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1 Introduction

Although there is extensive theoretical analysis of repeated games, surprisingly lit-
tle evidence exists regarding the strategies that a heterogeneous population actually
uses when playing them. Knowing the strategies people use is important for sev-
eral reasons. First, many economic transactions occur in the context of institutions
that involve repeated interactions. Second, researchers will be able to go beyond ex-
plaining what happened in repeated games, e.g., in carefully designed experiments,
to explaining why it happened. Third, empirically supported hypotheses regarding
strategies provide insights into behavior that may feed back into theories: our re-
sults will show that relatively few strategies explain the vast majority of behavior,
providing empirical evidence for equilibrium selection. Thus, an empirically based
model of repeated-game strategies opens areas of research to better understand
behaviour across a variety of institutions involving repeated interactions.

The need to infer strategies from actions exists because strategy choices are not
observed, and cannot be directly recovered, in most settings. For example, we can
observe central bank actions (raise, maintain or lower the short-term interest rate),
union actions (go on strike or don’t go on strike) or a firm’s actions (increase or
decrease orders), but we cannot observe the strategies that generate these actions.
In this paper we develop a method to infer repeated-game strategies from actions
without interfering with the decision-making process. The method consists of a
strategy model, an inference procedure and a new experimental design.

Our approach searches for deterministic repeated-game strategies that repro-
duce the actions observed in experimental choice data. We allow for the possibility
of inferring multiple strategies, thus allowing for heterogeneity across players, and
for individual players mixing over their strategies. We also do not attempt to repli-
cate all of the observed strategy choices, thus allowing for trembles or seldomly-
used strategies.

In making choices regarding modeling repeated-game strategies, the experi-
mental design and the inference procedure, the most important task is to reduce
the dimensionality of the problem of identifying unobserved strategy choices from
the observed actions of decision makers. The strategy model we examine uses fi-
nite automata, which only include a subset of the theoretically large set of possible
strategies in repeated games. To further reduce the number of strategies we consider,
we designed an experiment to minimize the number of contingencies that might
influence the decision maker; specifically, we examine a stage game with only two
players, each with two actions, and we examine a repeated game consisting of,
on average, only five repetitions of the stage game. And to reduce the number of
strategies we infer while allowing for heterogeneity in strategy choices (e.g., across
time and across the population), we impose a cost proportional to the amount of
heterogeneity (i.e., number of strategies) that we infer.

We apply our method to examine play in a repeated trust game. In the trust stage
game, two players move sequentially. The first player may trust by relinquishing
ownership of an endowment to the second player. If the first player trusts, then the
second player receives the first player’s endowment plus a surplus and must decide
whether to return part of the gains or to keep everything. In finitely repeated games
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(henceforth finite games), two players play the stage game exactly five times. In
indefinitely repeated games (henceforth indefinite games), two players play each
stage game knowing that there is a chance that the stage game will be the last they
will play together. We examine the inference method across these institutions since
they have distinct equilibrium strategies, thus allowing us to test the robustness of
the method.

Using the strategy inference method, in the indefinite games we find that subjects
play trigger strategies that are consistent with equilibrium strategies, and in the finite
games we find that subjects play strategies with end-game effects. In the finite games
we also find that the strategies we infer evolve over time in a manner consistent with
unravelling behavior. And in both the finite and indefinite games we find that almost
all of the inferred strategies are best responses to one of the inferred strategies of the
opponents. Thus, the analysis shows the ability of the methodology to find a subset
of strategies both on and off the equilibrium path that are theoretically justified.

The direct inference methodology introduced in this paper, in which strategies
are inferred directly from actions, is complementary to several existing approaches
of strategy inference. In the “strategy method” of Selten, Mitzkewitz, and Ulrich
(1997), strategy choices are made observable through direct elicitation; a second
approach is to validate inferred strategies by tracking the manner in which subjects
collect and process information (i.e., to collect attentional data as in Costa-Gomes
et al. 2001; Johnson et al. 2002); a third approach is to estimate a probabilistic
choice model as in El-Gamal and Grether (1995), Engle-Warnick (2003), Selten
and Stoeker (1986), and Stahl and Wilson (1995); other approaches involve exper-
imental manipulation and protocol responses.1

We contribute to the literature by studying repeated-game strategies and by
studying an environment in the laboratory that we believe resembles decision-
making in the field.2 Specifically, we do not require subjects to explicitly con-
sider every contingency (the strategy method), nor do we introduce a layer of
decision-making in front of the subjects’ choices of actions (the information track-
ing method). Thus, our approach minimizes the interaction between the method-
ology and the decision-maker to more closely resemble decision-making in the
field.

