Hence, if
for a function u : T → X∗, u(t) ∈ C for almost all t ∈ T , then this means
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ess supt∈T ‖u(t)‖ < ∞. Also note that, since hi is Bochner integrable for each i ∈ I ,
if u : T → X∗ is weak∗-measurable with ess supt∈T ‖u(t)‖ < ∞, then according to
Lemma 1, the integral

∫
T 〈hi (t), u(t)〉µ(dt) is well-defined. Thus, in particular, the

integrals in (ii) are well-defined.
In the following, functions from T to X∗ that agree µ-almost everywhere will not

be distinguished. In particular, we identify the given function f with itsµ-equivalence
class. Let L∞,w∗

(µ, X∗) be the vector space of all µ-equivalence classes of weak∗-
measurable functions u : T → X∗ with ess supt∈T ‖u(t)‖ < ∞, and let

B = {u ∈ L∞,w∗
(µ, X∗) : u(t) ∈ C for almost all t ∈ T }.

Then f ∈ B and we let

H =
⎧
⎨

⎩
u ∈ B :

∫

T

〈hi (t), u(t)〉µ(dt) =
∫

T

〈hi (t), f (t)〉µ(dt) for all i ∈ I

⎫
⎬

⎭
.

Note that since C is convex, B and hence H are convex subsets of L∞,w∗
(µ, X∗).

We claim that H has an extreme point. To see this, let L1(µ, X) be the
Banach space of all µ-equivalence classes of Bochner integrable functions from
(T, T , µ) into X , the norm being given by ‖h‖1 = ∫

T ‖h(t)‖µ(dt). According to
Dinculeanu (1973, Theorem 3 with F = R), L1(µ, X)∗ can be (linearly) identified
with L∞,w∗

(µ, X∗) so that u ∈ L∞,w∗
(µ, X∗) corresponds to v ∈ L1(µ, X)∗ if

and only if 〈g, v〉 = ∫
T 〈g(t), u(t)〉µ(dt) for all g ∈ L1(µ, X) and the dual norm

of v is equal to ess supt∈T ‖u(t)‖. Thus, as C is a norm-bounded subset of X∗, B
and hence H can be considered as norm-bounded subsets of L1(µ, X)∗. We assert
that H can also be viewed as a weak∗-closed subset of L1(µ, X)∗. Indeed, by the
hypothesis that X is separable, select a countable dense subset D of X , and for each
d ∈ D set rd = sup{〈d, x∗〉 : x∗ ∈ C}. Then, by the Hahn-Banach theorem, since C
is a convex and weak∗-compact subset of X∗, and since D is dense in X , an element
x∗ ∈ X∗ belongs to C if and only if 〈d, x∗〉 ≤ rd for all d ∈ D. Note also that given
u ∈ L∞,w∗

(µ, X∗) and d ∈ D, we have 〈d, u(t)〉 ≤ rd for almost all t ∈ T if and
only if

∫
E 〈d, u(t)〉µ(dt) ≤ rdµ(E) for every E ∈ T . Consequently, because D is

countable, we have

B =
⋂

d∈D

⋂

E∈T

⎧
⎨

⎩
u ∈ L∞,w∗

(µ, X∗) :
∫

E

〈d, u(t)〉µ(dt) ≤ rdµ(E)

⎫
⎬

⎭
.

This expression displays B as intersection of sets that can be considered as weak∗-
closed subsets of L1(µ, X)∗ (by identifying the functions 1E d with the corresponding
elements of L1(µ, X)), thus showing that B can be considered as a weak∗-closed
subset of L1(µ, X)∗. A glance at the definition of H now reveals that H can be
considered as a weak∗-closed subset of L1(µ, X)∗ (by identifying the functions hi

with the corresponding elements of L1(µ, X)). Summarizing, H can be (linearly)
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identified with a weak∗-compact subset of L1(µ, X)∗, and therefore, being convex
and non-empty, H has an extreme point, say f̃ .

We claim that f̃ is an extreme point of B, too. Indeed, suppose this would not be
the case. Then there is a non-zero f1 ∈ L∞,w∗

(µ, X∗) such that f̃ + f1 ∈ B as well
as f̃ − f1 ∈ B.

