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Abstract This paper extends the work on location-scale (LS) family with general n
random seed sources. First, we clarify and generalize existing results in this multivar-
iate setting. Some useful geometrical and topological properties of the location-scale
expected utility functions are obtained. Second, we introduce and study some gen-
eral non-expected utility functions defined over the LS family. Special care is taken
in characterizing the shapes of the indifference curves induced by the location-scale
expected utility functions and non-expected utility functions. Finally, efforts are also
made to study several well-defined partial orders and dominance relations defined over
the LS family. These include the first- and second-order stochastic dominances, the
mean-variance rule, and a newly defined location-scale dominance.
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1 Introduction

After the pioneer work of Markowitz (1952), mean-variance efficient sets have been
widely used in both economics and finance to analyze how people make their choices
concerning risky investments. However, the literature largely reflected the use of qua-
dratic utility functions in discussions and analyses and assumed normality in the dis-
tribution of an investment or its return (see, for example, Tobin 1958; Hanoch and
Levy 1969; Baron 1974). Meyer (1987), Sinn (1983, 1990) and Levy (1989) added
to the literature by comparing the distributions that differ only by location and scale
parameters while analyzing the class of expected utility functions with convexity or
concavity restrictions. This paper extends their work on LS family with general n
random seed sources. The extensions are carried out in two different directions. First,
we allow for the possibility that the returns on the risky assets could be driven by
more than one seed random variables (r.v.s), and we do not impose any distributional
assumption on the seed r.v.s. Second, investors preferences do not necessarily conform
to von Neumann and Morgenstern (1944) expected utility class.

The research has taken into considerations the perspectives of both economics and
behavioral science regarding modern portfolio choice theory and asset pricing theory.
On the one hand, the impact of multivariate seed variables on asset returns, in theory,
provides more realistic and general framework for studying the randomness of asset
returns (see, for example, Ross 1978). The returns on risky projects driven by a finite
number of risky factors are not only a theoretical concept but are also commonly used
in practice. For example, the relationship among the economic activities of the firm
and the market returns on the debt and the equity of the firm are of interest to financial
economists. Thus, there has been a renewed interest in the empirical relations between
market return to equity and basic characteristics of the firm, such as the size, leverage,
earnings yield, dividend-yield, book-to-market ratios, and leverage of the firm.1 In
addition, empirical evidence is in favor of a multi-factor rather than single-factor asset
pricing model (see, for example, Fama and French 1996).

On the other hand, there exists substantial experimental and empirical evidence in
decision theory—all leading to the rejection of the expected utility functions in repre-
senting investors’ behaviors in the presence of risk (see Machina 1982; Epstein 1992,
for surveys). This last set of observation leads us to consider general non-expected
utility functions.

For the purpose of this paper, we shall focus on the class of betweenness utility func-
tions axiomatized by Chew (1983) and Dekel (1986). The betweenness utility function
is obtained by replacing the independence axiom of von Neumann and Morgenstern’s
expected utility representation with the so-called betweenness axiom. The between-
ness axiom has been found to be well supported through experimental evidence, and
provides predictions that are in line with Allais (1953) paradox. The usefulness of

1 The size and earnings yield anomalies were documented by Banz (1981), the book-to-market effect by
Stattman (1980), the earnings-to-price ratios by Basu (1983), and the leverage by Bhandari (1988).
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the betweenness utility functions for resolving the well-known empirical puzzles in
finance has been overwhelming; see Cochrane (2005) for good coverage of this and
for extended reference.

The historical background prior to the work developed by Meyer (1987), Sinn (1983,
1990) and Levy (1989) on LS family is profound. To understand the importance of the
LS family, we need to go back to, at least, Markowitz’s (1952) classical mean-variance
analysis and Tobin’s (1958) mutual fund separation theorem. It is well-known that if
investors rank risky portfolios through their means and variances, Tobin’s two-fund
separation holds, and the separating portfolios will be located on Markowitz’s efficient
frontier. In the presence of a risk-free asset, investors would optimally hold a combi-
nation of the risk-free asset and a common risky portfolio. Tobin addressed an open
question: how robust is the mutual-fund separation phenomenon for rational investors
whose behaviors conform to some normality axioms such as those underlying von
Neumann and Morgenstern’s expected utility functions?

Seeking answers to this question has been an enduring task for academics in eco-
nomics for more than 40 years. The research on this subject can be roughly divided into
two branches, each following its own school of thought. The first branch of research
focuses on investor’s behavior assumptions (see, for example, Cass and Stiglitz 1970,
and more recently, Boyle and Ma 2005). The second branch aims at identifying the
distributional assumptions on asset returns that are sufficient for mutual fund separa-
tion for expected-utility investors. This paper, along with those of Meyer (1987), Sinn
(1983, 1990) and Levy (1989), falls into this second school.

The pioneering research that falls into this second branch is mainly represented by
Ross (1978), Chew (1983), Owen and Rabinovitch (1983) and Meyer (1987). Ross
(1978) developed distributional conditions on asset returns to ensure that two-fund
separation holds with the underlying separating portfolios common to all risk-averse
expected-utility investors. Ross showed that two-fund separation holds if and only if
asset returns are driven by two common factors with residual returns (to the factors)
having zero mean conditional on the linear span formed by the factors. Ross’s insight
into two-fund separation allowed him to extend his analysis to some general observa-
tions on k-fund separation. Chew (1983) and Owen and Rabinovitch (1983) showed
that mean-variance preferences persist when asset returns are elliptically distributed.

Sinn (1983) and Meyer (1987) were among the first to explicitly study the expected
utility functions defined over the LS family. Similar to Ross (1978), they obtained
the LS family by restricting distributions to differ from the seed variable only by the
location and scale parameters. This is done without restricting the random seed to be
normally distributed or to be located within Chamberlain’s elliptic class.

In fact, the seed variable may follow any distribution. Though the location-scale
expected utility functions defined over the LS family are summarized through two
parameters, the location-scale expected utility functions, in general, differ from the
classical mean-variance criterion. This is because the underlying expected utility func-
tions defined over Meyer’s LS family can still be well-defined even when the seed
random variable has no finite mean and variance. This is particularly true for bounded
and continuous utility indexes. Sinn (1983) has also derived some properties for the
indifference curves in relation to the linear distribution classes similar to the findings in
Meyer (1987). Sinn (1990) further extended the work to find that decreasing (constant)
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absolute risk aversion implies that the slope of the indifference curve declines (stays
constant) with an increase in µ, given a positive σ . However, if absolute risk aversion
is non-increasing, the slope of the indifference curve will rise with an increase in σ ,
given µ. He also observed a change in the indifference curve’s slope with an increase
in σ under increasing absolute risk aversion. Levy (1989) extended Meyer’s results to
prove that the first- and second-degree stochastic dominance efficient sets are equal to
the mean-variance efficient set under certain conditions. He also found an inequality
relationship between the support of the seed random variable and the parameters of
the linear functions of the seed random variables.

In light of the above established findings, this paper is best positioned as an exten-
sion of Sinn (1983, 1990) and Meyer (1987) research. Specifically, we extend and
clarify the work by Meyer and others on the geometric and topological properties of
the LS expected utility functions and non-expected utility functions defined over the
LS family with n random seed variables. Our results also generalize Tobin’s (1958)
findings that the indifference curves are convex upward for risk-averters, and con-
cave downward for risk-lovers, while keeping in mind that we are dealing with a
wider n-dimensional LS family of distributions for general location-scale expected
and non-expected utility functions.