The remainder of the paper proceeds as follows. Section 2 presents the experi-
mental design and provides a preliminary discussion of the results. The following
three sections present the strategy inference method: Section 3 presents the strat-
egy model, Section 4 presents the inference procedure, and Section 5 presents the
strategies inferred. Section 6 discusses the advantage of the approach and insights
gained. The conclusion offers directions for future research.

1 For evidence on how these approaches may differ, see comparisons of the strategy and direct
methods of inference by Slonim (1994), and Brandts and Charness (2000).

2 The closest related study of repeated games is the repeated PD game of Selten and Stoeker (1986).
Van Huyck et al. (2001) study indefinitely repeated games using a similar stage game, with a continuum
of actions.
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Player A

 Player A: 40
 Player B: 40

Return

Don’t Send Send

Player B

 Player A:     0
 Player B: 120

 Player A:  60
 Player B:  60

Keep

Figure 1. The trust stage game

2 The trust game experiment

As described throughout this section, and the remainder of the paper, the exper-
imental design is integral to determining what strategies people play in repeated
games. Figure 1 shows the extensive form game we study experimentally.3 Two
players, Player A and B, are each given an endowment of $0.40 to start each stage
game. Player A chooses between the action Send (S) and Don’t Send (D). If Player
A chooses D, then both players receive their endowment and the stage game ends.
If Player A chooses S, then Player A’s endowment is doubled and given to Player
B (e.g., reflecting a return on an investment). Player B then chooses between the
action Keep (K) and Return (R). If Player B chooses K, then Player B receives
$1.20 and Player A receives $0.00. If Player B chooses R, then both players receive
$0.60.

2.1 Experimental procedures

Subjects were randomly assigned to be Player A or B for an entire session. At
the beginning of each supergame every Player A was randomly and anonymously
paired with a Player B. Each session began with twenty indefinite supergames and
finished with twenty finite supergames.4 We chose to examine indefinite and finite
supergames since theory predicts, and past evidence and intuition suggests, the two
institutions may induce different strategy choices.

To play indefinite supergames, subjects were told that at the end of each round
(i.e., stage game) within every supergame there was a continuation probability of
p = 0.8. If the supergame continued, then subjects would play another round with
the same opponent. If the supergame ended, then subjects would be randomly and
anonymously paired with a new opponent to begin a new supergame. We randomly
drew sequences of supergame lengths (i.e., the number of rounds in each supergame)
prior to running the sessions. The average length per supergame was 5.1; the longest
was fourteen rounds, and the shortest was one round. We ran two sessions with each
sequence of supergame lengths and used one for the training sample and the other

3 This game is theoretically analyzed by Kreps (1990). Berg et al. (1995) examine behavior when a
similar game is played without repetition.

4 Instructions are available from the authors.
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for the test sample. Having the same sequence of lengths in the training and test
samples eliminates a potential source of variation between them.

After completing twenty indefinite supergames subjects were told that all future
supergames would last exactly five rounds. Twenty additional supergames were
played under these finitely repeated conditions. Similar to the indefinite treatment,
subjects were anonymously and randomly paired with a new opponent to begin
each finite supergame. We chose the finite supergames to last five rounds so that
the number of rounds in the finite condition would equal the expected number of
rounds of the indefinite supergames.

We chose the expected length of supergames to be five rounds to make strategy
inference more plausible. If supergame lengths are much shorter than five rounds
(e.g., one or two rounds), then there won’t be much opportunity to observe how
players react to opponent choices and thus identification among different strategies
will not be possible. On the other hand, with longer supergame lengths (e.g., twenty
or thirty rounds), the possibility of players changing strategies or making mistakes
during the course of the supergame increases. Also, the longer the length of each
supergame, the fewer the number of supergames we can observe. An average length
of five rounds appealed to us as long enough to observe players reacting to opponent
actions while short enough to minimize time-variance concerns.5

Four sessions were run with fourteen subjects in each. There were thus 560
supergame observations per role in the indefinite condition (seven of each player
type times four sessions times twenty supergames) and an additional 560 supergame
observations per role in the finite condition.6 The experiments were run at the
University of Pittsburgh. Subjects were paid a $5.00 participation fee plus their
earnings from four supergames that were randomly selected at the end of the session.

