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Summary. For the problem of adjudicating conflicting claims, we consider the
requirement that each agent should receive at least 1/n his claim truncated at the
amount to divide, where n is the number of claimants (Moreno-Ternero and Villar,
2004a). We identify two families of rules satisfying this bound. We then formulate
the requirement that for each problem, the awards vector should be obtainable in
two equivalent ways, (i) directly or (ii) in two steps, first assigning to each claimant
his lower bound and then applying the rule to the appropriately revised problem.
We show that there is only one rule satisfying this requirement. We name it the
“recursive rule”, as it is obtained by a recursion. We then undertake a systematic
investigation of the properties of the rule.
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1 Introduction

When a group of agents have claims over a resource that add up to more than is
available, how should the resource be divided? A “rule” selects for each situation
of this kind a division among the claimants of what is available. Much of the
literature devoted to the study of rules has been axiomatic.1 A variety of tests of
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good behavior of rules have been formulated and the existence of rules passing
these tests, singly and in various combinations, investigated. Among them are tests
designed to guarantee agents certain minimal amounts. A recent suggestion along
these lines is that each agent should receive at least the minimum of (i) his claim
divided by the number of claimants and (ii) the amount available divided by the
number of claimants (Moreno-Ternero and Villar, henceforth MTV, 2004a). This
requirement is not very demanding, being satisfied by many of the rules that have
been central in the literature. Yet, when combined with a dual lower bound on the
losses agents incur, and the requirement of consistency, which expresses a form
of robustness of the choice with respect to variations of populations, only one rule
remains admissible, the so-called Talmud rule (again, see MTV, 2004a).

This lower bound on awards is our point of departure. We first identify two
ways of finding out whether a rule respects it. These results cover all examples
previously known to do so, and infinitely many others.

Next, we formulate the following invariance requirement on a rule: for each
problem, suppose that we first award the lower bounds, revise claims down ac-
cordingly, and apply the rule to divide what remains; the requirement is that the
resulting awards vector should be the same as when the rule is applied directly to
the problem. We show that there is a unique rule satisfying it. As the rule is defined
by means of a recursion, we call it the “recursive rule”.

We then undertake a systematic evaluation of the rule. We first establish a
number of basic properties it satisfies. We then show that it is well behaved from
the viewpoint of monotonicity. In particular, when the amount available increases,
all agents receive at least as much as they did initially. Moreover, when an agent’s
claim increases, he receives at least as much as he did initially, and each of the
others receives at most as much as he did initially. Next, we show that the rule is
invariant under truncation of claims at the amount to divide. We finally turn to the
behavior of the rule in the context of variable populations. One central property
here is replication invariance. The rule violates this property, but asymptotically,
as the order of replication increases, there is a sense in which it behaves “like”
the proportional rule, as we show next. Also, it fails the consistency requirement
alluded to in the opening paragraph of this introduction. So we ask whether there
is any consistent rule that coincides with it in the two-claimant case. Consistency
has indeed provided a very useful means of extending, to general populations, rules
chosen in the conceptually and mathematically more transparent two-claimant case.
Here, the answer is unfortunately negative. Although the bound itself is compatible
with consistency since many consistent rules satisfy it, pursuing its logic recursively
is not.

2 The model of adjudication of conflicting claims

There is a set N of claimants having claims over a resource, the amount of the
resource available being insufficient to honor all of these claims. For each i ∈ N ,
let ci denote agent i’s claim and E the amount to divide.A claims problem, or simply
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a problem, is a pair (c, E) ∈ R
N
+ × R+ such that

∑
N ci ≥ E.2 Let CN denote

the domain of all problems. A division rule, or simply a rule, is a function defined
on CN , which associates with each (c, E) ∈ CN a vector x ∈ R

N
+ . This vector

should satisfy the non-negativity and claims boundedness inequalities 0 � x � c,
and its coordinates should add up to E, a condition to which we refer as efficiency.
Any such vector is an awards vector for (c, E). Let X(c, E) denote the set of these
vectors. Let S be our generic notation for rules. For each c ∈ R

N
+ , the locus of the

awards vector a rule selects as the amount to divide varies from 0 to
∑

ci is its path
of awards for c.

In the variable-population version of the model, there is an infinite population
of “potential” claimants indexed by the natural numbers, N. However, at any given
time, only a finite number of them are present. Let N be the class of finite subsets
of N. A claims problem is defined by first specifying some population N ∈ N ,
and then (c, E) ∈ CN . A rule is a function defined on

⋃
N∈N CN , which associates

with each N ∈ N and each (c, E) ∈ CN an awards vector of (c, E).
The segment connecting a and b is denoted seg[a, b] and the broken segment

connecting a, b, . . . , f is denoted bro.seg[a, b, . . . , f ]. Given a and b such that
a � b, the set of vectors x such that a � x � b is denoted box[a, b]. The interval
[a, b[⊂ R contains a but not b.

3 A lower bound on awards

The axiomatic study of any class of problems usually includes lower or upper
bound requirements on assignments, welfares, or utilities. These requirements are
motivated by fairness, participation, or incentive considerations, the desire to restrict
inequalities in incomes or the range of welfare levels agent reach, and often by
combinations of the above. In the context of the present model, several requirements
of this type have been proposed, and our starting point is one such requirement:
for each problem in CN , each agent should receive at least 1

|N | of his claim if

his claim is at most as large as the amount to divide, and 1
|N | of the amount to

divide otherwise (MTV, 2004a).3 This lower bound on an agent’s award is nothing
other than 1

|N | of his claim truncated at the amount to divide. The idea of truncating
claims in this manner is central in the literature. It underlies the definition of several
rules (Aumann and Maschler, 1985), and the property of a rule that it be invariant
with respect to truncation appears in a number of axiomatic characterizations of
well-known rules (Dagan, 1996; Hokari and Thomson, 2003).

Also, if a rule “corresponds” to a solution defined on a domain of coalitional
games, it satisfies this invariance requirement (Curiel, Maschler, and Tijs, 1987).4

2 By the notation R
N we mean the Cartesian product of |N | copies of R indexed by the members of

N . Vector inequalities: x � y, x ≥ y, and x > y.
3 They refer to it as “securement”. A further analysis is in Moreno-Ternero and Villar (2004b).
4 A rule corresponds to a solution for coalitional games if for each problem, the awards vector it

recommends is also the payoff vector obtained by first converting the problem into a coalitional game,
and then applying the solution to the game.
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For a formal statement, for each i ∈ N , let ti(c, E) ≡ min{ci, E}, t(c, E) ≡
(ti(c, E))i∈N , and µ(c, E) ≡ 1

|N | t(c, E).

Reasonable lower bound on awards. For each (c, E) ∈ CN , S(c, E) � µ(c, E).

In classical models, agents’ individual endowments are often used in the defini-
tion of lower bounds, underlying the commonly imposed condition of “individual
rationality”. In the theory of fairness, equal division is used instead. Reference
hypothetical situations in which all agents have the characteristics of a particular
agent (his endowment, his preferences, his productivity) have also provided the ba-
sis for lower bounds and upper bounds (depending upon whether goods are private
or public). One can imagine basing the bound(s) imposed on an agent’s welfare
on the characteristics of all agents, or basing them on his own characteristics and
on the collective variable. Here, individual characteristics are not endowments, but
claims. An agent’s claim is already used in the definition of a rule as an upper
bound on what he should receive. We are now proposing to use his truncated claim
as the basis for a lower bound: the bound is a pre-specified proportion, the inverse
of the number of agents, of his claim. One could think of using as lower bound
a pre-specified proportion of his claim itself, but that is not a meaningful option.
Indeed, the bounds so obtained are compatible for all values of the parameters of
the problem only if that proportion is 0, but then all rules qualify. Using truncated
claims is a natural and meaningful alternative, and in fact, the proportion we choose
is the highest that preserves compatibility. Consider for example a problem in which
all claims are equal to the amount to divide. Then all truncated claims are equal to
that amount, and the requirement that each agent should receive a proportion α of
his truncated claim, when imposed on each agent, can be met only if α ≤ 1

|N | .
Let N ≡ {1, 2}, and c ∈ R

N
+ with c1 ≤ c2. Let E ≤ c1. Then, if S satisfies

reasonable lower bounds on awards, and since awarding each agent at least half
of the amount to divide is possible only at equal division, its path of awards for c
contains seg[(0, 0), ( c1

2 , c1
2 )]. The view is widely held that if the amount to divide

is small in relation to claims, equal division should prevail.5 The path continues
in a region in box[( c1

2 , c1
2 ), c] whose boundary is defined by the 45◦ line and the

horizontal line of ordinate c2
2 . There are two cases depending upon whether or not

c1 ≤ c2
2 . They are illustrated in Figure 1. If c1 ≤ c2

2 , the constraint that agent 2
should get at least half of his claim is binding for no amount to divide, in the sense
that if an awards vector x satisfies the bound for claimant 1, then x2 ≥ c2

2 whenever
c2 ≤ E (Fig. 1a). If c1 > c2

2 , it is binding over the non-empty interval ]c2, 2c1[ of
amounts to divide (Fig. 1b).