Since X , being separable, contains a countable subset separating the points of X∗,
f1 �= 0 implies, by weak∗-measurability of f1, that we can find an E ∈ T with
µ(E) > 0 such that f1(t) �= 0 for almost all t ∈ E . Fix such an E and let L1

E (µ)

and L∞
E (µ) be the subspaces of L1(µ) and L∞(µ), respectively, consisting of the

elements vanishing off E . Note that the dual of L1
E (µ) can be identified with L∞

E (µ).
Let the subset S ⊂ L1

E (µ) be defined by

S = {1E (·) 〈hi (·), f1(·)〉 : i ∈ I } .
By the fact stated at the end of Sect. 3, the hypothesis that the measure µ is super-
atomless implies that L1

E (µ) is non-separable. Hence since I is countable, S cannot
separate the points of L∞

E (µ). That is, there is a g ∈ L∞
E (µ) such that g �= 0 but∫

T 〈hi (t), f1(t)〉 g(t)µ(dt) = 0 for all i ∈ I . We may assume ‖g‖∞ = 1. Consider
the element g f1 of L∞,w∗

(µ, X∗). We have g f1 �= 0 since f1(t) �= 0 for almost all
t ∈ E and since g ∈ L∞

E (µ) with g �= 0. Also, since ‖g‖∞ = 1 and since both
f̃ + f1 ∈ B and f̃ − f1 ∈ B, we have f̃ + g f1 ∈ B as well as f̃ − g f1 ∈ B.3 Now
for any i ∈ I ,

∫

T

〈
hi (t), f̃ (t)+g(t) f1(t)

〉
µ(dt) =

∫

T

〈
hi (t), f̃ (t)

〉
µ(dt)+

∫

T

〈hi (t), g(t) f1(t)〉µ(dt)

=
∫

T

〈
hi (t), f̃ (t)

〉
µ(dt)

because
∫

T

〈hi (t), g(t) f1(t)〉µ(dt) =
∫

T

〈hi (t), f1(t)〉 g(t)µ(dt) = 0.

Since f̃ + g f1 ∈ B and f̃ ∈ H , it follows that f̃ + g f1 ∈ H . Similarly we may see
that f̃ − g f1 ∈ H . Thus, since g f1 �= 0, we get a contradiction to the fact that f̃ is an
extreme point of H , establishing the claim that f̃ is an extreme point of B.

Now by Castaing and Valadier (1977, Theorem IV.15, p. 108), the fact that f̃
is an extreme point of B implies that f̃ (t) is an extreme point of C for almost all
t ∈ T .4 (Actually, the result just referred to is stated in terms of extreme points

3 Recall that C is convex and note that whenever f̃ (t) ∈ C and both f̃ (t)+ f1(t) ∈ C and f̃ (t)− f1(t) ∈ C ,
then for any number α with 0 ≤ |α| ≤ 1 (and not just for α with 0 ≤ α ≤ 1), f̃ (t) + α f1(t) ∈ C as well
as f̃ (t)− α f1(t) ∈ C .
4 More precisely, any version of f̃ has the property that at almost every t ∈ T the value taken is an extreme
point of C .
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of the set of all equivalence classes, modulo null sets, of measurable selections of
a correspondence from a measure space to a locally convex Suslin space. However,
since X is separable, the closed unit ball in X∗ is weak∗-metrizable in addition to being
weak∗-compact, which implies that (X∗,weak∗) is a Suslin space (see Schwartz 1973,
p. 96, Theorem 3). In particular, by Thomas (1975, Theorem 1), a function u : T → X∗
is weak∗-measurable if and only if it isT − B(X∗,weak∗)-measurable, so the set B can
be considered as the set of allµ-equivalence classes of T −B(X∗,weak∗)-measurable
selections of the constant-valued correspondence t �→ C from T to 2X∗

. In view of
these facts, as C is a convex and weak∗-compact subset of X∗, Castaing and Valadier
(1977, Theorem IV.15, p. 108) indeed applies, showing that f̃ (t) is an extreme point
of C for almost all t ∈ T .) Thus, since f̃ ∈ H , the proof of the theorem is complete.

��

5 Purification of measure-valued maps

We first settle some notation.
Notation. For a compact metric space A,

– C(A) denotes the Banach space of real-valued continuous functions on A with the
sup-norm;

– M(A) denotes the Banach space of bounded signed Borel measures on A with the
variation norm;

– MP (A) denotes the subset of M(A) consisting of the Borel probability measures
on A;

– δa denotes the Dirac measure at a ∈ A.

We identify M(A) with C(A)∗ by the Riesz representation theorem; thus for u ∈
C(A) and v ∈ M(A), 〈u, v〉 means

∫
A u(a)v(da), and the dual norm of M(A) is just

the variation norm. We write M(A) ≡ C(A)∗ whenever we wish to indicate this
identification of M(A) and C(A)∗.

The following lemma presents some equivalent notions of measurability for a map-
ping from a probability space to MP (A).

Lemma 2 Let (T, T , µ) be a probability space and A a compact metric space. Then
for a mapping f : T → MP (A) the following are equivalent.

(i) For each B ∈ B(A), the function f (·)(B) is measurable.
(ii) f (viewed as mapping to M(A)) is weak∗-measurable, i.e., for each u ∈ C(A)

the mapping 〈u, f (·)〉 is measurable.
(iii) f (viewed as mapping to M(A)) is T –B(M(A),weak∗)-measurable.

