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Abstract We introduce several notions of potentials for mechanism design problems
with interdependent values, and relate them to implementation in ex-post equili-
brium. Whereas ex-post implementation is closely linked to the ordinal concept of
best-alternative potentials, the celebrated Vickrey–Clarke–Groves mechanism cor-
responds to the stronger notion of a cardinal potential: agents agree not only on the
best alternative, but also on the quantitative differences between all alternatives. We
characterize all valuations that allow for cardinal potentials, and use this characteri-
zation for: (1) Identifying valuations for which ex-post implementation is possible;
(2) Identifying classes of valuations for which all ex-post implementable choice rules
correspond to cardinal potentials. The latter allows us to extend to interdependent
valuations a result for dominant strategy implementation in private values settings,
due to Roberts (The Characterization of Implementable Choice Rules, North-Holland,
Amsterdam, 1979).
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1 Introduction

We introduce several notions of potentials for mechanism design problems with
interdependent values, discuss their properties, and establish relations between these
notions and ex-post implementation. Roughly speaking, a mechanism design problem
with given valuation functions admits a potential if there exist monetary transfers such
that the maximization problem of each agent coincides with the problem of maximi-
zing a single “potential” function, common to all agents.1 Thus, the existence of a
potential suggests the possibility of aligning the interests of all agents.

Aligning the interests of heterogenous strategic agents that jointly control a deci-
sion is a central desideratum in mechanism design and implementation. By attaching
different monetary transfers to different social alternatives, the designer can affect the
agents’ preferences over these alternatives so that, ultimately, all agents agree about
the preferred alternative, and hence all agents find it in their own strategic interest to
behave in a way that leads to the commonly preferred alternative.

The most famous example of successful alignment is offered by the Vickrey–
Clarke–Groves mechanisms (see Vickrey 1961; Clarke 1971; Groves 1973) for private
values environments with quasi-linear utility. There, an agent receives a transfer equal
to the sum of valuations of the other agents in the chosen social alternative. With
such transfers all individual payoff maximization decision problems coincide with
the maximization of social surplus, yielding the well-known dominant strategy imple-
mentability of the efficient choice rule.

The notions of interest alignment analyzed in the present paper bear a strong formal
resemblance to potentials for normal form games, defined by Monderer and Shapley
(1996). Roughly speaking, a normal form game admits a potential if there exists a
function (common to all players) from strategy profiles to the set of real numbers such
that, for any player, changes in utility resulting from changes in own strategy (while
keeping fixed others’ strategies) are reflected in appropriate changes in the value of the
common potential function. A main result is that a strategy profile is a Nash equilibrium
of the original game if and only if it is a Nash equilibrium of the artificial game where
each player’s utility function is replaced by the common potential. Thus, the equilibria
of strategic interaction in a potential game are mirrored in a much simpler game where
all players’ interests are identical.

Following the literature on potential games, we shall distinguish between best-
alternative, ordinal and cardinal potentials. The first, weakest, concept says that the
potential function and each agent’s payoff function agree on the best alternative; the
second requires that the potential function agrees with every agent’s preference order

1 The potentials introduced here should not be confused with the individual potential functions arising as
expected equilibrium utility functions in Bayes-Nash implementation (see for example Jehiel et al. 1999).
The common name reflects certain properties about path integrals first analyzed in the physical sciences
(e.g., energy conservation).
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over all alternatives; the third, strongest, concept requires that the potential function
coincides, up to an affine transformation, with each agent’s utility function (as is the
case for social surplus in the Vickrey–Clarke–Groves mechanism).

Whereas in Monderer and Shapley’s general setting a potential need not have an
economic interpretation related to the game’s features (see for example their derivation
of a potential for a Cournot oligopoly), a potential in our mechanism design problem
is closely related to the choice rule that is being implemented through the alignment of
interests induced by that potential. In spite of the formal resemblance, the links between
potentials in mechanism design and potential games are not immediate. Whereas an
agent’s preferences over her strategies are preserved by the potential function in a
potential game, her preferences over alternatives are explicitly altered, via transfers,
in the potential function for a mechanism design problem. It is also not true that a
mechanism that admits a potential gives rise to a potential game in the corresponding
revelation game.2

Our present focus is on ex-post implementation—a weakening of dominant strategy
implementation, appropriate also for settings with interdependent valuations. This
notion requires that an agent is not willing to change her strategy for any type realization
of the other agents. Ex-post implementation has recently received a lot of attention3

because it ensures that neither the mechanism designer, nor the agents need to know
the distribution from which signals are drawn in order to design the mechanism or to
play optimally in the induced game.4

Via a taxation principle, it can be easily shown, that best-alternative potentials are
equivalent to ex-post implementable choice rules. Thus, statements over implemen-
table choice rules can be translated into statements about best-alternative potentials.5

Ordinal potentials go beyond ex-post implementation by requiring that, after eventual
transfers, agents agree over the ranking of all alternatives (rather than just the best
alternative), and cardinal potentials go even further by requiring that agents’ utili-
ties ultimately agree up to affine transformations. While implementation theory has
essentially focused on best-alternative potentials, ordinal and cardinal potentials offer
stronger notions of interest alignment, which should be attractive for a number of appli-
cations.6 In particular, as mentioned above, the Vickrey–Clarke–Groves mechanisms
correspond to cardinal potentials.

2 In contrast, Sandholm (2005) shows how a price scheme administered by a designer can be used
to augment an externality abatement game in order to yield a potential game a la Monderer–Shapley.
A dynamic learning process leads there to an efficient outcome. Compare Example 6.4.
3 See, among others, Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), Chung and Ely (2003),
Bergemann and Välimäki (2002), Perry and Reny (2002), and Jehiel et al. (2006).
4 See Bergemann and Morris (2005) for a formal treatment of this issue, and for the connection to “Wilson’s
doctrine” about detail-free mechanisms.
5 Potentials should be seen as offering a different interpretation of the mechanism design problem. Whereas
the latter studies joint decisions based on agents’ signals (while providing incentives for truthful revelation),
the former focuses on the aggregation of agents preferences.
6 For example, such stronger alignments may be desirable if there is some probability that the best-
alternative will no longer be available at the time when the joint decision must be implemented. By contrast, in
the literature on potential games, it is unclear what the stronger notions of potentials mean beyond providing
technical simplifications to characterize the potential.
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The paper is organized as follows: In Sect. 2 we describe the mechanism design
problem with interdependent values, and state a well-known taxation principle. In
Sect. 3 we define several notions of potentials, and link potentials to implementation
in ex-post equilibria (Proposition 3.4).

In Sect. 4 we use existing results from the theory on potential games in order to
provide conditions for the existence of cardinal potentials (Proposition 4.1). Roughly
speaking, the existence of cardinal potentials requires, for each alternative k, the
identity of the cross derivatives of agent i’s and j’s valuations with respect to the
signals held by i and j . Equivalently, as shown by Ui (2000), this requirement can be
expressed as a separability condition on the valuation functions.