A number of important rules satisfy reasonable lower bounds on awards. Here
are the primary ones. Let (c, E) ∈ CN . The constrained equal awards rule selects
x ∈ X(c, E) such that for some λ ∈ R+, x = (min{ci, λ})i∈N (O’Neill, 1982; the
rule also appears in Maimonides). Piniles’rule (Piniles, 1861) selects x ∈ X(c, E)
such that for some λ ∈ R+, x = (min{ ci

2 , λ})i∈N if E ≤
∑

ci

2 and x = c
2 +

5 Carmen Bevia (oral communication) reported to us that, once presented to the subject in class,
her undergraduates have often spontaneously expressed it. It would be interesting to conduct formal
experiments to measure its prevalence.
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a b c

Figure 1a–c. Guaranteeing a minimal amount to each claimant. This figure illustrates reasonable
lower bounds on awards for N ≡ {1, 2} and c ∈ R

N
+ with c1 < c2. A rule satisfies the require-

ment if its path of awards for c lies in the region consisting of the thick segment from the origin to
1
2 (min{ci}, min{ci}) = ( c1

2 , c1
2 ) and the shaded area. a Here, c1 < c2

2 and the constraint x2 ≥ c2
2

is binding for no amount to divide. b Here, c1 > c2
2 . c The path of the constrained equal awards

rule is bro.seg[(0, 0), b, c], that of the Talmud rule is bro.seg[(0, 0), a, d, c], that of Pineles’ rule is
bro.seg[(0, 0), a, c

2 , e, c], and that of the constrained egalitarian rule is bro.seg[(0, 0), a, c
2 , f, b, c].

All of these rules satisfy reasonable lower bounds on awards for arbitrarily many claimants

(min{ ci

2 , λ})i∈N otherwise. The Talmud rule (Aumann and Maschler, 1985) selects

x ∈ X(c, E) such that for some λ ∈ R+, x = (min{ ci

2 , λ})i∈N if E ≤
∑

ci

2 and
x = c

2 + (max{ ci

2 − λ, 0})i∈N otherwise. Define the minimal right of claimant i
in (c, E) as the difference between E and the sum of the claims of the other
agents, or 0 if this difference is negative: mi(c, E) ≡ max{E −∑N\{i} cj , 0}.6

Now, the adjusted proportional rule selects m(c, E) + P (t(c − m(c, E), E −∑
mj(c, E)), E − ∑mj(c, E)) (Curiel, Maschler and Tijs, 1987). All of these

rules pass the test (MTV, 2004a).
Others do too. One is the random arrival rule (O’Neill, 1982), which selects

the average of the awards vectors obtained by imagining claimants arriving one at
a time and fully compensating them until money runs out, under the assumption
that all orders of arrival are equally likely. Indeed, since the proportion of orders in
which a given claimant is first is 1

|N | , and that for each such order, he is either fully
compensated or receives the entire amount available, a lower bound on his award is
the quantity specified by reasonable lower bounds on awards. The minimal overlap
rule (O’Neill, 1982) and the constrained egalitarian rule (Chun, Schummer, and
Thomson, 2001) also satisfy reasonable lower bounds on awards.7 Since the only
major rules in the literature that violate the property are the proportional rule, which
selects x ∈ X(c, E) such that for some λ ∈ R+, x = λc, and the constrained
equal losses rule, which selects x ∈ X(c, E) such that for some λ ∈ R+, x =

6 This quantity, generalized to groups of claimants, underlies O’Neill’s proposal to associate with
each problem a coalitional form game, providing the ground for the application of the solution concepts
developed in that theory to solve claims problem

7 We omit the proof for these rules, as their definitions are more involved.



288 D. Dominguez and W. Thomson

(max{ci − λ, 0})i∈N , one can say that the property is not very restrictive. The
lower bounds it places on awards are indeed “reasonable”.

Next, we present two general ways of identifying rules satisfying reasonable
lower bounds on awards.

• First, consider the following variable-population invariance requirement. Let N ∈
N , (c, E) ∈ CN , and x ≡ S(c, E). Now, imagine some claimants leaving with
their awards (their components of x), and reassess the situation at that point. The
requirement is that in the revised problem faced by the remaining claimants, the
rule should attribute to each of them the same amount as initially (a survey of the
various applications that have been made of the consistency principle is Thomson,
2003c).

Consistency. For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂ N , if x ≡
S(c, E), then xN ′ = S(cN ′ ,

∑
N ′ xi).

Certain properties of a rule, if satisfied in the two-claimant case, are automat-
ically satisfied for more than two claimants if the rule is consistent. We say that
these properties are “lifted” by consistency (this expression is proposed by Hokari
and Thomson, 2003b). Our first lemma states that “lifting” occurs for the property
that interests us here:

Lemma 1 Reasonable lower bounds on awards is lifted from the two-claimant case
to the general case by consistency.

Proof. Let N ∈ N , (c, E) ∈ CN , and x ≡ S(c, E). Suppose by contradiction,
that there is i ∈ N such that xi < 1

|N | min{ci, E}, which implies that (i) xi < ci

2 .

By efficiency, there is j ∈ N such that xj > 1
|N |E, and thus (ii) xi <

xi+xj

2 . Let
N ′ ≡ {i, j}, and consider the problem (ci, cj , xi +xj). By consistency, (xi, xj) =
S(ci, cj , xi + xj). Since S satisfies reasonable lower bounds on awards in the
two-claimant case, xi ≥ 1

2 min{ci, xi +xj}. This is incompatible with (i) and (ii).
��

The constrained equal awards, Talmud, Piniles’, and constrained egalitarian
rules all satisfy reasonable lower bounds on awards in the two-claimant case: Fig-
ure 1c shows that their paths of awards indeed lie in the required region. Also, they
are consistent (see Aumann and Maschler, 1985; Chun, Schummer and Thomson,
2001). It then follows from Lemma 1 that they satisfy reasonable lower bounds on
awards in general.

For an interesting family of rules, one can say more. First, a rule has a parametric
representation if there are [a, b] ⊂ R̄ and a continuous and nowhere decreasing
function f : [a, b] × R → R such that for each (c, E) ∈ CN , it selects x ∈ X(c, E)
such that for some λ ∈ [a, b], x = (f(ci, λ))i∈N . (The class is characterized
by Young, 1987, on the basis of continuity, the requirement that small changes in
problems should not be accompanied by large changes in the recommended awards
vector, equal treatment of equals, the requirement that claimants with equal claims
should receive equal amounts, and consistency). We will consider the generalization
of this notion obtained by allowing the function f to depend on claimants, as
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follows: there are [a, b] ⊂ R̄, and for each i ∈ N , a continuous and nowhere
decreasing function fi : [a, b] → R such that for each (c, E) ∈ CN , the rule selects
x ∈ X(c, E) such that for some λ ∈ [a, b], x = (fi(ci, λ))i∈N . We refer to such
a rule as “generalized parametric”. The following straightforward lemma tells us
when a rule of this type satisfies the reasonable lower bounds on awards.

Lemma 2 Let S be a generalized parametric rule of representation
(fi)i∈N : [a, b] × R → R, where [a, b] ⊂ R̄. Then, S satisfies reasonable lower
bounds on awards if (∗) for each i ∈ N , the upper envelope Ci of the schedules
{fi(ci, ·)}ci∈R+ is well-defined and independent of i, and (∗∗) for each i ∈ N and
each ci ∈ R+, the schedule fi(ci, ·) follows Ci from (a, 0) up to a point of ordinate
at least ci

2 .