Proof (i)⇒(ii) and (iii)⇒(ii) are immediate. For (ii)⇒(i), note that the set of all
real-valued bounded Borel functions h on the compact metric space A such that
t �→ ∫

A h(a) f (t)(da) is measurable is a vector space that is closed with respect
to pointwise limits of bounded sequences (by the Lebesgue dominated convergence
theorem) and thus, if it contains C(A), coincides with the set of all real-valued bounded
Borel functions on A; in particular, then, it contains the characteristic function of any
Borel subset of A. Thus (ii)⇒(i) holds. For (ii)⇒(iii), see Thomas (1975, Theorem 1).

��
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In the following, if a mapping from a probability space to MP (A) is simply called
“measurable,” then this means measurable in the sense of the equivalent conditions as
stated in Lemma 2.

Here is our main result on purification of measure-valued maps. It extends Theo-
rem 2.2 of Loeb and Sun (2006) from the class of domain spaces that is given by the
atomless Loeb probability spaces to the more general class of domains that is given
by the super-atomless probability spaces.

Theorem 2 Let (T, T , µ) be a probability space, let A be a compact metric space,
and let f : T → MP (A) be a measurable function. Let J be a countable set and for
each j ∈ J let ϕ j : T × A → R be a mapping such that ϕ j (·, a) is measurable for
each a ∈ A, ϕ j (t, ·) is continuous for each t ∈ T , and such that for some integrable
function ρ j : T → R+, |ϕ j (·, a)| ≤ ρ j for all a ∈ A. Suppose µ is super-atomless.
Then there is a function g : T → A such that

(a) g is T –B(A)-measurable;
(b)

∫
T

∫
A ϕ j (t, a) f (t)(da)µ(dt) = ∫

T ϕ j (t, g(t))µ(dt) for all j ∈ J

(all these integrals being well defined; see Remark 5 below).

We will prove Theorem 2 by application of Theorem 1. For this, the following
lemma is needed, which provides a translation of the context of Theorem 2 into that
of Theorem 1.

Lemma 3 Let (T, T , µ) be a probability space, let A be a compact metric space, and
let ϕ : T × A → R be a mapping such that (i) ϕ(·, a) is measurable for each a ∈ A,
(ii) ϕ(t, ·) is continuous for each t ∈ T , and (iii) for some µ-integrable ρ : T → R+,
|ϕ(·, a)| ≤ ρ for all a ∈ A. Then the function h : T → C(A) given by h(t) = ϕ(t, ·)
is Bochner integrable.

Proof Note first that A being a compact metric space, C(A) is separable. Recall also
that the closed unit ball of the dual of a separable Banach space is weak∗-metrizable
and that, consequently, a weak∗-sequentially closed linear subspace of the dual of a
separable Banach space is actually weak∗-closed by the Krein-Šmulian theorem.

Let Z be the set of all v ∈ M(A) ≡ C(A)∗ for which 〈h(·), v〉 is measurable. Then
Z is a weak∗-sequentially closed linear subspace of M(A). According to condition (i),
Z contains all Dirac measures on A (because 〈h(·), δa〉 = ϕ(·, a) if δa is the Dirac
measure at a ∈ A). Thus Z separates the points of C(A), i.e. Z is weak∗-dense
in M(A). Hence, by the previous paragraph, we must have Z = M(A). That is, the
function h is weakly measurable. As C(A) is separable, Pettis’s measurability theorem
shows that h is, in fact, strongly measurable. Now if ρ : T → R+ is a function chosen
according to condition (iii), then we have ‖h(t)‖ ≡ supa∈A|ϕ(t, a)| ≤ ρ(t) for almost
all t ∈ T , and therefore

∫
T ‖h(t)‖µ(dt) ≤ ∫

T ρ(t)µ(dt) < ∞. (Since h is strongly
measurable, the term

∫
T ‖h(t)‖µ(dt) is well-defined.) But the fact that h is strongly

measurable and that
∫

T ‖h(t)‖µ(dt) < ∞ means that h is Bochner integrable. ��
Remark 5 Combining Lemmas 1 and 3 shows that, given a probability space (T, T , µ)
and a compact metric space A, if ϕ : T × A → R is as in the statement of Lemma 3
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and f : T → M(A) is a weak∗-measurable function such that ess supt∈T ‖ f (t)‖ <
∞, then the function t �→ ∫

A ϕ(t, a) f (t)(da) is integrable; hence, in particular, if
g : T → A is T –B(A)-measurable, then the function t �→ ϕ(t, g(t)) is integrable.
To see this latter fact, observe the following points: First, ϕ(t, g(t)) means the same
as

∫
A ϕ(t, a)δg(t)(da). Second, the function t �→ δg(t) is weak∗-measurable since for

each u ∈ C(A), 〈u, δg(t)〉 = u(g(t)) and u(g(·)) is measurable being the composition
of two measurable mappings.