2.2 Trust game equilibria

The unique subgame perfect equilibrium of the stage game is for Player B to play
K if Player A plays S and for Player A to thus play D. Backward induction leads to
the same subgame perfect equilibrium behavior for both players in every round of
the finite game. For the indefinite game there are many equilibria.7 At one extreme,
players may play S and R every round and at the other extreme Player A may play
D in every round. Modeling repeated-game strategies with finite automata does not

5 The experimental design represents a trade-off between inducing as many game histories as possible
and allowing subjects to be paired with the same player multiple times. However, subjects never knew
who they were currently playing against. Nor did they know if or when they played against the current
opponent in the past, and if or when they would play against the current opponent in the future. The
issue of possibly encountering an opponent in a later supergame was not mentioned by a single subject
in post-session protocols that asked subjects to describe their strategic decision-making. Our view is that
there is no way to avoid this trade-off when attempting to infer repeated-game strategies; because there
are so many possible game histories, we chose to induce as many as possible, while trying to control for
independence to the extent possible, both with the experimental design and the inference procedure.

6 Due to a computer failure we lost seven indefinite observations and 98 finite observations in one
session. For this reason there are 553 indefinite and 462 finite observations. We chose the session that
experienced the computer failure to be one of the two sessions for the test sample.

7 This is a result from the Folk Theorem of Repeated Games, see Fudenberg and Maskin (1986).
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change the characterization of equilibrium when strategy complexity is not taken
into account (see Abreu and Rubinstein, 1988).

The continuation probability was chosen to induce actions to vary. If the discount
factor (i.e., the continuation probability) is less than 0.75, then a risk neutral Player
B’s expected payoff is maximized by always playing K, regardless of Player A’s
strategy. We thus chose a discount factor greater than 0.75 to permit cooperative
equilibria. However, we also chose the discount factor to be near the 0.75 to make
cooperation difficult to achieve. Two paper and pencil pilot sessions confirmed that
the continuation probability of 0.80 induced considerable variation in actions across
supergames.8

2.3 Preliminary results

Our experiments were designed so that we can interpret sequences of actions taken
by a subject within a supergame as having been generated by a stationary and
unobservable repeated-game strategy. Since repeated-game strategies map game
histories into actions, we begin by investigating game histories that may figure
prominently in subject decision making. Specifically, we select particular game
histories that are either relevant to theoretical predictions or due to past experimental
evidence by introducing an indicator variable that takes on a value of one whenever
a particular history has occurred within a supergame and a value of zero whenever
it has not.

We estimate the effect of the history on the probability of taking the actions S and
R using a fixed effects logit models. To more directly examine how past supergame
lengths affected choice, we estimate the probability that Trustor i (Trustee i) played
Si,r (Ri,r) in Round r using the following two fixed effects logit regression models:

Model 1: Si,r = β0 + β1Hi,r + αi + εi,r

Model 2: Si,r = β0 + β1Hi,r + β2Li,r + αi + εi,r

where in Model 1 αi is a fixed individual effect, Hi,r is a vector of indicator
variables that take on the value of 1 whenever a particular game history has been
achieved and 0 otherwise. Model 2 includes Li,r, a vector of indicator variables
that interact each game history variable in Hi,r with the last ten supergames. The
variables take on a value of 1 whenever a particular history has been achieved in
the last ten supergames of a supergame type (finite or indefinite) and 0 otherwise.
Model 2 is identical to Model 1 in every other respect. We clustered the standard
error estimates on sessions so that each session (as opposed to each individual) is
treated as a statistically independent observation.

Three types of histories are included in the vector Hi,r:

(1) The opponent played D or K in the immediately preceding supergame round:
A higher probability of K (D) in response to a D (K) in the immediately preceding
supergame round would be evidence for play of a “tit-for-tat” strategy. This strategy
mimics the action taken by an opponent in the previous round of a game and is

8 Each session had fourteen participants, and each session included only five supergames.
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possibly empirically relevant (in Axelrod, 1984, this strategy was successful in a
tournament).

(2) The opponent played D or K in any previous round within the supergame: A
higher probability of K (D in response to a D (K)) in any previous round in a
supergame would be evidence for a “grim” strategy, which permanently punishes
a defection. This strategy is theoretically relevant, figuring in the construction of
cooperative equilibria in repeated games.