As we mentioned before, our coverage of non-expected utility functions in this
paper falls into the mathematical tractability of the betweenness utility class discussed
by Chew (1983) and Dekel (1986).2 We also use this utility class to discuss the useful-
ness of the model in resolving the Allais paradox, and the betweenness utility-based
equilibrium asset pricing models (see Epstein and Zin 1989; Ma 1998 for a general
discussion).

Special efforts are also made to study several well-defined partial orders and dom-
inance relations defined over the LS family. These include the first- and second-order
stochastic dominances (FSD, SSD), the mean-variance (MV) rule, and a newly defined
location-scale dominance (LSD). The linkage of the first and second orders to the cor-
responding utility classes has been well-documented in the literature. The “if and only
if” relationships proved in this paper are somewhat stronger than those documented in
the existing literature.3 First, the random variables are not assumed to have bounded
supports. Second, we have restricted the utility functions to be continuously differen-
tiable C1 or to be twice continuously differentiable C2, in which the discontinuous step
functions are excluded from the class. With the step utility functions, the proofs for
the sufficient part of the relationships are much simplified. This is at the expense of a
statement that is weaker than what we need for this paper. Equipped with this result on
the second-order stochastic dominance, we are able to establish a useful link between
the newly defined location-scale dominance relation over the LS family and the SSD
efficient set defined over the same family. This is summarized in Proposition 15 below.

2 The same observation on the tractability of the betweenness utility function holds true for the study of the
corresponding investors’ portfolio choice problem, along with the analytic derivations of some useful non-
expected utilities-based equilibrium asset pricing models. These are not covered in this paper. Interested
readers may refer to Ma (1993, 1998).
3 See Huang and Litzenberger (1988) and the extended reference there for more information.
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The remainder of the paper is organized as follows: In Sect. 2, we clarify and
extend the original work of Meyer (1987) and others on location-scale expected utility
functions. An inverse problem associated with location-scale expected utility represen-
tation is studied in Sect. 3. In this section, we also introduce a family of location-scale
non-expected utility functions defined over the n-dimensional LS family. Section 4
covers partial orders and dominance relationships defined over the LS family. Even
though these partial orders and dominance relationships may not admit utility rep-
resentations, their properties and implications for investors choices can be readily
studied. In this section, we also introduce the notion of a location-scale dominance
relationship, in addition to the comparisons with those well-known dominance rela-
tionships in the literature. The latter includes the mean-variance rule and the first- and
second-order stochastic dominances. Section 5 rounds up the paper by providing
several well-grounded observations. Some technical proofs are provided in the
Appendices.

2 Location-scale expected utility

In this section we formulate and extend the work developed by Meyer (1987) and
others on location-scale expected utility functions to a general n-dimensional setup.
We also examine the shapes and other topological properties of indifference curves
that are induced by a location-scale expected utility function.

2.1 Preliminary

We assume that the returns of risky projects are driven by a finite number, say n, risky
factors that are summarized by an R

n-valued random vector X = [X1, . . . , Xn]; see,
for example, Ross (1978) and Fama and French (1996). Let Xi be the i-th factor, and
let X−i be the vector of the factors excluding the i-th factor. For notational simplicity,
we may write X = [

Xi , X−i
]

for all i . We assume that E
[
Xi | X−i

] = 0 for all i .
The random vector X satisfying these conditions is known to be a vector of random
seeds. It is noted that the conditions for a zero conditional mean for the random seeds
are satisfied when the random factors have zero mean and are independently distrib-
uted. So all observations and results derived later on in this paper are valid under the
stronger assumption of independently distributed random factors.

For any given vector, X , of random seeds, we let

D = {µ + σ · X : µ ∈ R, σ ∈ R
n+} (1)

to denote the LS family induced by X . Here, x · y stands for the inner product defined
on the Euclidean spaces, and R

n+ represents the non-negative cone of the Euclidian
space. Later, we shall use R

n++ to represent the positive cone with all entries to be
strictly positive. Elements in D can be interpreted as payoffs or returns associated
with each of the risky projects. Here, all scaling factors σi in σ are restricted to be
non-negative. We write σ ≤ σ ′ whenever σi ≤ σ ′

i for all i .
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Investors are thus assumed to express their preferences over all random payoffs in
D. Let (σ, µ) → V (σ, µ) be a location-scale utility function that represents investor’s
preference on D. A location-scale utility function V is said to be located in Meyer’s
LS expected utility class if there exists a monotonic transformation of V , still denoted
by V , and a well-defined utility index u (·) so that

V (σ, µ) =
∫

Rn

u(µ + σ · x) d F(x) (2)

for all (σ, µ) ∈ R
n+ × R.

Here, F (·) is the cumulative distribution function (c.d.f.) for the r.v. X . In this
paper, unless otherwise specified, we shall assume that the utility index u ∈ C1 (R)

is monotonic increasing and continuously differentiable, and the c.d.f. F (·) satisfies
Feller’s property so that the LS expected utility function V (σ, µ) is well-defined and
is continuously differentiable in (σ, µ).4

2.2 Monotonicity

Our first observation is that the monotonicity of the utility index u (·) implies and is
implied by the monotonicity of the utility function V (σ, µ) with respect to the location
variable µ. This was Property 1 in Meyer (1987). Particularly, for any smooth utility
index, u, with

Vµ(σ, µ) =
∫

Rn

u′(µ + σ · x) d F(x),

Property 1 is stated as

Vµ(σ, µ) ≥ 0 ⇔ u′ (·) ≥ 0.

The marginal expected utility with respect to each of the scaling factors that is summa-

rized by the n-dimensional gradient function Vσ (σ, µ) ≡
[

∂V (σ,µ)
∂σi

]

n×1
can be easily

computed and be given by

Vσ (σ, µ) =
⎡

⎣
∫

Rn

u′(µ + σ · x)xi d F(x)

⎤

⎦

n×1

.

The marginal expected utility may take either + or - signs, depending on the cur-
vature/convexity of the utility index u (·). With u′ (·) ≥ 0, we can easily prove the

4 A c.d.f. F (·) defined on R
n is said to satisfy Feller’s property if, for all g ∈ C

(
R

n × R
m)

, the function
y → ∫

Rn g (x, y) d F (x) defined on R
m is continuous. Feller’s property is named after Feller (1968).
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validity of the following relationships respectively for risk averse, risk loving and risk
neutral investors:

x �→ u (x) is concave ⇒ Vσ ≤ 0;
x �→ u (x) is convex ⇒ Vσ ≥ 0;

x �→ u (x) is linear ⇒ Vσ ≡ 0.

