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1 Introduction

Numerous experiments show that models of learning in which players have
bounded rationality and only gradually learn how to best respond in a game capture
important features in experimental data missed by standard equilibrium approaches
based on full rationality of players.1 Over time subjects generally learn to make
decisions that are more consistent with rationality, implying that the stability prop-
erties of learning models can serve as a viable foundation for equilibrium analysis.
However, virtually all papers on learning employ an environment in which learning
takes place within a stationary environment while in many real world settings the
game being played changes over time. Stability properties derived in stable envi-
ronments may be irrelevant if changes in the game disrupt the learning process. The
ability to take what has been learned in one game and apply it in another related
game is therefore an integral but largely unexplored aspect of learning in games.

The extensive psychology literature on transfer indicates that the ability to
generalize across games cannot be taken for granted. Positive transfer usually fails
except in settings that are perceived as being quite similar. This failure follows in
part from subjects’ inability to recognize underlying concepts that allow them to
generalize between settings (Gick and Holyoak 1980; Perkins and Salomon 1988;
Salomon and Perkins 1989). While suggestive, the direct relevance of these find-
ings for economic games is questionable. Psychology studies of learning transfer
tend to be one-shot in nature, both in terms of what was initially learned and in
terms of the new learning environment. In contrast cross game learning issues in
economics are largely concerned with whether having adjusted over time to equi-
librium in one game will speed up the adjustment over time to a new equilibrium in
a related game. Additionally, the insights gained in many psychology studies are
algorithmic in nature (e.g., what is the best method of solving a logic problem),
while successful play in many games revolves around psychological insights (e.g.,
is my opponent trying to fool me). This mismatch between studies of learning
transfer in psychology and game theoretic settings underlines the need to study
cross game learning.

The goals of our experiment are to determine whether or not positive transfer
occurs between related games and, more importantly, to identify the mechanism by
which transfer occurs.2 We study these issues in the context of a well-known signal-
ing game from the industrial organization literature, Milgrom and Roberts’ (1982)
entry limit pricing game. Strategic play in this game revolves around an incumbent
monopolist attempting to deter entry by signaling it will be a tough competitor for
a potential entrant. Past experiments have found that strategic play only emerges
gradually, with most monopolists initially ignoring the strategic implications of
their choices on entrants’ responses (Cooper et al. 1997a,b).

The limit pricing game provides a rich environment for studying transfer. Like
most signaling games, it features multiple equilibria including pure strategy pool-
ing and separating equilibria. This multiplicity allows us to confront subjects with
related games that require quite different actions to play strategically. Further,

1 See Camerer (2003) for a recent review of the existing literature and citations to same.
2 For other studies of learning transfer in game theoretic settings see Kagel and Levin (1986)

and Ho et al. (1998). The contribution of our work lies not in being the first to consider learning
transfer in games but rather in our exploration of the mechanism underlying this transfer.
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strategic play is clearly identifiable in the limit pricing game, making it easy to
measure the extent to which there is cross-game learning. While our results are
derived within the framework of a single game, the insights generated are likely to
apply broadly as the main concepts needed to play strategically in the limit pricing
game (e.g., think from the other player’s point of view, anticipate that others will
attempt to glean information from your actions) are also valid in many other games.

We confront subjects with a challenging test of their ability to transfer learning
between games. In the initial game, entrants’ payoffs support a pure strategy pool-
ing equilibrium to which inexperienced subjects’ play reliably converges. In this
equilibrium high cost monopolists act strategically, imitating the low cost monop-
olists. Entrants’ payoffs are then changed to eliminate the pooling equilibrium,
leaving only pure strategy separating equilibria. While conceptually similar, stra-
tegic behavior in the second game requires substantially different actions than in
the first game, as it is now the low cost monopolists who must act strategically,
distinguishing themselves from high cost monopolists.

Ex ante, neither the psychology literature or the economics literature on learn-
ing lead us to expect much cross-game learning following the change in entrants’
payoffs. For positive transfer to occur, it is not sufficient that subjects have learned
how to play strategically in the initial game. Subjects must also understand why
strategic play works in the first game and recognize that similar concepts apply in
the second game. It is precisely this ability to use underlying concepts (as opposed
to merely continuing use of a previously successful strategy without understanding
the reasons for its success) that the psychology literature identifies as a sticking
point for positive transfer.

This point can be made formally using a fictitious play learning model that has
worked well in tracking play from previous signaling game experiments (Cooper
et al. 1997b).3 It predicts that strategic play by low cost monopolists immediately
following the change in entrants’ payoffs will be less frequent than in control ses-
sions (negative transfer), and will remain less than in the controls until behavior
converges to an equilibrium outcome. This prediction is based on the unsophis-
ticated learning process underlying fictitious play, a feature it shares with other
commonly used learning models such as replicator dynamics (see Fudenberg and
Levine 1998, Chap. 3), reinforcement learning (Roth and Erev 1995), and EWA
(Camerer and Ho 1999). A fictitious play learner treats his opponents as a fixed
statistical distribution rather than forming a model of how his opponents make
decisions. Because of this, a fictitious play learner does not anticipate any change
in his opponents’ play when their payoffs are altered. Lacking any concept of
why strategic play works in the initial game, fictitious play learners (as well as
other types of unsophisticated learners) are poorly equipped to continue playing
strategically when the environment changes.

Contrary to the preceding, in our data low cost monopolists show significantly
more strategic play immediately following the change in entrants’ payoffs than
in control sessions (positive transfer). In fact, the play of subjects following the
crossover is statistically indistinguishable from experienced subjects in control ses-
sions, suggesting that experience with the pooling equilibrium is an almost perfect

3 The fictitious play model of learning was introduced by Robinson (1951). The version we
employ is closely related to the stochastic fictitious play model of Fudenberg and Levine (1995).
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substitute for experience in the game where the only pure strategy equilibria are
separating.

To capture the rapid jump to strategic play observed in the data, we modify
the basic fictitious play model to include the possibility that subjects learn in a
sophisticated manner, modeling how their opponents make decisions and thereby
anticipating the change in responders’ behavior following the change in their pay-
offs. We also allow for the possibility that subjects can change modes of learning,
switching from unsophisticated to sophisticated learning. Fitting this model to the
data, we find a statistically significant fraction of sophisticated learners in the pop-
ulation. Moreover, a significant fraction of subjects switch from unsophisticated to
sophisticated learning with experience. With the addition of a growing number of
sophisticated learners, the model tracks the jump in strategic play following the
change in entrants’ payoffs.

Because the mechanism by which transfer occurs, sophisticated learning, is
relevant for many games, our results are like to extend beyond the specific envi-
ronment being studied. More broadly it is clear that many subjects are not the
simple-minded automata envisioned by standard learning models. This is good
news for game theory, a central idea of which is that agents will try to anticipate
the actions of others and respond accordingly. Our results indicate that good mod-
els of learning should allow for the development of substantial sophistication on
the part of subjects over time.