Proof. Let (c, E) ∈ CN and λ ∈ [a, b] be such that
∑

fi(ci, λ) = E. Then,
for each i ∈ N , xi = fi(ci, λ). Now, for each i ∈ N , either xi = fi(ci, λ) <
supc0∈R+

fi(c0, λ), in which case, since his schedule fi(ci, ·) follows Ci from (a, 0)
up to a point of ordinate at least ci

2 , xi ≥ ci

2 ≥ ci

|N | , or fi(ci, λ) = maxj∈N xj , in

which case, for each j ∈ N , xi ≥ xj so that xi ≥ E
|N | . Thus, the reasonable lower

bounds on awards is met. ��

Since the constrained equal awards, Talmud, Piniles’, and constrained egalitar-
ian rules are parametric rules whose representations all meet requirements (∗) and
(∗∗), they satisfy reasonable lower bounds on awards.

•A second way of identifying rules that satisfy reasonable lower bounds on awards
is obtained by exploiting the notion of an “operator” on the space of rules, that is,
a mapping from the space of rules into itself. Given any rule S, consider the rule
Sm that selects for each problem the awards vector obtained by first assigning to
each claimant his minimal right, revising claims down by these amounts, and then
applying S to divide the remainder: formally, for each (c, E) ∈ CN , Sm(c, E) ≡
m(c, E) + S(c − m(c, E), E −∑mj(c, E)). We say that Sm is obtained from S
by subjecting it to the attribution of minimal rights operator. Also, given any rule
S, consider the rule St that associates with each problem (c, E) ∈ CN , the awards
vector obtained by first truncating claims at the amount to divide: St(c, E) ≡
S(t(c, E), E). We call this operator the claims truncation operator. (A systematic
investigation of this operator and others is found in Thomson and Yeh, 2003.) We
now assert that if a rule S satisfies reasonable lower bounds on awards, so do Sm

and St.

Lemma 3 Reasonable lower bounds on awards is preserved under the attribution
of minimal rights operator and by the claims truncation operator.

Proof. We first consider the attribution of minimal rights operator. We need to show
that Sm(c, E) � 1

|N | t(c, E). Our hypothesis on S implies that S(c−m(c, E), E −∑
mj(c, E)) � 1

|N | t(c − m(c, E), E −∑mj(c, E)). Using the relation t(c −
m(c, E), E −∑mj(c, E)) = t(c, E) − m(c, E) (Thomson and Yeh, 2003), this
inequality can be simplified to Sm(c, E) � m(c, E) + 1

|N | [t(c, E) − m(c, E)] �
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1
|N | t(c, E). After canceling 1

|N | t(c, E) from both sides, it further simplifies to (1−
1

|N | )m(c, E) � 0, which trivially holds since |N | ≥ 1 and m(c, E) � 0.

Next, we consider the claims truncation operator. We have that St(c, E) ≡
S(t(c, E), E) � 1

|N | min{t(c, E), E} = 1
|N | min{c, E}, where the first inequality

comes from the fact that S satisfies reasonable lower bounds on awards, and the
equality follows trivially from the definition of the truncation. ��

We use the first part of Lemma 3 to give a very simple proof that the ad-
justed proportional rule satisfies reasonable lower bounds on awards (as estab-
lished directly by MTV, 2004a). Indeed, this rule can be described as the result
of subjecting the proportional rule to the attribution of minimal rights operator
and then to the claims truncation operator. Equivalently, it is obtained by sub-
jecting the proportional rule to these operators in reverse order (Thomson and
Yeh, 2003, show that they commute). Now, we assert that P t satisfies reasonable
lower bounds on awards. Indeed, to show that P t

i (c, E) ≥ 1
|N | t(ci, E), we write

P t
i (c, E) ≡ Pi(t(c, E), E) = t(ci,E)∑

t(cj ,E)E ≥ 1
|N | t(ci, E), which holds since for

each i ∈ N , E ≥ t(ci, E) and thus |N |E ≥∑ t(ci, E).

Reasonable lower bounds on awards is defined by focusing on what claimants
receive. By switching attention to the losses they incur, we obtain the requirement
that if agent i’s claim is at most as large as the deficit

∑
cj − E, he should receive

at most ci − 1
|N |ci, and otherwise, he should receive at most ci − 1

|N | (
∑

cj − E).
The formal statement is as follows (MTV, 2004a):

Reasonable lower bound on loses. For each (c, E) ∈ CN and each i ∈ N ,
ci − Si(c, E) ≥ 1

|N | min{ci,
∑

cj − E}.

Two rules S and Sd are dual if one of them divides what is available in the same
way as what the other divides what is missing: formally, for each (c, E) ∈ CN ,
Sd(c, E) ≡ c − S(c,

∑
ci − E). Also, two properties are dual if whenever a

rule satisfies one of them, the dual of the rule satisfies the other. Reasonable lower
bounds on awards and reasonable lower bounds on losses are dual properties (MTV,
2004a). Thus, two families of rules satisfying reasonable lower bounds on losses
can be identified by duality from the families of rules satisfying reasonable lower
bounds on awards.8

8 Given the geometric interpretation of reasonable lower bounds on awards, it is easy to see (for a
formal proof see MTV, 2004a), that in the two-claimant case, the Talmud rule is the only rule satisfying
both of these properties. Indeed, in the two-claimant case, for the path of awards of a rule to belong to
the admissible area identified in Figure 1 as well as to the symmetric image of that area with respect to
the half-claims vector, as required by the dual property of reasonable lower bounds on losses, it has to
be the path of the Talmud rule. It then follows from the Elevator Lemma (Thomson, 2003c), as MTV
note, that the Talmud rule is the only rule to satisfy the two bounds together with consistency. This is
because the Talmud rule is consistent and conversely consistent. (The Elevator Lemma asserts that if a
consistent rule coincides in the two-claimant case with a conversely consistent rule, then coincidence
occurs in general.)
Note that the random arrival rule is self-dual, and so it too satisfies reasonable lower bounds on losses.
Since both of these properties are preserved under convex operations, and the Talmud and adjusted
proportional rules also satisfy both, we obtain a whole family of rules satisfying self-duality, reasonable
lower bounds on awards, and reasonable lower bounds on losses.
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Figure 2. Comparing two lower bounds. The loci of the vectors of minimal rights and the vector
of reasonable awards are plotted as a function of the amount to divide, seven values being indicated
explicitly. For each k = 1, . . . , 7, the former vector for (c, Ek), m(c, Ek), is labelled “k” whereas
the latter, µ(c, Ek), is denoted k′

The reasonable lower bounds on awards should be compared to another lower
bound that has been extensively studied in the literature. We have already defined
the “minimal right” of an agent in a problem. This alternative bound is the claimant’s
minimal right (Curiel, Maschler and Tijs, 1987). It is illustrated in the two-claimant
case and compared to reasonable lower bounds on awards in Figure 2 where the
loci of the vectors m(c, E) and µ(c, E) are plotted as a function of E. The range
of the amount to divide can be divided into three intervals. For E ∈ [0, c1 + c2

2 ],
if an awards vector x satisfies x � µ(c, E), then it satisfies x � m(c, E); for E ∈
]c1 + c2

2 , c1
2 +c2[, the two bounds are not comparable; and for E ∈ [ c1

2 +c2,
∑

ci],
if x � m(c, E), then x � µ(c, E).

By contrast to the lower bound appearing in reasonable lower bounds on
awards, the “minimal right lower bound” just defined on a claimant’s award depends
on all components of a problem.

The two bounds differ significantly in their implications. Indeed, it is a con-
sequence of the definition of a rule that it always selects a vector that weakly
dominates the vector of minimal rights, whereas we have seen that a rule may or
may not select an awards vector that dominates the vector of reasonable awards.
Characterizations involving reasonable lower bounds on awards can be found in
Yeh (2003).

4 An invariance requirement on rules

Next, we formulate an invariance requirement on rules based on the reasonable
lower bounds: for each problem, the awards vector chosen for it should be obtainable
in either one of the following two ways: directly or in two steps, first assigning to
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each claimant his reasonable lower bound, and second, dividing the remainder, after
having revised claims down by these amounts.

Reasonable awards first. For each (c, E) ∈ CN ,

S(c, E) = µ(c, E) + S(c − µ(c, E), E −
∑
i∈N

µi(c, E)).

