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Abstract This paper evaluates tax schemes in a class of differential games. The
results indicate that there are many tax schemes that support efficient resource
usage, but each may fail to implement the targeted resource because of the multi-
plicity of equilibria. Since all of the equilibria are subgame perfect, it is difficult to
predict which specific one arises. Care must then be taken in using a tax scheme as
a remedy for the “tragedy of the commons.” The advantages of other policy instru-
ments (including command-and-control regulation and a tradable permit system)
are also discussed.

Keywords Common property resource · Tax · Markov-perfect Nash equilibrium ·
Indeterminacy
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1 Introduction

Consider a resource-based economy with a finite number of identical infinitely
lived agents harvesting a single freely available natural resource. Assume there is
also a benevolent government that enforces the law. The use of this natural resource
is inefficient, so the government seeks policy to encourage more efficient usage.
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Since the problem is intertemporal, and given that strategic interaction among
users can play an important role in resource usage, differential game theory is
an effective tool for evaluating policy measures. Even though there are a number
of studies that characterize Nash equilibria, including a Pareto efficient equilib-
rium (e.g., Benhabib and Radner 1992; Dutta and Sundaram 1993a,b; Levhari and
Mirman 1980; Tolwinski et al. 1986), few address policy measures themselves. In
fact, tax subsidies and other incentive schemes in a differential game framework
are studied only by Clemhout and Wan (1985), Sorger (2006), and Krawczyk and
Tidball (2006).

These particular studies employ parametric models and examine a specific form
of tax scheme. In contrast, this paper provides conditions for a tax scheme to sup-
port efficient resource usage in a general class of differential games. Several tax
schemes that support efficient resource usage are presented. We demonstrate how
each tax scheme may fail to implement the targeted resource usage because of the
multiplicity of equilibria. This is a phenomenon that Clemhout and Wan (1994b)
term “the dual indeterminacy property of the Markovian–Nash equilibrium,” that
is, the nonuniqueness of a tax scheme and the multiplicity of equilibria under a tax
scheme. This latter indeterminacy, i.e., the existence of multiple equilibria, can be
a serious problem for the policymaker, since one cannot ensure efficient resource
usage with a tax scheme.

We focus on the strategic interaction among the agents and its remedy. To this
end, we assume that the government has perfect information in the sense that agents’
characteristics and actions are observable, whereas the agents do not respond stra-
tegically to the government, taking governmental intervention as given. We also
abstract from uncertainty.

The rest of this paper is organized as follows. Section 2 introduces the tax
scheme proposed by Clemhout and Wan (1985). Section 3 generalizes the tax
scheme and derives the necessary and sufficient conditions for a tax scheme to
support efficient resource usage. Section 4 illustrates the “dual indeterminacy prop-
erty of the Markovian–Nash equilibrium.” In Sect. 5, other policy instruments are
introduced and compared with the tax scheme. Section 6 presents some concluding
remarks. The proof of selected propositions and some auxiliary results are dealt
with in the Appendix.

2 CW Tax

Clemhout and Wan (1985) study a differential game for a single nonrenewable
resource with n(≥ 2) identical infinitely lived players. The noncooperative prob-
lem of player i ∈ N = {1, . . . , n} is:

max
hi (t) ≥ 0

∞∫

0

ln[hi (t)]e−ρt dt, ρ > 0

subject to ẋ(t) = −hi (t) −
∑

j∈N\{i}
σ j [x(t)], x(t) ≥ 0, x(0) = x0 > 0 given,

where x(t) is the resource stock at time t , hi (t) is the amount harvested by player
i at t , and σ j (x) is the harvest strategy of the other player j . If all other players
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use strategy σ ∗(x) = ρx , the same strategy is optimal also for player i . Therefore,
strategy σ ∗(x) constitutes a Nash equilibrium. On the other hand, all players gain
more if they use σ c(x) = (ρ/n) x , since σ c(x) is the unique optimal strategy for
the associated cooperative problem:

max
h(t) ≥ 0

∞∫

0

ln[h(t)]e−ρt dt subject to ẋ(t) = −nh(t), x(t) ≥ 0,

x(0) = x0 > 0 given.

Thus, the equilibrium strategy is inefficient.1

To correct this, Clemhout and Wan (1985) propose a tax-subsidy scheme. Let
function T : R

2+ → R stand for a tax-subsidy scheme. If the resource stock is x
and if player i extracts the resource by hi , the player is taxed (or subsidized) so
that the net harvest becomes hi − T (hi , x). Their tax scheme takes the form:

T (hi , x) =
[

hi

x
− ρ

n
exp

(
hi

ρx
− 1

n

)]
x . (2.1)

We refer to the tax scheme in Clemhout and Wan (1985) as the CW Tax.
Suppose that the government implements the CW Tax and players other than i

adopt the cooperative strategy σ c(x). Then, the noncooperative problem of player
i becomes:

max
βi (t)≥0

∞∫

0

ln

[
ρ

n
x(t) exp

(
βi (t)

ρ
− 1

n

)]
e−ρt dt

subject to ẋ(t) = −
[
(n − 1)

(ρ

n

)
+ βi (t)

]
x(t), x(0) = x0 > 0 given,

where βi (t) = hi (t)/x(t). By Proposition A.1 in the Appendix, the optimal control
is a positive constant if a solution exists.2 With βi (t) = β, the objective functional
is calculated as:

∞∫

0

(
ln

ρx(0)

n
− 1

)
e−ρt dt.

The value of this objective functional is independent of β. This implies that with
the CW Tax, cooperative strategy σ c(x) constitutes a Nash equilibrium. Note, also,
that the CW Tax is designed to satisfy T (σ c(x), x) = 0 so that the government can
satisfy a balanced budget condition when all players use the cooperative strategy.
In the next section, we generalize this tax scheme.

1 For the derivation of σ ∗ and σ c, apply Propositions A.1 and A.2 in the Appendix. (η = 1.
ϕ(β) = β for σ ∗ and ϕ(β) = β/n with β = nh/x for σ c.) The optimality follows from
Proposition A.3 in the Appendix.