2 The limit pricing game

The games studied here are based on Milgrom and Roberts’ (1982) entry limit pric-
ing model. For our purposes, the industrial organization implications of this model
are of secondary importance. We therefore employ a stylized version of the model
that focuses on the signaling aspects of the game. This section describes the two
versions of the game used in our experiments and derives equilibrium predictions
for these games.

2.1 The game

The limit pricing game is played between an incumbent monopolist (M) and a
potential entrant (E). The game proceeds as follows: (1) M observes its type, high
cost (MH) or low cost (ML). The two types are realized with equal probability with
this being common knowledge. (2) M chooses one of seven output levels (quan-
tities). M’s payoff, shown in Table 1, is contingent on its type, the output level
chosen, and the E’s response. (3) E sees M’s output, but not M’s type, and either
enters or stays out. This asymmetric information, in conjunction with the fact that
it is profitable to enter against MHs, but not against MLs, provides an incentive for
strategic play (limit pricing) by Ms. E’s payoff depends on M’s type and on E’s
decision, not on M’s output choice. As a treatment variable, two different payoff
tables, Tables 2 and 3, were used for Es. These represent “high cost” and “low
cost” Es, respectively. Only one of these tables was in use at any given time.

Three features of Table 1 capture the main strategic elements confronting Ms:
(1) Ceteris paribus, Ms are better off if Es choose OUT rather than IN. (2) Reflect-
ing lower marginal costs, MLs generally prefer higher output than MHs. This can
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be seen in Ms’ payoffs should they ignore the effect of their choices on Es’ behav-
ior—MLs would choose output 4 as opposed to 2 for MHs. These choices will be
referred to as the Ms’ “myopic maxima.” (3) Output levels 6 and 7 are dominated
strategies for MHs, but not MLs. At these outputs MLs can, in theory, perfectly
distinguish themselves from MHs.

For either high or low cost entrants (Tables 2 or 3) it pays to play IN when M is
known to be an MH type and to play OUT against an ML type. However, given the
50–50 probability of the different M types, the expected value of OUT is greater
than IN for high cost entrants (250 vs. 187) and the expected value of IN is greater
than OUT for low cost entrants (350 vs. 250).

2.2 Equilibrium Predictions

For the limit pricing game with high cost Es (Tables 1, 2), there exist multiple pure
strategy pooling, as well as separating, equilibria.4 Pure strategy pooling equilibria
occur at output levels 1–5. For example, consider a pooling equilibrium at output
3. Given the prior probabilities over M’s type, E’s expected value of OUT is greater
than IN so that pooling deters entry. Beliefs that support this equilibrium are that
any deviation involves an MH type with sufficiently high probability to induce
entry. Given these beliefs, both MHs and MLs achieve higher profits at 3 rather
than deviating to their myopic maxima. Similar out of equilibrium beliefs support
the other pooling equilibria. Pooling equilibria at outputs 3–5 involves strategic
play by MHs as they choose higher output levels than would be optimal if they
ignored the impact of their choice on E’s response.

Two pure strategy separating equilibria also exist. In both of these MHs choose
output level 2 and are always entered on; MLs either always choose output level

Table 1 Monopolist payoffs

High cost monopolist (MH) Low cost monopolist (ML)

Monopolist action Entrant response Monopolist action Entrant response
IN OUT IN OUT

1 150 426 1 250 542
2 168 444 2 276 568
3 150 426 3 330 606
4 132 408 4 352 628
5 56 182 5 334 610
6 −188 −38 6 316 592
7 −292 −126 7 213 486

Table 2 Entrant payoffs, high cost entrants

Entrant’s strategy Monopolist’s type
High cost Low cost

IN 300 74
OUT 250 250

4 All of the equilibria to be described are sequential (Kreps and Wilson 1982).
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Table 3 Entrant payoffs, low cost entrants

Entrant’s strategy Monopolist’s type
High cost Low cost

IN 500 200
OUT 250 250

6 or 7 and never incur entry. With MLs choosing 6 or 7, MHs cannot profitably
imitate them as 2 dominates 6 and 7 for MHs. Once again beliefs supporting these
equilibria are that deviations to outputs used with zero probability in equilibrium
involve an MH type with sufficiently high probability to induce entry. This deters
MLs from choosing lower output levels. These separating equilibria involve stra-
tegic play (limit pricing) by MLs since output levels 6 and 7 are higher than would
be ideal if the effect on E’s response is ignored.

For the limit pricing game with low cost Es (Tables 1, 3) the expected value of
IN is greater than OUT if both types choose the same output level. This destroys
any pure strategy pooling equilibrium, leaving the two pure strategy separating
equilibria just described. Also playing a role in the experimental data is a mixed
strategy equilibrium where MHs choose 2 with probability 0.80 and 5 with prob-
ability 0.20 and MLs always choose 5. This too involves strategic play by MLs as
they choose a higher output level than would be optimal ignoring E’s response.

3 Experimental procedures and design

We begin this section by describing the general procedures used in all sessions and
then lay out the specifics of the experimental design.

3.1 General procedures

Experimental sessions employed between 12 and 16 subjects who were randomly
assigned to computer terminals. All sessions included an even number of subjects
so all individuals could play in every round. For inexperienced subject sessions, a
common set of instructions were read out loud, with each subject having a written
copy. Subjects had copies of both Ms’ and Es’ payoff tables and were required
to fill out short questionnaires to insure their ability to read them. After reading
the instructions, questions were answered out loud and play began with a single
practice round followed by more questions. At the beginning of experienced sub-
ject sessions, an abbreviated version of the full instructions was read out loud with
each subject having a written copy.5

Before each play of the game the computer randomly determined each M’s
type and displayed this information on Ms’ screens. Ms chose first, with each M’s
choice sent to the E they were paired with for that game. Es then decided between
IN and OUT. Following each play of the game subjects learned their payoffs and
Es were told the type of M they were paired with. In addition, the lower left-hand

5 A copy of the instructions is available at http://www.econ.ohio-state.edu/kagel/
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portion of each subject’s screen displayed the results for each pairing: M’s type,
M’s action, and E’s response. Thus, subjects had a full history of Ms’ actions con-
ditioned on their type and Es’ responses conditioned on Ms’ actions. Subject ID
numbers were suppressed throughout to preserve anonymity.

To speed learning, subjects switched roles after every 6 games, with Ms becom-
ing Es and vice versa. We refer to a block of 12 games with each subject playing
each role for 6 games as a “cycle.” Within each set of 6 games, each M was paired
with a different E for every play of the game.

All but one inexperienced subject session had 36 games, with the number of
games announced in advance.6 Experienced subject sessions had a minimum of 36
games, with all but two of the control sessions having 48 games. All of the cross
over sessions use experienced subjects.

When a crossover took place all subjects were given written copies of the new
payoff tables. A brief set of instructions were read out loud indicating that the basic
structure of the game was the same as before but that payoffs had changed. The
number of additional games to be played was also announced.