Proof of Theorem 2 Noting that C(A) is separable and that MP (A) is a convex and
weak∗-compact subset of M(A), it follows from Theorem 1, in conjunction with
Lemma 3, that there is a weak∗-measurable function f̃ : T → M(A) such that

(i) f̃ (t) is an extreme point of MP (A) for almost all t ∈ T ;
(ii)

∫
T

∫
A ϕ j (t, a) f̃ (t)(da)µ(dt) = ∫

T

∫
A ϕ j (t, a) f (t)(da)µ(dt) for all j ∈ J .

According to a well known fact, (i) means that for almost every t ∈ T , f̃ (t) = δa

for some a ∈ A. Modifying f̃ on some null set N ∈ T if necessary, we may assume
that “ f̃ (t) = δa for some a ∈ A” holds actually for each t ∈ T . We thus have
a function g : T → A such that δg(t) = f̃ (t) for each t ∈ T . The function g is
T − B(A)-measurable. Indeed, given any B ∈ B(A), we have

{t ∈ T : g(t) ∈ B} = {
t ∈ T : δg(t)(B) = 1

} = {
t ∈ T : f̃ (t)(B) = 1

}
.

Thus, by Lemma 2(ii)⇒(i), as f̃ is weak∗-measurable, the set {t ∈ T : g(t) ∈ B} is in
T . Thus (a) of Theorem 2 holds. Finally, since

ϕ j (t, g(t)) =
∫

A

ϕ j (t, a)δg(t)(da) ≡
∫

A

ϕ j (t, a) f̃ (t)(da)

for all j ∈ J and all t ∈ T , (ii) implies that (b) of Theorem 2 holds. This completes
the proof. ��

Theorem 2 has the following corollary, which corresponds to Corollary 2.4 in
Loeb and Sun (2006), the result of these authors that was quoted in the introduction,
extending that result from the setting of atomless Loeb probability spaces to the setting
of super-atomless probability spaces.

Corollary Let (T, T , µ) be a super-atomless probability space and let A be a compact
metric space. For each k in some countable set K let µk be a finite signed measure
on (T, T ) that is absolutely continuous with respect to µ, and for each j in some
countable set J let ϕ j : T × A → R be a mapping such that ϕ j (·, a) is measurable for
each a ∈ A, ϕ j (t, ·) is continuous for each t ∈ T , and such that for some integrable
function ρ j : T → R+, |ϕ j (·, a)| ≤ ρ j for all a ∈ A. Then given any measurable
mapping f : T → MP (A), there is a T –B(A)-measurable mapping g : T → A such
that g(t) ∈ supp f (t) for almost all t ∈ T (where supp f (t) denotes the support of
the measure f (t)) and such that for all k ∈ K , j ∈ J , and all Borel subsets B of A,

(1)
∫

T

∫
A ϕ j (t, a) f (t)(da)µ(dt) = ∫

T ϕ j (t, g(t))µ(dt),
(2)

∫
T f (t)(B)µk(dt) = µk(g−1(B)).
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Proof The arguments of the proof of Corollary 2.4 in Loeb and Sun (2006) apply, with
the invocation of Theorem 2.2 of Loeb and Sun (2006) there replaced by an appeal to
our Theorem 2. We note for this that the assumption in Corollary 2.4 of Loeb and Sun
(2006) that the probability space domain be an atomless Loeb measure space matters
in the proof of that corollary only in connection with the invocation of Theorem 2.2
of Loeb and Sun (2006). But our Theorem 2 does the same job as does Theorem 2.2
of Loeb and Sun (2006). ��

The class of super-atomless probability spaces is exactly the class of probability
spaces for which the above corollary holds when the target space A may be any
compact metric space. In fact, the following theorem shows that if the domain space
is not super-atomless, then this corollary may fail in several aspects.

Theorem 3 Let A be an uncountable compact metric space and let (T, T , µ) be any
probability space which is not super-atomless. Then:

(A) There is a measurable function f : T → Mp(A) such that there is no T –B(A)-
measurable function g : T → A for which both g(t) ∈ supp f (t) for almost all
t ∈ T and

∫
T f (t)(B)µ(dt) = µ(g−1(B)) for each B ∈ B(A).