This constitutes the “if” part of Property 2 in Meyer’s paper. We only need to prove
the validity of the first relationship as follows and the rest can be obtained similarly:
The concavity of the utility index implies that, for all x = (xi , x−i ) ∈ R

n , it must hold
true that

u′(µ + σ · x)xi ≤ u′(µ + σ−i · x−i )xi

and that

Vσi (σ, µ) = E
[
u′(µ + σ · X)Xi

]

≤ E
[
u′(µ + σ−i · X−i )Xi

]

= E
[
u′(µ + σ−i · X−i )E

[
Xi | X−i

]]

= 0

since, by assumption, E
[
Xi | X−i

] = 0.
The converse to the above relationships are, in general, not valid (see, for example,

Rothschild and Stiglitz 1970). But for distribution function F (·) to have a finite second
moment and to satisfy Feller’s property, the validity of the converse relationships can
be proved under fairly general conditions. For example, if we assume that there exists
an i such that Xi has its support located within a bounded open interval (ai , bi ), and
if the utility function is twice continuously differentiable, then we can readily prove
the “only if” part of Property 2 as originally stated in Meyer (1987); that is,

Vσ ≤ 0 ⇒ u′′ ≤ 0;
Vσ ≥ 0 ⇒ u′′ ≥ 0;
Vσ = 0 ⇒ u′′ ≡ 0.

Again, we only need to prove the validity of the first relationship as follows: Let Fi (·)
be the marginal distribution function for Xi . Under Feller’s condition, the marginal
expected utility function (σ, µ) → Vσ (σ, µ) ≤ 0 is continuous. So, we may set
σ−i = ∅ for σ and for Vσi (σ, µ) so that, for all µ and σi > 0, we obtain

Vσi (σi , µ) =
bi∫

ai

u′(µ + σi x)xd Fi (x) ≤ 0.
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Since, by assumption, E [Xi ] = ∫ bi
ai

xd Fi (x) = 0, and since u (·) is continuously
differentiable on R, which have bounded first-order derivatives over (ai , bi ), we have

lim
x→ai

u′(µ + σi x)

x∫

ai

yd Fi (y) = 0,

lim
x→bi

u′(µ + σi x)

x∫

ai

yd Fi (y) = 0.

Applying integration by parts, we obtain

Vσi (σi , µ) = −σi

bi∫

ai

u′′(µ + σi x)

⎛

⎝
x∫

ai

yd Fi (y)

⎞

⎠ dx .

This yields

bi∫

ai

u′′(µ + σi x)

⎛

⎝
x∫

ai

yd Fi (y)

⎞

⎠ dx ≥ 0, ∀µ, σi > 0.

With
∫ bi

ai

∫ x
ai

yd Fi (y) dx = −E
[
X2

i

]
< 0, by Feller’s condition, we may set σi → 0+

to the above inequality to obtain u′′ (x) ≤ 0,∀x ∈ R.
The assumption on the existence of bounded support for the “only if” part of

Meyer’s Property 2 can, in fact, be further relaxed. The arguments prevail if there
exists a random source, Xi , with finite second moment so that, for all µ and σi > 0,
the following limits exist:

lim
x→∞ x

x∫

−∞
yd Fi (y) = 0

lim
x→±∞ u′(µ + σi x)

x∫

−∞
yd Fi (y) = 0 .

(3)

The second condition is valid if the utility index u (·) has bounded first-order deriva-
tives. The first condition is to ensure that the improper integral

∫ ∞
−∞

∫ x
−∞ yd Fi (y) dx
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is well-defined and takes a negative value. We have,

∞∫

−∞

x∫

−∞
yd Fi (y) dx = lim

b→+∞

b∫

−∞

x∫

−∞
yd Fi (y) dx

= lim
b→+∞

b∫

−∞

b∫

y

ydxd Fi (y)

= lim
b→+∞ b

b∫

−∞
yd Fi (y) −

∞∫

−∞
y2d Fi (y)

= −E
[

X2
i

]
.

It is easy to verify that the condition limx→+∞ x
∫ x
−∞ yd Fi (y) = 0 is satisfied when

Xi is normally distributed with zero mean.
For future reference, we summarize the above observations on the monotonicity of

the LS expected utility functions defined over the n-dimensional LS family. These are
expressed formally in a proposition as follows:

Proposition 1 Consider the expected utility function, V (σ, µ), on an n-dimensional
LS family D as defined in (2). Letting u ∈ C1 (R), we have

(i) u′ ≥ 0 ⇔ Vµ ≥ 0.

(ii) If u′ ≥ 0, then it must hold true that

x �→ u (x) is concave ⇒ Vσ ≤ 0;
x �→ u (x) is convex ⇒ Vσ ≥ 0;
x �→ u (x) is linear ⇒ Vσ ≡ 0.

(iii) If u ∈ C2 (R) with u′ ≥ 0, and if there exists i so that condition (3) is satisfied,
then it must hold true that

Vσ ≤ 0 ⇒ u′′ ≤ 0;
Vσ ≥ 0 ⇒ u′′ ≥ 0;
Vσ = 0 ⇒ u′′ ≡ 0.

2.3 Convexity

Now, let us prove the validity of the following statement. The statement is a modifi-
cation of Property 4 of Meyer’s paper:

(σ, µ) → V (σ, µ) is concave ⇔ u (·) is concave.
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For the “if” part of the proof, let u be concave. For arbitrary (σ, µ) and
(
σ ′, µ′) and

α ∈ [0, 1] , let

(σα, µα) ≡ α (σ, µ) + (1 − α)
(
σ ′, µ′) .

We have, for all x ∈ R
n , concavity of u (·) implies

u (µα + σα · x) = u
(
α (µ + σ · x) + (1 − α)

(
µ′ + σ ′ · x

))

≥ αu (µ + σ · x) + (1 − α) u
(
µ′ + σ ′ · x

)
.

This, in turn, implies

V (σα, µα) =
∫

Rn

u (µα + σα · x) d F (x)

≥ α

∫

Rn

u (µ + σ · x) d F (x)

+ (1 − α)

∫

Rn

u
(
µ′ + σ ′ · x

)
d F (x)

= αV (σ, µ) + (1 − α) V
(
σ ′, µ′) .

This is true for all (σ, µ) and
(
σ ′, µ′) and for all α ∈ [0, 1]. This proves the concavity

of (σ, µ) → V (σ, µ).
The “only if” part of the statement is obvious: Setting σ = ∅ . With V (∅, ·) ≡ u (·),

the concavity of V (∅, ·) is equivalent to the concavity of u (·).
Here, we intentionally drop the differentiability condition of the utility function.

Meyer’s original statement (Property 4) is obtained if we restrict u ∈ C2 (R) to be
twice continuously differentiable; that is, for all u ∈ C2 (R) ,

(σ, µ) → V (σ, µ) is concave ⇔ u′′ (·) ≤ 0.

Examples can be easily constructed to show that the concavity of (σ, µ) → V (σ, µ)

does not necessarily imply that u (·) is twice continuously differentiable. This is true
even if V (σ, µ) ∈ C∞ (

R
n++ × R

)
is infinitely many times continuously differentia-

ble.

2.4 Indifference curves

We further explore the topological properties for the indifference curves induced by
an LS expected utility function V . For an arbitrary constant a, let

Ca ≡ {(σ, µ) ∈ R
n+ × R : V (σ, µ) = a} (4)
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be the indifference curve at utility level a. As a direct consequence of the “if” part of
Property 2 above, we can readily obtain the following observation with respect to the
shapes of the indifference curves, which correspond to Property 3 in Meyer (1987):
The indifference curve Ca is upward-sloping if u is concave and downward-sloping
if u is convex. Moreover, by Property 4, concavity (convexity) of the utility index u
implies concavity (convexity) of the utility function V . This, together with Property
3, results in the following stronger statement on the shapes of the indifference curves
respectively for risk averse, risk loving and risk neutral investors:

Proposition 2 Let u ∈ C1 (R) be increasing and continuously differentiable. We have

1. The indifference curve Ca is convex upward if u is concave;
2. it is concave downward if u is convex; and
3. it is horizontal if u is a straight line.