Subjects were recruited through announcements in undergraduate classes, post-
ers placed throughout the University of Pittsburgh and Carnegie Mellon Univer-
sity, and advertisements in campus newspapers. This resulted in recruiting a broad
cross section of undergraduate and graduate students from both campuses. Ses-
sions lasted a little under two hours. Subjects were paid $5 for showing up on time.
Earnings averaged $17.50 per subject in inexperienced subject sessions. Earnings
were generally higher in experienced subject sessions, largely as a result of playing
more games.7

At the end of the inexperienced sessions, subjects were asked if they were
interested in returning for a second session. Experienced subject sessions generally
took place about a week after the inexperienced subject sessions. Subjects from
different inexperienced subject sessions were mixed in the experienced subject
sessions.

Control sessions were conducted using both a “generic” context and a “mean-
ingful” context. The generic context uses abstract terms throughout. For example,
monopolists are referred to as “A players,” with the two types being “A1 types”
and “A2 types” respectively, and potential entrants are described as “B players.”
Other terms are given similarly meaningless labels. The meaningful context uses
natural terms while avoiding any value laden language. Thus, the monopolist is
referred to as the “existing firm,” with the two types being “high cost firms” and
“low cost firms” respectively, and the potential entrant becomes the “other firm”
deciding between entering “this” market or some “other” market. No subject was
ever switched between generic context and meaningful context or vice versa. All
crossover sessions used meaningful context. In an earlier paper we find that mean-
ingful context speeds up learning for inexperienced subjects (Cooper and Kagel

6 One session had only 24 games since it was conducted in an undergraduate economics class
during class time, which limited the number of games. Subjects from this session were slightly
more likely than other experienced subjects in the control sessions to play strategically as MLs
(76 vs. 61%).

7 These sessions also tended to be shorter since only an abbreviated version of the instructions
were read and subjects were familiar with the game.
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2003), but does not affect the play of experienced subjects. We control for any
potential context effects in the statistical analysis.8

3.2 Experimental design

Our experimental design compares the development of strategic play by MLs
between “crossover” sessions where Es’ payoffs switch from Table 2 (high cost
Es) to Table 3 (low cost Es) versus control sessions where Es use Table 3 (low cost
Es) throughout.

There were three crossover sessions with a total of 38 subjects. All of these sub-
jects had participated in at least one full session of the limit pricing game with high
cost Es. One prediction of the fictitious play model (without sophisticated learners)
developed in Sect. 5 is that the frequency of strategic play by MLs following the
crossover is a decreasing function of experience in the game with high cost Es. To
test this prediction, the crossover to the game with low cost Es occurred at differ-
ent times. In one session subjects were crossed in the 13th game after returning as
experienced subjects. In a second session, all subjects played in a full experienced
subject session with high cost Es before playing in a third session in which they
were crossed to the low cost E game in the 13th game.9 In the third session half
the subjects had played one prior session with high cost Es and half had played
two prior sessions with high cost Es. This session was crossed to low cost Es in
the 25th game.

There were 5 experienced subject control sessions with a total of 66 subjects.
Only subjects who returned for an experienced subject control session are included
in the data set for inexperienced subject controls sessions (to avoid comparing sub-
jects who returned with those who did not).

Past experiments with the limit pricing game with high cost Es find that play
reliably converges to the pooling equilibrium at output 4 (Cooper et al. 1997b).
Strategic play in this game involves MHs imitating MLs by choosing output levels
3, 4, or 5. Introducing low cost Es (Tables 1, 3) eliminates all pooling equilibria.
Strategic play now requires MLs to choose output levels 5, 6, or 7, distinguishing
themselves from MHs. While the actions used to play strategically are changed
following the crossover, the concepts underlying strategic play in the game with
high cost Es remain relevant. To play strategically in either game, Ms must realize
that the Es will be trying to infer their types from their output choices and that by
choosing a relatively high output they can make themselves seem more like a low
cost type.

4 Results

Our experimental design relies on the emergence of a pooling equilibrium in the
limit pricing game with high cost Es prior to the crossover. In the last twelve period
cycle before Es’ payoffs changed, 60.2% of play by MHs is at 4, and 67.3% involves

8 The context controls allow us to identify that there is positive transfer in Experiment 2 even if
the crossover sessions are directly compared only to the control sessions employing meaningful
context. Cooper and Kagel (2006) studies the interaction between using meaningful context and
the crossover effect.

9 One subject was once-experienced in this crossover session. She was needed to make an
even number of players.
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Fig. 1 Control vs. crossover sessions

strategic play of some sort (choice of 3, 4, or 5). For MLs, 89.6% of play is at 4
and there are almost no choices at higher output levels (5.2%). These choices are
supported by strong incentives to limit price as an MH but not as an ML, as the
entry rate differential between 2 and 4 had risen to 72.4%, while the entry rate on
4 had fallen to 7.6% at most. In both cases a 13% entry rate differential is needed
to support strategic play.10

The left and center panels of Fig. 1 illustrate the development of strategic play
by MLs in the control sessions. The left panels show the distribution of choices
for inexperienced subjects in the control sessions. Initially, MLs overwhelmingly
choose the myopic maximum, output level 4. Not only is there little strategic play
by MLs, it is difficult to eliminate pure errors as a cause of this strategic play since
MLs’ choice of output levels below 4 are more frequent than strategic play in the
first cycle of play. Comparing the first and second cycles of play in the inexperi-
enced control sessions, strategic play by MLs increases but at a slow pace. Choice
of output level 4 remains the modal choice for MLs by a wide margin and choice
of output levels below 4 continues to be almost as common as strategic play. This
failure of MLs to play strategically cannot be attributed to a lack of incentives, as
the expected payoffs for output levels 5 and 6 are both higher for MLs than the
expected payoff from output level 4 (MLs’ expected payoffs are 520, 541, and 592
for output levels 4, 5, and 6, respectively). The middle panels of Fig. 1 show the
distribution of choices in the first two cycles of the experienced control sessions.
Strategic play by MLs continues its slow growth, fueled by increasing incentives
to behave strategically. Only in the second cycle does output level 4 cease to be the
modal choice of MLs. To summarize:

Conclusion 1: play in control sessions starts with Ms largely choosing their res-
pective myopic maxima, with strategic play by MLs (play of output
levels 5–7) developing only gradually.

10 There are no choices of 6 in this cycle, so we cannot calculate the entry rate differential
between 4 and 6. However, it cannot be greater than the 7.6% entry rate for 4.
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Fig. 2 Experiment 2: MLs in the control group vs. MLs in the crossover sessions

The right panels of Fig. 1 show the distribution of choices in the first two cycles
following the crossover. In the first cycle of play following the crossover, output
level 4 remains the modal choice for MLs. However, strategic play by MLs is
three times more frequent than in the first cycle of inexperienced subject play for
the control group (25.7 vs. 8.5%). Indeed, inexperienced subjects in the control
group never achieve the level of strategic play observed for MLs in the first cycle
following the crossover. It is only in the first cycle of experienced subject play for
the control group that we see more strategic play by MLs (40%) than immediately
following the crossover.