This requirement is inspired by one based on minimal rights that has been
important in the literature. It says that the awards vector should be obtainable in
two ways: directly or in two steps, first assigning to each claimant his minimal
right, and second dividing the remainder, after having revised claims down by
these amounts (Curiel, Maschler and Tijs, 1987). Quite a few rules satisfy this
property – let us call it minimal right first – the Talmud and random arrival rules
being examples, but as we now show, only one satisfies reasonable awards first:

Theorem 1 There is a unique rule satisfying reasonable awards first.

Proof. Let (c, E) ∈ CN . The proof is based on the observation that in the problem
obtained from (c, E) by assigning reasonable awards, reasonable awards may still
be positive, justifying a second round of awards. Once these second-round awards
are made, a third problem is obtained in which once again, reasonable awards may
be positive. So, the process can continue. Let (c1, E1) ≡ (c, E) and for each k ≥ 2,
let (ck, Ek) be the problem obtained at the k-th step,

(ck, Ek) ≡
(

ck−1 − µ(ck−1, Ek−1), Ek−1 −
∑
i∈N

µi(ck−1, Ek−1)

)
.

Note that no agent’s claim ever increases from one step to the next and that
the same statement applies to the amount to divide. Since all claims and amount to
divide are bounded below by 0, they have limits. Let these limits be denoted c̄ and Ē.
We will show that Ē = 0. Suppose, by way of contradiction, that Ē > 0. Let k ∈ N

be such that Ek − Ē ≤ Ē
|N |2 . Since (ck, Ek) is a well-defined problem, there is i ∈

N such that ck
i ≥ Ek

|N | . At the (k+1)-th step, agent i receives 1
|N | min{ck

i , Ek}, and
since all agents receive non-negative amounts, the amount to divide decreases by at
least this expression. Thus, Ek+1 < Ek − 1

|N | min{ck
i , Ek} < Ē, in contradiction

with the definition of Ē. ��
Let µ1(c, E) ≡ µ(c, E), and for each k > 1,9

µk(c, E) ≡ µ

(
c −

k−1∑
l=1

µl(c, E), E −
∑
i∈N

k−1∑
l=1

µ�
i(c, E)

)
.

It follows from Theorem 1 that the unique rule satisfying reasonable awards
first – the name we choose for it reflects the construction – can be defined as follows:

9 Note that µk
i (c, E) depends on the other agents’claims (c−i) since the resources available at step k

depend on the entire claims vector.
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Recursive rule, R. For each (c, E) ∈ CN ,

R(c, E) ≡
∞∑

k=1

µk(c, E).

Alternatively, for each (c, E) ∈ CN , let (c̄, Ē) ≡ limk→∞(ck, Ek). Then,
R(c, E) = c − c̄.

Proposition 1 Finite convergence occurs if and only if all claims are positive.

Proof. For simplicity, we prove the assertion for the two-claimant case. Let N =
{1, 2} and (c, E) ∈ CN . We assume 0 < E <

∑
i∈N ci since otherwise the awards

vector is obtained in one step, by definition of a rule.
To prove that finite convergence requires that all claims be positive, suppose

by contradiction and without loss of generality, that c1 = 0. For each k ∈ N,

Ek = Ek−1− t2(ck−1,Ek−1)
2 ≥ Ek−1− 1

2Ek−1 = 1
2Ek−1. Applying the argument

recursively, we obtain Ek ≥ 1
2k−1 E > 0.

Next, we show that if all claims are positive, finite convergence occurs.

Step 1. At each k ∈ N, ck > 0. Let i ∈ N . We have ck
i = ck−1

i − ti(ck−1,Ek−1)
2 ≥

1
2ck−1

i . Applying the argument recursively, we obtain ck
i ≥ 1

2k−1 ci > 0.

Step 2. If there are k ∈ N and i ∈ N such that Ek ≤ ck
i , then for each k′ > k,

Ek′ ≤ ck′
i . Indeed, Ek+1 ≤ Ek − ck

i

2 < ck
i − ck

i

2 = ck+1
i . Applying the argument

recursively proves the assertion.

Step 3. If there is k ∈ N such that for each i ∈ N , Ek ≤ min{ck
1 , ck

2}, then the
sequence {(ck, Ek)} reaches its limit at step k + 1. Let k ∈ N be as specified in
the hypotheses. Then, Ek+1 = Ek − Ek

2 − Ek

2 = 0.
Now assume by contradiction that for each k ∈ N, Ek > 0. Claims 2 and 3

imply that there is i ∈ N such that for each k ∈ N, ck
i < Ek. Without loss of

generality suppose i = 1.
Since limk→∞ Ek = 0 and for each k ∈ N, ck

1 < Ek, then limk→∞ ck
1 = 0.

Since claimant 1 is fully compensated at the limit and E <
∑

i∈N ci, limk→∞ ck
2 >

0, and there is K ∈ N such that for each k′ > K, Ek′
< ck′

2 .
By Step 1, there is l ∈ N such that EK ≤ (l + 1)cK

1 . Now, note that cK+l
1 <

EK+l. Expressing this inequality in terms of cK+l−1
1 and EK+l−1, we obtain

cK+l−1
1

2 < EK+l−1

2 − cK+l−1
1

2 , which simplifies to 2cK+l−1
1 < EK+l−1. Applying

the argument recursively, we obtain (l + 1)cK
1 < EK , a contradiction. ��

One may wonder why the parallel property of minimal rights first does not
give us a unique rule. The reason is that for each problem, after minimal rights are
assigned, we obtain a revised problem in which minimal rights are zero (Thomson,
2003b). Thus, there is no reason to repeat the process, and the property cannot serve
directly as the basis for the definition of a rule.



294 D. Dominguez and W. Thomson

Incidentally, the order of claims is never reversed by the attribution of reasonable
awards. Let i, j ∈ N be such that ci < cj . If E ≤ ci, both claims decrease by E

|N | .
If ci < E ≤ cj , ci is replaced by c̃i ≡ ci − ci

|N | and cj by c̃j ≡ cj − E
|N | , then

c̃i ≤ c̃j . Thus, in the proof of Theorem 1, we could have chosen agent i to be the
agent with the largest claim.
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Figure 3a–c. Defining the recursive rule for c ∈ R
N
+ with N ≡ {1, 2} and c1 ≤ c2 ≤ 2c1. a The

first and second segments of its path of awards are obtained by letting E vary in [0, c2]. They are
seg[(0, 0), d1] and seg[d1, e1]. b Repeating the construction when E varies in [c2, c1

2 + c2]. c The
next two segments are seg[e1, d2] and seg[d2, e2]

In the next paragraphs, we give an explicit construction of the recursive rule. In
general, (for |N | = 2 and except if the larger claim is twice the smaller claim), the
path of awards of the rule is the concatenation of an infinite number of segments. A
graphical representation is possible for |N | = 2. The shape of the path of awards
depends on the relative values of the claims. We distinguish two cases:

Case 1: c1 ≤ c2 ≤ 2c1. If E ≤ c1, µ(c, E) = (E
2 , E

2 ), so R(c, E) = (E
2 , E

2 )
(Fig. 3a). If c1 < E ≤ c2, µ(c, E) = ( c1

2 , E
2 ), and in (c−µ(c, E), E−∑µi(c, E)),

the amount to divide is no greater than the smaller claim, so equal division prevails.
Thus, x ≡ R(c, E) = ( c1

4 + E
4 ,− c1

4 + 3E
4 ). Note that as E increases, x moves

up along a line of slope 3 (Fig. 3a). The point reached when E = c2 is e1 ≡
( c1

4 + c2
4 ,− c1

4 + 3 c2
4 ). If c2 < E, µ(c, E) = c

2 . At first, equal division of any
amount greater than c2 prevails. The process described for E ≤ c2 is repeated for
E ≤ c2

2 since this is the value of agent 2’s revised claim (Fig. 3b).
The path that results is as follows: divide box[(0, 0), c] into four equal boxes by

drawing a vertical line of abscissa c1
2 and a horizontal line of ordinate c2

2 ; divide
the northeast box so defined into four equal boxes in a similar way; repeat. Let
d1 ≡ (0, 0) + ( c1

2 , c1
2 ), d2 ≡ c

2 + ( 3c1
4 , 3c1

4 ), d3 ≡ 3c
4 + ( 7c1

8 , 7c1
8 ), and so on. Let

σ1 ≡ seg[(0, 0), d1], σ2 ≡ seg[ c
2 , d2], σ3 ≡ seg[ 3c

4 , d3], and so on. Let e1 be the
intersection of σ2 with the line of slope 3 emanating from d1, e2 be the intersection
of σ3 with the line of slope 3 emanating from d2, and so on. Now, the path for c is
bro.seg[(0, 0), d1, e1, d2, e2, . . . ] (Fig. 3c).