Proof First, we characterize the monotonicity of the indifference curves. For all arbi-
trary σ ≥ σ ′, let µ = µ (σ) and µ′ = µ

(
σ ′) be on the indifference curve so that

V (σ, µ) = V
(
σ ′, µ′) = a. Suppose u is concave (convex). This implies, by Prop-

osition 1-(ii), σ → V (σ, µ) is decreasing (increasing). So, we have V
(
σ ′, µ

) ≥
(≤) V (σ, µ) = a. This, together with the monotonicity of µ → V (σ, µ) in Proposi-
tion 1-(i), yields µ ≥ (≤) µ′. That is, µ (σ) ≥ (≤) µ

(
σ ′) whenever σ ≥ σ ′.

We further characterize the convexity of the indifference curve. For any arbitrary
σ and σ ′ and for all α ∈ [0, 1] , let σα ≡ ασ + (1 − α) σ ′, µ = µ (σ) , µ′ = µ

(
σ ′)

and µα = µ (σα), we have

V (σ, µ) = V
(
σ ′, µ′) = V (σα, µα) .

Suppose u is concave (convex). This implies, by Property 4, (σ, µ) → V (σ, µ) is
concave (convex). We have

V
(
σα, αµ + (1 − α) µ′) ≥ (≤) αV (σ, µ) + (1 − α) V

(
σ ′, µ′)

= V (σα, µα) .

The monotonicity of the utility function V (σα, ·) implies

µ
(
ασ + (1 − α) σ ′) ≤ (≥) αµ (σ) + (1 − α) µ

(
σ ′) .

The equality must hold when u is linear. 
�
Note that the statements made in Proposition 2 about the shape and curvature of the

indifference curves can be restated analytically in terms of the gradient and Hessian
matrix of the indifference curve µ (σ) , σ ∈ R

n+. These, of course, require the stan-
dard regularity conditions on the utility function. For instance, by the implicit function

theorem, the gradient vector µσ ≡
[

∂µ
∂σ j

]

n×1
along the indifference curve is given by

µσ = − Vσ (σ, µ)

Vµ (σ, µ)
, ∀ (σ, µ) ∈ Ca (5)

123



130 W.-K. Wong, C. Ma

which is non-negative (non-positive) when u (·) is concave (convex). We may fur-

ther compute the Hessian matrix µσσ ≡
[

∂2µ
∂σk∂σ j

]

n×n
for the µ (·)-function. This,

of course, requires the utility index to be twice continuously differentiable. For all
(σ, µ) ∈ Ca , we have

µσσ = − [µσ , In] H(σ, µ) [µσ , In]ᵀ

Vµ(σ, µ)
(6)

in which H(σ, µ) is the (n + 1) × (n + 1) Hessian matrix for V (σ, µ), and In is the
n×n unit matrix. From this expression, we see that concavity (convexity) of the utility
index u (·) implies, by Property 4, negative (positive) semi-definiteness of the Hessian
matrix H(σ, µ). With Vµ > 0, the latter, in turn, implies µσσ to be positive (negative)
semi-definite.

In virtue of the above observations, we obtain the following analytic version of
Proposition 2:

Corollary 3 Let u ∈ C2 (R) with u′ > 0. Along the indifference curve µ (σ) , σ ∈
R

n+, it must hold true that

u′′ ≤ 0 ⇒ µσ ≥ 0, µσσ ≥ 0;
u′′ ≥ 0 ⇒ µσ ≤ 0, µσσ ≤ 0;
u′′ ≡ 0 ⇒ µσ = 0, µσσ ≡ 0.

3 Expected versus non-expected LS utility functions

This section introduces a class of LS utility functions that are not necessarily located
in the expected utility class. To motivate our effort for considering a general class
of non-expected utility functions, we raise and discuss in Sect. 3.1 the following so-
called “inverse problem” with respect to Meyer’s LS expected utility functions: for
any arbitrarily given utility function V (σ, µ) defined over the LS family D, which
may satisfy all desirable topological properties (such as monotonicity and concavity),
we wonder whether V (σ, µ) admits an expected utility representation or not.

Upon a negative answer to the inverse problem as illustrated below, we introduce,
in Sect. 3.2, a class of non-expected utility functions over the LS family admitting all
desirable properties that are possessed by the standard LS expected utility functions.
In this paper we extend the betweenness utility functions (see, for example, Chew
1983; Dekel 1986) to random variables belonging to Meyer’s LS family.

3.1 An inverse problem

The inverse problem raised above can be formulated as the following mathematical
problem:

Problem 4 For any given utility function V (σ, µ) ∈ C (Rn × R) on the LS family
D, is there a utility index u ∈ C (R) and a monotonic increasing function ϕ∈C (R)
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such that

ϕ (V (σ, µ)) =
∫

Rn

u (µ + σ · x) d F (x) (7)

for all (σ, µ) ∈ R
n+ × R?

Here, we take into account the ordinal property of the expected utility represen-
tation. It is well-known that for all arbitrary monotonic increasing functions f (·),
E [u (x)] and f (E [u (x)]) represent the same preference ordering. In light of the LS
utility function, V (σ, µ) ∈ C (Rn × R) admits an expected utility representation if
there exists a monotonic transformation of V (σ, µ) so that ϕ (V (σ, µ)) admits an
expected utility representation.

The following observation can be readily proved in working toward an answer to
this inverse problem:

Proposition 5 The inverse problem has a solution if and only if there exists a mono-
tonic increasing function ϕ∈C (R) such that

V (σ, µ) = ϕ−1

⎛

⎝
∫

Rn

ϕ (V (∅, µ + σ · x)) d F (x)

⎞

⎠ (8)

for all (σ, µ) ∈ R
n+ × R ; in particular, if a solution exists, the utility index is given

by u (x) = ϕ (V (∅, x)).

Proof First, we prove the second part of the proposition. Suppose the inverse problem
has a solution {u (·) , ϕ (·)}. Setting σ = 0, we obtain u (x) = ϕ (V (∅, x)) , x ∈ R.
This, in turn, implies the validity of the first statement in establishing a necessary and
sufficient condition for the existence of a solution to the inverse problem. 
�

Assuming further that (σ, µ) → V (σ, µ) is continuously differentiable, from the
above proposition, we can readily identify

Vσ (∅, x) = ∅, ∀x ∈ R, (9)

as a necessary condition for the existence of a solution to the inverse problem. In fact,
let ϕ ∈ C1 (R) be a solution to Eq. (8). We may compute the utility gradient with
respect to the scaling variables σ on both sides of Eq. (8), and set σ → ∅ to obtain

ϕ′ (V (∅, µ)) Vσ (∅, µ) = ∅, ∀µ ∈ R.