Figure 2 provides a more detailed view of the crossover effect for MLs. The
unit of time on the x-axis is how many times a subject has played as an ML. On
average, each subject will have three such plays in a twelve period cycle. In control
sessions, time is measured from the beginning of the session. For example, “Play
1” is the first time an inexperienced subject played as an ML. In crossover sessions
time is measured from the point of the crossover. In this case “Play 1” is the first
time a subject played as an ML following the crossover. The graph plots the per-
centage of strategic play by MLs in inexperienced control sessions, experienced
control sessions, and crossover sessions. Looking at “Play 1,” MLs in the crossover
treatment immediately limit price more often than their counterparts in the inex-
perienced control sessions.11 This suggests that MLs anticipate a change in Es’
behavior following the crossover. The evolution of play by MLs in the crossover
treatment closely parallels that of the experienced control group, diverging steadily
from the inexperienced control group. These results can be summarized as follows:

11 It doesnt matter much how long subjects wait before their first opportunity to play strategi-
cally as an ML. A simple way to see this is to compare the behavior of subjects who are initially
Ms following the crossover with those who are initially Es – the latter uniformly wait longer to
play as MLs. The percentage of strategic play is identical across these two groups in their first
opportunity as an ML.
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Conclusion 2: MLs in the crossover treatment look more like experienced than
inexperienced subjects in the control sessions. Experience in a
game with high cost Es appears to be a good substitute for expe-
rience in a game with low cost Es.

A confounding factor here is the greater incentives for MLs to limit price fol-
lowing the crossover than in the control sessions. However, as the formal statistical
analysis in the appendix shows, MLs’ higher frequency of strategic play follow-
ing the crossover remains statistically significant after controlling for entry rate
differences. The statistical analysis also addresses another potential confound, the
use of both generic and meaningful context in the control sessions. The positive
crossover effect is still significant with the addition of context controls.12

The formal statistical analysis addresses several other questions. First, it shows
that the timing of the crossover does not have a significant effect on the frequency of
strategic play following the crossover. This is evidence against fictitious play learn-
ing, absent sophisticated learners. Second, having been paired with an ML who
played strategically prior to the crossover has no significant effect on the frequency
of strategic play following the crossover. This rules out imitation as explaining the
jump in strategic play following the crossover. However, playing strategically prior
to the crossover as either an ML or an MH is positively and significantly correlated
with strategic play as an ML following the crossover. Although this result in part
reflects individual effects in the data, it also draws on deeper aspects of subjects’
learning processes. The structural model of learning developed in Sect. 5 indicates
that rapid development of strategic play following the crossover is closely tied to the
presence of “sophisticated learners” in the population. Sophisticated learners are
more likely to play strategically for the game with high cost Es and the game with
low cost Es, thereby helping to generate positive correlation between individual
subject’s strategic play before and after the crossover.

5 A structural model of learning and sophistication

The positive cross-game learning reported above is inconsistent with the predic-
tions of the stochastic fictitious play learning model that motivated the experiment.
This model predicts negative cross-game learning because Ms fail to anticipate the
change in Es’ behavior following the crossover and therefore respond incorrectly.
In contrast, the experimental results suggest that at least some subjects are sophis-
ticated enough to anticipate the change in Es’ behavior and correctly respond to it.

To explore this intuition more formally, this section develops a stochastic ficti-
tious play learning model, adds sophisticated learners, and fits both models to the
data. This analysis has two purposes. First, we want to show that the addition of
sophisticated learners improves the econometric fit to the data. Second, and more
importantly, we want to show that the addition of sophisticated learners enables the
learning model to track the main features of MLs’ behavior following the crossover.

The basic learning model treats Ms as belief-based learners in the spirit of sto-
chastic fictitious play (Fudenberg and Levine 1995). We choose this model because

12 Additionally, see Cooper and Kagel (2006) for a replication of the positive crossover effect
using only meaningful context for control and crossover sessions.



426 D. J. Cooper, J. H. Kagel

similar models have done a good job of tracking the development of play in earlier
signaling game experiments (Cooper et al. 1997a,b). The model, although only
described for Ms in our limit pricing game, generalizes in a straight forward way
to other games.

We have not explicitly considered other classes of learning models such as repli-
cator dynamics (see Fudenberg and Levine 1998, chap. 3), reinforcement learning
(Roth and Erev 1995), or EWA (Camerer and Ho 1999). Determining the learning
model that best tracks subjects’ behavior goes well beyond the scope of the present
paper. It is unlikely that using these other models would overturn our main conclu-
sions since all of them, like fictitious play, embody unsophisticated learners who
do not explicitly model other players’ learning and decision making processes.

5.1 The Learning Model

A belief-based learning model requires rules for choosing a strategy in period t
given beliefs, updating beliefs from period t to period t + 1, and generating initial
beliefs. Let Ct

i j (IN) and Ct
i j (OUT) be weights that player i puts on the responses

“IN” and “OUT”, respectively, in period t following output j . These variables can
be thought of as modified counts for the number of times each outcome has been
observed. Let bt

i j (IN) and bt
i j (OUT) be the probabilities that player i assigns to the

responses “IN” and “OUT” respectively in period t following output j . These rep-
resent player i’s beliefs. Beliefs are generated from C0

i j (IN) and C0
i j (OUT) using

the following two equations:

bt
i j (IN) = Ct

i j (IN)

Ct
i j (IN) + Ct

i j (OUT)
(1a)

bt
i j (OUT) = 1 − bt

i j (IN) (1b)

Given bt
i j (IN), bt

i j (OUT), and player i’s type in period t , let π t
i j be player i’s

expected payoff from choosing output j in period t . With probability pchange,
player i selects a new strategy in period t . Otherwise, he uses the same output as
the last time he played as the same type.13 Player i’s probability of choosing output
j in period t (subject to choosing a new output), pt

i j , is generated via a logit rule:

pt
i j = eλπ t

i j

∑7
k=1eλπ t

ik
(2)

This rule has the usual interpretation. The precision parameter λ is the level of
noise in the system. If λ = 0, the result is pure noise with each strategy chosen
with equal probability. As λ → ∞, we get arbitrarily close to best-response to
beliefs.

Individuals learn by updating Ct
i j (IN) and Ct

i j (OUT) from period to period.
Some notation is required before the updating rule can be written down. Let δ be

13 In previous fitting exercises (Cooper and Stockman 2002; Stahl 2003), introducing autocor-
relation into the model significantly improved the fit.