It is a priori not straightforward to determine whether ex-post implementation is
possible for given valuation functions. But, the above sufficient conditions are readily
checked. Furthermore, the conditions are constructive in the sense that, when satis-
fied, they indicate how to construct the cardinal potential, the implemented choice
rule and the necessary transfers. If the conditions are not satisfied, however, ex-post
implementation via weaker notions of potentials may still be possible.

After recalling that, with generic interdependent valuation functions, only constant
choice rules can be ex-post implemented (see Jehiel et al. 2006), we next consider
settings in which cardinal potentials exist. Our main question is whether and when all
ex-post implementable choice rules can be represented by cardinal potentials in such
cases.

Our main results can be summarized as follows:

1. When the valuation functions admit a cardinal potential and are generic within the
class of settings admitting cardinal potentials and multi-dimensional type spaces,
we show that every non-trivial implementable choice rule is represented by a
translate of the cardinal potential (Proposition 4.4).

2. In a more special class of settings with “rich enough” multi-dimensional type
spaces and with valuations that are additively separable in the agent’s own signal
and other agents’ signals, we show that any ex-post implementable choice rule that
is not trivial is an affine maximizer: any such choice rule can be represented by
a maximization of a weighted sum of the parts of agents’ utilities that depend on
their own signals, augmented by signal-independent, alternative-specific weights
(Proposition 4.7). Since almost all affine maximizers are cardinal potentials, it
follows that in this case too almost all implementable non-trivial choice rules
correspond to cardinal potentials.

3. In one-dimensional settings we observe that ex-post implementation is possible for
an open set of valuations functions (thus implying that best-alternative potentials
exist), and yet cardinal implementation is generically impossible. We also provide
a one-dimensional example in which a cardinal potential exists and yet other
(non-trivial) choice rules can be ex-post implemented. This example illustrates
the significant difference between the two notions in such restricted domains.

Of course, the same questions about relations between best-alternative and car-
dinal potentials can be asked in private values settings. As mentioned above, the
classic work of Vickrey, Clarke, and Groves implies that the maximization of social
surplus is implementable and corresponds to a cardinal potential. But, their work
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leaves open the question whether some alternative choice rules can be implemented
in dominant strategies without corresponding to cardinal potentials. In a remarkable
paper, Roberts (1979) shows that, in a sufficiently rich, high-dimensional environment,
deterministic implementation in dominant strategy boils down to affine maximization.7

Since affine maximizers are cardinal potentials, cardinal and best-alternative poten-
tials coincide in the environments studied by Roberts. In fact, we heavily use Roberts’
result for our analysis of the interdependent but separable values case.

Bikhchandani et al. (2006) characterize dominant strategy implementation for pri-
vate values settings in terms of a monotonicity condition.8 The fundamental difference
to Roberts’ work is that these authors consider a restricted domain of preferences, bet-
ter suited to some of the applications they have in mind (e.g., combinatorial auctions
without externalities). In particular, the characterization of dominant strategy imple-
mentable choice rules as affine maximizers does not hold anymore in their framework.
Thus, in restricted, private-values domains, best-alternative and cardinal potentials
need not coincide.

There are two appendices: Appendix A recalls the original definitions of potential
games and the main result of Monderer and Shapley (1996), and it shows that mech-
anism design problems generally do not give rise to potential games. Appendix B
contains several proofs that would interrupt the flow of argument in the main text.

2 The mechanism design model

We consider a situation where N ∈ N agents i ∈ N are affected by a decision among
K ∈ N alternatives, k, l ∈ K. Agent i’s utility ui = vi

k + t i is determined by a quasi-
linear utility function that takes into account the chosen alternative k and a monetary
transfer t i ∈ R. Her valuation for alternative k, vi

k = vi
k (s), depends smoothly on the

state of the world s ∈ S.
Each agent gets a private signal si ∈ Si ⊆ R

di
about the state of the world s ∈ S.

The signal si results from an exogenous draw. Thus, we identify states of the world
with signal profiles: S = ∏

i∈N Si . We adopt the usual notation s−i = (
s j

)
j∈N , j �=i ,

and more generally sI = (
s j

)
j∈I and s−I = (

s j
)

j∈N \I for a subset of agents

I ⊆ N , and write s = (
si , s−i

)
when we focus on agent i .

We denote by ∇si the di -dimensional vector of partial derivatives with respect to si

and assume that the value difference between any two alternatives k, l is not satiated
in one’s own signal si :

∇si

(
vi

k − vi
l

)
(s) �= 0 for all s ∈ S. (1)

Given an infinitesimal change dsi of i’s signal, we denote by dvi
k = ∇si vi

k (s) • dsi

the corresponding infinitesimal effect on i’s valuation of alternative k.

7 Lavi et al. (2006) offer alternative proofs for Roberts’ main result, and for another characterization result
(that uses a condition of “player-decisiveness” ), due to Meyer-ter-Vehn and Moldovanu (2002).
8 Similar characterizations in terms of a “no cycle condition” are given by Gui et al. (2004). Their work
builds on an earlier insight about monotonicity properties of subdifferentials of convex functions, due to
Rochet (1987).
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We study choice rules ψ : S → K with the property that there are transfers
functions t = (

t i
)

i∈N : S → R
N such that truth-telling almost everywhere is an

ex-post equilibrium in the incomplete information game that is induced by the direct
revelation mechanism (ψ, t), i.e.

vi
ψ(s) (s)+ t i (s) ≥ vi

ψ(̃si ,s−i)
(s)+ t i

(
s̃ i , s−i

)
(2)

for all agents i , almost all signal profiles s = (
si , s−i

)
and all possible misrepresen-

tations of i’s signal s̃i ∈ Si . We shall call such ψ implementable (a.e.) and (ψ, t) an
incentive compatible mechanism (a.e.), and will suppress the “(a.e.)” from here on.9

Consider an incentive compatible mechanism (ψ, t). By Fubini’s Theorem, for almost
all si ∈ Si , the set S−i

(
si

) ⊆ S−i of other agents’ signals s−i such that constraint (2)
is violated for s = (

si , s−i
)

and some misrepresentation s̃i ∈ Si is a null-set. Thus
almost all types si find it optimal to truthfully report their type given truthful reporting
by the other agents, and given any continuous type distribution over S−i .

We call two choice rules ψ,ψ ′ equivalent if they agree on the chosen alternative
ψ (s) = ψ ′ (s) for almost all signal profiles s ∈ S; we call ψ exhaustive if every
alternative k is chosen on some set S (k) of states with positive measure; we call ψ
trivial if it chooses the same alternative k in almost all states s.

We conclude this section by stating a “ taxation principle” for ex-post implemen-
tation, first pointed out by Chung and Ely (2003). This is a multi-agent generalization
of a well-known idea in the monopolistic screening literature: Instead of asking an
individual for her information and deciding on an alternative and a transfer based on the
report, the central authority can, equivalently, post prices for the different alternatives
and let the individual choose among them. In our setting with multiple agents, these
prices are personalized and depend on the signals of the other agents. In equilibrium
all agents must agree on the best alternative.