(B) There are a measurable function f : T → Mp(A) and a functionϕ : T × A → R,
with ϕ(·, a) measurable for each a ∈ A, ϕ(t, ·) continuous for each t ∈ T , and
|ϕ(·, a)| ≤ ρ for some µ-integrable function ρ : T → R+ and all a ∈ A, such
that there exists no T –B(A)-measurable function g : T → A for which both

∫

T

∫

A

ϕ(t, a) f (t)(da)µ(dt) =
∫

T

ϕ(t, g(t))µ(dt)

and
∫

T f (t)(B)µ(dt) = µ(g−1(B)) for each B ∈ B(A).
(C) There are a measurable function f : T → Mp(A) and a probability mea-

sure γ on (T, T ), with γ being absolutely continuous with respect to µ, such
that there exists no T –B(A)-measurable function g : T → A for which both∫

T f (t)(B)γ (dt) = γ (g−1(B)) and
∫

T f (t)(B)µ(dt) = µ(g−1(B)) for each
B ∈ B(A).

The proof of Theorem 3 requires two lemmata.

Lemma 4 Let A be an uncountable compact metric space and (T, T , µ) an atom-
less probability space with Maharam type ℵ0. Then there is a T –B(A)-measurable
mapping g : T → A such that given any E ∈ T there exists a B ∈ B(A) such that
µ(E 
 g−1(B)) = 0.

Proof Let Y = {0, 1}N, endowed with its usual topology (i.e. the product topology
when {0, 1} has the discrete topology). Let ν be the restriction to B(Y ) of the usual
measure on {0, 1}N. Write (A, µ̂) for the measure algebra of µ, and (C, ν̂) for that
of ν. Further, write F• for the element of C determined by F ∈ B(Y ), and analogously
for the elements of A. Note that since µ is atomless with Maharam type ℵ0, µ is in
particular Maharam type homogeneous. Also note that since Y is metrizable, B(Y )
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coincides with the Baire σ -algebra of Y . In view of these facts, it follows from Fremlin
(2002, 341Y(c), p. 173) that there exists a T –B(Y )-measurable mapping h : T → Y
such that the mapping ψ : C → A given by ψ(F•) = (h−1(F))• is a bijection. Thus,
in particular, given any E ∈ T there is an F ∈ B(Y ) such that (h−1(F))• = E•. Note
that (h−1(F))• = E• is equivalent to µ(E 
 h−1(F)) = 0.

Now because A is an uncountable compact metric space, there is a Borel isomor-
phism from Y to A, say ζ . (That is, ζ is a bijection from Y to A such that both ζ
and its inverse ζ−1 are measurable for B(A) and B(Y ).) Let g : T → A be defined
as the composition g = ζ ◦ h. Then g is T –B(A)-measurable. Pick any E ∈ T . By
construction, there is an F ∈ B(Y ) such that µ(E 
 h−1(F)) = 0. Let B = ζ(F).
Then B ∈ B(A) and g−1(B) = h−1(ζ−1(ζ(F))) = h−1(F), so µ(E 
 g−1(B)) = 0.
Thus g does the job required. ��
Lemma 5 Let (T, T , µ) be a probability space and A an uncountable compact metric
space. Suppose that the measureµ is not super-atomless. Then there exists a T –B(A)-
measurable mapping h : T → A such that given any E ∈ T there is a B ∈ B(A) such
that µ(E ∩ h−1(B)) �= 1

2µ(h
−1(B)).5

Proof Suppose first that the probability space (T, T , µ) has an atom, say F . Pick
points a0, a1 ∈ A with a0 �= a1 and let h : T → A be the measurable mapping given
by

h(t) =
{

a0 if t ∈ F

a1 if t ∈ T �F.

Consider any E ∈ T with µ(E) > 0. Since F is an atom of (T, T , µ), either
µ(E ∩ F) = 0 or µ(E ∩ F) = µ(F). Because h−1({a0}) = F and µ(F) > 0, it
follows that in both cases µ(E ∩ h−1({a0})) �= 1

2µ(h
−1({a0})).

Now suppose (T, T , µ) is atomless. Then as (T, T , µ) is not super-atomless, there
is an F ∈ T with µ(F) > 0 such that the subspace (F, TF , µF ) has Maharam
type ℵ0. Applying Lemma 4 to (F, TF , µF ) (with µF temporarily normalized so that
µF (F) = 1), we can select a TF –B(A)-measurable mapping g : F → A such that
for any given G ∈ TF there is a B ∈ B(Y ) for which µF (G 
 g−1(B)) = 0. Fix any
point a0 ∈ A so that µF (g−1({a0})) = 0. (This is possible because A is uncountable).
Let h : T → A be the mapping given by

h(t) =
{

g(t) if t ∈ F

a0 if t ∈ T �F.

Evidently h is T –B(A)-measurable. Consider any E ∈ T . By construction, there is a
B ∈ B(A) such that µF ((F ∩ E)
 g−1(B)) = 0. Thus

µF (g
−1(B)) = µF (F ∩ E ∩ g−1(B)) = µF (F ∩ E).