Since, by assumption, ϕ′ > 0, we conclude that Vσ (∅, µ) = ∅,∀µ ∈ R.
The necessary condition Vσ (∅, x) = ∅,∀x ∈ R for the existence of a solution to

the inverse problem is, in general, too weak to constitute a sufficient condition for the
existence of a solution. The following is an illustrative example.
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Example 6 (non-existence) it Let V (σ, µ) = µ − σ 2, which obviously satisfies the
necessary condition Vσ (0, µ) = 0. The random seed X is a one-dimensional bivar-
iate random variable taking values {−1, 1} with equal probability of 1

2 . Equation (8)
reduces to

ϕ (µ − σ) + ϕ (µ + σ)

2
= ϕ

(
µ − σ 2

)
, ∀ (σ, µ) ∈ R+ × R. (10)

Suppose, to the contrary, that Eq. (10) has a monotonic solution ϕ (·). For all
arbitrary µ ∈ R, setting σ = 1 to Eq. (10) to obtain ϕ (µ + 1) = ϕ (µ − 1).
This yields a constant function ϕ (·) on the interval [µ − 1, µ + 1]. Setting
µ = ±2n, . . . for all integer n, the constant function ϕ (·) extends to the entire real
line R ≡ ∪∞

n=−∞ [2n − 1, 2n + 1]. This enables us to conclude the non-existence of
a monotonic solution to Eq. (10); or Eq. (10) has only constant solutions.

So, in general, we might expect a negative answer to the inverse problem raised
above; that is, it would not admit an LS expected utility representation for all (σ, µ)-
preferences. The next section studies a class of non-expected utility functions defined
over the LS family.

3.2 Location-scale non-expected utility

In light of the above example for a negative answer to the inverse problem for LS
expected utility representation, we consider a general class of non-expected utility
functions defined over the LS family. Although these utility functions may not neces-
sarily admit some expected utility representations, the underlying behavior assump-
tions are well understood in decision theory and economics. The treatment below is
based on the betweenness utility functions axiomatized by Chew (1983) and Dekel
(1986), though much of the analysis can be readily extended to the broad class of
Gateaux differentiable utility functions (see, for example, Machina 1982; Ma 1993).

Definition 7 A utility function U is said to be in the betweenness class if there exists
a betweenness function H : R × R → R, which is increasing in its first argument,
and is decreasing in its second argument, and H (x, x) ≡ 0 for all x ∈ R, such that,
for all X, U (X) is determined implicitly by setting E [H (X, U (X))] = 0. The cor-
responding LS betweenness utility function V : R

n+ × R → R on the LS family
D ≡ {µ + σ · X : µ ∈ R, σ ∈ R

n+} induced by a r.v. X is, accordingly, defined by
setting V (σ, µ) = U (µ + σ · X) as a unique solution to

∫

Rn

H (µ + σ · x, V (σ, µ)) d F (x) = 0 (11)

for all (σ, µ).

The betweenness utility function is known to be obtained by weakening the key
independence axiom underlying the expected utility representation with the so-called
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betweenness axiom (Dekel 1986). The betweenness utility function is said to display
risk aversion if, for all X , U (X)≤ U (E [X ]), or, equivalently, E [H (X, U (E [X ]))] ≤
0. It is well known that the betweenness utility function displays risk aversion if and
only if the betweenness function is concave in its first argument (Epstein 1992).

The following result summarizes the properties of the LS betweenness utility
function:

Proposition 8 Let H ∈ C1 (R × R) be a betweenness function. We have

1. µ → V (σ, µ) increasing; moreover,
2. if H is concave in its first argument, then σ → V (σ, µ) must be monotonic

decreasing, and (σ, µ) → V (σ, µ) must be quasi-concave; and
3. if H is jointly concave in both arguments, then (σ, µ) → V (σ, µ) must be concave

in both arguments.

Proof The betweenness function H : R × R → R is, by definition, increasing in the
first argument and decreasing in the second argument. For all arbitrary µ ≥ µ′ and
for all arbitrary σ ≥ ∅, we have

0 =
∫

Rn

H
(
µ′ + σ · x, V

(
σ,µ′)) d F (x)

=
∫

Rn

H (µ + σ · x, V (σ, µ)) d F (x)

≥
∫

Rn

H
(
µ′ + σ · x, V (σ, µ)

)
d F (x) .

This implies V (σ, µ) ≥ V
(
σ,µ′) sincev → ∫

Rn H
(
µ′ + σ · x, v

)
d F (x) is decreas-

ing. So, we conclude the monotonicity of µ → V (σ, µ).
Now, we assume further that H is concave in its first argument. For all arbitrary µ

and σ ≥ ∅, by the implicit functional theorem, we have, for all i,

Vσi (σ, µ) = −
∫
Rn H1 (µ + σ · x, V (σ, µ)) xi d F (x)
∫
Rn H2 (µ + σ · x, V (σ, µ)) d F (x)

.

The denominator is negative since H is decreasing in its second argument. The nom-
inator also takes a negative sign because the concavity of H (·, v) implies

H1 (µ + σ · x, V (σ, µ)) xi ≤ H1 (µ + σ−i · x−i , V (σ, µ)) xi

for all xi ∈ R. This, in turn, implies

∫

Rn

H1 (µ + σ · x, V (σ, µ)) xi d F (x)

≤ E
[
H1 (µ + σ−i · X−i , V (σ, µ)) E

[
Xi | X−i

]]

= ∅
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since E
[
Xi | X−i

] = ∅ by assumption. We thus conclude that Vσi (σ, µ) ≤ ∅ as
desired.

We further verify the quasi-concavity of the utility function. Let (σ, µ) and
(
σ ′, µ′)

be such that

V (σ, µ) = V
(
σ ′, µ′) = a.

For all arbitrary α ∈ [0, 1], let

(σα, µα) ≡ α (σ, µ) + (1 − α)
(
σ ′, µ′) .

We want to show that V (σα, µα) ≥ a . For all v, the concavity of H (·, v) implies

H (µα + σα · x, v) ≥ αH (µ + σ · x, v) + (1 − α) H
(
µ′ + σ ′ · x, v

)

for all x . In particular, setting v = a, we obtain

∫

Rn

H (µα + σα · x, a) d F (x) ≥ α

∫

Rn

H (µ + σ · x, a) d F (x)

+ (1 − α)

∫

Rn

H
(
µ′ + σ ′ · x, a

)
d F (x)

=
∫

Rn

H (µα + σα · x, V (σα, µα)) d F (x)

= 0.

This implies V (σα, µα) ≥ a since v → ∫
Rn H

(
µ′ + σ · x, v

)
d F (x) is decreasing.

The quasi-concavity of (σ, µ) → V (σ, µ) is thus proved.
We now turn to prove the concavity of (σ, µ) → V (σ, µ) under the additional

joint concavity of the betweenness function H (·, ·). For arbitrary (σ, µ) and
(
σ ′, µ′)

and for α ∈ [0, 1] , we let

(σα, µα) ≡ α (σ, µ) + (1 − α)
(
σ ′, µ′) ,

Vα ≡ αV (σ, µ) + (1 − α) V
(
σ ′, µ′) .

We have for all x ∈ R
n , concavity of H (·, ·) implies

H (µα + σα · x, Vα) ≥ αH (µ + σ · x, V (σ, µ))

+ (1 − α) H
(
µ′ + σ ′ · x, V

(
σ ′, µ′)) .
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This, in turn, implies

∫

Rn

H (µα + σα · x, Vα) d F (x) ≥ α

∫

Rn

H (µ + σ · x, V (σ, µ)) d F (x)

+ (1 − α)

∫

Rn

H
(
µ′ + σ ′ · x, V

(
σ ′, µ′)) d F (x)

= 0;

or,

∫

Rn

H (µα + σα · x, Vα) d F (x) ≥
∫

Rn

H (µα + σα · x, V (σα, µα)) d F (x) .