Lemma 2.1 (Taxation Principle) A choice rule ψ is implementable if and only if for
every agent i there are transfers

(
t i
k

(
s−i

))
k ∈ (R ∪ {−∞})K \ (−∞, . . . ,−∞) ,10

such that for almost all s it holds that:

ψ (s) ∈ arg max
k∈K

{
vi

k (s)+ t i
k

(
s−i

)}
(3)

9 The reason for requiring optimality almost everywhere rather than everywhere is that we want to allow
some leeway on zero-measure sets of signals where agents are indifferent between multiple alternatives.
This avoids tedious technical details in the definition of best-alternative and ordinal potentials in Eqs. (5)
and (6), while allowing us to focus on the main economic insights implied by ex-post implementation. Results
on the restrictiveness of ex-post implementation, such as those in Jehiel et al. (2006) and Proposition 4.4
below, generalize to choice rules that are implementable almost everywhere, as the geometric condition
driving the result is determined by the incentive constraints in a whole neighborhood (with positive measure)
of the indifference set.
10 It is necessary to allow for t i

k (s
−i ) = −∞ for some alternative k in order to ensure that ψ(si , s−i ) �= k

for all si ∈ Si . On the other hand one cannot allow for t i
k (s

−i ) = −∞ for all alternatives k, as this would
make agent i indifferent between all alternatives, and yield him infinite disutility.
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Proof “if” : Given t i
k

(
s−i

)
, such that condition (3) holds, define t i (s) := t i

ψ(s)

(
s−i

)
.

Agent i’s problem in the game induced by the mechanism (ψ, t) is: max̃si

{vi
ψ(̃si ,s−i)

(
si , s−i

)+ t i
ψ(̃si ,s−i)

(
s−i

)}. By condition (3), it is optimal for her to report

s̃i = si since then the choice rule ψ picks, for almost all s, her most preferred
alternative.

“only if” : Let ψ be ex-post implementable via a mechanism (ψ, t). Let Si
(
s−i

)

be the set of signals si such that constraint (2) holds for all s̃i . By Fubini’s Theorem,
for almost all s−i ∈ S−i , the set Si

(
s−i

)
has full measure. We define

t i
k

(
s−i

)
=

{
t i

(
si , s−i

)
if ψ

(
si , s−i

) = k for some si ∈ Si
(
s−i

)

−∞ if ψ
(
si , s−i

) �= k for all si ∈ Si
(
s−i

)
.

(4)

Note that t i
k

(
s−i

)
is well-defined since, by i’s incentive constraint,

ψ
(

si , s−i
)

= ψ
(

s̃i , s−i
)

= k for si , s̃i ∈ Si
(

s−i
)

⇒ t i
(

si , s−i
)

= t i
(

s̃i , s−i
)
.

By i’s incentive constraint we know that she reports in a way that maximizes her payoff.
Thus, with t i

k

(
s−i

)
as defined in Eq. (4), condition (3) is satisfied for s = (

si , s−i
)

such that si ∈ Si
(
s−i

)
. ��

3 Preference aggregation via potentials

Definition 3.1 1. A family P = (Pk)k∈K of functions Pk : S → R is a best-
alternative potential for valuations v if there are “transfers”

(
t i
k

(
s−i

))
k ∈

(R ∪ {−∞})K \ (−∞, . . . ,−∞) such that, at almost every state of the world
s, the potential agrees with each agent i on the most favored alternative(s) k:

arg max
k

{
vi

k (s)+ t i
k

(
s−i

)}
= arg max

k
{Pk (s)} (5)

2. A family P = (Pk)k∈K of functions Pk : S → R is an ordinal potential for
valuationsv if there are “transfers”

(
t i
k

(
s−i

))
k ∈ (R ∪ {−∞})K \ (−∞, . . . ,−∞)

such that, at almost every state of the world s, the potential agrees with each agent
i on the preference order of alternatives:

∀i,∀k, l ∈ K , vi
k (s)+ t i

k

(
s−i

)
≥ vi

l (s)+ t i
l

(
s−i

)
⇔ Pk (s) ≥ Pl (s) (6)

3. A family P = (Pk)k∈K of functions Pk : S → R is a cardinal potential for
v if there exist (αi , β i ), αi > 0 and “transfers”

(
t i
k

(
s−i

))
k ∈ (R ∪ {−∞})K \

(−∞, . . . ,−∞) such that, at almost every state of the world s, the utility of each
agent i coincides with the potential up to an (αi , β i )-affine transformation:

∀i, k, αi
[
vi

k (s)+ t i
k

(
s−i

)]
+ β i = Pk (s) (7)
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A cardinal potential that is achieved through weights αi will be called an
α-potential.

The above definitions closely parallel those for potential games (see Appendix A).
Note that in the definition of a cardinal potential we can always choose β i = 0 without
loss of generality: if P = (Pk)k∈K is a cardinal potential for some {(αi , β i )}i it is also
a cardinal potential for {(αi , 0)}i .11 This justifies the terminology for α-potentials.

The following result summarizes the simple relations among the above notions:

Proposition 3.2 An ordinal potential for valuations v is a fortiori a best-alternative
potential. A cardinal potential for valuations v is a fortiori an ordinal potential.

Proof If P is an ordinal potential, condition (6) obviously implies Eq. (5) and P is a
best-alternative potential.

If P is an α-potential, αi > 0 ensures that condition (6) is satisfied. ��

Recall that a choice rule identifies a unique “best” alternative for each profile of
signals. Thus, it is not surprising that implementable choice rules are closely related
to best-alternative potentials. We now formally express this connection.

Definition 3.3 Two best-alternative potentials P, P ′ for valuations v are equivalent
if arg maxk {Pk (s)} = arg maxk

{
P ′

k (s)
}

at almost every state of the world s.12

Proposition 3.4 There is a one-to-one relation between equivalence classes of best-
alternative potentials P and equivalence classes of ex-post implementable choice rules
ψ .

Proof We define for each class of best-alternative potentials P an equivalence class
ψ = �

(
P

)
of implementable choice rules, and we then show that � is a bijection.

Given P with representative P ∈ P , defineψ = �
(
P

)
by defining a representative

ψ ∈ ψ with ψ (s) ∈ arg maxk {Pk (s)}. By the taxation principle, the defined choice
rule ψ is implementable. In order for � to be well-defined we need to check that
ψ = �

(
P

)
does not depend on the choice of P ∈ P in the construction ofψ . However,

this is obvious from Definition 3.3.
To prove that � is one-to-one, observe that �

(
P

) =�(P ′
) implies that arg

maxk {Pk (s)} = arg maxk
{

P ′
k (s)

}
for all P ∈ P, P ′ ∈ P

′
and for almost all s ∈ S.