The equality c2 = 2c1 identifies the boundary between Case 1 and Case 2
examined next. Then, e1 = d2, e2 = d3, and so on. The segments of slope 1 vanish
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and we are left with a concatenation of segments of slope 3 from ( c1
2 , c1

2 ) to c.
Thus, the path for c is bro.seg[(0, 0), ( c1

2 , c1
2 ), c] (Fig. 4a).

Case 2: c2 > 2c1. The description of the path for this case is more complex because
the direction of the inequality between agent 2’s claim and the amount to divide
may not change until several iterations. The path begins as in Case 1 with a segment
of slope 1, and it continues with segments of slope 3, slope 7, . . . 2k − 1, and so
on, until E

2 = c2
2 , and c2 is revised down to c2

2 instead of to E
2 . We refer to this

sequence of steps as Stage 1. The greater c2 is in relation to c1, the more steps in
Stage 1. Stage 2 consists of a parallel sequence of steps, and the path continues
with a sequence of segments of increasing slopes until once gain, the direction of
the inequality between agent 2’s claim and the amount to divide changes. Figure 4b
illustrates the construction for (c, E) such that c2 = 2.5c1 and up to E = 3c1.
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Figure 4a,b. Path of awards for the recursive rule. a The case c1 = c2
2 . b A configuration for which

c1 < c2
2 . The path consists of parts, each of which consists of sequences of increasing slopes, starting

with a segment of slope 3. For short, we write µk for µk(c, E)

5 Properties of the recursive rule

In this section, we undertake a systematic investigation of the properties of the
recursive rule. The properties we consider are standard in the literature, and we
refer to Thomson (2003a,b) for complete references.
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By definition, the rule satisfies reasonable lower bounds on awards. It obviously
satisfies equal treatment of equals. In situations in which some agents are deemed
more deserving than others, this axiom is not desirable however, but if needed, the
rule can be redefined so as to accommodate an asymmetric treatment of agents with
equal claims. One introduces weights α ∈ int∆N reflecting the extent to which
certain agents are thought to be more deserving than others.10 For each i ∈ N , let
µα

i (c, E) ≡ αiti(c, E). We now reformulate our lower bound as follows: the α-
weighted reasonable lower bound is S(c, E) � (αiti(c, E))i∈N . The α-weighted
bound is satisfied by the weighted constrained equal awards rule with weights α and
by the weighted versions of the Talmud rule with weights α (Hokari and Thomson,
2003a). However, the requirement S(c, E) = µα(c, E) + S(c − µα(c, E), E −∑

µα
i (c, E)) is met by only one rule, which is a weighted version of the recursive

rule. We omit the proof, which follows that of Theorem 1.
The recursive rule satisfies order preservation (Aumann and Maschler, 1985),

the requirement that awards should be ordered as claims are, and that so should
losses. The proof relies on the fact that at each step of the recursion, awards are
ordered as claims are, as shown above, and that, after revision, the order of claims is
not reversed. Similarly, losses are ordered as claims are. Indeed, note that if ci ≤ cj ,
then ci − 1

|N | min{ci, E} ≤ cj − 1
|N | min{ci, E}, as can be seen by examining the

three possible cases, E ≤ ci, ci < E ≤ cj , and cj < E.
The rule satisfies anonymity, the requirement that the names of agents should

not matter, and homogeneity, the requirement that, starting from any problem, if
the data of the problem are multiplied by some positive number, so should the
recommended awards vector.

We now turn to two basic monotonicity properties. First is the requirement that
when the amount available increases, each agent should receive at least as much as
he did initially. The idea of monotonicity is central to the axiomatic literature on
fair allocation (for a survey, see Thomson, 2003d).

Resource monotonicity. For each (c, E) ∈ CN and each E′ > E, if
∑

ci ≥ E′,
then S(c, E′) � S(c, E).

The following lemma relates the sequences of revised problems obtained for
two values of the amount available.

Lemma 4 For each (c, E) ∈ CN and each E′ > E such that (c, E′) ∈ CN , let
(ck, Ek) and (c′k, E′k) be the revised problems of the k-th step, starting from (c, E)
and (c, E′) respectively. Then, for each k > 1, c′k � ck and E′k ≥ Ek.

We relegate the proof to the Appendix.

Proposition 2 The recursive rule is resource monotonic.

Proof. Let (c, E) ∈ CN , and E′ > E be such that (c, E′) ∈ CN . Let i ∈ N .
By Lemma 4, and using the notation of the lemma, for each k > 1, c′

i
k ≤ ci

k.
Then, c̄i ≡ limk→∞ ci

k ≥ limk→∞ c′
i
k ≡ c̄′

i. By definition of the recursive rule,
Ri(c, E′) ≡ ci − c̄′

i ≥ ci − c̄i ≡ Ri(c, E). ��
10 The notation ∆N designates the simplex in R

N .
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Many models include the specification of individual parameters, representing
initial ownership of assets, rights, obligations, and so on. Whenever these param-
eters are valuable resources – as in the case of assets or rights – it is natural to
require that an increase in an individual’s parameter should benefit him. If they
are not valuable, what is natural to require is that an increase should penalize him.
Here, the parameter falls in the first category and we require that if an agent’s claim
increases, he should receive at least as much as he did initially.

Claims monotonicity. For each (c, E) ∈ CN , each i ∈ N , and each c′
i > ci, we

have Si(c′
i, c−i, E) ≥ Si(c, E).11

We may also be interested in how the other agents are affected by an increase in
some agent’s claim. We require that each of them should receive at most as much
as he did initially.12

Others-oriented claims monotonicity. For each (c, E) ∈ CN , each i ∈ N , and
each c′

i > ci, we have SN\{i}(c′
i, c−i, E) � SN\{i}(c, E).

Together with efficiency, (which is incorporated in the definition of a rule,) this
property implies claims monotonicity. In the two-claimant case, the two properties
are equivalent.

It will be convenient to first show that the recursive rule satisfies others-oriented
claims monotonicity, and deduce that it satisfies claims monotonicity. We first state
a lemma which relates the revised problems after each recursion when an agent’s
claim increases.

Lemma 5 For each (c, E) ∈ CN , each i ∈ N , and each c′
i > ci, let (ck, Ek) and

(c′
i
k
, c′k

−i, E
′k) be the revised problems of the k-th step, starting from (c, E) and

(c′
i, c−i, E) respectively. Then, for each k > 1, c′k � ck and E′k ≤ Ek.

The proof, which we omit as it is parallel to the proof of Lemma 4, is available
from the authors’ web pages. It is by induction. We first show that for each k > 1,
c′k � ck. Then we show that at each step of the recursion, the set of agents whose
claim is smaller than the amount available for the new problem is a subset of the
corresponding set for the original problem. Using these two facts we conclude that
for each k > 1, E′k ≤ Ek.

Our next result is an immediate consequence of Lemma 5 and the definition of
the recursive rule.

Proposition 3 The recursive rule is others-oriented claims monotonic.

Proof. Let (c, E) ∈ CN , i ∈ N , and c′
i > ci. By Lemma 5, for each j ∈ N \ {i}

and each k > 1, c′
j
k ≥ ck

j . Then, and using the notation of the lemma,

c̄′
j ≡ limk→∞ c′

j
k ≥ limk→∞ ck

j ≡ c̄j . By definition of the recursive rule,
Rj(c′

i, c−i, E) ≡ cj − c̄′
j ≤ cj − c̄j ≡ Rj(c, E). ��

11 The notation c−i designates the vector c from which the i-th coordinate has been deleted, and the
notation (c′

i, c−i) the vector c in which the i-th coordinate has been replaced by c′
i.

12 Thomson (1987) formulates a parallel for classical exchange economies.
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The following proposition is a direct corollary of Proposition 3:

Proposition 4 The recursive rule is claims monotonic.