Learning and transfer in signaling games 427

the discount rate for past experience. Define Ct
i j (IN) and Ct

i j (OUT) to be the num-
ber of times that player i chose output j in period t and observed the responses “IN”
or “OUT” respectively. Define ct−i j (IN) and ct−i j (OUT) to be the number of times
that an M player other than player i chose output j in period t and observed the
responses “IN” or “OUT”, respectively. Finally, given that subjects see the results
for all other pairings, let wOther be the weight players put on the experience of other
players relative to their own experiences. The updating rule for Ct

i j (IN) in periods
with no crossover is given by Eq. 3, with the updating rule for Ct

i j (OUT) defined in
an analogous manner. Note that updating takes place even in periods where player
i is not playing as an M.

Ct+1
i j (IN) = Ct

i j (IN)

1 + δ
+ ct

i j (IN) + wOther · ct−i j (IN) (3)

For periods following a crossover, the updating rule accounts for the possibility
that subjects will “reset” their beliefs. In other words, beliefs following the cross-
over are treated as a convex combination of beliefs prior to the crossover and the
beliefs of an inexperienced subject. Suppose a crossover takes place between period
t and period t +1. Let ρ be the weight on resetting beliefs. Player i’s beliefs are first
updated using (3). The following additional transformation is then made, where
Ct

i j (IN) gives the counts prior to the transformation and C′t
i j (IN) gives the counts

following the transformation. An analogous transformation is made for C′t
i j (OUT).

C′t
i j (IN) = (1 − ρ)Ct

i j (IN) + ρC0
i j (IN) (4)

Intuitively, (1 − ρ) gives the weight subjects put on experience from the previous
related game. If ρ = 1 there is no cross-game learning and if ρ = 0 the games are
treated as being identical.14

To generate initial values for C0
i j (IN) and C0

i j (OUT), we fit initial beliefs for
each of the seven strategies. Since probabilities must add up to 1, this involves
fitting seven parameters. We then fit a single variable, “Strength,” that determines
the initial strength of beliefs for all seven strategies. C0

i j (IN) and C0
i j (OUT) are

backed out of the fitted parameters. Let b0
j (IN) be the initial belief that an E will

enter following output level j . Then C0
i j (IN) = b0

j (IN)· Strength and C0
i j (OUT) =

Strength − C0
i j (IN).

Having described the basic learning model, we now modify it to include two
additional modes of learning: non-learners and sophisticated learners. Non-learn-
ers start with the same initial beliefs as unsophisticated learners, make choices in
exactly the same way as unsophisticated learners, but never update their beliefs.
A sophisticated learner models Es as being unsophisticated learners who maximize
payoffs subject to their beliefs. This implies that a sophisticated learner anticipates
that changes in payoffs will affect Es’ choices, and that Es’ behavior will change
as they accumulate experience.

In choosing how to incorporate sophistication into the learning model, our goal
is to use the minimal level of sophistication necessary to track the data. The type

14 We have explored a variety of other specifications for how beliefs might be transformed
following the crossover. The qualitative results are unaffected by alternative specifications.
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of sophistication we have added represents a relatively modest change to the sto-
chastic fictitious play model. This approach has a number of antecedents in the
literature, particularly Milgrom and Roberts (1991), Selten (1991), Nagel (1995),
Stahl (1996) and Camerer et al. (2002). Its key role is to allow Ms to anticipate
changes in entry rates following the crossover. Although subjects may in fact be
operating at a higher level of sophistication, learning very general concepts about
signaling games, the data does not force us to this conclusion. The level of sophis-
tication added to the model does not imply that subjects can generalize what they
have learned in the limit pricing game to a radically different signaling game any
better than inexperienced subjects. For example, our sophisticated learners would
not necessarily be able to perform any better than inexperienced subjects in Brandts
and Holt’s (1992) signaling game or in Miller and Plott’s (1985) game as they have
substantially different structures from the present game. It remains an open empir-
ical question whether or not the higher levels of sophistication needed for such
cross-game learning exist in the population.

Going into the details, a sophisticated learner needs to build beliefs that best
replicate the beliefs an unsophisticated E might have. These are not the sophisti-
cated player’s beliefs, rather they are his best estimate of an unsophisticated E’s
beliefs. He builds these beliefs in exactly the same manner that an unsophisticated
E would. In estimating the beliefs of unsophisticated Es, updating is done in a man-
ner analogous to (3) and (4) above, but with one important difference—outcomes
from other players are weighted equally to a player’s own outcomes. Intuitively,
a sophisticated learner is building fictitious beliefs for other players and there-
fore has no reason to overweight his own experience. Given his best estimate of
the beliefs of Es, a sophisticated learner generates a probability of entry for each
output level using a logit rule analogous to (2). The resulting probabilities give a
sophisticated learner’s beliefs about the behavior of Es. Based on these beliefs, a
sophisticated learner generates his own choice in exactly the same manner as an
unsophisticated learner. Thus, a sophisticated learner uses a noisy best response to
a noisy best response to beliefs based on observed outcomes.15

The model allows players to switch modes of learning over the course of play.
To simplify computations, the only time this switch is allowed is when players
return as experienced subjects. We further simplify the model by only allowing
players to move up a single level of sophistication. Thus, there are three “pure”
types (non-learners, unsophisticated learners, and sophisticated learners) and two
“switching” types (non-learner to unsophisticated learner and unsophisticated to
sophisticated learner). The ex ante probabilities of these five types are parameters
that we fit from the data.16

15 The model can be modified to allow for types who anticipate a mixture of other types or use
a mixture of sophisticated and unsophisticated learning. While this would no doubt improve the
model’s ability to fit the data, it complicates the model while adding little to our understanding
of the underlying cognitive processes.

16 The fitting exercise does not assign specific types to the subjects. Instead it generates the
likelihood of a subject’s observed choices subject to being a certain type, and then generates the
full likelihood by taking the weighted average over types, where the weights are given by the ex
ante probability of each type. Allowing players to switch types at more points in time generates
a statistically significant improvement in the fit, reflecting the presumably continuous nature of
switching in reality, but does not change the qualitative results. Allowing types that switch up
more than one level of sophistication or types that switch to lower levels of sophistication does
not generate a statistically significant improvement in the fit.
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5.2 Fitting the model

The model was fit using data from all subjects (including the controls) who returned
for an experienced subject session. All plays as an M in both roles are used. Parame-
ter estimates are generated through standard maximum likelihood techniques, with
probabilities bounded between 0 and 1. When the algorithm ran into the bound-
aries for parameters that represent probabilities, they were set equal to the boundary
values to allow for convergence.

We set the initial beliefs for subjects playing in games with high cost Es and
those for subjects playing in games with low cost Es equal, as a log likelihood
ratio test fails to reject the null hypothesis of identical initial beliefs (χ2 = 9.68,
d f = 7, p > 0.10). To simplify computations, the following parameters are set
equal (where relevant) for all three behavioral types: the precision parameter (λ),
the probability of changing strategies (pchange), discounting of past experience (δ),
and the reset parameter (ρ). In addition, the initial beliefs sophisticated learners
assign to unsophisticated Es are forced to be identical across low outputs (1 and 2),
intermediate outputs (3 and 4), and high outputs (5, 6, and 7). Relaxing these restric-
tions would strengthen our main conclusions, but makes the likelihood function
substantially harder to maximize.