Thus we get that P = P
′
, proving that � is injective. Finally, the taxation principle

yields for a given implementable choice rule ψ that Pk (s) = vi
k (s)+ t i

k

(
s−i

)
defines

a best-alternative potential with �
(
P

) = ψ , yielding surjectivity. ��

11 For βi = 0, consider the transfers t̂ i
k (s

−i ) = t i
k (s

−i )+ βi

αi where t i
k (s

−i ) is the transfer associated with

the (αi , βi )-potential.
12 Note that by non-satiation, condition (1), and by the definition of best-alternative potentials, condition (5),
the set arg maxk {Pk (s)} is a singleton for almost all s.
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4 Cardinal potentials

It is obvious form the work of Vickrey, Clarke and Groves and from the above
definitions that social surplus Pk (s) = ∑

i v
i
k

(
si

)
is a cardinal potential for private

values settings. Thus, if valuations are private, dominant-strategy implementation of
the efficient choice rule can be achieved via the strong notion of cardinal potentials.

We next give a condition for the existence of cardinal potentials in interdependent
values settings. This condition is not satisfied for generic valuations, and hence ex-post
implementation via cardinal potentials is generically impossible. But, the non-generic
set of valuation functions that allow for cardinal potentials goes far beyond private
values, and these more general families of valuations play a role in various applications.

4.1 Existence of cardinal potentials

Denote by ∂si ,̃si ∂s j ,̃s j vi
k

(
s−{i, j}) the second difference of vi

k :

∂si ,̃si ∂s j ,̃s j v
i
k

(
s−{i, j}) :=

(
vi

k

(
si , s j , s−{i, j}) − vi

k

(
si , s̃ j , s−{i, j}))

−
(
vi

k

(
s̃i , s j , s−{i, j}) − vi

k

(
s̃i , s̃ j , s−{i, j}))

Proposition 4.1 For α = (
αi

)
i∈N � 0 the following conditions on the valuation

functions v = (
vi

k

)
i,k are equivalent:

1. There exists an α-potential for valuations v.
2. There exist functions Pk : S → R and Qi

k : S−i → R for all k and i , such that:

αivi
k(s) = Pk(s)+ Qi

k(s
−i ) (8)

3. For all agents i, j and alternatives k, the cross-differences in the valuations coin-
cide:

αi∂si ,̃si ∂s j ,̃s j v
i
k

(
s−{i, j}) = α j∂si ,̃si ∂s j ,̃s j v

j
k

(
s−{i, j}) (9)

4. There exists a family of functions �I
k : SI → R for each subset of agents

I ⊆ N such that:

αivi
k (s) =

∑

I with i∈I
�I

k

(
sI)

(10)

The family
(
�I

k

)
I is called an interaction potential and defines the potential

function Pk (s) = ∑
I �I

k

(
sI)

.

For the proof of Proposition 4.1 it is convenient to first establish a formal link
between potentials for mechanism design problems and potentials for normal form
games. This will allow us to use several known results from the latter theory.
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Given valuations v and given an alternative k ∈ K, consider an artificial game in
normal form �k(v) where the set of players is N , the set of strategies of player i ∈ N
is Si , and the payoff function of player i is vi

k : S → R.

Lemma 4.2 A family P = (Pk)k∈K of functions Pk : S → R is an α-potential for v
if and only if, for each k ∈ K, the function Pk is an α-potential for the game �k(v).13

Proof By the definition of potentials for normal form games (see Appendix A), Pk is
an α-potential for the game �k(v) if and only if

αi (vi
k(s

i , s−i )− vi
k(t

i , s−i )) = Pk(s
i , s−i )− Pk(t

i , s−i )

holds for all si , t i ∈ Si , s−i ∈ S−i and i ∈ N . This condition is equivalent to the
existences of functions Qi

k : S−i → R such that

αivi
k(s) = Pk(s)+ Qi

k(s
−i )

for all s ∈ S and i ∈ N .14 The result follows from an immediate transformation of
Eq. 7 by setting Qi

k(s
−i ) = αi t i

k(s
−i )− β i . ��

Armed with the above lemma, we now prove Proposition 4.1

Proof “1 ⇔ 2” See the end of the proof of Lemma 4.2.
“1 ⇔ 3” follows from a path-integral argument, standard in the physics literature,

that has been applied to potential games by Monderer and Shapley (1996). By their
Corollary 2.9, condition (9) is equivalent to the fact that �k(v) is a potential game.
The result follows then by Lemma 4.2.

“1 ⇔ 4” follows from Lemma 4.2 and from the analogous result on potentials for
normal form games, due to Ui (2000). ��

For given valuations v, identities (9) provide an easy way to check whether imple-
mentation via cardinal potentials is possible or not. Moreover, when identities (9) hold
it is fairly easy to construct the associated α-potentials. For the sake of illustration,
assume that there are two agents i , j , that each agent holds a one-dimensional signal
si ∈ R

+, that vi
k are smooth functions of si and s j , and that identities (9) hold for all

k and α = (1, 1). Then P = (Pk)k∈K is an α-potential if and only if there exist λk

such that15

Pk(s
i , s j ) =

si∫

0

∂vi
k(x, s j )

∂si
dx + v

j
k (0, s j )+ λk .

13 We are very grateful to an anonymous referee who suggested this result.
14 This has been pointed out by Slade (1994) and Facchini et al. (1997) for one-dimensional signals si ,
but is easily seen to generalize to arbitrary signals.
15 This parallels Lemma 2.7 in Monderer and Shapley (1996) showing that a cardinal potential is unique
up to a constant.

123



Ex-post implementation and preference aggregation via potentials 479

Note that the conditions imposed by identities (9) are non-generic in the sense that if
the valuations are “drawn randomly”, identities (9) will typically not be satisfied. But,
as highlighted by the equivalent conditions (8) or (10), the set of valuation functions that
allow for implementation via cardinal potentials goes far beyond the private valuations
case. These equivalent conditions provide alternative simple representations of those
systems of valuation functions that admit an α-potential, such as the settings with
separable or semi-separable valuations analyzed below.

4.2 Implementation via cardinal potentials

Having identified the conditions for the existence of cardinal potentials, we now turn
to a systematic study of the following question: Assuming the existence of cardinal
potential, we ask oursleves whether and when it is the case that all best-alternative
potentials (or equivalently, ex-post implementatable choice rules) are cardinal poten-
tials? As we shall see, this study also reveals interesting classes of valuations for which
ex-post implementation is possible.

To get a flavor of the difference between best-alternative and cardinal potentials,
let us give an interpretation of cardinal potentials in terms of rates of information
substitution. Given a cardinal potential P that represents an implementable choice rule
ψ , and an “indifference point” s where arg maxk′ {Pk′ (s)} = {k, l} , let us consider
an infinitesimal change

(
dsi , ds j

)
in the signals of agents i and j that does not affect

their preferences between alternatives k and l:

∇si (Pk − Pl) (s) • dsi + ∇s j (Pk − Pl) (s) • ds j = 0

By the definition of the cardinal potential we get that

αi∇si

(
vi

k − vi
l

)
(s) • dsi + α j∇s j

(
v

j
k − v

j
l

)
(s) • ds j = 0

which can be expressed as

− dvi
k,l (s)

dv j
k,l (s)

= α j

αi
(11)

where dvi
k,l (s) = ∇si

(
vi

k − vi
l

)
(s) • dsi and dv j

k,l (s) = ∇si

(
v

j
k − v

j
l

)
(s) • ds j .