Next we turn to an important invariance property. Since the part of an agent’s
claim that exceeds the amount available cannot be recovered anyway, we might just
as well ignore it: If an agent’s claim is truncated at the amount available, the awards
vector should not be affected. This property is satisfied by the recursive rule and
several important rules,13 and as noted earlier, it is necessarily satisfied by a rule
that has a counterpart in the theory of coalitional games.14 Note however that it is
not because the bound is defined in terms of truncated claims that all rules satisfying
the bound also satisfy this invariance property. For instance, neither Piniles’s rule
nor the adjusted proportional rule are invariant; yet, as we saw, both meet the bound.

Invariance under claims truncation. For each (c, E) ∈ CN , we have S(c, E) =
S(t(c, E), E).

The proof of the next proposition is relegated to the Appendix.

Proposition 5 The recursive rule is claims truncation invariant.

The recursive rule violates reasonable lower bounds on losses, self-duality
(Aumann and Maschler, 1985; the requirement that the rule should coincide with its
dual), and composition down (Moulin, 2000), which says that if the amount to divide
decreases from some initial value, the awards vector should be obtainable directly,
or by using as claims vector the awards vector calculated for the initial amount,
and composition up (Young, 1987), which is an invariance property pertaining to
the opposite possibility. It violates minimal rights first. To see this, let N ≡ {1, 2}
and (c, E) ∈ CN be given by (c, E) = (3, 6; 4). Since c2 = 2c1 and E > c1,
R(c, E) is the point of intersection of seg[( c1

2 , c1
2 ), c] = seg[(1.5, 1.5), (3, 6)] with

the budget line. Thus, Ri(c, E) > 1.5. On the other hand, m(c, E) = (0, 1) and
the revised problem is (3, 5; 3). The amount to divide is equal to the smallest
claim and we obtain equal division in the second step, namely (1.5, 1.5). Thus,
R1(c, E) > 1.5 = 0 + 1.5 = m1(c, E) + R1(c − m(c, E), E −∑mi(c, E)).

We continue with variable-population properties. First, the recursive rule vi-
olates replication invariance, the requirement that for each problem, the awards
vector chosen for a replica of it should be the corresponding replica of the awards
vector chosen for the initial problem. This can be seen as follows: let N ≡ {1, 2}
and (c, E) ∈ CN be such (c, E) = (2, 4; 2). Then, µ(c, E) = (1, 1) and R(c, E) =
(1, 1). We replicate this problem once, denoting by 2∗ (c, E) the resulting problem
and 2 ∗ R(c, E) the corresponding replica of R(c, E). We have µ(2 ∗ (c, E)) =
µ(2, 4, 2, 4; 4) = (.5, 1, .5, 1), and µ(c − µ(c, E)) = µ(1.5, 3, 1.5, 3; 1) =
(.25, .25, .25, .25), so that R(2 ∗ (c, E)) = (.75, 1.25, .75, 1.25) 
= 2 ∗ R(c, E), in
violation of replication invariance.

Let r ∈ N denote the order of replication. When a problem (c, E) ∈ CN is
replicated r times, let r ∗N be the population in the replica problem, and r ∗ (c, E)

13 See Aumann and Maschler (1985) and Dagan and Volij (1993).
14 This is proved by Curiel, Maschler and Tijs (1987).
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the replica problem. In an r-replica of (c, E), we are led to calculating the minimum
of ci and rE, which for r large enough, is the former quantity. Then, proportional
division is the outcome. Note that for each c ∈ R

N
+ and each r ∈ N, the path of the

recursive rule for cr∗N starts with equal division.
Let N ∈ N and (c, E) ∈ CN . When a rule satisfies equal treatment of equals,

in an r-replica of (c, E), all clones of each member of N receive equal amounts,
so the awards vector the rule selects is the r-replica of some awards vector xr of
(c, E). To say that the rule is replication invariant is to say that xr is independent
of r. If it is not replication invariant, it is natural to enquire whether the sequence
{xr} of awards vectors so defined has a limit, and if yes, to identify the rule defined
by associating to each problem this limit. Questions of this type are addressed by
Chun and Thomson (2003) who obtain certain rules as limits of two rules that
violate replication invariance.15 Here, we have convergence too, and interestingly,
the rule towards which convergence occurs is the proportional rule.

Theorem 2 The awards vector selected by the recursive rule for a replica problem
is the replica of an awards vector of the problem that is replicated that, as the
order of replication increases, converges to the proportional awards vector of that
problem.

Proof. Let N ∈ N and (c, E) ∈ CN be given. If E = 0, the answer is straight-
forward, so let us assume that E > 0. Let r ∗ (c, E) be obtained by replicating
r-times the problem (c, E). For r large enough, for each i ∈ N , rE > ci, and
at the first round, each agent i ∈ r ∗ N receives 1

r|N |ci. (The total distributed

is r
|N |

1
r

∑
j∈N cj = 1

|N |
∑

j∈N cj .) Revised claims are proportional to original
claims. At the second round, if the amount that remains to divide is still larger than
the largest revised claim, proportional division to the revised claims prevails. Thus,
total awards so far are still proportional to original claims. This goes on until a stage
k(r) at which the amount to divide is smaller than the largest claim revised k(r)
times. This remainder is divided among r|N | claimants. Each copy of the original
population receives at most max cj

r|N | , so the sum of the partial terms received by each
member of each copy is a quantity that goes to zero as r → ∞. ��

The recursive rule violates consistency. (The first application to claims problems
of the idea of consistency is due toYoung, 1987). We could give an example to make
this point but we will instead derive it as a corollary of a proposition that addresses
the more general question whether the two-claimant version of the rule has any
consistent extension.16

15 The random arrival and minimal overlap rules converge to the proportional and constrained equal
losses rules respectively.

16 In fact, the rule violates the weaker property of null claims consistency, the requirement that
if an agent’s claim is 0, removing him should not affect the awards recommended for the other
claimants. To see this, let N ≡ {1, 2} and (c, E) ∈ CN be given by (c, E) = (2, 4; 3). Then,
µ(c, E) = (1, 1.5) and R(c, E) = (1, 1.5) + (.25, .25) = (1.25, 1.75). Now, let N ′ ≡ {1, 2, 3}
and (c′, E′) ∈ CN′

be given by (c′, E′) = (2, 4, 0; 3). We have µ(c′, E′) = (.666, 1, 0); revised
claims are (1.33, 3, 0) and the revised amount to divide 1.33. In the new problem (c′′, E′′) we have
µ(c′′, E′′) = 1

3 (1.33, 1.33, 0). From that point on, the revised claims of agents 1 and 2, once trun-
cated, are equal, so we obtain a sequence of equal division steps, which when taken to the limit, give us
an equal division of 1.33. The final awards vector is (.666, 1, 0) + (.666, .666, 0) �= (1.25, 1.75, 0).
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The answer is negative. The proof is based on a geometric technique devel-
oped in Thomson (2001). This technique exploits the following simple geometric
implication of consistency of a rule: for each N ∈ N , each c ∈ R

N
+ , and each

N ′ ⊂ N , its path for c, when projected onto R
N ′

, is a subset of its path for cN ′ .
Moreover, if the rule is resource monotonic, this projection actually coincides with
the path for cN ′ . Resource monotonicity holds here since the recursive rule satisfies
this property in the two-claimant case, and this property is lifted (Dagan and Volij,
1997; Hokari and Thomson, 2003b). So, if the recursive rule had a consistent exten-
sion, this extension would be resource monotonic. The key to this sort of argument
is to exploit the projection implication of consistency for entire paths of awards,
not just point by point, and to understand which properties of paths are preserved
by projections and which are not.

Proposition 6 The two-claimant recursive rule has no bilaterally consistent exten-
sion to general populations.