2 Control β(t) = eρt makes the player better off than β(t) = β. This implies that, as seen
later in Proposition 4.1, for a solution to exist we need restrictions on the set of feasible controls.
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3 Generalization

To generalize the CW Tax, we consider a class of differential games including that
introduced above. A game of this class is described by a quartet � = (n, u, ρ, f ),
where n ≥ 2 is the number of identical players, u: R+ → R ∪ {−∞} is the instan-
taneous utility function, ρ > 0 is the discount rate, and f : R+ → R is the natural
growth function of the resource stock. We make the following assumptions:

(U.1) u is strictly increasing, strictly concave, and smooth.
(T.1) f is concave and smooth. f (0) = 0.

Associated with �, a noncooperative problem of player i ∈ N is written as:

max
hi (t)≥0

∞∫

0

u [hi (t)] e−ρt dt

subject to ẋ(t) = f [x(t)] −
∑

j∈N\{i}
σ j [x(t), t] − hi (t), x(t) ≥ 0,

x(0) = x0 > 0 given. (3.1)

Throughout this paper, the optimality is understood in the sense of the catching-up
criterion. That is, if a feasible control path h∗

i (·) satisfies lim infT →∞
∫ T

0 {u [h∗
i (t)
]

e−ρt −u [hi (t)] e−ρt }dt ≥ 0 for any feasible hi (·), then h∗
i (·) is a solution of (3.1).

If optimal control h∗
i (·) exists and the integral in (3.1) converges with h∗

i (·), then
h∗

i (·) maximizes the objective functional in the usual sense. See, for example,
Dockner et al. (2000, Chapter 3) for the relationship of catching-up optimality
with other criteria for an infinite-horizon optimal control problem.

A strategy σi (x, t) is called a Markovian strategy, because the induced
actions are determined only by the current state. If a profile of Markovian strategies
(σ ∗

1 (x, t), . . . , σ ∗
n (x, t)) is a subgame perfect equilibrium, the equilibrium is called

a Markov perfect Nash equilibrium (Dockner et al. 2000, Chapter 4). Formally:

Definition A profile of Markovian strategies σ ∗ = (σ ∗
1 , . . . , σ ∗

n ) is a Markovian
Nash equilibrium, if for each i an optimal control path h∗

i (·) exists and is given by
h∗

i (t) = σ ∗
i (x∗(t; x0), t), where x∗(·) is the path induced by strategy profile σ ∗ and

initial state x(0) = x0. Furthermore, if for each τ ≥ 0 the restriction of σ ∗ to t ≥ τ
is also a Markovian Nash equilibrium for any initial state x(τ ) reachable from x0
at time τ , then the equilibrium is subgame perfect and is called a Markov-perfect
Nash equilibrium (in short, MPNE).

We focus only on stationary and symmetric MPNE, as constituted by a time-
independent and identical Markovian strategy σ ∗

i (x, t) = σ ∗(x) for all i ∈ N .
Correspondingly, the cooperative problem is defined in the class of symmetric
strategies:

V (x) = max
h(t)≥0

∞∫

0

u(h(t))e−ρt dt

subject to ẋ(t) = f (x(t)) − nh(t), x(t) ≥ 0, x(0) = x > 0. (3.2)
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We assume that there exists a solution (xc(t; x), hc(t; x)) for the cooperative
problem from any x > 0 so that the cooperative value function V : R++ → R

is well defined. We refer to (xc(t; x), hc(t; x)) as a cooperative solution. A func-
tion σ c : R+ → R+ is a cooperative strategy if σ c(0) = 0 and for each x > 0,
hc(t; x) = σ c[xc(t; x)] for almost all t ≥ 0. We assume that σ c is interior in the
sense that (xc(t; x), σ c[xc(t; x)]) > 0 for all t ≥ 0 and for all x > 0.3 Then, by
Benveniste and Scheinkman (1979), V is continuously differentiable and satisfies:

V ′(x) = u′(σ c(x))

n
. (3.3)

Let T : R
2+ → R be a tax-subsidy scheme as before. For a tax scheme T to sup-

port a cooperative solution, the following conditions are necessary and sufficient:

1. For any initial stock x > 0, h(t) = σ c[xc(t; x)] is the optimal control for:

V (x) = max
h(t)≥0

∞∫

0

u[h(t) − T (h(t), x(t))]e−ρt dt

subject to ẋ(t)= f (x(t))−(n−1)σ c[x(t)] − h(t), x(t)≥0, x(0)= x .

(3.4)

2. T (σ c(x), x) = 0 for all x ≥ 0.

Note that with these conditions, the value function V in (3.4) is the same as the
cooperative value function in (3.2). The HJB equation turns out as (3.5) because
the problem in hand is an infinite-horizon autonomous program:

ρV (x) = u[σ c(x)] + V ′(x)[ f (x) − nσ c(x)]
≥ u[h − T (h, x)] + V ′(x)[ f (x) − (n − 1)σ c(x) − h],

all h such that min {h, h − T (h, x)} ≥ 0. (3.5)

Now we may characterize a tax scheme T that supports the efficient use of the
resource.

Lemma 3.1 Consider a game � = (n, u, ρ, f ) satisfying (U.1) and (T .1). Let σ c

be a cooperative strategy. If a tax scheme T implements a cooperative solution, as
an MPNE, then the following three conditions are satisfied:
1. T (σ c(x), x) = 0, (3.6)

2. Th(σ c(x), x) = 1 − 1/n, and (3.7)

3. For each x > 0, u[h − T (h, x)] is concave as a function of h

in a neighborhood of h = σ c(x).

Proof Condition 1 is a balanced budget condition. Condition 2 follows from (3.3)
and (3.5). Condition 3 follows from (3.5). �	

3 In what follows, we study parametric models, for which it is easily verified that a cooperative
solution exists and satisfies this interiority condition.
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For the following discussion, define the Hamiltonian associated with the
problem (3.4) as:

H̃(h, x, λ) = u(h − T (h, x)) + λ[ f (x) − (n − 1)σ c(x) − h]. (3.8)

Throughout this paper, the Hamiltonians and costate variables are expressed in
terms of current value. By (3.3), the costate variable that supports a coopera-
tive solution satisfies λ(t; x) = V ′(xc(t; x)) > 0. If the maximized Hamiltonian
H̃∗ : R++ × R++ → R is well defined, then:

H̃∗(x, λ) = max
h≥0

H̃(h, x, λ). (3.9)

We now describe the sufficient conditions under which tax scheme T can implement
a cooperative solution as an MPNE.