The left hand side of the above equation can be interpreted as a rate of information
substitution. It compares the change in i’s preference of alternative k over l due to an
infinitesimal change of her signal with the analogous term for agent j . A high value for
this quotient signifies that a large change in i’s preference is needed to offset a smaller
change in agent j ’s valuation. Thus, agent j can be considered to be “more important”
to the decision making. Equation (11) says that this rate needs to be independent of
the chosen alternatives k, l and of the indifference signal s. But, there is no a priori
reason why this strong requirement should be satisfied by an arbitray implementable
choice rule (or by an arbitrary best-alternative potential). Indeed, we find that this
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Fig. 1

condition is not generally satisfied by arbitrary implementable choice rules in settings
with one-dimensional signals (compare with Fig. 1).

By contrast, in many settings with multi-dimensional signals admitting a cardinal
potential, we find the surprising result that almost every best-alternative potentials is
equivalent to some cardinal potential, thereby implying that the strong information
substitution condition is satisfied by almost all implementable choice rules.

The next three subsections analyze settings with multi-dimensional signals and
proceed from general valuations to more and more restricted ones. In particular, we
get larger and larger families of choice rules that can be ex-post implemented. The
last subsection considers settings with one-dimensional signals.

4.2.1 Generic Multi-dimensional settings

Jehiel et al. (2006) have shown that for generic16 valuation functions any ex-post imple-
mentable choice rule must be constant (i.e., it can make no use of private information).
In other words, any best-alternative potential is trivial. Since cardinal potentials are
a-fortiori best-alternative potentials, we obtain:

Proposition 4.3 For multi-dimensional signal spaces and generic valuation functions
v with non-zero gradient ∇si

(
vi

k − vi
l

)
(s) �= 0, the only implementable rules that are

not cardinal potentials are trivial choice rules.

16 Genericity pertains here to both topological and measure-theoretic notions of residual sets and finite
prevalence, respectively. See Jehiel et al. (2006) for precise definitions.
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4.2.2 Semi-separable valuations

We now focus on the less general class of settings with valuation functions that allow
for the existence of a cardinal potential P , characterized in Proposition 4.1.

By the definition of potentials, we know that the choice rule represented by the
potential ψ (s) ∈ arg maxk {Pk (s)} is implementable, and it is easy to see that the
same holds for all rules represented by its translates: ψ (s) ∈ arg maxk {Pk (s)+ λk},
for any vector of real numbers (λk)k . The next result says that, beyond these choice
rules, only trivial rules are implementable.

Proposition 4.4 Consider a setting with multi-dimensional signals and with valua-
tion functions that admit an α-potential (e.g., the valuations have the form vi

k (s) =
1
αi (Pk (s) + Qi

k

(
s−i

)
) where Pk : S → R is a common value part, Qi

k : S−i → R

are arbitrary, and αi > 0). Then, for generic families {Pk (s)}k , the only non-trivial
ex-post implementable choice rules ψ are of the form ψ (s) ∈ arg maxk {Pk (s)+ λk}
for a vector of constants (λk)k , and are thus represented by cardinal potentials.

The proof of the above result closely follows that of Proposition 3.3 and Theorem 4.2
in Jehiel et al. (2006), and we ask the reader to consult that paper for details.

For an intuition, assume that the signal spaces are di -dimensional cubes
Si = [0; 1]di

, di ≥ 2, that there are only 2 agents and 2 alternatives, k and l,
assume that αi = α j = 1 and normalize vi

l = v
j
l = 0. Let vi

k(s) = Pk (s)+ Qi
k

(
s j

)
,

and let (ψ, t) be an ex-post incentive compatible mechanism with t i
l = t j

l = 0

and with smooth transfers t i
k, t j

k . By the taxation principle (Proposition 2.1) we have

vi
k (s) + t i

k

(
s j

) = 0 ⇔ v
j
k (s) + t j

k

(
si

) = 0. Call signals for which these equalities
hold “indifference signals” , and denote the set of indifference signals by I ⊂ S.
Differentiating the payoff functions, we obtain that ∇vi

k + t i
k and ∇v j

k + t j
k are both

perpendicular to the indifference set I.
In other words, the vectors

( ∇si Pk (s)
∇s j Pk (s)+ ∇s j

(
Qi

k + t i
k

) (
s j

)
)

and

(
∇si Pk (s)+ ∇si

(
Q j

k + t j
k

) (
si

)

∇s j Pk (s)

)

must be parallel for all s ∈ I .
Fix now an indifference signal ŝ ∈ I . For multi-dimensional signals (di , d j ≥ 2)

the above implies that ∇si Pk (s) is parallel to ∇si (Q
j
k + t j

k )
(
ŝi

)
for all s ∈ I

with ŝi = si . If the common value part Pk is a “randomly drawn” generic function,
the direction of the gradient ∇si Pk (s) will vary in s j . The only way by which the

term ∇si (Q
j
k + t j

k )(s
i ), which cannot depend on s j , can remain parallel to all these

multiple directions is by having ∇si (Q
j
k + t j

k )(s
i ) = 0. This implies that (Q j

k +
t j
k )

(
si

) = λk , is a constant independent of si . The assertion follows then by the taxation
principle.
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The proof is completed by discarding the differentiability (and continuity)
assumption on the transfer functions, and by showing that the set of functions {Pk}k

for which the gradient ∇si Pk (s) varies in s j on every possible indifference set of Pk

is residual and finitely prevalent in the Banach space of sufficiently smooth functions
(see Jehiel et al. 2006).

Finally, note that the restriction on valuations that admit cardinal potentials is stron-
ger than necessary in order to avoid the negative result of Proposition 4.3. Intuitively,
this class of valuations is small within the class of valuations that allow for a non-trivial
best-alternative potential: given valuations that admit a cardinal potential, only affine
transformations of these valuations preserve the property that a cardinal potential
exists, whereas a best-alternative potential will still exist for any monotone transfor-
mation; moreover, the set of affine transformations is small in the set of all mono-
tone transformations. Thus, the present results do not imply that for all “reasonable”
CLASSES of valuations over multi-dimensional signals, best-alternative potentials
and cardinal potentials coincide.17,18

4.2.3 Separable valuations

In this subsection we restrict valuations even further, and we focus on interdependent,
yet separable valuation functions of the form

vi
k (s) = f i

k

(
si

)
+ hi

k

(
s−i

)
, (12)

for some functions f i
k : Si → R and hi

k : S−i → R. Let f i = (
f i
k

)
k∈K : Si → R

K

and f = (
f i

)
i∈N : S → R

N K .