Proof. Let S be a consistent extension of the two-claimant recursive rule. Let
N ≡ {1, 2, 3} and c ∈ R

N
+ be defined by c ≡ (10, 14, 20). Let Π3 be the path of

S for c{1,2} = (10, 14) ∈ R
{1,2}
+ . Since c2 < 2c1, Case 1 of the description of the

rule given above applies. We will only need the first two segments of Π3. Let Π2 be
the path for c{1,3} = (10, 20) ∈ R

{1,3}
+ . Since c3 = 2c1, the boundary case covered

under Case 1 applies, and Π2 = bro.seg[(0, 0), ( c1
2 , c1

2 ), c{1,3}] (the case illustrated
in Fig. 4a). Let k1 ≡ ( c1

2 , c1
2 ) and k2 ≡ k1+ c2−c1

4 (1, 3) = (− c1
4 + c2

4 ,− c1
4 +3 c2

4 )
be the first two kinks of Π3. Let �1 ≡ ( c1

2 , c1
2 ) be the kink in Π2, and �2 be the

point of Π2 whose first coordinate is equal to k2
1 . Since the first segment of Π3 is

seg[(0, 0), ( c1
2 , c1

2 )] ⊂ R
{1,2}, and the first segment of Π2 is seg[(0, 0), ( c1

2 , c1
2 )] ⊂

R
{1,3}, the path for c begins with seg[(0, 0, 0), ( c1

2 , c1
2 , c1

2 )] ⊂ R
N . This segment

is contained in the plane of equation x2 = x3, and its projection onto R
{2,3}
+ is

seg[(0, 0), ( c1
2 , c1

2 )], (in the figure, ( c1
2 , c1

2 ) ∈ R
{2,3}
+ is the point m1). Since the

slope of the second segment of Π3 is equal to that of the second segment of Π2 (both
slopes are equal to 3), k2

2 = �23 = − c1
4 + 3 c2

4 ≡ a. A simple calculation shows that
a = 8. Thus, the point in R

N whose projections onto R
{1,2} and R

{1,3} are k2 and
�2 has equal second and third coordinates, and its projection onto R

{2,3} belongs
to the 45◦ line of that space. Thus, for S to be consistent, the path for c{2,3} =
(14, 20) ∈ R

{2,3}
+ should also contain seg[m1, (a, a)]. However, since c3 < 2c2,

Case 1 applies to c{2,3}: the path of the recursive rule for c{2,3} is also piece-wise
linear, its first two segments being seg[(0, 0), ( c2

2 , c2
2 )] and a segment of slope 3

with lower endpoint ( c2
2 , c2

2 ): it has a kink at ( c2
2 , c2

2 ). Since 2a = − c1
2 +3 c2

2 > c2,
the point (a, a) lies above the line of equation t2 + t3 = c2. We have obtained a
contradiction. ��



A new solution to the problem of adjudicating conflicting claims 301

�

�

	

x1

x2

x3

c{1,2}

c{1,3}

c{2,3}

k1

k2

�1

�2

m2

m1

Π3

Π2

c2

c1
2

c1
2

c1
2

10

14

20

6

8

8

Figure 5. The two-claimant version of the recursive rule has no consistent extension to general pop-
ulations. This figure pertains to the claims vector c ≡ (10, 14, 20). It shows the first two segments

of the path Π3 of the recursive rule for c{1,2} = (10, 14) ∈ R
{1,2}
+ , and its entire path Π2 for

c{1,3} = (10, 20) ∈ R
{1,3}
+ . The path for c of a consistent extension of R (this path is not repre-

sented), if such an extension exists, can be constructed from these projections, Π2 and Π3. Its projection
onto R

{2,3} contains seg[(0, 0), m2]

6 A comparison with another lower bound

Other bounds have been proposed for rules than the one we studied here. A simple
one is that each agent should receive the minimum of his claim and equal division
(Moulin, 2002). This constrained equal division lower bound on awards is more
restrictive than the reasonable lower bounds on awards (MTV, 2004a), and in fact,
by itself, it characterizes the constrained equal awards rule in the two-claimant case.

Let us base on it an invariance axiom parallel to the one we based on reasonable
awards: for each problem, the awards vector should be obtainable in two ways,
(i) directly, or (ii) in two steps, by first assigning to each claimant his lower bound,
and in a second step, assigning to him what the rule would in the appropriately
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revised problem.17 It is straightforward to see that this property, independently of
the number of claimants, is satisfied only by the constrained equal awards rule.

The constrained equal division lower bound is the largest anonymous bound
that one can impose on an agent’s award that depends only on the agent’s own claim
and the amount to divide. To see this, let b(ci, E) be a bound of this type imposed
on claimant i’s award in the problem (c, E). (Anonymity is reflected in the fact that
the function b is independent of i.) By definition of a rule, we need b(ci, E) ≤ ci.
Also, for there to exist an awards vector meeting this bound for each agent, the
profile (b(ci, E))i∈N should be such that

∑
b(ci, E) ≤ E. Fix i ∈ N . If ci > E,

in the well-defined problem (c̄, E) ∈ CN in which for each j ∈ N , c̄j = ci, we
obtain |N |b(ci, E) ≤ E. Altogether, b(ci, E) ≤ min{ci,

E
|N |}, as claimed.

The property of a rule that it meets the constrained equal division lower bound
is of course lifted since (i) in the two-claimant case, only one rule satisfies it, the
two-claimant constrained equal awards rule, and (ii) the constrained equal awards
rule, the only consistent rule that coincides with its two-claimant version,18 also
satisfies the bound. On the other hand, the property is not preserved under the
attribution of minimal rights operator. Indeed, the rule obtained by subjecting the
two-claimant constrained equal awards rule to this operator is the Talmud rule,
which does not meet the bound.

The bound we have considered here is less demanding than the constrained
equal division lower bound, but the invariance axiom based on it also leads to a
unique rule.

7 Appendix

In this appendix we prove Lemma 4 and Proposition 5.

Proof of Lemma 4. The proof is by induction.

Step 1 of the induction.

Part 1: c′2 � c2.
Let i ∈ N . Using the hypothesis c1

i = c′
i
1, we distinguish three cases:

Case 1. c1
i = c′

i
1

> E′1 > E1.
c′
i
2 ≡ c′

i
1− 1

n min{c′
i
1
, E′1}

= c′
i
1− 1

nE′1 (since c′
i
1
>E′1)

≤ c1
i − 1

nE1 (since c1
i =c′

i
1 and E′1>E1)

≤ c1
i − 1

n min{c1
i , E

1}
≡ c2

i

17 Let νi(c, E) ≡ min{ci,
E

|N| } and ν(c, E) ≡ (νi(c, E))i∈N . Then, x � ν(c, E) is the con-

strained equal division lower bound and the invariance property is S(c, E) = ν(c, E) + S(c −
ν(c, E), E − ∑

i∈N νi(c, E)).
18 This is a consequence of the Elevator Lemma discussed in footnote 8.
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Case 2. E′1 ≥ c1
i = c′

i
1

> E1.
c′
i
2 ≡ c′

i
1 − 1

n min{c′
i
1
, E′1}

= c′
i
1 − 1

nc′
i
1 (since c′

i
1 ≤ E′1)

≤ c1
i − 1

nE1 (since c1
i = c′

i
1 and c′

i
1

> E1)
≤ c1

i − 1
n min{c1

i , E
1}

≡ c2
i

Case 3. E′1 > E1 ≥ c1
i = c′

i
1.

c′
i
2 ≡ c′

i
1 − 1

n min{c′
i
1
, E′1}

= c′
i
1 − 1

nc′
i
1 (since E′1 ≥ c′

i
1)

= c1
i − 1

nc1
i (since c′

i
1 = c1

i )
≤ c1

i − 1
n min{c1

i , E
1}

≡ c2
i

Part 2: E′2 ≥ E2.
Let A ≡ {i ∈ N : c1

i ≤ E1} and A′ ≡ {i ∈ N : c′
i
1 ≤ E′1}. We claim

that A′ ⊇ A (and therefore, A′C ⊆ AC). Indeed, let i ∈ A. Then, c1
i ≤ E1. Since

E1 < E′1, then c′
i
1 = c1

i ≤ E1 < E′1, which implies i ∈ A′.
Second, by the definitions of A and A′,

E2 = E1 − 1
n

∑
i∈A

c1
i − 1

n
|AC |E1 =

n − |AC |
n

E1 − 1
n

∑
i∈A

c1
i ,

and

E′2 = E′1 − 1
n

∑
i∈A′

ci
′1 − 1

n
|A′C |E′1.

Since A′ ⊇ A, then A′ = A ∪ (A′ \ A). Thus,

E′2 = E′1 − 1
n

∑
i∈A

c′
i
1 − 1

n

∑
i∈A′\A

c′
i
1 − 1

n
|A′C |E′1.