(3) Round 3, 4, 5, 6-8, and 9-14 indicators:9 In the finitely repeated games condi-
tioning behavior on the round could be empirically relevant, providing evidence that
players are learning backward induction strategies (see Selten and Stoeker, 1986,
for evidence for this in a prisoner’s dilemma game). In the indefinitely repeated
games this type of behavior is not predicted by theory because each supergame
continues with a constant and independent probability.

Table 1 presents the regression results. The table is divided into two sections:
the left-hand section contains results for the finite games and the right hand section
contains results for the indefinite games. Within each section we present coefficient
estimates for the game histories, rounds, and interaction terms for both Model 1
(the left-most two columns in the section) and for Model 2 (the right-most two
columns in the section). And within each model section we present the results for
Player A (the left column) and Player B (the right column).

The regressions show behavior consistent with repeated-game strategies in the
finitely repeated games. According to both models, an opponent playing K in any
previous round decreases the probability that Player A plays S (consistent with a
“grim trigger” strategy). Reaching rounds four and five also decreases the prob-
ability of sending. Play appears to be non-stationary because the round by ten
supergames effects are significant and negative: Player A is less likely to play S in
rounds 4 and 5 in the last ten supergames than in the first ten. Results for Player B
are qualitatively similar.

The regressions also show evidence of repeated-game strategies in the indefi-
nitely repeated games. From Model 1 we find evidence that both “grim” and “tit-
for-tat” strategies may be relevant strategies for Player A, but we also somewhat
surprisingly find evidence for a round effect. Model 2 appears to indicate that this
round affect increases over time, as Player A is less likely to play S in all rounds
(compared with round 2) in the last ten supergames than in the first ten. For Player
B, Model 1 appears to imply the same, but Model 2 implies that when we take the
interactions with the last half of the supergames into account all behavior appears
to be accounted for by the round number, and not by “grim” or “tit-for-tat”. Thus
there appears to be an asymmetry in behavior between Player A an Player B in the
indefinite games, with Player B apparently conditioning her behaviour increasingly
on the round numbers rather than on the history of play with the opponent.

While these results provide evidence for particular types of repeated-game
strategies used by the subjects, they are only proxies for drawing such conclusions.

9 Round 1 was eliminated due to all lagged independent variables being missing. All other rounds
effects ar relative to round 2 effects. We grouped round numbers higher than 5 together into two groups
because there are relatively few observations of longer games.
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The regressions identify game histories that may figure prominently in decision-
making, and they reveal how these histories may affect play on average. In other
words, the regressions allow us to infer the type of strategic behavior that occurs on
average in the experiments. However, we cannot tell whether behavior is consistent
with specific decision rules subjects may have used, or whether they are average
responses to potentially many different strategies subjects were using.

Finally, the regressions impose no structure on the type of learning that is oc-
curring, as they simply document whether different types of conditioning variables
are becoming more or less relevant to decision making. We cannot, for example,
ask the question whether strategic play is moving toward equilibrium, or whether
there is a best-response dynamic occurring. To take a step toward answering these
types of questions, we now take a look at simple strategies that may be generating
these data.

3 The strategy model

Empirical analysis of repeated-game strategies requires identifying an empirically
manageable number of strategies to examine from the theoretically large set of
repeated-game strategies. Since the set of theoretically possible strategies increases
in size exponentially with the number of rounds in repeated games, this set must
be reduced for the purpose of strategy inference. The first part of our methodology
thus involves a sequence of steps that reduces the theoretically large set. The second
part uses data to assess the goodness of fit of the strategies in the reduced set in
order to find a best fitting set of strategies.

3.1 Modelling strategies with finite automata

There are many contexts in which economists place restrictions on the strategy
choices for the solution of complex problems (see Conlisk, 1996, and the refer-
ences therein). In repeated games, finite automata provide a method for modelling
strategies, and in particular they are often used to model the behavior of bound-
edly rational agents (e.g., Rubinstein, 1986; Abreu and Rubinstein, 1988; Binmore
and Samuelson, 1992). Agents are typically assumed to have preferences over both
monetary outcomes and the size (i.e., complexity) of their strategy.10 Finite au-
tomata are also useful as inputs to boundedly rational models of learning (e.g.,
Miller, 1996).

In our case, restricting the strategy set to a set of finite automata provides a
useful language with which to describe subject behavior in repeated games; the
finite automata enable us to classify and discuss actual sequences of decisions.11

While we do not explicitly test theories of complexity (as in Harrison and McDaniel,

10 Since complexity of a computational problem is ultimately determined by the time it takes to find
a solution, and since the size of an automaton may be an indication of its execution time, size may be a
useful measure of its complexity (see Harrison, 2002, for a discussion).