Definition 4.5 A choice ruleψ : S → K is said to be an affine maximizer if and only
if it is of the form:

ψ (s) ∈ arg max
k∈K

{
N∑

i=1

αi f i
k

(
si

)
+ λk

}

(13)

for agent-specific weights αi ≥ 0 and alternative-specific weights λk ∈ R.

For a given affine maximizer, the weight αi can be interpreted as the importance
of agent i’s information to the social choice, and the weight λk as the designer’s
preference for alternative k. Note also that, for private values, a Vickrey–Clarke–
Groves mechanism is simply the affine maximizer with weights αi = 1, λk = 0.

17 But, it is not hard to derive from the proofs in Jehiel et al. (2006) that non-trivial ex-post implementation
does impose locally around the indifference set (instead of globally) the “cardinal conditions” on valuation
functions.
18 It also follows from the analysis in Jehiel et al. (2006) that, if there are three or more alternatives, the
set of valuations allowing for an ordinal potential is small within the set of valuations allowing for ex-post
implementation of an exhaustive choice rule.
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Affine maximizers with weights αi > 0 can be implemented by transfers t i
k(s

−i ) =
−hi

k(s
−i )+ ∑

j �=i
α j

αi f j
k (s

j ) .
Consider now a vector α � 0 . By defining

Pk(s) =
N∑

j=1

α j f j
k

(
s j

)
and Qi

k(s
−i ) = −

∑

j �=i

α j f j
k

(
s j

)
+ αi hi

k

(
s−i

)

we obtain:

vi
k (s) = f i

k

(
si

)
+ hi

k

(
s−i

)
= 1

αi
[Pk(s)+ Qi

k(s
−i )]

and

ψ (s) ∈ arg max
k∈K

{Pk(s)+ λk}

for affine maximizers ψ.
Thus, separable valuations admit an α-potential for any α � 0, and they constitute

a (non-generic) subcase of the semi-separable valuation functions studied in Sect. 4.2.2
where, in contrast, the cardinal representation is generically unique (up to a multiplica-

tive constant). The present non-genericity arises because ∀i, k, s, we have
∂vi

k (s)
∂si ∂s j = 0

in the class of separable valuations, whereas, for semi-separable valuations,
∂vi

k (s)
∂si ∂s j is

proportional to ∂Pk (s)
∂si ∂s j which is allowed to vary in an arbitrary way.

Since ∇si Pk (s) does not vary here in s j ,we cannot apply the method of proof illus-
trated in the above section. Quite surprisingly, by using a remarkable result about domi-
nant strategy implementation for settings with private values and multi-dimensional
signals due to Roberts (1979), we are nevertheless able to prove a result similar to
Proposition 4.4 (albeit under additional technical conditions): for separable valua-
tions, the only implementable rules are affine maximizers. Thus, for all separable
valuations, almost all implementable choice rules are represented by cardinal poten-
tials. Exceptions are choice rules corresponding to affine maximizers where αi = 0
for some i. Such an affine maximizer is not a cardinal potential because Definition 3.1
insists that even an agent i with αi = 0 should have the same cardinal preference
as the other agents. This requirement does not show up in the conditions for ex-post
implementation since this agent’s report can simply be ignored.

The following simple lemma explains why we can use here a result that was obtained
for settings with private values:

Lemma 4.6 A choice ruleψ : S → K is ex-post implementable in the interdependent
values model if and only if it is ex-post implementable in the associated private values
model where ∀i, k, s−i : hi

k

(
s−i

) = 0.
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Proof See Appendix B. ��
Our main result in this subsection is:

Proposition 4.7 Assume that valutions vi
k (s) = f i

k

(
si

)+hi
k

(
s−i

)
are separable, that

f i
(
Si

) = R
K ,19 and that K ≥ 3. Then every implementable, exhaustive choice rule

is an affine maximizer. Thus, almost all implementable choice rules are represented
by cardinal potentials.

Proof See Appendix B. ��
The proof of Proposition 4.7 is based on a hyperplane separation argument due to

Roberts (1979) who proved a similar result for dominant strategy implementation with
private values, i.e. for Si = R

K , f i = id, hi = 0. Our proof adapts Roberts’ insight
by showing that there is no loss of generality in assuming that an ex-post implementable
choice rule takes only payoff relevant information into account. This means that ψ

factors through f , i.e., for X = (
R

K
)N

there exists a function φ : X → K such that
ψ = φ ◦ f .

The assumptions in Proposition 4.7 cannot be relaxed. If there are only two alter-
natives (i.e., K = 2), a characterization of dominant strategy implementable choice
rules in a private values setting has been obtained by Laffont and Maskin (1982). Their
characterization generalizes to separable, interdependent valuations, and yields a lar-
ger set than the set of affine maximizers. For bounded valuations f i

(
Si

) ⊆ R
K , an

example of an implementable choice rule that is not an affine maximizer is available
from the authors upon request.

4.2.4 One-dimensional settings

In one-dimensional settings, the conditions for the existence of cardinal potentials
are still stringent and cannot be generically satisfied (see Proposition 4.1). Yet, as
illustrated by Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), Bergemann
and Välimäki (2002), Perry and Reny (2002), Chung and Ely (2003), and Jehiel et al.
(2006), ex-post implementation of non-trivial choice rules can be achieved for open
sets of valuation functions. Thus, in one-dimensional settings, the set of best-alternative
potentials does generally not coincide with the set of cardinal potentials. Besides, even
in situations in which a cradinal potential exists, many choice rules other than cardinal
potentials can be implemented in one-dimensional settings.

To illustrate this phenomenon, consider a setting with two agents i, j with signals
si , s j ∈ [0, 1], two alternatives k, l and private valuations vi

k = si , vi
l = 0 and

v
j
k = s j , v

j
l = 0. Clearly, total welfare is a cardinal potential in such a private values

setting. Yet, many other choice rules that do not admit a cardinal representation can
be implemented in this case. Indeed, standard arguments show that a choice rule ψ is
implementable if and only if it is monotone in the sense that it satisfies ψ (s) = k ⇒
ψ (̃s) = k for any s = (

si , s j
)

and s̃ = (
s̃i , s̃ j

)
with si ≤ s̃i and s j ≤ s̃ j . Figure 1

19 This implicitly assumes that the dimension of Si ⊆ R
di

is at least as large as K .

123



Ex-post implementation and preference aggregation via potentials 485

shows that, for a general implementableψ, the rate of information substitution
dvi

k,l

dv j
k,l

(s)

is not constant, and thus ψ cannot be represented by a cardinal potential.

5 Conclusion

Using ideas from the theory of potential games, we have introduced to mechanism
design new notions of alignment between individual and social preferences, and we
related these notions to ex-post implementation. We have characterized valuation func-
tions that admit cardinal potentials. Since the required conditions are very easily che-
cked, our results offer simple methods to construct the potentials and the corresponding
transfers needed to implement them. Moreover, for settings with multi-dimensional
type spaces that admit a cardinal potential and that are generic (within the class of such
settings), we have established that almost all implementable choice rules maximize this
potential or its translates. The class of separable valuations constitutes a non-generic
sub-class, and the extra freedom leads there to the possibility of implementing the lar-
ger class of affine maximizers. Virtually all affine maximizers are cardinal potentials
and we show that beyond them no additional choice rules are implementable.