Lemma 3.2 Consider a game � = (n, u, ρ, f ) satisfying (U.1) and (T .1). Tax
scheme T (h, x), satisfying (3.6) and (3.7) in Lemma 3.1, implements a cooperative
solution (xc(t; x), hc(t; x)) as a symmetric MPNE, if u[h −T (h, x)], as a function
of h, is concave and if either of the following two conditions are satisfied:
1. V (x) is bounded from below, i.e., inf{V (x)|x > 0} > −∞.
2. H̃∗(x, λ) is well defined and concave in x. For each initial stock x > 0, the

transversality condition, limt→∞ e−ρt V ′[xc(t; x)]xc(t; x) = 0, is satisfied.

Proof See Theorem 3.3 and Lemma 3.1 in Dockner et al. (2000). �	
Remark 3.1 Later in the paper, Conditions 1 and 2 in Lemma 3.2 are used. Other
sufficiency conditions are also applicable. See, for example, Dockner et al. (2000,
Chapter 3) and Sorger (1989).

We conclude this section by arguing that there may be a continuum of tax
schemes that implement a cooperative solution as an MPNE. An example is offered
in the next section.

Proposition 3.1 Suppose that game �=(n, u, ρ, f ) and two different tax schemes
T 1 and T 2 satisfy the conditions in Lemma 3.1. A tax scheme T µ = µT 1 +
(1 − µ) T 2 (µ ∈ [0, 1]) implements a cooperative solution as an MPNE, if either:
1. T 1 and T 2 are convex in h and Condition 1 in Lemma 3.2 holds, or
2. T 1 and T 2 are jointly convex in h and x, f (x) − (n − 1)σ c(x) is concave as a

function of x, and Condition 2 in Lemma 3.2 holds with T 1 and T 2.

Proof We show that T µ satisfies the conditions in Lemma 3.2. Since the other con-
ditions obviously hold, we only examine the well-definedness of the maximized
Hamiltonian associated with T µ in Case 2. Assume not. Since the Hamiltonian is
strictly concave in h, this is the case in which there exist µ = µ̃ ∈ (0, 1) and a
pair (x, λ) = (x̃, λ̃) > 0 such that limh→∞ ∂u[h − T µ̃(h, x̃)]/∂h = ε ≥ λ̃. On
the other hand, since H̃∗(x̃, λ̃) is well defined with T k (k = 1, 2), there are ε′ > 0
and hk > 0 such that ∂u[hk − T k(hk, x)]/∂h = ε′ < ε. Let h∗ = max{h1, h2}.
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Pick an arbitrary h̃ > 0 and let k̃ = arg min{T k(h̃, x̃)|k = 1, 2}. Then, from the
concavity of u in h and from T µ̃(h̃, x̃) ≥ T k̃(h̃, x̃),

ε′(h̃ − h∗) ≥ u[h̃ − T k̃(h̃, x̃)] − u[h∗ − T k̃(h∗, x̃)]
≥ u[h̃ − T µ̃(h̃, x̃)] − u[h∗ − T k̃(h∗, x̃)]
≥ ε(h̃ − h∗) + u[h∗ − T µ̃(h∗, x̃)] − u[h∗ − T k̃(h∗, x̃)].

Thus, we have:

(ε′ − ε)(h̃ − h∗) ≥ min
k=1,2

{u[h∗ − T µ̃(h∗, x̃)] − u[h∗ − T k(h∗, x̃)]}.

However, a sufficiently large h̃ violates this inequality. We obtain a contradiction.
�	

4 Multiple equilibria

Using (3.6) and (3.7) in Lemma 3.1, we can construct tax schemes as the CW Tax.
First, suppose that T is additive: T (h, x) = αh + βσ c(x). Immediately we have
α = −β = 1 − 1/n and, thus:

T (h, x) = h − 1

n

[
h + (n − 1)σ c(x)

]
. (4.1)

Second, suppose that T contains a power function: T (h, x) = h − hα
[
σ c(x)

]β .
We have by (3.6) α + β = 1 and by (3.7) α = 1/n, so that:

T (h, x) = h − h
1
n
[
σ c(x)

]1− 1
n . (4.2)

Finally, the following is a generalization of the CW Tax (2.1):

T (h, x) = h − σ c(x) exp

[
1

n

(
h

σ c(x)
− 1

)]
. (4.3)

We refer to (4.1), (4.2), and (4.3) as the Convex Combination (CC) Tax, the
Cobb–Douglas (CD) Tax, and the generalized CW (GCW) Tax, respectively.

We demonstrate that these tax schemes may implement efficient resource usage
as an MPNE, but they may also allow inefficient equilibria. This section also illus-
trates that efficient resource usage is supported by countless tax schemes given as
convex combinations of the CC and CD Taxes.

For game � = (n, u, ρ, f ), assume that u is isoelastic and f is linear:

(U.2) For all c > 0, −cu′′(c)/u′(c) = η > 0.
(T.2) f (x) = ax , a ∈ R.

By Propositions A.1–3 in the Appendix, a cooperative strategy σ c(x) is linear and
given by:

σ c(x) = bcx = ρ − (1 − η)a

ηn
x . (4.4)

To ensure bc > 0, we need an assumption for parameter values:
(P.1) ρ − (1 − η)a > 0.

We consider the strategy spaces of linear and piecewise continuous functions.
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4.1 Linear strategy

A strategy σ(x) = bx (b > 0) is called a linear strategy. Suppose that one of the
tax schemes (4.1), (4.2), or (4.3) is implemented and the opponents of player i use
a linear strategy σ ∗

j (x) = b∗x ( j ∈ N\{i}). Then, the noncooperative problem for
i is written as:

max
βi (t)≥0

∞∫

0

u (xϕ[βi (t)]) e−ρt dt (4.5)

subject to ẋ(t) = [a − (n − 1)b∗ − βi (t)]x(t), x(0) > 0 given,

where the function ϕ : R+ → R+ is defined by:

ϕ(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n

[
β + (n − 1)bc

]
for the CC Tax,

β
1
n (bc)1− 1

n for the CD Tax,

bc exp
[

1
n

(
β
bc − 1

)]
for the GCW Tax.