5 Of course, for E ∈ T with µ(E) �= 1
2 the existence of a B ∈ B(A) with the desired property is trivially

guaranteed. However, in the applications of Lemma 5, the set E which matters will be so that µ(E) = 1
2 .
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In addition, by the facts that µF (g−1({a0})) = 0 and h(t) = a0 for all t ∈ T �F , we
have

µF (g
−1(B)) = µF (g

−1(B�{a0})) = µ(h−1(B�{a0}))

as well as

µF (F ∩ E ∩ g−1(B)) = µF (F ∩ E ∩ g−1(B�{a0})) = µ(E ∩ h−1(B�{a0})).

Consequently,

µ(E ∩ h−1(B�{a0})) = µ(h−1(B�{a0})) and µ(h−1(B�{a0})) = µF (F ∩ E).

Thus since µF (F ∩ E) = µ(F ∩ E), if µ(F ∩ E) > 0 then we must have

µ(E ∩ h−1(B�{a0})) �= 1

2
µ(h−1(B�{a0}))

as desired. Now if µ(F ∩ E) = 0 but µ(E) �= 1
2µ(T �F), then

µ(E ∩ h−1({a0})) = µ(E ∩ (T �F)) = µ(E) �= 1

2
µ(T �F) = 1

2
µ(h−1({a0})).

Finally, if µ(E) = 1
2µ(T �F) then µ(E ∩ h−1(A)) = µ(E) = 1

2µ(T �F) <
1
2µ(h

−1(A)) because µ(F) > 0. ��
Proof of Theorem 3 (A) Let h : T → A be a function chosen according to Lemma 5.
In particular, h is T –B(A)-measurable. Fix a point a0 such that µ(h−1({a0})) = 0 (as
is possible since A is uncountable). Let f : T → MP (A) be the function given by

f (t) = 1

2
δh(t) + 1

2
δa0 , t ∈ T .

Since h is T –B(A)-measurable, it is plain that for any B ∈ B(A) the function f (·)(B)
is measurable. Note that

∫

T

f (t)({a0})µ(dt) = 1

2

because µ(h−1({a0})) = 0.
Suppose g : T → A is a T –B(A)-measurable mapping with µ(g−1({a0})) = 1

2
and such that for almost every t ∈ T , g(t) = h(t) or g(t) = a0, i.e. such that
g(t) ∈ supp f (t) for almost all t ∈ T . Set E = T �g−1({a0}) and note that g(t) = h(t)
for almost all t ∈ E .
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Now by choice of h, there is a B ∈ B(A) with 1
2µ(h

−1(B)) �= µ(E ∩ h−1(B)).
Since µ(h−1({a0})) = 0 it follows that

1

2
µ(h−1(B�{a0})) �= µ(E ∩ h−1(B�{a0})).

As noted above, g(t) = h(t) for almost all t ∈ E , and thus

µ(E ∩ h−1(B�{a0})) = µ(E ∩ g−1(B�{a0})).

By the definition of E , µ(E ∩ g−1(B�{a0})) = µ(g−1(B�{a0})). Consequently,

µ(g−1(B�{a0})) �= 1

2
µ(h−1(B�{a0})).

But 1
2µ(h

−1(B �{a0})) = ∫
T f (t)(B �{a0})µ(dt) as may readily be seen, and thus

we have
∫

T f (t)(B�{a0})µ(dt) �= µ(g−1(B�{a0})). Thus we have shown that for no
T − B(A)-measurable mapping g : T → A we can have both g(t) ∈ supp f (t)
for almost all t ∈ T and µ(g−1(B)) = ∫

T f (t)(B)µ(dt) for all B ∈ B(A). This
proves (A).

(B) Let h, a0 and f be as in the proof of part (A). Let d denote the metric of A, and
let ϕ : T × A → R+ be given by

ϕ(t, a) = min{d(a0, a), d(h(t), a)}, t ∈ T, a ∈ A.

Then ϕ(t, ·) is continuous for each t ∈ T and ϕ(·, a) is measurable for each a ∈ A. (To
see this latter fact, note that d(h(·), a) is the composition of the T –B(A)-measurable
mapping h with the continuous mapping d(·, a).) Furthermore, from the compactness
of A, there is a number k > 0 such that ϕ(t, a) ≤ k for all t ∈ T and a ∈ A, so there is
an integrable function ρ : T → R+ such that ϕ(t, a) ≤ ρ(t) for all t ∈ T and a ∈ A.