To conclude, the focus on cardinal potentials and on the derived possibility results
for ex-post implementation constitute, in our view, a significant complement to the
earlier impossibility result for generic valuations with multi-dimensional signals (see
Jehiel et al. 2006).

6 Appendix A: Potential games

We briefly review the original definitions of potentials for normal form, complete
information games due to Monderer and Shapley (1996). Let �=�(u1, u2, . . . , uN )

be a game in strategic form played by the agents in a finite set N . The strategy set
of player i is denoted by Y i , and the payoff function of i is ui : Y → R,where
Y = Y 1 × Y 2 × · · · × Y N .

Definition 6.1 1. Given agent specific weights α = (
αi

)
i∈N � 0 , a function

P : Y → R is an α-potential for � if for every i ∈ N and for every y−i ∈ Y −i

αi (ui (y−i , x)− ui (y−i , z)) = (P(y−i , x)− P(y−i , z)) (14)

for every x, z ∈ Y i . If we are not interested in the value of α we simply speak of
a cardinal potential.

2. A function P : Y → R is an ordinal potential for � if for every i ∈ N and for
every y−i ∈ Y −i

ui (y−i , x)− ui (y−i , z) > 0 ⇔ P(y−i , x)− P(y−i , z) > 0 (15)

for every x, z ∈ Y i .

An analogue for best-alternative potentials was defined by Dubey et al. (2006):
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Definition 6.2 A function P : Y → R is a pseudo-potential for � if for every
i ∈ N and for every y−i ∈ Y −i

arg max
x∈Y i

{
ui

(
y−i , x

)}
⊇ arg max

x∈Y i

{
P

(
y−i , x

)}
. (16)

The following result shows how potentials align the agents’ interests:

Proposition 6.3 (Monderer and Shapley 1996) Let P be an ordinal potential for
�(u1, u2, . . . , un). Then a strategy profile is a Nash equilibrium of �(u1, u2, . . . , un)

if and only if it is a Nash equilibrium of �(P, P, . . . , P).

Proof By definition, �(P, P, . . . , P) has the same best-response correspondence as
�(u1, u2, . . . , un), which immediately implies the result. ��

6.1 Potentials and potential games

From the above definitions it seems a-priori plausible to assume that a potential
P = (Pk)k∈K for valuations v gives rise to a potential for the revelation game that
implements an associated choice rule ψ ∈ �

(
P

)
. In fact, Sandholm (2005) shows

how an externality abatement mechanism gives rise to a potential game.

Example 6.4 Consider a choice rule ψ = S → K and valuations of the form vi
k (s) =

wi
k + pi

k

(
si

)
with the property that pi

k

(
si

)
depends on the alternative k = ψ (s)

only through agent i’s reported signal s̃i , i.e. pi
ψ(̃si ,s−i)

(
si

) = pi
ψ(̃si ,̃s−i)

(
si

)
for

all s−i , s̃−i ∈ S−i . Then, given true signals s, the revelation game (ψ, t) : S →
K×R

N with transfers t i (̃s) = ∑
j �=i w

j
ψ(̃s) admits the potential Ps (̃s) = ∑

j (w
j
ψ(̃s)+

p j
ψ(̃s)

(
s j

)
).

Proof It is easy to check that:

ui
(

s̃i , s̃−i
)

− ui
(

s̃′i , s̃−i
)

=
⎡

⎣
∑

j

w
j
ψ(̃si ,̃s−i)

+ pi
ψ(̃si ,̃s−i)

(
si

)
⎤

⎦ −
⎡

⎣
∑

j

w
j
ψ(̃s′i ,̃s−i)

+ pi
ψ(̃s′i ,̃s−i)

(
s j

)
⎤

⎦

=
⎡

⎣(Ps

(
s̃i , s̃−i

)
−

∑

j �=i

p j
ψ(̃s j ,̃si ,̃s−{i, j})

(
s j

)
⎤

⎦

−
⎡

⎣Ps

(
s̃′i , s̃−i

)
−

∑

j �=i

p j
ψ(̃s j ,̃s′i ,̃s−{i, j})

(
s j

)
⎤

⎦

= Ps

(
s̃i , s̃−i

)
− Ps

(
s̃′i , s̃−i

)

��
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The above example relies on the special circumstances that valuations are private
and that the true information si and the stated information of the other agents s̃−i enter
the valuation function vi in an additive separable way.

In general there is no reason to believe that revelation games are potential games.
Ex-post incentive compatibility only requires truth-telling to be a best response to tru-
thful revelation of other agents. It does not pose restrictions on the preference ordering
of suboptimal announcements, and it is silent on best responses off the equilibrium
path. To illustrate this phenomenon, we offer below a simple example of a second price
auction for which we construct an improvement cycle in sub-optimal announcements,
thereby proving that the auction is not a potential game.

Example 6.5 The second-price auction with two bidders i, j , and private valuations
vi , v j is not a potential game.

Proof The induced bidding game allows for the following improvement cycle. Let

b= (bi , b j ) and b = (b
i
, b

j
) be such that bi < b j < b

i
< b

j
< vi , v j and consider

the cycle
(
bi , b j

) → (b
i
, b j ) → (b

i
, b

j
) → (bi , b

j
) → (

bi , b j
)
. Whereas the first

change
(
bi , b j

) → (b
i
, b j ) makes agent i better off by vi − b j > 0, the second

change (b
i
, b j ) → (b

i
, b

j
) makes agent j better off by v j − b

j
> 0 and the last

two changes leave the agents indifferent. It easily follows from condition (15) that
an ordinal potential game does not allow for such improvement cycles and that this
auction is therefore not a potential game. ��

It is possible to amend the above example to construct a strong improvement cycle,
i.e. a sequence of signal changes with the property that each change makes the relevant
agent strictly better off. Thus the revelation game does not even posses a generalized
ordinal potential.20

7 Appendix B: Proofs

Proof of Lemma 4.6 “if”: Letψ be ex-post implemented by a mechanism (ψ, t) under
private values. Thus

f i
ψ(s)

(
si

)
+ t i (s) = max

s̃i ∈Si

[
f i
ψ(̃si ,s−i)

(
si

)
+ t i

(
s̃i , s−i

)]

for all i, si , s−i . For interdependent utilities of the form f i
k

(
si

) + hi
k

(
s−i

) + t i we
define monetary payments by t ′i (s) = t i (s)− hi

ψ(s)

(
s−i

)
. One easily verifies that

f i
ψ(s)

(
si

)
+ hi

ψ(s)

(
s−i

)
+ t ′i (s)

= max
s̃i ∈Si

[
f i
ψ(̃si ,s−i)

(
si

)
+ hi

ψ(̃si ,s−i)

(
s−i

)
+ t ′i

(
s̃i , s−i

)]

20 P is a generalized ordinal potential if it satisfies condition 15 with the “⇐⇒” replaced by a “⇒”.
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for all i, si , s−i . This shows that
(
ψ, t ′

)
ex-post implements ψ for the interdependent

values case.
“only if”: Analogously. ��
The following result is a crucial ingredient for the proof of Proposition 4.7. It is also

interesting in its own right, as it establishes a monotonicity property of implementable
choice rules.