(4.6)

Proposition A.1, in the Appendix, is applicable to this problem. That is, against
the opponents’ linear strategy, i’s best reply is also a linear strategy. If βi (t) = b∗
is an optimal control, then b∗x constitutes an MPNE. Furthermore, if b∗ = bc, the
MPNE is efficient. The following proposition shows that tax schemes (4.1), (4.2),
and (4.3) can implement an efficient MPNE, but in the cases of the CC and GCW
Taxes there is a continuum of MPNE under a particular set of parameter values.

Proposition 4.1 Consider a game � = (n, u, ρ, f ) satisfying (U.1), (U.2), (T .2),
and (P.1).

(a) The cooperative strategy σ c(x) = bcx is an MPNE strategy if any of the
following cases apply:
1. The CC Tax is implemented.
2. The CD Tax is implemented.
3. The GCW Tax is implemented with the following restrictions on harvest

ratios:4
(i) When η = 1: There exist ξ < ρ and ζ > 0 such that β(t) < ζeξ t for

almost all t ≥ 0.
(ii) When η > 1: β(t) is absolutely continuous and there exists Z̃ > 0

such that∣∣∣∣∣∣
d2 exp

[∫ t
0 a − (n − 1) bc − β(s)ds

]

dt2

∣∣∣∣∣∣ < Z̃ for almost all t ≥ 0.

(b) Any linear strategy σ(x) = b∗x (b∗ > 0) constitutes a symmetric MPNE if
either:
1. η + n−1 = 1 and the CC Tax is implemented, or
2. η = 1 and the GCW Tax is implemented subject to the above restriction.

4 The growth conditions are necessary to ensure the existence of the MPNE.
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Proof See the Appendix. �	
Remark 4.1 Under the assumptions in Proposition 4.1, Condition 2 in
Proposition 3.1 is satisfied for the CC and CD Taxes. Therefore, there is a contin-
uum of tax schemes that support efficient resource usage:

T µ(h, x) = h − µ

n

[
h + (n − 1)σ c(x)

]− (1 − µ) h
1
n
[
σ c(x)

]1− 1
n , µ ∈ [0, 1] .

Remark 4.2 When 0 < η < 1, the GCW Tax cannot implement a symmetric
MPNE, as shown in Lemma B.3 in the Appendix.

4.2 Most rapid extinction strategy

The multiplicity of equilibria shown in Proposition 4.1 is not robust because it dis-
appears with a slight perturbation of the parameters. By considering a piecewise
continuous strategy, we have an example of robust multiple equilibria. Assume that
harvest rates for each player are bounded from above:
(T.3) There is ĥ > 0 such that hi (t) ∈ [0, ĥ] for all t ∈ [0,∞) and all i ∈ N .
For analytical simplicity, let the resource be nonrenewable. So, Assumption (T.2)
is specified:
(T.2’) f (x) = 0 for all x ≥ 0.

The most rapid extinction (in short, MRE) strategy σE : R+ → R+ is de-
fined as:

σE (x) =
{

ĥ if x > 0,
0 if x = 0.

We consider a situation where the MRE strategy constitutes a symmetric MPNE
and examine how a tax scheme can/cannot exclude this strategy from the equilibria.
Note that the MRE strategy never constitutes an MPNE unless the utility function
u is bounded from below. Thus, we can specify assumption (U.2) as follows:
(U.2’) u(c) = c1−η, η < 1.
Notice that with this assumption, the GCW Tax does not work as stated in
Remark 4.2 below Proposition 4.1. We will only consider the CC and CD Taxes.

Let x0 > 0 be the initial stock of the resource. When all players adopt the MRE
strategy, the associated trajectory of the state x̂(t; x0) is written as:

x̂(t; x0) =
{

x0 − nĥt if t ∈ [0, tE (x0)],
0 if t ≥ tE (x0),

(4.7)

where tE (·) is the extinction time of the resource, defined by:

tE (x) = x

nĥ
. (4.8)

We first show a necessary and sufficient condition for the MRE strategy to
constitute an MPNE.
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Lemma 4.1 Consider a game � = (n, u, ρ, f ) satisfying (U.2’), (T.2’), and
(T .3). The MRE strategy σE (x) constitutes a symmetric MPNE if and only if:

1 − η − n−1 ≥ 0. (4.9)

Proof Apply the proof of Sorger (1998, Theorem 2(a)). �	
We now show that a game � with a CC Tax has two equilibria: a cooperative

equilibrium and the MRE strategy equilibrium. Notice that as a special case of
Proposition 4.1 (or as an application of Lemma 3.2 with Condition 1), the cooper-
ative strategy constitutes an MPNE with the CC or CD Tax.5

Proposition 4.2 Consider a game� = (n, u, ρ, f ) satisfying (U.2’), (T.2’), (T .3),
and (4.9). (a) If the initial stock x0 satisfies:

x0 ≤ (1 − η − n−1)nηĥ

(1 − n−1)ρ
, (4.10)

then the MRE strategy still constitutes a symmetric MPNE after the CC Tax is imple-
mented. On the other hand, (b) the CD Tax always precludes the MRE strategy for
equilibrium strategies.

Proof See the Appendix. �	

4.3 Piecewise continuous strategy

Finally, we show that the CD Tax is not immune to multiple equilibria either. In
fact, we see below a continuum of equilibrium strategies in the space of piecewise
continuous functions. For analytical simplicity, we still assume that the resource is
nonrenewable, but ignore the upper limits of the harvest rates.

Proposition 4.3 Consider a game � = (n, u, ρ, f ) satisfying (U.2’) and (T.2’),
and suppose that the CD Tax is implemented. Then, the following strategy consti-
tutes a symmetric MPNE:

σ ∗(x) =
{

(x/n)
[
(ρ/η) + γ x−n

]
if x > 0

0 if x = 0
, γ ≥ 0.