For each i ∈ A′ \ A, we have c′
i
1 ≤ E′1. Thus,

E′2 ≥ E′1 − 1
n

∑
i∈A

ci
′1 − 1

n
|A′ \ A|E′1 − 1

n
|A′C |E′1.

By the definitions of A and A′, we have (A′ \ A) ∪ A′C = AC . Thus,

E′2 ≥ E′1 − 1
n

∑
i∈A

ci
′1 − 1

n
|AC |E′1 =

n − |AC |
n

E′1 − 1
n

∑
i∈A

ci
′1.

Since c1
i = ci

′1 and E
′1 > E1,

E′2 ≥ n − |AC |
n

E1 − 1
n

∑
i∈A

c1
i = E2.
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Step k of the induction. Let k ≥ 2, and suppose that for each � ∈ {1, . . . , k −1},
we have c′� � c� and E′� ≥ E�.

Part 1: c′k � ck.
Let i ∈ N . Using the induction hypothesis, we distinguish four cases:

Case 1. ck−1
i ≥ c′

i
k−1 ≥ E′k−1 ≥ Ek−1.

c′
i
k ≡ c′

i
k−1− 1

n min{c′
i
k−1

, E′k−1}
= c′

i
k−1− 1

nE′k−1 (since c′
i
k−1 ≥ E′k−1)

≤ ck−1
i − 1

nEk−1 (since ck−1
i ≥c′

i
k−1 and Ek−1≤E′k−1)

≤ ck−1
i − 1

n min{ck−1
i , Ek−1}

≡ ci
k

Case 2. ck−1
i ≥ E′k−1 ≥ c′

i
k−1 ≥ Ek−1, or E′k−1 ≥ ck−1

i ≥ c′
i
k−1 ≥ Ek−1.

c′
i
k ≡ c′

i
k−1 − 1

n min{c′
i
k−1

, E′k−1}
= c′

i
k−1 − 1

nc′
i
k−1 (since E′k−1 ≥ c′

i
k−1)

≤ ck−1
i − 1

nEk−1 (since ck−1
i ≥c′

i
k−1 and c′

i
k−1≥Ek−1)

≤ ck−1
i − 1

n min{ci
k−1, Ek−1}

≡ ck
i

Case 3. ck−1
i ≥ E′k−1 ≥ Ek−1 ≥ c′

i
k−1, or E′k−1 ≥ ck−1

i ≥ Ek−1 ≥ c′
i
k−1

.

c′
i
k ≡ c′

i
k−1 − 1

n min{c′
i
k−1

, E′k−1}
= c′

i
k−1 − 1

nc′
i
k−1 (since E′k−1 ≥ c′

i
k−1)

≤ ck−1
i − 1

nck−1
i (since ck−1

i ≥ c′
i
k−1)

≤ ck−1
i − 1

n min{ci
k−1, Ek−1}

≡ ck
i

Case 4. E′k−1 ≥ Ek−1 ≥ ck−1
i ≥ c′

i
k−1.

c′
i
k ≡ c′

i
k−1 − 1

n min{c′
i
k−1

, E′k−1}
= c′

i
k−1 − 1

nc′
i
k−1 (since E′k−1 ≥ c′

i
k−1)

≤ ck−1
i − 1

nci
k−1 (since ci

k−1 ≥ c′
i
k−1)

≤ ck−1
i − 1

n min{ck−1
i , Ek−1}

≡ ck
i

Part 2: E′k ≥ Ek.
Let A ≡ {i ∈ N : ck−1

i ≤ Ek−1} and A′ ≡ {i ∈ N : c′
i
k−1 ≤ E′k−1}.

We claim that A′ ⊇ A (and therefore A′C ⊆ AC). Indeed, let i ∈ A. Then,
ck−1
i ≤ Ek−1. By the induction hypothesis, c′

i
k−1 ≤ ck−1

i and E′k−1 ≥ Ek−1.
Thus, c′

i
k−1 ≤ E′k−1, which implies i ∈ A′.

Second, by the definitions of A and A′,

Ek = Ek−1 − 1
n

∑
i∈A

ck−1
i − 1

n
|AC |Ek−1 =

n − |AC |
n

Ek−1 − 1
n

∑
i∈A

ck−1
i

and

E′k = E′k−1 − 1
n

∑
i∈A′

ci
′k−1 − 1

n
|A′C |E′k−1.
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Since A′ ⊇ A, then A′ = A ∪ (A′ \ A). Thus,

E′k = E
′k−1 − 1

n

∑
i∈A

ci
′k−1 − 1

n

∑
i∈A′\A

ci
′k−1 − 1

n
|A′C |E′k−1.

For each i ∈ A′ \ A, we have ci
′k−1 ≤ E

′k−1. Thus,

E′k ≥ E′k−1 − 1
n

∑
i∈A

c′
i
k−1 − 1

n
|A′ \ A|E′k−1 − 1

n
|A′C |E′k−1.

By the definitions of A and A′, we have (A′ \ A) ∪ A′C = AC . Thus,

E′k ≥ E′k−1 − 1
n

∑
i∈A

c′
i
k−1 − 1

n
|AC |E′k−1 =

n − |AC |
n

E′k−1 − 1
n

∑
i∈A

c′
i
k−1

.

By the induction hypothesis, c′
1
k−1 ≤ ck−1

i and E′k−1 ≥ Ek−1. Thus, E′k ≥
n−|AC |

n Ek−1 − 1
n

∑
i∈A ck−1

i = Ek. ��
Proof of Proposition 5. Let (c, E) ∈ CN and consider (t(c, E), E) ∈ CN .

Let i ∈ N . By definition, µi(c, E) = 1
n min{ci, E} = 1

n ti(c, E) =
1
n min{ti(c, E), E} = µi(t(c, E), E). Thus,

µ(c, E) = µ(t(c, E), E) (1)

Claim. For each k ∈ N, µk(c, E) = µk(t(c, E), E).
The proof is by induction. The case k = 1 is covered by (1). Now, let k ≥ 2

and suppose that, for each l ∈ {1, . . . , k − 1}, µl(c, E) = µl(t(c, E), E). Then

Mk(c, E) =
k−1∑
l=1

µl(c, E) =
k−1∑
l=1

µl(t(c, E), E) = Mk(t(c, E), E). (2)

By definition of the dividends,

µk(c, E) = µ

(
c − Mk(c, E), E −

∑
i∈N

Mk
i (c, E)

)
. (3)

Since, as just proved, Mk(c, E) = Mk(t(c, E), E), we have

µk(c, E) = µ

(
c − Mk(t(c, E), E), E −

∑
i∈N

Mk
i (t(c, E), E)

)
. (4)

Let i ∈ N . There are two cases:

Case 1. ci ≤ E.
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Then, ti(c, E) = ci and from (4), we have

µk
i (c, E) = µi


t(c, E) − Mk(t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)




= µk
i (t(c, E), E),

where the second equality is by definition of the dividends. The claim is proved.

Case 2. ci > E.
Then, ci > ti(c, E) = E, implies

ci − Mk
i (c, E) ≥ E −

∑
j∈N

Mk
j (c, E) = E −

∑
j∈N

Mk
j (t(c, E), E),

where the equality follows from (2), this inequality implies:

ti


c − Mk(c, E), E −

∑
j∈N

Mk
j (c, E)


 = E −

∑
j∈N

Mk
j (t(c, E), E),

together with (3), we have

µk
i (c, E) =

1
n


E −

∑
j∈N

Mk
j (t(c, E), E)


 . (5)

Moreover, ci > ti(c, E) = E, implies

ci − Mk
i (t(c, E), E) > ti(c, E) − Mk

i (t(c, E), E) ≥ E −
∑
j∈N

Mk
j (t(c, E), E),

which implies:

ti


t(c, E) − Mk(t(c, E), E), E −

∑
j∈N

Mk
j (t(c, E), E)




= E −
∑
j∈N

Mk
j (t(c, E), E).

together with (3), we have

µk
i (t(c, E), E) =

1
n


E −

∑
j∈N

Mk
j (t(c, E), E)


 . (6)

Equations (5) and (6) yield µk
i (c, E) = µk

i (t(c, E), E). The claim is proved.

Now, by definition of the recursive rule,

R(c, E) =
∞∑

k=1

µk(c, E) =
∞∑

k=1

µk(t(c, E), E) = R(t(c, E), E). ��
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