The data set includes repeated observations from the same individuals which
cannot be treated as statistically independent. The inclusion of “inertia” in the
model through the variable pchange somewhat controls for these individual effects.
The inertia variable adds correlation between observations from the same indi-
vidual, so that its effect is roughly analogous to what a random effect specifi-
cation does in more standard sorts of analysis. To the extent that this does not
account for all of the individual effects in the data, we also apply the correction
for clustering suggested by Moulton (1986) and White (1994) to the standard
errors.

The results of the maximum likelihood estimation are reported in Table 4.
Standard errors (corrected for clustering) are shown in parentheses. The esti-
mates of initial beliefs are suppressed since these are of little direct interest.
Results from three versions of the model are reported. Model 1 only includes
non-learners. Model 2 includes non-learners and unsophisticated learners, with no
switching between non-learners and unsophisticated learners. When a probabil-
ity of switching is included in Model 2, the maximization algorithm sets it equal
to zero (indicating that it can be deleted). Model 2 is equivalent to a standard
model of stochastic fictitious play. Model 3 is the full model with non-learners,
unsophisticated learners, and sophisticated learners, as well as switching between
types.

Comparing Model 1 with Model 2, we see a large improvement in the log-
likelihood (χ2 = 603.60, d f = 5, p < 0.01). Not surprisingly, given the strong
dynamics in the data, the evidence in favor of learning is overwhelming. The
improvement in the log-likelihood between Model 2 and Model 3 is also large
and significant at the 1% level (χ2 = 189.42, d f = 6, p < 0.01). Looking at
the parameter estimates, the proportion of sophisticated learners increases from
18.8% in the inexperienced sessions to 32.4% in the experienced sessions, and the
estimated proportion of non-learners falls from 25.4% in the inexperienced ses-
sions to 18.1% in the experienced sessions. Even though the latter decrease is not
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Table 4 MLE Results for learning models standard errors corrected for clustering

Model 1 Model 2 Model 3
Properties of the model

Non-learners
√ √ √

Unsophisticated learners
√ √

Sophisticated learners
√

Switching between types
√

Number of parameters 9 14 20

Parameter estimates
Precision (λ) (Multiplied by 100) 1.534∗∗ (0.166) 1.960∗∗ (0.111) 2.384∗∗ (0.117)
Probability change of strategy (pchange) 0.503∗∗ (0.023) 0.645∗∗ (0.029) 0.674∗∗ (0.026)
Discounting of past experience (δ) 0.084∗∗ (0.009) 0.060∗∗ (0.010)
Square root of weight on initial 0.054+(0.028) 0.022 (0.036)
beliefs following crossover (ρ)
Weight on others’ experience (wOther) 0.259 (0.162) 0.699 (0.454)
(Multiplied by 100)
Probability non-learner 0.310∗∗ (0.053) 0.254∗∗ (0.046)
Probability sophisticated learner 0.188∗∗ (0.044)
Probability switching type non-learner 0.073 (0.072)
to unsophisticated
Probability switching type unsophisticated 0.136∗∗ (0.045)
to sophisticated
Log likelihood −4517.11 −4215.31 −4120.60

The full data set has 4,595 observations over 104 individuals, including 2,585 observations from
66 individuals in the control sessions and 2,010 observations from 38 individuals in the crossover
sessions
** Statistically significant at the 1% level
* Statistically significant at the 5% level
+ Statistically significant at the 10% level

statistically significant, the population is clearly moving toward greater sophisti-
cation over time.17

Conclusion 3: The addition of “sophisticated” learners to the basic model of fic-
titious play generates a statistically significant improvement in the
fit to the data.

5.3 Simulations

This subsection reports simulations showing that the learning model without
sophisticated learners misses important features of the data that the model with
sophisticated learners captures. Thus, the addition of sophisticated learners to the
model is not just statistically significant, it is economically significant as well.

We simulate Ms’ learning using the parameters generated by the maximum
likelihood estimation. The simulations are designed to closely mimic the experi-
ment. Since we are primarily interested in the strategic play of MLs, the responses

17 The estimate for the “reset” parameter (ρ) in Model 3 is small and not significant indicating
that unsophisticated learners’ beliefs are almost unaffected by the crossover. The estimate of
“weight on others’ experience” is small and statistically insignificant suggesting that unsophisti-
cated learners’ beliefs are based primarily on their own experience. The probability of changing
strategies is always significantly less than 1, implying autocorrelation.
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of Es and MHs are generated randomly using the observed frequencies in the data.
Simulations were run for inexperienced subject sessions with 36 games and expe-
rienced subject sessions with 48 games, with the crossovers taking place in game
13. As in the experiment, simulated subjects alternated between playing as Ms and
Es, with half of the simulated subjects as Ms for the first half of each twelve period
cycle and the other half as Ms in the second half. One slight difference from the
experiment is that we forced each simulated player to be an ML (MH) exactly
three times in each twelve period cycle. For each model and each treatment, play
was generated for 10,000 simulated subjects for each of the five behavioral types
(including the two switching types). The fitted probabilities of each type were then
used to generate aggregate behavior.

Figure 3 displays strategic play by MLs from the simulations in the same way
that Fig. 2 did for the experimental data. The unit of time on the x-axis is how many
times a subject has played as an ML. The top panel reproduces the data from the
experiment (Fig. 2), the middle panel simulates play without sophisticated learners,
and the bottom panel simulates play with sophisticated learners.

Comparing the top and middle panels of Fig. 3, the simulated subjects do not
replicate the immediate jump in strategic play by MLs that is observed in the data
following the crossover. Intuitively, unsophisticated learners have no mechanism
to quickly adjust their beliefs about Es’ behavior following the change in their
payoffs. The only way the model without sophisticated learners can even partially
replicate MLs’ rapid jump to strategic play following the crossover is by allow-
ing for very fast learning following the crossover. (This is the reason we estimate
higher values of the discount parameter δ and the reset parameter ρ in the model
without sophisticated learners than with sophisticated learners.) These simulations
confirm that, even fitted to data from the crossover sessions, the learning model
without sophisticated learners cannot track the data.

In contrast, the simulations with sophisticated learners look similar to the exper-
imental data: simulated MLs immediately show more strategic play following the
crossover than simulated inexperienced subjects in the control treatment. Subse-
quently, strategic play by simulated MLs in the crossover treatment grows gradu-
ally, paralleling the growth of strategic play for experienced subjects in the control
treatment. Thus, the addition of sophisticated learners not only improves the sta-
tistical fit to the data, it allows us to track the major features of play following the
crossover.