Proof See the Appendix. �	
The equilibrium path is described as:

x(t; x0)=

⎧⎪⎨
⎪⎩
{[

(x0)
n + γ η

ρ

]
exp

(
− nρ

η
t
)

− γ η
ρ

} 1
n

for 0 ≤ t <
η

nρ ln
[

ρ(x0)
n

γ η
+ 1
]
,

0 for t ≥ η
nρ ln

[
ρ(x0)

n

γ η
+ 1
]
.

In the case of an inefficient equilibrium (γ > 0), players harvest more as a resource
becomes scarcer once the resource stock falls short of

[
(n − 1)ηγ /ρ

]1/n . This crit-
ical level is eventually reached, since the resource is nonrenewable and σ ∗(x) > 0
as far as x > 0. As a result, the resource is exhausted within a finite time period.

5 With Assumption (T.3), the cooperative strategy is modified as σ c(x) = min{bcx, ĥ}.
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5 Other policy instruments

A tax scheme can implement efficient resource usage as an MPNE in a differential
game, but will not necessarily eradicate undesirable equilibria. A natural question
arises: is there a fail-proof tax scheme that implements efficient resource usage
targeted by the government? The answer is “yes” for the following tax scheme:

T (h, x) =
{

0 if h = σ c(x),
h otherwise.

This is, however, substantially the same as command-and-control regulation. This
indicates that in the presence of strategic interaction among agents, a forcible reg-
ulation may be more reliable than a tax scheme.

Clemhout and Wan (1994a) argue that strategic interaction causes multiple
equilibria. The malfunctioning of a tax scheme could be because of this, since a
tax scheme, except for the extreme type discussed above, cannot preclude strategic
interaction among players. We can show that, in contrast to a tax scheme, a tradable
permit system prevents this strategic interaction.

Consider a tradable permit system in which harvesting is allowed by exchange
with the same amount of harvest permits. Permits with amount Mi are distrib-
uted to each player i at t = 0. The permits are tradable and storable. They also
bear interest, the rate of which r(t) is determined in advance by the government.
Suppose that the government sets r(t) and Mi as:

r(t) = f ′[xc(t)], and Mi =
∞∫

0

hc(t) exp

⎡
⎣−

t∫

0

r(s)ds

⎤
⎦ dt, (5.1)

where (xc(t), hc(t)) is a cooperative solution to the cooperative problem (3.2).
We assume Mi < ∞. This holds, for example, under Assumptions (U.1), (U.2),
(T.2), and (P.1). Suppose also that the following availability condition on permits
is satisfied:

Availability condition. The government provides substitutes for harvests and guar-
antees that, if the resource stock should be exhausted, a permit is still exchangeable
for the same value of substitutes as one unit of harvest.

Under the availability condition, the price of a permit is always one in terms
of harvests. Note that there is no strategic interaction with other players under this
permit system. Player i solves the following noncooperative problem:

max
h(t)≥0

∞∫

0

u[h(t)]e−ρt dt subject to Ṁi (t) = r(t)Mi (t) − h(t), Mi (0) = Mi ,

lim inf
t→∞ Mi (t) exp

⎡
⎣−

t∫

0

r(s)ds

⎤
⎦ ≥ 0. (5.2)
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The inequality in the constraint is a no-Ponzi-game condition, without which the
player could harvest the resource without limit by borrowing permits from other
players. Notice that by substituting the state equation, the condition becomes:

lim inf
T →∞ Mi −

T∫

0

h(t) exp

⎡
⎣−

t∫

0

r(s)ds

⎤
⎦ dt ≥ 0.

We claim that the cooperative solution hc(t) to the problem (3.2) is the unique
solution to this problem:

Proposition 5.1 Under Assumption (U.1), if Mi < ∞ and the availability condi-
tion is satisfied, then the tradable permit system characterized by (5.1) yields the
efficient use of resource as a unique solution to the noncooperative problem (5.2).

Proof By construction, hc(t) satisfies the no-Ponzi-game condition and is thus
feasible. The cooperative solution with costate λ(t) ≥ 0 satisfies hc(t) = arg max
{u(h) − nλ(t)h|h ≥ 0} and λ̇(t)/λ(t) = ρ − f ′[xc(t)] for almost all t ≥ 0.
For the noncooperative problem (5.2), the associated Hamiltonian is defined as
H̃(h, M, µ, t) = u(h) + µ [r(t)M − h]. When µ(t) = nλ(t)(≥ 0), the following
hold with hc(t):

hc(t) = arg max
{

H̃(h, Mi (t), µ(t), t)|h ≥ 0
}

,

µ̇(t)/µ(t) = ρ − f ′[xc(t)] for almost all t ≥ 0, and

lim
T →∞ e−ρT µ(T )Mi (T ) = lim

T →∞ µ(0)

⎡
⎣Mi −

T∫

0

hc(t)e− ∫ t
0 r(s)dsdt

⎤
⎦ = 0.

These are sufficient for hc(t) to be optimal for (5.2), since the
maximized Hamiltonian is well defined and concave in Mi because of the con-
cavity of H̃ in (h, Mi ) [see, for instance, Dockner et al. (2000, Theorem 3.3)].
The uniqueness of the solution follows from the strict concavity of u and the lin-
earity of the state equation: if there is another optimal control h̃(·) such that the
set {t ∈ [0,∞)|hc(t) �= h̃(t)} has a positive Lebesgue measure, then with any
ξ ∈ (0, 1), a new control h̃c(·) = ξhc(·) + (1 − ξ)h̃(·) is feasible starting from the
same initial state. The strict concavity of u implies a contradiction to the optimality
of hc(·): lim infT →∞

∫ T
0 [u(hc(t)) − u(h̃c(t))]e−ρt dt < 0. �	

This proposition illustrates that a tradable permit system can implement effi-
cient resource usage, precluding other inefficient outcomes. In this class of differ-
ential games, the advantage of a tradable permit scheme, compared with a tax
scheme, is to break off the strategic interaction among agents.