Thus, we have Vα ≤ V (σα, µα) or

V (σα, µα) ≥ αV (σ, µ) + (1 − α) V
(
σ ′, µ′)

since v → ∫
Rn H

(
µ′ + σ · x, v

)
d F (x) is decreasing. This proves the concavity of

(σ, µ) → V (σ, µ). 
�
Similar to LS expected utility functions, the monotonicity of a betweenness util-

ity function with respect to µ and σ implies the monotonicity of the correspond-
ing indifference curves; and the concavity of the utility function (σ, µ) → V (σ, µ)

implies the quasi-concavity of the utility function, while the latter is equivalent to the
convexity of the indifference curve Ca . Keeping in mind the equivalence between the
concavity of x → H (x, v) and the risk aversion of the betweenness utility function,
the relevance of the risk aversion and its implications for the shape of the indifference
curve for this betweenness LS class can be readily established. Similar observations can
be made when the betweenness utility functions display risk-loving or risk-neutrality,
keeping in mind that the betweenness utility function displays risk-loving (risk-neu-
trality) if the betweenness function H is convex (linear) in its first argument. We may
thus state without proof the following property:

Corollary 9 Let H ∈ C1 (R × R) be a betweenness function. We have

1. The indifference curve Ca is convex upward if the corresponding betweenness
utility function displays risk aversion;

2. the indifference curve Ca is concave downward if the corresponding betweenness
utility function displays risk-loving; and

3. the indifference curve Ca is horizontal if the corresponding betweenness utility
function displays risk-neutrality.

As an aside, the expected utility functions form a subclass to the class of between-
ness utility functions. In fact, the standard expected utility function certainty equivalent
induced by utility index u (·) is obtained by setting H (x, y) = u (x) − u (y).
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4 Dominance relationships over the LS family

Levy (1989) extended Meyer’s results and proved that the first- and second-degree
stochastic dominance efficient sets are equal to the mean-variance efficient set under
certain conditions. To extend Levy’s work, this section first develops several useful
dominance relationships as partial orders defined over the LS family. These include
the first- and second-order stochastic dominances,5 in addition to a newly defined
location-scale dominance (LSD) relationship defined over the LS family. These dom-
inance relationships are known to admit no utility representations. Their properties
over the LS family can be, nevertheless, readily studied. We note that the LSD defined
in our paper differs from the MV criterion used in the literature (see Markowitz
1952 or Tobin 1958), more information on which can be found in Definition 12
below.

The notions of first- and second-order stochastic dominances originated from Hadar
and Russell (1969). For any pair of real-valued random variables Y and Y ′ with cumu-
lative distribution functions to be respectively given by FY (·) and FY ′ (·), we say that
Y dominates Y ′ by the first-order stochastic dominance (FSD) if FY (y) ≤ FY ′ (y) for
all y ∈ R; and that Y dominates Y ′ by the second-order stochastic dominance (SSD)
if

∫ y
−∞ [FY (x) − FY ′ (x)] dx ≤ 0 for all y ∈ R. We write Y �1 Y ′ whenever Y domi-

nates Y ′ by FSD, and Y �2 Y ′ whenever Y dominates Y ′ by SSD. Moreover, we write(
Y, Y ′) ∈ DF SD and

(
Y, Y ′) ∈ DSSD if the corresponding dominance relationships do

not exist between the two random variables. DF SD and DSSD are respectively known
as FSD- and SSD-efficient sets.

Under some fairly general conditions on the c.d.f.s of the underlying r.v.s, we shall
show that Y �1 Y ′ if and only if all expected utility investors with monotonic increas-
ing utility functions (u′ ≥ 0) would prefer Y to Y ′; and that Y �2 Y ′ if and only if
all expected utility investors with monotonic increasing and concave utility functions
(u′ ≥ 0, u′′ ≤ 0) would prefer Y to Y ′.

The proofs to the “only if” or the necessary part of these statements are straightfor-
ward and are well-documented in the literature (See, for example, Hanoch and Levy
1969; Hadar and Russell 1969). Huang and Litzenberger (1988) provided a proof for
the “if” part of the statements. They, nevertheless, restricted the utility functions to be
continuous. For example, for the SSD, they showed that “if u (Y ) ≥ u

(
Y ′) for all u

that is continuous and concave, then Y �2 Y ′.”
For the purpose of this paper, we need some stronger results than those stated in

Huang and Litzenberger (1988) and in other earlier work. First, we require utility
functions to be monotonic increasing so that all investors prefer more to less. Second,
we require the utility functions to be continuously differentiable. Formally, we may
put these new results in the form of Propositions for future reference.

5 Higher order stochastic dominances are not included in our discussion here, as it is not related to the
newly introduced LSD in our paper. Interested readers are referred to Whitmore (1970), Stoyan (1983) and
Li and Wong (1999) for treatments of higher-order stochastic dominances.
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Proposition 10 For all arbitrary r.v.s X and Y , we have

X �1 Y ⇔ E [u (X)] ≥ E [u (Y )] (12)

for all bounded and increasing utility indices u ∈ C1 (R).

Proof See Appendix 1.

To ensure that the SSD dominance relationships are well defined, we shall restrict
the c.d.f.s to satisfy the following asymptotic and integrability conditions.

Asymptotic condition A c.d.f. F (·) is said to satisfy the asymptotic condition if

1 − F (x) = o

(
1

x

)
and F (x) = o

(
1

x

)
(13)

as x → +∞ and −∞, respectively.

Integrability condition A c.d.f. F (·) is said to satisfy the integrability conditions if
the improper integrals

0∫

−∞
F (x) dx ≥ 0 and

∞∫

0

[1 − F (x)] dx ≥ 0 (14)

exist and take finite values.

The integrability condition is to ensure that the SSD relationship is well-defined.
The asymptotic condition is needed for the proof of Proposition 11 below. We have

Proposition 11 Suppose X and Y with c.d.f.s satisfy both the asymptotic and the
integrability conditions (13) and (14). Then, it must hold true that

X �2 Y ⇔ E [u (X)] ≥ E [u (Y )] (15)

for all increasing and concave utility indices u ∈ C2 (R) with bounded first-order
derivatives.

Proof See Appendix 2.

In contrast to what covered in the existing literature, we do not assume the r.v.s
to be bounded. These are replaced with some asymptotic conditions with respect to
the c.d.f.s, along with some boundedness assumptions on the utility function or the
marginal utility function. In fact, both conditions (13) and (14) are virtually satisfied
when the underlying r.v.s have bounded support [A, B]. For bounded random vari-
ables, we may drop the boundedness assumptions imposed on the utility indexes. So,
as a corollary to the above proposition, we may readily obtain a stronger statement on
SSD for bounded r.v.s.; that is,

“for X and Y with bounded support [A, B], X �2 Y if and only if E [u (X)] ≥
E [u (Y )] for all u ∈ C2 (R) with u′ ≥ 0 and u′′ ≤ 0 .”
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4.1 Location-scale dominance

To extend Levy’s work on stochastic dominance efficient sets and the mean-vari-
ance efficient set, we introduce the following LS dominance relationship defined over
Meyer’s LS family.