The presence of sophisticated learners who immediately anticipate the effect
of changing Es’ payoffs is necessary but not sufficient to explain why there is
significantly more strategic play by MLs following the crossovers than in the inex-
perienced control sessions. Without the increase in sophisticated learners following
the crossover, we would see almost exactly the same level of strategic play as in the
inexperienced control sessions.18 In the learning model, experience with the game
with high cost Es helps generate more strategic play by MLs because the level of
sophistication has grown over time in the subject population as a result of playing a

18 We reran the simulations of Model 3 not allowing for any growth in the proportion of sophis-
ticated learners. Comparing the first play as an ML in the inexperienced control sessions with
the first play as an ML following the crossover, we see only a 2% increase in the frequency of
strategic play. This is far smaller than the 8% difference observed in the actual data or the 12%
difference in the simulations with switching between types.
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Strategic Play by MLs, Simulations of Learning without Sophisticated Learners
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Strategic Play by MLs, Simulations of Learning with Sophisticated Learners
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Strategic Play by MLs, Data from Experiment 2
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Fig. 3 Comparison of actual and simulated play by MLs

related game. That is, the critical difference between the crossover sessions and the
inexperienced control sessions is that experience with the high cost entrant game
results in a higher percentage of sophisticated learners in the population. Thus, the
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primary mechanism underlying the surprising degree of positive transfer following
the crossover is the growth in sophistication in the subject population.

Conclusion 4: The learning model with sophisticated learners generates better
tracking of MLs’ behavior in crossover sessions. Growth over time
in the proportion of sophisticated learners provides a mechanism
for the positive transfer observed in crossover sessions.

6 Summary and conclusions

This paper studies cross game learning in signaling games. Study of cross game
learning is important since, as Fudenberg and Kreps (1988) note:

“. . . it seems unreasonable to expect the exact same game to be repeated over
and over; put another way, if we could only justify the use of Nash analysis
in such situations, we would not have provided much reason to have faith
in the widespread applications that are found in the literature. Faith can be
greater if, as seems reasonable, players infer about how their opponents will
act in one situation from how opponents acted in other, similar situations.”

Our experiments provide evidence that subjects who have learned to play strate-
gically in one game can transfer much of this knowledge to related games even
if the actions necessary to play strategically are quite different. More importantly,
we have begun to understand the mechanism(s) underlying this transfer. We find
evidence that there exist sophisticated learners in the subject population and that
the proportion of sophisticated learners increases with experience. This growth
in sophistication plays a central role in fostering transfer. In other words, experi-
ence not only changes how subjects play games, but also how they approach related
games, generating increased sensitivity to the strategic implications of their actions
and the effects of changes in other player’s payoffs. It is this increased sensitivity
that allows them to perform well compared to naive subjects when put into a new
(but related) setting.

The dynamic mechanism underlying the learning transfer explains why the
negative results in the psychology literature aren’t replicated here. The psychology
literature focuses on one shot trials where subjects learn specific skills (e.g. how
to drive a truck) or how to solve certain classes of problems (e.g. logic puzzles).
Games, by their nature, are interactive. With experience, subjects gain the ability
to think about how other individuals are making decisions and incorporate this into
their own decision making. Both the interactive element of games and the extended
experience necessary to generate sophisticated reasoning about games are missing
from the individual choice problems studied by psychologists.

We attribute the positive transfer following the crossover to the existence of a
growing population of sophisticated learners, but our experimental design does not
allow us to directly verify the existence (and increasing frequency) of sophisticated
learners since we have no direct observations of subjects’ cognitive processes. In
subsequent research in which two person teams play the roles of Ms and Es, con-
tent analysis of communication between team members verifies (i) the existence
of sophisticated learners of the type modeled here and (ii) growing numbers of
sophisticated learners as a result of experience with related games (Cooper and
Kagel 2005).
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Finally, ongoing research shows that our use of meaningful context for the
cross-over sessions plays a role in the development of sophisticated reasoning and,
by extension, the occurrence of positive cross-game learning (Cooper and Kagel
2006). Using generic context, the same cross-over treatment generates zero or even
slightly negative cross-game learning. This positive effect of meaningful context
on cross-game learning is not universal, as Cooper and Kagel (2006) also report
an example where the effect is negative. In brief, these divergent results capture
different aspects of the mechanism underlying positive cross-game learning. The
experiments above stress one channel for generating positive cross game learn-
ing; in the initial game subjects acquire concepts underlying strategic play that are
applicable to the subsequent game. Meaningful context helps in this process by
fostering the development of strategic empathy. However, if the main barrier to
cross-game learning is the ability to recognize that experiences in the initial game
are relevant for the new game, meaningful transfer may play a negative role by
obscuring the relationship between games.

Appendix

This appendix shows that Conclusion 2 is supported by formal econometric anal-
ysis of the data controlling for covariates affecting behavior.

The regressions reported in this appendix are ordered probits. The use of an
ordered probit specification recognizes that the output choices by Ms are inherently
categorical data. There are two reasons for this. First, suppose that the subjects have
preferences over a continuum of possible output choices. Because the design only
allows them seven possible choices, individuals whose true preferences differ may
end up in the same category. For example, suppose that one subject most preferred
output level is 4.8 and another’s is 5.2. These may both show up in the data as
a choice of output level 5. The use of an ordered probit explicitly accounts for
the mapping between a discreet choice set and an underlying continuous space of
possible choices. Second, the game itself is fundamentally non-linear. For exam-
ple, consider the difference as an ML between moving from output level 5 to 6
and moving from 6 to 7. Beyond any strategic considerations, just considering the
payoffs, the later is a much larger change than the former. The non-linearity of an
ordered probit captures the idea that not all changes of a single output level are
equal.

The dependent variable in all of the regressions is the output level chosen by
MLs. To correct for individual effects in the data, standard errors are calculated
using Moulton’s (1986) correction for clustering. In addition to the ordered probits
reported here, we have run a variety of other specifications including linear models
with a random effects specification, probits with a random effects specification,
and ordered probits with a limited number of categories and a random effects
specification. Our qualitative conclusions are the same for any of these alternative
approaches to the data.

Table 5 reports the regression results. The data set for these regressions includes
all data from games with low cost Es for subjects who returned for an experienced
subject session. Data from games with high cost Es (data prior to the crossover)
are not included.
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Formally, the full specification for the latent variable underlying the ordered
probit is given by Eq. A.1 below. The variable Lo is a dummy for subjects who
play the low cost entrant game in all periods. This is the control group. The var-
iable Hi is a dummy for subjects that play the high cost entrant game initially
and then are crossed over to the low cost entrant game. In other words, this is
a dummy for the crossover treatment. The variables CycI 2 and CycI 3 are dum-
mies for the second and third twelve period cycles of the inexperienced sessions.
The variables CycE1, CycE2, CycE3, and CycE4 are dummies for the first, second,
third, and fourth twelve period cycles of the experienced sessions. The variables
CycC R1, CycC R2, and CycC R3 are dummies for the first, second, and third twelve
period cycles following the crossover from the high cost entrant game to the low
cost entrant game. Thus, for subjects in the crossover treatment we control for time
since the subject started playing the low cost entrant game, not total time the subject
has been playing some limit pricing game. The variable ER is a vector of entry
rate controls and the variable Con is a vector of controls for the use of meaningful
context. The variables SMH and SML measure a subject’s use of strategic play
as an MH and as an ML prior to the crossover. The variable TCRS measures how
experienced the subject was when the crossover took place. The variables SMH,
SML, and TCRS are all set equal to zero for subjects in the control sessions. The
error term is given by εi

t .