Remark 5.1 The key to breaking off the strategic interaction is the availability con-
dition on permits. Without this condition, each agent would still have to take into
account other agents’ actions. For further discussion, see Akao (2001).
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6 Concluding remarks

Common property resources include forests, fisheries, reefs, waterways, pastures,
agricultural lands, and mineral resources. In the rural areas of developing coun-
tries, these are essential sources of income and food, especially for the poor. Recent
research in India has found that 15–25% of household income is from common
property resources with the share of household income rising to 25% in poorer
households (World Resource Institute 2005, p.39). In many cases, those suffering
from the misuse of common property resources are the poor (Dasgupta and Mäler
1997). Dasgupta (1982, Chapter 2) points out the distributional consequences of
a tax imposed on those who barely eke out an existence. He cautions that without
compensation, these households may be worse off; this may occur under the tax
schemes considered in this paper. To make matters worse, the implementation of
the tax may also cause harsher resource extraction than the status quo. It is now
known that, under certain conditions, there is an approximately efficient MPNE
without government intervention (Sorger 1998), whereas a tax scheme may unbal-
ance the equilibrium strategy and change it to one that incurs resource exhaustion
as demonstrated in Propositions 4.2 and 4.3. We must then be careful in using a
tax scheme as a remedy for the tragedy of the commons.

Appendix

A On a class of linear optimal control models

We show a variant of the results established by Long and Shimomura (1998,
Proposition 1). The propositions below are cited in the main text. Consider an
optimal control problem:

sup
β(t)≥0

∞∫

0

v [x(t), β(t)] e−ρt dt, v (x, β) = [xϕ(β)]1−η − 1

1 − η
,

subject to ẋ(t) = [A − β(t)]x(t), x(0) = x0 > 0 given, (A.1)

where η > 0, ρ > 0, A ∈ R, and ϕ : R+ → R+ is a continuous function. As in the
main text, we use the catching-up criterion for optimality. Control β(t) is feasible
if it is nonnegative and measurable. Denote by x(t; x0, β(·)) the trajectory of the
state variable generated by an initial state x0 > 0 and a feasible control β(t).

Lemma A.1 If β∗(t) is an optimal control from x0 > 0, then it is also an optimal
control from any initial state x ≥ 0.

Proof We only prove the case of η �= 1. The proof for the case of η = 1 is quite
similar to the following, and thus omitted. Fix x0 > 0 and let β∗(t) be an optimal
control from x0. Pick an arbitrary feasible control β̃(t) and an arbitrary initial state

x̃ such that x̃ �= x0 and x̃ > 0. Choose θ so that x0θ
1

1−η = x̃ . Then, θ = (x̃/x0)
1−η,

and

θv[x(t; x0, β̃(·)), β̃(t)] = v[x(t; x̃, β̃(·)), β̃(t)] + (1 − θ) / (1 − η) .



168 K.-I. Akao

Therefore, we have:

0 ≤ lim inf
T →∞ θ

T∫

0

{v[x(t; x0, β
∗(·)), β∗(t)] − v[x(t; x0, β̃(·)), β̃(t)]}e−ρt dt

= lim inf
T →∞

T∫

0

{v[x(t; x̃, β∗(·)), β∗(t)] − v[x(t; x̃, β̃(·)), β̃(t)]}e−ρt .

The first inequality follows from the optimality of β∗(t). Notice that if x(0) = 0,
every feasible control is optimal and so is β∗(t). �	
Proposition A.1 If the optimal control problem (A.1) has a solution for a cer-
tain initial state, x0 > 0, then there exists a nonnegative constant β∗ such that
β(t) = β∗ is an optimal control from any initial state.

Proof Since the problem is autonomous, we can denote by B(x) : R++ � R+
the associated optimal policy correspondence. That is, β(t) is optimal if and only
if it is feasible and satisfies β(t) ∈ B(x [t; x0, β(·)]) for almost all t ∈ [0, ∞). By
Lemma A.1, B(x) does not depend on x , so we can rewrite it as B. B �= ∅ because
we have assumed that an optimal control exists when the initial state is x0 > 0.
Therefore, we have β(t) = β∗ ∈ B, which is an optimal control from any initial
state. �	
Proposition A.2 If β∗ > 0, ϕ(β∗) > 0, and ϕ′(β∗) exists, then (a) β∗ satisfies
the following Euler equation:

ϕ(β∗) − [ρ − (1 − η)(A − β∗)]ϕ′(β∗) = 0. (A.2)

Furthermore, if ϕ′(β∗) ≥ 0, (b) the maximal value of (A.1) is given by:

V (x0) = 1

ρ − (1 − η) (A − β∗)

{[
x0ϕ (β∗)

]1−η − 1

1 − η
+ A − β∗

ρ

}
, (A.3)

and (c) the transversality condition holds:
lim

t→∞ e−ρt V ′ [x (t; x0, β
∗)] x

(
t; x0, β

∗) = 0. (A.4)

Proof Simple calculations yield these proofs. For (a), the reduced form of the
utility function is ũ(x, ẋ) = {[xϕ(A − ẋ/x)]1−η − 1

}
/ (1 − η) and the basic

Euler equation is written as q̇ − ρq = −p, where q = −∂ ũ(x, β∗x)/∂ ẋ and
p = ∂ ũ(x, β∗x)/∂x . For (b) and (c), note ρ − (A − β∗) (1 − η) > 0, which
follows from ϕ(β∗) > 0, ϕ′(β∗) ≥ 0, and (A.2). �	
Proposition A.3 Let H̃(β, x, λ) = v (x, β) + λ (A − β) x. Assume that ϕ is con-
cave and the maximized Hamiltonian of (A.1), H̃∗(x, λ)=max{H̃(β, x, λ)|β ≥0},
is well defined on R

2++. Then, (a)H̃∗(x, λ) is concave in x. (b) If b∗ > 0 satisfies
ϕ(b∗) > 0, ϕ′(b∗) ≥ 0, and the Euler equation (A.2), then β(t) = b∗ is an optimal
control for the problem (A.1).
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Proof (a) Arbitrarily select ξ ∈ [0, 1], λ > 0, and x1, x2 > 0 such that x1 �= x2.
Let H̃∗(xk, λ) be attained at β = βk (k = 1, 2). Define x3 and ζ by x3 =
ξ x1 + (1 − ξ)x2 and ζ = ξ x1/x3. Note that ζ ∈ [0, 1] and 1 − ζ = (1 − ξ)x2/x3.
Finally, let β̃ = ζβ1+(1−ζ )β2. Then, H̃∗(x3, λ) ≥ H̃(β̃, x3, λ) ≥ ξ H̃∗(x1, λ)+
(1 − ξ)H̃∗(x2, λ). (b) Set λ(t) = V ′(x(t)), where V is given by (A.3) in Prop-
osition A.2 with β∗ = b∗ and x(t) is the solution of ẋ = (A − b∗)x with given
x(0) > 0. Then, the statement follows from the Arrow sufficiency theorem (see,
for instance, Dockner et al. 2000, Theorem 3.3). �	