Note that
∫

A ϕ(t, a) f (t)(da) = 1
2ϕ(t, h(t)) + 1

2ϕ(t, a0) = 0 for any t ∈ T , so∫
T

∫
A ϕ(t, a) f (t)(da)µ(dt) = 0. Hence if g : T → A is any T –B(A)-measurable

function such that
∫

T

∫
A ϕ(t, a) f (t)(da)µ(dt) = ∫

T ϕ(t, g(t))µ(dt), then, since ϕ is
a non-negative function, ϕ(t, g(t)) = 0 for almost all t ∈ T , whence, by the definition
of ϕ, g(t) ∈ supp f (t) for almost all t ∈ T . But according to part (A), this implies
that we cannot have µ(g−1(B)) = ∫

T f (t)(B)µ(dt) for all B ∈ B(A). Thus (B) has
been shown.

(C) Since A is an uncountable compact metric space, there is a continuous sur-
jection from A onto the unit interval [0, 1], which shows that we can find a compact
subset A1 of A such that both A1 and its complement in A, called A2 in the sequel,
are uncountable. In particular, A1 and A2 both are uncountable Borel subsets of the
compact metric space A and thus there is a Borel isomorphism between A1 and A2,
say ζ : A1 → A2. (That is, ζ is a bijection such that both ζ and its inverse ζ−1 are
measurable for the restrictions of B(A) to A1 and A2, or, equivalently, measurable for
the Borel σ -algebras generated by the subspace topologies of A1 and A2, respectively).
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Now let h1 : T → A1 be a function chosen according to Lemma 5, and let h2 : T →
A2 be defined as the composition h2 = ζ ◦ h1. Let f : T → MP (A) be given by

f (t) = 1

2
δh1(t) + 1

2
δh2(t), t ∈ T .

Finally, let ĥ : A1 → R+ be a bounded and injective function that is measurable for
the Borel sets of A1 and R, and then let γ be the (positive) measure on (T, T ) given
by γ (F) = ∫

F (̂h ◦h1)(t)µ(dt), F ∈ T . By an appropriate scaling of ĥ, we can ensure
that γ is a probability measure.

Suppose there is a T –B(A)-measurable function g : T → A such that both

∫

T

f (t)(B)µ(dt) = µ(g−1(B)) for all B ∈ B(A) (1a)

and ∫

T

f (t)(B)γ (dt) = γ (g−1(B)) for all B ∈ B(A). (1b)

In particular, then, for any bounded and non-negative Borel function h : A → R we
must have, by the monotone convergence theorem,

∫

T

∫

A

h(a) f (t)(da)µ(dt) =
∫

T

h(g(t))µ(dt) (2a)

as well as ∫

T

∫

A

h(a) f (t)(da)γ (dt) =
∫

T

h(g(t))γ (dt). (2b)

Now let u : A → R+ be given by

u(a) =
{

ĥ(a) if a ∈ A1

ĥ(ζ−1(a)) if a ∈ A2,

and let v : A → R+ be given by v(a) = (u(a))2. Evidently u and hence v are Borel
functions.6 Observe that for each t ∈ T ,

∫

A

u(a) f (t)(da) = 1

2
u(h1(t))+ 1

2
u(h2(t))

= 1

2
ĥ(h1(t))+ 1

2
ĥ(ζ−1(ζ(h1(t))))

= ĥ(h1(t))

= u(h1(t))

6 The idea to involve the square of a function is taken from Example 2.7 in Loeb and Sun (2006).
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and, similarly,

∫

A

v(a) f (t)(da) = 1

2
(u(h1(t)))

2 + 1

2
(u(h2(t)))

2

= 1

2
(̂h(h1(t)))

2 + 1

2
(̂h(ζ−1(ζ(h1(t)))))

2

= (̂h(h1(t)))
2

= v(h1(t)).

Hence, from (2a) and (2b),

∫

T

v(h1(t))µ(dt) =
∫

T

v(g(t))µ(dt) (3a)

and ∫

T

u(h1(t))γ (dt) =
∫

T

u(g(t))γ (dt). (3b)

According to its definition, γ is absolutely continuous with respect to µ, with Radon-
Nikodym derivative ĥ ◦ h1. Hence, in view of the definitions of v and u (and since h1
has range space A1), (3b) can equivalently be written in the form

∫

T

v(h1(t))µ(dt) =
∫

T

u(g(t))u(h1(t))µ(dt). (4)

Using (3a) and (4), it is readily seen that

∫

T

(u(g(t))− u(h1(t)))
2µ(dt) = 0

whence u(h1(t)) − u(g(t)) = 0 for almost all t ∈ T . That is, by the definition of u,
for almost every t ∈ T ,

ĥ(h1(t))− ĥ(g(t)) = 0 if g(t) ∈ A1, and

ĥ(h1(t))− ĥ(ζ−1(g(t))) = 0 if g(t) ∈ A2.