Definition 12 Let X be an Rn-valued r.v. with zero mean and conditional mean
E

[
Xi | X−i

] = 0 for all i . Let D be an LS family generated from X . For all
Y = µ + σ · X and Y ′ = µ′ + σ ′ · X, we say that Y dominates Y ′ according to
the LS rule if µ ≥ µ′ and σ ≤ σ ′. We write Y �L S Y ′ whenever Y dominates Y ′
according to the LS rule. Otherwise, we write

(
Y, Y ′) ∈ DL SD if Y and Y ′ do not dom-

inate each other in the sense of LSD. The set DL SD is referred to as the LS-efficient
set.

For n = 1, when the random seed X has zero mean and a finite second moment,
the LS rule defined on D is equivalent to Markowitz (1952) MV rule defined over the
family. The equivalence breaks down when X does not have a finite second moment,
for which the variance of X does not exist; yet, the LS expected utility functions are
still well-defined for all bounded continuous utility indexes.

For random payoffs belonging to the high dimensional (n > 1) LS family, the
equivalence between the LS-rule and the MV criterion breaks down even when the
seeds r.v. X have finite second moments. In fact, with

σ [Y ] = (
σᵀ�Xσ

)1/2 and σ
[
Y ′] = ((

σ ′)ᵀ �Xσ ′)1/2

where �X is the positive variance-covariance matrix for the vector, X , of random seeds,
we have: σ ≥ σ ′ implies but is not implied by σ [Y ] ≥ σ

[
Y ′]. Accordingly, for LS

expected utility functions, monotonicity in σ does not necessarily imply monotonicity
in σ [Y ]. The following is an illustrative example of this last observation.

Example 13 Let

� = {(i, j) : i ∈ {−1, 0, 1} , j ∈ {−1, 0, 1}}

be a state space that contains nine elements with equal probabilities pi j = 1
9 . Let X1

and X2 be two random seed variables on �, which are defined, respectively, by setting

X1 (i, j) = i and X2 (i, j) = j for all (i, j) ∈ �.

We have E [X1 | X2] = E [X2 | X1] = 0 and σ [X1] = σ [X2] =
√

2
3 . Consider the

following LS random variables

Y = 300 + 90 (2X1 + X2) , Z = 299 + 202X1.
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We have

E [Y ] = 300, σ [Y ] = 90

√
10

3
;

E [Z ] = 299, σ [Z ] = 202

√
2

3
.

Evidently, Y dominates Z according to the MV rule. Now, consider the LS expected
utility function V resulting from the log-utility index u (x) = ln x ; that is,
V (σ1, σ2, µ) = E [ln (µ + σ1 X1 + σ2 X2)] . We have

E [u (Y )]
.= 5.45 < 5.50

.= E [u (Z)] ;

that is, although Y dominates Z according to the MV rule, but we have E [u (Z)] >

E [u (Y )]. We also note that, by Proposition 1, the utility function V defined over D
must display monotonicity with respect to LSD; that is, for all Y and Y ′ ∈ D, it holds
true that

E [u (Y )] ≥ E
[
u

(
Y ′)] whenever Y �L S Y ′.

More generally, as a direct consequence of Proposition 1, we can readily state
without proof the following observation on LSD defined over an LS family:

Proposition 14 For n = 1, let Y and Y ′ belong to the same LS family D generated
from the seed r.v. X. Suppose X has a (zero mean) finite second moment. We have Y
dominates Y ′ according to the MV rule if and only if Y �L S Y ′. Moreover, for n > 1,
for all Y and Y ′ belonging to the same LS family D, it holds true that

Y �L S Y ′ ⇒ E [u (Y )] ≥ E
[
u

(
Y ′)]

for all increasing and concave utility indexes u ∈ C1 (R).

4.2 FSD, SSD and LSD

The relationships among the three forms of dominance relationships, namely, FSD,
SSD, and LSD, defined over an n-dimensional Meyer LS family can be readily studied.
The following proposition summarizes our findings on these.

Proposition 15 Let D be an LS family induced by an n-dimensional vector, X, of seed
r.v.s with bounded supports. We have

1. DSSD ⊂ DF SD;
2. DSSD ⊂ DL SD; and
3. (a) DL SD − DF SD �= ∅ and

(b) DF SD − DL SD �= ∅.
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Proof By definition, we have DSSD ⊆ DF SD . To show DSSD ⊂ DF SD , we set
Y = σ X, 0 < σ < 1, where X is with zero mean E(X) = 0. Obviously, we
have Y �2 X but X and Y do not dominate each other in the sense of FSD. Hence,
(X, Y ) ∈ DF SD but (X, Y ) /∈ DSSD .

To prove the validity of Part 2 of the proposition, we let Y = µ + σ · X and
Y ′ = µ′ + σ ′ · X. Assume that µ ≥ µ′ and σ ≤ σ ′ so that Y �L S Y ′. By Proposi-
tion 14, we conclude that

V (σ, µ) = E [u (Y )] ≥ E
[
u

(
Y ′)] = V

(
σ ′, µ′)

for all increasing and concave utility indexes u ∈ C1 (R). This implies that Y �2 Y ′
by Proposition 12. Therefore, we have Y �L S Y ′ ⇒ Y �2 Y ′; or, equivalently,
DSSD ⊆ DL SD .

The following example shows that DSSD is a proper subset of DL SD . Let X have
its support given by [A, B] = [−1, 1]. Let Y = µ + σ X and Y ′ = µ′ + σ ′ X with
σ > σ ′ > 0 and µ = µ′ + σ − σ ′. By definition, we have (Y, Y ′) ∈ DL SD and

Y − Y ′ = (
σ − σ ′) (1 + X) ≥ 0.

This implies Y �2 Y ′ and
(
Y, Y ′) /∈ DSSD . Hence, DSSD is a proper subset of DL SD .

In fact, in the above example we have Y �1 Y ′; that is
(
Y, Y ′) /∈ DF SD . This

confirms the validity of (3a) of the proposition.
One can also easily postulate the first example to show (3b). For any σ ∈ (0, 1) ,

we have (X, σ X) ∈ DF SD and σ X �L S X . 
�
So, we see that both notions of FSD and LSD relations are stronger than that of

SSD. Part 3 of Proposition 15 suggests that there is no specific logical relationship
between FSD and LSD. The LSD neither implies nor is implied by the FSD.

5 Conclusion

This paper extends the work of Meyer (1987) and others by studying the expected
and non-expected utility functions defined over the multivariate LS family. These are
in addition to several useful dominance relationships, including FSD, SSD, and LSD
dominances, defined over the family. For the special case when the random seeds are
jointly normally distributed, or when they fall into the broader class of n-dimensional
elliptic distributions (Chamberlain 1983; Owen and Rabinovitch 1983), the LS utility
defined in this paper reduces to the MV utility function with the n scaling factors col-
lapsing into a single scaling coefficient, which is the standard deviation of the random
wealth.

The mean-standard deviation (µ, σ ) and mean-variance (µ, σ 2) approach have
received great attention in recent years (Lajeri and Nielsen 2000; Eichner and Wagener
2003; Eichner 2005) after the seminal work by Markowitz (1952). On the other hand,
researchers have started to apply SD in many different areas, for example, finan-
cial theory (Fong et al. 2005), international trade (Broll et al. 2006), game theory
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(Schulteis et al. 2007), duality theory (Martínez-Legaz and Quah 2007) and business
planning (Wong 2007). Though both MV and SD approaches have been widely used,
so far, it is not common for practitioners to examine their relationships in their analyses.
Since this paper establishes some relationships between MV and SD, we recommend
that practitioners apply the approach introduced in this paper and examine the SD and
MV relationships in their studies.