B Proof of propositions

B.1 Proof of Proposition 4.1

The proof consists of a series of lemmas. Lemma B.1 shows a necessary condition
for a linear strategy to constitute a symmetric MPNE of game � with each of the
CC, CD, and GCW Taxes. The condition is derived from the two Euler equations
for the cooperative and noncooperative problems. Therefore, if ϕ in (4.6) satisfies
certain nonnegativity and concavity conditions, the linear strategy is in fact an
equilibrium strategy, by Proposition A.3. Lemma B.2 shows that the conditions
are satisfied for the CC and CD Taxes, but the GCW Tax fails in concavity. The
nonconcavity requires separate treatment. Lemmas B.3–5 deal with the GCW Tax
when η <, >, = 1. We assume (U.1), (U.2), (T.2), and (P.1). Note that the utility
function satisfies u′(h) > 0 and −hu′′(h)/u′(h) = η > 0 by (U.1) and (U.2). The
natural growth function has the form of f (x) = ax by (T.2). Then by Proposi-
tions A.1–3, the cooperative strategy is linear and given by (4.4), i.e., σ c(x) = bcx
with bc = [ρ − (1 − η)a] / (ηn). (P.1) ensures bc > 0.

Lemma B.1 If linear strategy σ(x) = bx (b > 0) constitutes a symmetric MPNE,
then b satisfies:

n
( n−1

n − η
)
(b − bc) = 0 for the CC Tax,

−ηn(b − bc) = 0 for the CD Tax,
(1 − η)n(b − bc) = 0 for the GCW Tax.

(B.1)

Proof Suppose that σ(x) = bx constitutes a symmetric MPNE. That is, when
other players adopt the strategy, the same strategy is optimal for the noncoopera-
tive problem (4.5). Then, applying (A.2) in Proposition A.2, we have ρ − (1 − η)
(a − nb) − ϕ(b)/ϕ′(b) = 0. From (4.4), bc satisfies ρ − (1 − η)a − ηnbc = 0. By
combining these, we obtain 0 = ηnbc + (1 − η)nb − ϕ(b)/ϕ′(b). This and (4.6)
yield (B.1). �	

Let b∗ > 0 represent b, which satisfies (B.1).

Lemma B.2 ϕ in (4.6) satisfies ϕ(b∗) > 0 and ϕ′(b∗) > 0. ϕ is concave for the
CC and CD Taxes, but strictly convex for the GCW Tax.

Proof ϕ′′ =ϕ/ (nbc)2 >0 for the GCW Tax. The other properties are obvious. �	
As for the GCW Tax, we separately consider the three cases of η <, =,> 1.
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Lemma B.3 If η < 1, then σ ∗(x) = b∗x does not constitute an MPNE under the
implementation of the GCW Tax.

Proof The proof goes by means of contradiction. Assume that σ ∗(x) = b∗x con-
stitutes an MPNE. Then, b∗ = bc from Lemma B.1. However, since ∂2u[h −
T (h, x)]/∂h2 = (−η + 1) ϕ′′u′/x > 0, Condition 3 in Lemma 3.1 is not satisfied.

�	
Lemma B.4 Let η = 1. If harvest ratios β(t) are restricted to satisfy β(t) < ζeξ t

for almost all t ≥ 0, with ξ < ρ and ζ > 0, then σ ∗(x) = b∗x constitutes an
MPNE under the implementation of the GCW Tax.

Proof We can write the utility function as u (xϕ(β)) = ln x + β/ρ [Recall bc =
ρ/n by (4.4)]. The trajectory of the state variable is given as:

x(t) = x0 exp

⎧⎨
⎩
[
a − (n − 1) b∗] t −

t∫

0

βi (s)ds

⎫⎬
⎭ .

Then, the lifetime utility of player i is calculated as follows:
∞∫

0

[
ln x(t) + βi (t)

ρ

]
e−ρt dt

=
∞∫

0

⎡
⎣ln x0 + (a − (n − 1) b∗) t −

t∫

0

βi (s)ds + βi (t)

ρ

⎤
⎦ e−ρt dt

= ln x0

ρ
+ a − (n − 1)b∗

ρ2 + lim
t→∞

e−ρt

ρ

t∫

0

βi (s)ds.

By the growth condition of βi (t), there are ξ < ρ and ζ > 0 and it holds that:

0 < e−ρt

t∫

0

βi (s)ds <
ζ

ξ
e−ρt (eξ t − 1

)→ 0 as t → ∞.

Therefore, we obtain:
∞∫

0

[
ln x(t) + βi (t)

ρ

]
e−ρt dt = ln x0

ρ
+ a − (n − 1)b∗

ρ2 (constant).

This implies that all feasible controls are optimal, and so is βi (t) = b∗. �	
Lemma B.5 Let η > 1. σ ∗(x) = b∗x = bcx constitutes an MPNE under the
implementation of the GCW Tax, if the harvest ratios are restricted to satisfy that
β(t) is absolutely continuous and there exists Z̃ > 0 such that:∣∣∣∣∣∣

d2 exp
[∫ t

0 a − (n − 1) bc − β(s)ds
]

dt2

∣∣∣∣∣∣ < Z̃ for almost all t ≥ 0. (B.2)
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Proof If η > 1 and if there exists a solution to the noncooperative problem
(4.5) with the GCW Tax, the solution is uniquely given by b∗ = bc by (B.1)
in Lemma B.1. Thus, σ c(x) = bcx constitutes an MPNE. To ensure the exis-
tence, we apply the existence theorem in Romer (1986, p.899). Let Z = Z̃ x(0).
By imposing a growth condition |ẍ(t)| < Z , which is equivalent to (B.2), we can
redefine utility function u(c) as:

ũ [xϕ (β) , ẍ] =
{

u [xϕ (β) , ẍ] if |ẍ | < Z ,
−∞ otherwise.