Oi
t = α + β1Lo*CycI 2 + β2Lo*CycI 3 + β3Lo*CycE1 + β4Lo*CycE2

+β5Lo*CycE3 + β6Lo*CycE4 + δ1Hi*CycC R1 + δ2Hi*CycC R2

+δ3Hi*CycC R3 + γ ER + ηCon + λ1SMH + λ2SML + τTCRS

+ιIMT + εi
t (A.1)

Less formally, the independent variables fall into four categories as follows:

1. Controls for the Time Period Interacted with Treatment Dummy: The base in
this specification is the first twelve period cycle of the inexperienced sessions
for subjects in the control sessions. The regressions include the following dum-
mies: inexperienced control sessions, periods 13–24; inexperienced control
sessions, periods 25–36; experienced control sessions, periods 1–12; experi-
enced control sessions, periods 13–24; experienced control sessions, periods
25–36; experienced control sessions, periods 37–48; crossover sessions, peri-
ods 1–12 following the crossover; crossover sessions, periods 13–24 following
the crossover; and crossover sessions, periods 25–36 following the crossover.
Parameter estimates for the inexperienced sessions are suppressed in Table 5
since they are not of any direct interest.

2. Controls for Es’ Behavior: The entry rates for the current twelve period cycle
following outputs 2, 3, 4, 5, and 6 are included as independent variables. These
entry rates are calculated over all periods in the current twelve period cycle
and are calculated separately for each session. To the extent that subjects’
beliefs reflect the experience that they are receiving, these five variables serve
as a proxy for the unobservable beliefs. Note that the measures of entry rates
only use information from the current twelve period cycle, not from previous
cycles. This is done for two reasons. First, based on the fitted parameters for the
learning model, there is good reason to expect that subjects’ beliefs will dis-
proportionately reflect experience from recent periods. Second, and perhaps
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more importantly, our central interest is in how behavior changes following
the crossover. We want to know if the change in Ms’ behavior following the
crossover is reflecting a change in Es’ behavior. We therefore need a measure
of Es’ behavior that emphasizes how entry rates have changed following the
crossover rather than reflecting entry rates prior to the crossover. Using only the
current cycle allows our measures to strongly and rapidly reflect any changes
in Es’ behavior following the crossover.19 As a group, the entry rate controls
are always easily significant at the 1% level. These parameter estimates are
suppressed in Table 5 since they are not directly relevant. The second line of
the table indicates whether these variables have been included in a model.

3. Controls for Meaningful Context: These include a dummy for subjects who
experienced meaningful context as well as interactions between the context
dummy and the time dummies. The parameter estimates for these variables are
not reported in Table 5, but the second line of the table shows whether these
variables were included in a model.

4. Miscellaneous: Model 4 includes four miscellaneous independent variables.
One issue is whether strategic play prior to the crossover is a good predictor
for strategic play following the crossover. We therefore calculate two measures
of strategic play prior to the crossover: the number of times a subject played
strategically the last ten times as an MH prior to the crossover and the number
of times a subject played strategically the last ten times as an ML prior to the
crossover. Both of these variables are demeaned. Another natural question is
whether the timing of the crossover matters. To control for when the crossover
occurs, Model 4 includes a variable that measures how many twelve period
cycles of experience a subject had before being crossed over. Since no subject
was crossed over without at least four cycles of prior experience, we subtract
four from this variable to give it a minimum value of zero. Finally, having
directly observed strategic play by others might serve as a catalyst for an ML
playing strategically himself. We therefore include a dummy for whether an
ML in the crossover treatment was, as an E prior to the crossover, paired with
an ML who played strategically. This variable is demeaned.

Turning to the results, Model 1 looks for a crossover effect without control-
ling for entry rates or context. The variable of primary interest here is “Crossover:
Periods 1–12 After Crossover.” (δ1 in equation A.2) This parameter captures the
difference between inexperienced subjects in the first twelve period cycle of the
control sessions and subjects in the first twelve period cycle following a crossover.
The estimate is positive and significant at the 1% level. Both of the other crossover
dummies are also statistically significant at the 1% level, with the size of the param-
eter estimates increasing substantially over time. If we modify the specification so
the other two crossover dummies (“Crossover: Periods 13–24 After Crossover”
and “Crossover: Periods 25–36 After Crossover”) capture differences between the
second and third cycles following the crossover and the second and third cycles of
the inexperienced control sessions, the two crossover dummies remain significant

19 Identical regressions have been run using a variety of alternative entry rate controls, includ-
ing ones that reflect behavior in all preceding periods rather than just the current twelve period
cycle. The results of these alternative regressions are similar to what is reported here.
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at the 1% level.20 Thus, the regression analysis confirms that there is significantly
more strategic play by MLs following the crossover than in inexperienced control
sessions, both in the first twelve period cycle and throughout the session.

We can change the specification of Model 1 so that the parameter estimate for
“Crossover: Periods 1–12 After Crossover” captures the difference between play
in the first twelve period cycle following the crossover and first twelve period cycle
of the experienced control sessions. Likewise, we can also modify the specifica-
tion so the other two crossover dummies capture differences between the second
and third cycles following the crossover and the second and third cycles of the
experienced control sessions. With this specification, the parameter estimate for
“Crossover: Periods 1–12 After Crossover” becomes −0.028 with a standard error
of 0.180. This is not significantly different form zero. Further, no significant differ-
ences can be found between experienced control sessions and crossover sessions
in later cycles either as the dummies for “Crossover: Periods 13–24 After Cross-
over” and “Crossover: Periods 25–36 After Crossover” both fail to achieve signifi-
cance individually 21 and the three crossover dummies fail to be jointly significant
(χ2 = 0.29, d f = 3, p > 0.10). Thus, there are no significant differences in
strategic play between the crossover sessions and the experienced control sessions.

Model 2 adds the controls for Es’ behavior to Model 1, and Model 3 adds the
controls for context to Model 2. These additional controls are statistically signifi-
cant at the 1% level (χ2 = 70.08, d f = 12, p < 0.01), but have no effect on our
conclusions from Model 1.

Model 4 adds the two controls for strategic behavior prior to the crossover to
Model 1, the control for when the crossover took place, and the control for, as an E,
having been paired with an ML who played strategically prior to the crossover.22

While neither the timing of the crossover (τ in Eq. A.2) nor direct experience with
an ML playing strategically (ı in Eq. A.2) have a statistically significant effect, the
parameter estimates for both of the variables measuring strategic behavior prior to
the crossover (λ1 and λ2 in Eq. A.2) are positive and statistically significant at the
1% level.
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