Since it is sensible to assume that asset returns are driven by a large and arbi-
trary number of random seed factors, and since the random seeds may admit arbitrary
distributional representations falling out of Chamberlain’s elliptic class or Meyer’s
one-dimensional LS family, the message in this research concerning MV utility rep-
resentation is viewed as a negative one. Having said that, we must clarify that our
research findings do not diminish the great importance of Markowitz’s path-breaking
work on MV analysis and his in-depth original insight into portfolio selection and risk
diversification. In fact, according to a recent study by Boyle and Ma (2005), the rele-
vance of Markowitz’s MV efficient frontier for portfolio choices goes beyond the MV
preferences and normally or general elliptically distributed asset returns. They showed
that all investors who display risk aversion in the sense of the mean-preserving-spread
(MPS) must optimally choose to invest along Markowitz’s efficient frontier. And we
must stress that this observation is made without imposing any distributional assump-
tion on asset returns (except the existence of finite first two moments) and without
explicitly specifying an arbitrary number of random seed factors in driving the asset
returns. The MPS partial order may not admit a utility representation; particularly, it
may not admit an MV utility representation.

Our coverage of the non-expected utility functions and partial orders is not exhaus-
tive. The analysis can be further extended to a more general class of Gateaux differ-
entiable non-expected utility functions examined by Machina (1982) and Ma (1993),
and the rank-dependent utility functions of Quiggin (1982) and Yaari (1984, 1987) to
be narrated within the general non-expected utility framework. Also, in addition to
the partial orders studied in this paper, several other partial orders attracted our atten-
tion. These are (a) Boyle and Ma (2005) mean-preserving-spread (MPS) dominance
relationships, and (b) the Markowitz stochastic dominance and prospect stochastic
dominance developed by Levy and Wiener (1998), Levy and Levy (2002, 2004) and
Wong and Chan (2007). Their significance should clearly be scrutinized carefully in
a separate paper.

Finally, we note that the main barrier to using the approach in this paper to extend
the prospect theory (Rieger and Wang 2006; Neilson 2006) is that prospect theory is a
well-known paradigm challenging the expected utility theory (Kahneman and Tversky
1979). The allegation is that the prospect theory invalidates the expected utility theory
as being “subjectively distorted probabilities” (Levy and Wiener 1998). To circum-
vent this problem, one could incorporate a Bayesian approach (Matsumura et al. 1990)
and distribution-free statistics (Wong and Miller 1990) into the subjective probability
(Klibanoff and Ozdenoren 2007) or subjective uncertainty (Machina 2004) to esti-
mate the subjectively distorted probabilities. Prospect theory will satisfy the Bayesian
expected utility maximization. Thus, the problem that the prospect theory violates the
expected utility theory could be circumvented.
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6 Appendices

Appendix 1: Proof of Proposition 10

The necessary part of the proof is standard and is thus omitted. To prove the suffi-
ciency, suppose E [u (X)] ≥ E [u (Y )] for all bounded and increasing index functions
u ∈ C1 (R), particularly for those belonging to C∞ (R). For any arbitrary x ∈ R, con-
sider the sequence of bounded, increasing and smooth utility functions {un} ⊂ C∞ (R)

defined by setting

un (y) = 1

2

⎡

⎣1 + y − x
√

(y − x)2 + n−1

⎤

⎦ , ∀y ∈ R

for all n = 0, 1, . . . We have limn→∞un (y) = 0 for y < x, limn→∞un (y) = 1 for
y > x , and un (x) = 1

2 for all n. We have

0 ≤ E [un (X)] − E [un (Y )]

=
x∫

−∞
un (y) d [FX (y) − FY (y)]

+
∞∫

x

un (y) d [FX (y) − FY (y)] .

Setting n → ∞, by Monotonic Convergence Theorem (Billingsley 1986, Theorem
16.2), we have

∞∫

x

d [FX (x) − FY (x)] = FY (x) − FX (x) ≥ 0.

Appendix 2: Proof of Proposition 11

For the sufficiency, suppose X �2 Y . For all u ∈ C2 (R) with bounded first-order
derivative u′ and with negative second-order derivatives u′′ (·) ≤ 0, we obtain

0 ≤
∞∫

−∞
u′′ (x)

⎛

⎝
x∫

−∞
[FX (y) − FY (y)] dy

⎞

⎠ dx

=
∞∫

−∞

∞∫

y

u′′ (x) [FX (y) − FY (y)] dxdy
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= lim
x→+∞

x∫

−∞

[
u′ (x) − u′ (y)

]
[FX (y) − FY (y)] dy

= lim
x→+∞ u′ (x)

x∫

−∞
[FX (y) − FY (y)] dy

+ lim
x→+∞ u (x) [FX (x) − FY (x)]

− lim
x→−∞ u (x) [FX (x) − FY (x)]

+E [u (X)] − E [u (Y )] .

By assumption, u (·) has bounded first-order derivatives. This implies the utility func-
tion u (x) as x → ±∞ is of order O (x). This, together with the asymptotic conditions
(13), implies

lim
x→±∞ u (x) [FX (x) − FY (x)] = 0.

With these, the above inequality reduces to

E [u (X)] − E [u (Y )] ≥ − lim
x→∞ u′ (x)

x∫

−∞
[FX (y) − FY (y)] dy

≥ 0

which takes positive value since u′ ≥ 0 and since, by assumption,
∫ x
−∞ [FX (y) −

FY (y)] dy ≤ 0 for all x .
For the necessary part of Proposition 11, suppose E [u (X)] ≥ E [u (Y )] for all u

with bounded first-order derivatives u′ ≥ 0 and with u′′ ≤ 0. We have,

0 ≤ E [u (X)] − E [u (Y )]

= −
∞∫

−∞
u′ (y) [FX (y) − FY (y)] dy

or,

∞∫

−∞
u′ (y) [FX (y) − FY (y)] dy ≤ 0. (16)

This inequality holds true for all increasing and concave smooth utility functions
with bounded first-order derivatives. Now, for any arbitrary x ∈ R, we consider the
following sequence of utility functions {un}∞n=1 in C∞ (R) that are defined by
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un (y) = y + x −
√

(y − x)2 + n−1

2
, ∀y ∈ R

for all positive integers n. For each n, we have

u′
n (y) = 1

2

⎡

⎣1 − y − x
√

(y − x)2 + n−1

⎤

⎦ ∈ (0, 1) ;

that is, the utility functions are increasing and concave with its first-order derivatives
to be strictly bounded within (0, 1). Setting n → ∞, we have limn→∞ u′

n (y) = 1 for
y < x , limn→∞ u′

n (y) = 0 for y > x , and u′
n (x) = 1

2 at y = x .
In light of inequality (16), we have

∞∫

−∞
u′

n (y) [FX (y) − FY (y)] dy =
x∫

−∞
u′

n (y) [FX (y) − FY (y)] dy

+
x∫

−∞
u′

n (y) [FX (y) − FY (y)] dy

≤ 0 for all n = 1, 2, . . . .

Again, by the Monotonic Convergence Theorem (Billingsley 1986, Theorem 16.2),
we obtain

x∫

−∞
[FX (y) − FY (y)] dy ≤ 0.

This holds for all arbitrary x ∈ R. We, therefore, conclude that X �2 Y.
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