Since ĥ was chosen to be injective, it follows that for almost all t ∈ T , either h1(t) =
g(t) or h1(t) = ζ−1(g(t)). Since ζ ◦ h1 = h2, this means that for almost every
t ∈ T , either g(t) = h1(t) or g(t) = h2(t). Thus, setting E = g−1(A1), we have
g(t) = h1(t) for almost all t ∈ E , because h2(t) ∈ A2 ≡ A� A1 for all t ∈ T .

By choice of h1, there is a B ∈ B(A1) with 1
2µ(h

−1
1 (B)) �= µ(E ∩ h−1

1 (B)).
Evidently µ(E ∩ h−1

1 (B)) = µ(E ∩ g−1(B)) since h1(t) = g(t) for almost all t ∈ E ,
and since B ⊂ A1 we have µ(E ∩ g−1(B)) = µ(g−1(B)) by the definition of E .
Consequently, µ(g−1(B)) �= 1

2µ(h
−1
1 (B)).
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On the other hand, for the function f : T → MP (A) defined above, we have∫
T f (t)(B)µ(dt) = 1

2µ(h
−1
1 (B)) because B ⊂ A1 and h2(t) ∈ A2 ≡ A � A1

for all t ∈ T . We conclude that
∫

T f (t)(B)µ(dt) �= µ(g−1(B)), thus obtaining a
contradiction to (1a), and thus proving part (C) of the theorem. ��

Appendix

In this Appendix, we show that any atomless Borel probability measure on a Polish
space can be extended to a super-atomless probability measure. Recall first that a
measure space (T, T , µ) is called countably separated if there is a countable subfamily
C ⊂ T such that given any two distinct points t , t ′ ∈ T there is an E ∈ C such that
t ∈ E but t ′ �∈ E . Recall also that a measure space (T, T , µ) is countably separated
if and only if there is a mapping from T to R that is both T –B(R)-measurable and
injective.

Let c denote the cardinality of the continuum and let κ = 2c. According to Fremlin
(2005, Proposition 521P(b)) there is a probability space (T, T , µ) which is countably
separated but Maharam type homogeneous with Maharam type κ .7 By what has been
noted in the previous paragraph, since (T, T , µ) is countably separated, we can identify
T with a subset of R such that B ∩ T ∈ T for each B ∈ B(R). Let the σ -algebra T̂
on R be defined by

T̂ = {F ⊂ R : F ∩ T ∈ T }

and let µ̂ be the probability measure with domain T̂ given by µ̂(F) = µ(F ∩ T ) for
F ∈ T̂ . Evidently the measure algebra of µ̂ can be identified with that of µ. Thus µ̂
is Maharam type homogeneous with Maharam type κ . Also, B(R) ⊂ T̂ , and we have
µ̂({r}) = 0 for each singleton subset {r} of R.

Let µB be the restriction of µ̂ to B(R). In particular, then, µB({r}) = 0 for each
r ∈ R, and thus the Borel measure µB on R is atomless. Now let Z be any Polish
space and let ν be any atomless Borel probability measure on Z . Since both Z and
R are Polish spaces, and both µB and ν are atomless Borel probability measures, the
probability spaces (R,B(R), µB) and (Z ,B(Z), ν) are isomorphic as measure spaces
(see Fremlin 2003, 433X(f), p. 183). That is, there is a bijection ζ : R → Z , which is
measurable for B(R) and B(Z) in both directions, such that ν(B) = µB(ζ−1(B)) for
each B ∈ B(Z). Let the σ -algebra  on Z be defined by

 = {F ⊂ Z : ζ−1(F) ∈ T̂ }

and let ν̂ be the probability measure with domain  given by ν̂(F) = µ̂(ζ−1(F)) for
F ∈ . Then since ζ is a bijection, (R, T̂ , µ̂) and (Z ,, ν̂) are isomorphic as measure

7 Actually, in the statement of Proposition 521P(b) in Fremlin (2005) it is not spoken of a probability
measure that is Maharam type homogeneous. However, inspecting the proof of that proposition shows,
by using Fremlin (2002, 334X(g), p. 161), that the measure constructed there is actually Maharam type
homogeneous. We remark also that the proof of Proposition 521P(b) in Fremlin (2005) shows that this
proposition continues to hold when κ is any cardinal with ℵ1 ≤ κ ≤ 2c.
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418 K. Podczeck

spaces, so they have isomorphic measure algebras. Consequently, ν̂ is Maharam type
homogeneous with Maharam type κ , and thus super-atomless as κ > ℵ0. Also, since
T̂ ⊃ B(R) and µ̂ coincides with µB on B(R), the choice of ζ implies that ⊃ B(Z)
and that ν̂ coincides with ν on B(Z). We conclude that ν̂ is an extension of ν to a
super-atomless probability measure.
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