By Assumption (U.2), u(h) = h1−η/(1−η), which is unique up to a positive affine
transformation. Since η > 1, the utility is bounded from above, and we have for
any feasible (β(t), x(t)),

ũ(x(t)ϕ [β(t)] , z) ≤ sup
c≥0

u(c) + Z P − |z|P all z ∈ R,

where P > 1. Therefore, condition (ii) in Romer’s theorem is satisfied. The other
sufficient conditions for the theorem to apply obviously hold. �	
Proof of Proposition 4.1 For the CC and CD Taxes, Lemmas B.1, B.2, and
Proposition A.3(b) establish (a) 1, 2 and (b) 1. For the GCW Tax, (a) 3(i) and
(b) 2 follow from Lemmas B.1 and B.4, and (a) 3(ii) follows from Lemmas B.1
and B.5. �	

B.2 Proof of Proposition 4.2

Using ϕ in (4.6), we express the utility function as u[xϕ(h/x)]. Let V̂E (x0) be the
lifetime utility when either the CC or the CD Tax is implemented and all players
use the MRE strategy:

V̂E (x0) =
tE (x0)∫

0

u
[
x̂(t; x0)ϕ

(
ĥ/x̂(t; x0)

)]
e−ρt dt. (B.3)

Since x̂(t; x0) and tE (x0), defined in (4.7) and (4.8), respectively, are continuously
differentiable in x0 > 0, V̂ ′

E (x0) exists for all x0 > 0. Therefore, we have:

ρV̂E (x) = u[xϕ(ĥ/x)] − V̂ ′
E (x)nĥ all x > 0. (B.4)

By (U.2’), u(·) is bounded below, and so is V̂E (x0). Then

u′[xϕ(ĥ/x)]ϕ′(ĥ/x) − V̂ ′
E (x) ≥ 0 all x ∈ (0, x0]. (B.5)

is a necessary and sufficient condition for the MRE strategy to constitute a MPNE
(Dockner et al. 2000, Lemma 3.1). Using (U.2’) and (B.4), arrange this inequality
as follows:

0 ≤ ρ

nĥ

{
V̂E (x) −

(
1 − (1 − η)nĥϕ′(ĥ/x)

xϕ(ĥ/x)

)
u[xϕ(ĥ/x)]

ρ

}
. (B.6)
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Recall (4.4). σ c(x) = [ρ/ (nη)] x holds true because a = 0. (a) For the CC Tax,
(B.6) holds if

(1 − η)nĥϕ′(ĥ/x)

xϕ(ĥ/x)
≥ 1, (B.7)

since V̂E (x) and u[xϕ(ĥ/x)] are positive for all x > 0. A straightforward calcula-
tion shows that (B.7) is equivalent to (4.10). (b) For the CD Tax, (B.6) is violated
at a sufficiently small stock level of the resource. Notice that the condition in (B.6)
has to hold for any x ∈ (0, x0].

B.3 Proof of Proposition 4.3

To find an equilibrium strategy, we use the method developed in Tsutsui and Mino
(1990). This exploits the HJB equation as well as its derivative to derive a first-order
ordinary differential equation for a Markovian equilibrium strategy. As another
method, the sole use of the HJB equation brings a first-order ordinary differential
equation for the value function. For the purpose of the present problem, the former
is easier to obtain the closed form solution of an equilibrium strategy.

Let y : R+ → R be a C1 function that satisfies y(x) > 0 for all x > 0.
Suppose that all players use y(x) as a strategy under the CD Tax. Let w(h, x) =
u[h − T (h, x)], i.e.,

w(h, x) = h
1−η

n [σ c(x)]
(

1− 1
n

)
(1−η)

. (B.8)

Let W (x) be the associated lifetime utility. Assume that W (x) is differentiable.
(We will verify that this assumption holds true at the end.) Then, the following
equation holds:

ρW (x) = w [y(x), x] − nW ′(x)y(x) all x > 0. (B.9)

Differentiate both sides of (B.9) with respect to x :

ρW ′(x) = wh [y(x), x] y′(x) + wx [y(x), x] − n
[
W ′′(x)y(x) + W ′(x)y′(x)

]
.

(B.10)
w is concave in h and the lifetime utility W is bounded below by Assumption
(U.2’). Therefore, if

wh [y(x), x] − W ′(x) = 0 all x > 0, (B.11)

then y(x) constitutes an MPNE (Dockner et al. 2000, Lemma 3.1). By (B.10),
(B.11) implies:

ρwh = wh y′ + wx − n
[(

whh y′ + whx
)

y + wh y′] all x > 0, (B.12)

where all functions are evaluated at (y(x), x). Using (B.8), (B.12) is calculated as
follows:

ρ = ηy′ + η(n − 1)y

x
. (B.13)

Let z(x) = y(x)/x and rewrite the differential equation (B.13) asρ = η
(
z + xz′)+

η(n − 1)z. Rearrange this to dz/ (ρ/η − nz) = dx/x , and we have z = (1/n)
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(
ρ/η + γ x−n

)
, where γ is an integration constant. Therefore, the differential

equation (B.13) is solved as:

y(x) =
( x

n

)(ρ

η
+ γ x−n

)
, γ ≥ 0. (B.14)

Notice that γ < 0 is ruled out by the nonnegativity of y(x). The associated state
equation ẋ(t) = −ny(x) is a Bernoulli equation and is solved as:

x(t; x0) =
{[

(x0)
n + γ η

ρ

]
exp

(
−nρ

η
t

)
− γ η

ρ

} 1
n

. (B.15)

Thus, the resource is exhausted at time:

T̃ (x0) = η

nρ
ln

(
ρ (x0)

n

γ η
+ 1

)
.

The lifetime utility W is expressed as:

W (x0) =
T̃ (x0)∫

0

w[y(x(t; x0)), x(t; x0)]e−ρt dt.

Since x(t; x0) and T̃ (x0) are continuously differentiable at any x0 > 0, W is
differentiable, completing the proof.
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