Lemma 7.1 (Monotonicity) An implementable choice rule ψ is monotonic in the
following sense: For every agent i,and for all signals s = (

si ; s−i
)
, s′ = (

s′i ; s−i
) ∈ S,

such that vi
k

(
s′) − vi

k (s) > vi
l

(
s′) − vi

l (s), ψ (s) = k implies that ψ
(
s′) �= l.

Proof of Lemma 7.1 By the taxation principle, there are transfers t i
l

(
s−i

)
such that

ψ (s) ∈ arg maxk′
{
vi

k′ (s)+ t i
k′

(
s−i

)}
for all s. If alternative k is among i’s favorite

alternatives at signal s, we have k ∈ arg maxk′
{
vi

k′ (s)+ t i
k′

(
s−i

)}
. If the change

from si to s′i makes alternative k strongly more preferable (for i) than l, vi
k

(
s′) −

vi
k (s) > vi

l

(
s′) − vi

l (s), it is immediate that l can not be preferred at signal s′i . Thus,
l /∈ arg maxk′

{
vi

k′
(
s′) + t i

k′
(
s−i

)}
. By the taxation principle, we can conclude that

ψ
(
s′) �= l. ��

Proof of Proposition 4.7 We use an important result due to Roberts (1979) who stu-
died deterministic choice rules that are implementable in dominant strategies in a
private values setting. Roberts showed that such rules must satisfy a monotonicity
condition, called PAD. Using our notation, his proof relies on the following technical
result:21

Theorem A (Roberts 1979) Let X = (
R

K
)N

and assume that K ≥ 3. Then any
function φ : X → K which satisfies PAD is an affine maximizer.

Here PAD means that for x, x ′ ∈ X such that x ′i
k − xi

k > x ′i
l − xi

l for all i ∈ N
and all l �= k ∈ K, φ (x) = k implies φ

(
x ′) = k. An affine maximizer φ satisfies

φ (x) ∈ arg maxk∈K{∑N
j=1 x j

k + λk} for some {α j } j∈N and some {λk}k∈K.

Thanks to Lemma 4.6 we can assume that hi
k ≡ 0 for all i, k. In order to apply

Theorem A, assume first that ψ : S → K factors through f , i.e. there is a function
φ : X → K such that ψ = φ ◦ f . As ψ is implementable, we can recursively apply
Lemma 7.1 to show that for all signals s, s′ ∈ S such that

f i
k

(
s′) − f i

k (s) > f i
l

(
s′) − f i

l (s) for all i ∈ N and l �= k ∈ K,

ψ (s) = k implies ψ
(
s′) = k. Consider the sequence of signals s(0) := s, s(i) :=(

s′
i , s(i−1)

)
for all agents i ≤ n (this gives s(n) = s′). The proof of Lemma 7.1 serves

then as the induction step proving that, with ψ
(
s(0)

) = k, we have ψ
(
s(i)

) = k for

21 Roberts’ proof uses a hyperplane-separation argument which yields the weights in the affine represen-
tation.
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all i. This yields ψ
(
s′) = k. Thus, we can apply Theorem A to φ as a function of the

f i
k (s), and get ψ (s) = φ ( f (s)) = arg maxk∈K

{∑N
j=1 α

j f j
k

(
s j

) + λk

}
.

It remains to show that the above assertion holds also for the cases whereψ : S → K
does not factor through f . This proof can be broken down into three steps: (a) Slightly
change ψ to a function ψ̃ that factors ψ̃ = φ ◦ f ; (b) Show that ψ̃ is ex-post imple-
mentable, and apply Theorem A to φ to show that ψ̃ is an affine maximizer; (c) Show
that ψ is an affine maximizer if ψ̃ is one.

(a) Given functions f i = (
f i
k

)
k∈K : Si → R

K , denote f i
(
si

) =: xi and for each

xi fix s̃i ∈ (
f i

)−1 {
xi

}
. We shall say that s̃ = (

s̃i
)

i∈N represents s. Given an ex-post
implementable choice rule ψ : S → K define ψ̃ : S → K by setting

ψ̃ (s) := ψ (̃s)

where s̃ represents s. Obviously, there is a function φ : (
R

K
)N → K such that

ψ̃ = φ ◦ f .
(b) The choice rule ψ̃ is ex-post implementable by the transfer rule t̃ (s) := t (̃s),

where t : S → R
N are the transfers that implementψ . Indeed, we readily check agent

i’s incentive constraint:

f i
ψ̃(si ,s−i)

(
si

)
+ t̃ i

(
si , s−i

)
= f i

ψ(̃si ,̃s−i)

(
si

)
+ t i

(
s̃i , s̃−i

)

≥ f i
ψ(̃s′i ,̃s−i)

(
si

)
+ t i

(
s̃′i , s̃−i

)

= f i
ψ̃(s′i ,s−i)

(
si

)
+ t̃ i

(
s′i , s−i

)

for all i, si , s′i , s−i . The first and third equality follow by the definitions of ψ̃ and t̃ , and
the inequality follows by the ex-post incentive compatibility of (ψ, t). By Lemma 7.1,

ψ̃ satisfies monotonicity, which in turn means that φ : (
R

K
)N → K satisfies PAD in

the sense of Roberts’ Theorem A. Thus, there are constants α j ≥ 0 for j ∈ N and λk

for k ∈ K such that φ ( f (s)) ∈ arg maxk∈K
{∑N

j=1 α
j f j

k

(
s j

) + λk
}

for all s ∈ S.

This proves that ψ̃ is an affine maximizer.
(c) We now return to the original choice rule ψ . We will derive a contradic-

tion by assuming that there exists s ∈ S such that ψ (s) = l /∈ arg maxk∈K{ ∑N
j=1 α

j f j
k

(
s j

) + λk
}
. Consider s′ ∈ S such that f j

l

(
s′) = f j

l (s) + ε for all

j , f j
k

(
s′) = f j

k (s) for all j and all k �= l , where ε is sufficiently small so that

l �= ψ̃
(
s′) ∈ arg maxk∈K

{∑N
j=1 α

j f j
k

(
s′ j

) + λk
}
. Let s̃′ be the element represen-

ting s′ in the definition of ψ̃ . By monotonicity, ψ (s) = l implies ψ
(
s̃′) = l, but, by

the characterization of ψ̃ , we know that l �= ψ̃
(
s̃′) contradicting ψ̃

(
s̃′) = ψ

(
s̃′). This

contradiction concludes the proof that ψ (s) ∈ arg maxk∈K
{∑N

j=1 α
j f j

k

(
s j

) + λk
}

for all s ∈ S. ��
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