11 Similarly, Spiegler (2005) uses a similar restriction in a theoretical study to be able to specifically
discuss testing threats in repeated games.
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2002; McKinney and Van Huyck, 2005), inferring finite automata from observed
behavior can complement and extend existing theories, thus providing a bridge
between repeated-game theory and observed behavior.12

While there is substantial theoretical research in economics that uses finite
automata to model repeated-game strategies, very little empirical evidence exists
to support or contradict this research. Empirical evidence for finite automata can
therefore complement and extend existing theories; e.g., inferred strategies can
help refine equilbrium selection criteria and can also be used with boundedly ra-
tional learning models (see Miller, 1986). Inferring finite automata from observed
behavior thus helps bridge repeated-game theory with observed behavior.

In this paper we use finite automata to empirically model decision-makers’
strategies. Specifically, we use a class of finite automata called Moore Machines
(due to Moore, 1956). Each Moore Machine Mi represents a deterministic strategy.
Each machine Mi has a finite number of states denoted qj

i ∈ Qi. Each state j

specifies an action, aj
i , to take when the machine enters the state, where aj

i ∈ Ai is
an action available to the machine. The action specified in each state is determined
by an output function that maps each state to an action: λi : Qi → Ai. Each state
also has a transition function, µi : Ai × Q−i → Qi, which directs the machine to
the next state contingent on every possible opponent action. A Moore Machine also
designates an initial state, q1

i ∈ Qi, to begin play.
For a few examples of how Moore Machines model strategies, imagine a re-

peated game with two Players, A and B, and assume each player has two actions
in every round of the game. Player A’s actions are S and D and Player B’s actions
are R and K. Figure 3 shows twenty-six Moore Machines for Player B. For every
machine, each circle represents a state, the notation inside each circle is the state’s
output function (action) and a double circle indicates the initial state. Arrows rep-
resent state transition functions and notation next to arrows indicates the opponent
action that triggers the transition.

Strategy Mb1 represents Player B’s strategy to play R in every round of the
game regardless of Player A’s actions. Strategy Mb3 is a permanent trigger strategy
for Player B. It plays R in the initial round and continues playing R in subsequent
rounds as long as Player A plays S. If Player A ever plays D, however, this action
triggers the machine to transition to its second state that specifies playing K. Once
the strategy enters this second state it remains there for all remaining rounds.

3.2 Constructing the candidate strategy set

Modelling repeated game strategies using Moore Machines is the first step in reduc-
ing the set of theoretically possible strategies to an empirically manageable size. To
see this, note that Moore Machines make state transitions only in response to the
actions of their opponents, but not to their own actions (this type of automaton is

12 Ken Binmore (Binmore, 1987a,b) suggests that players themselves be modelled as programmed
computing machines, thus providing a method to discuss what it means to behave irrationally. Our
contribution is to describe the choices of subjects with a set of computational machines with the purpose
of better understanding what algorithms may actually be in use in a population of players.
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called a “full automaton”; “exact automata” do not have this restriction (e.g., as in
Kalai and Sanford, 1988). This restriction seems minimal considering the fact that
we will observe repeated games with relatively few repetitions of the stage game,
which reduces the number of repeated-game observations in which players do not
follow the directions of their own strategy choice.

We perform the second reduction in the strategy set by choosing a candidate set
of machines, N , that include strategies that satisfy some initial criteria. For example,
the criteria may be based on theory (e.g., equilibria), past empirical evidence (e.g.,
backward induction or unravelling), a set of machines with specific properties (e.g.,
a maximum number of states) and/or other priors held by the researcher (e.g.,
strategies which exhibit behaviors such as reciprocity, biases, heuristics or bounded
rationality). In selecting the criteria, the finite automata machine representations
are not considered; finite automata are simply tools to represent the behaviors
of interest. By choosing to infer a specific candidate set of strategies, we limit
the strategies we can infer to this set. However, as we show below, this set can
encompass as many (or as few) strategies as the researcher wishes. For instance, in
this paper we examine from two to over one thousand strategies in the candidate
set using a variety of criteria.

We perform the third reduction of the strategy set by using well known properties
of finite automata (e.g., see Hopcroft and Ullman, 1979; Harrison, 1964) to insure
that each automaton in the candidate set N is behaviorally unique, i.e., that there
exists a sequence of actions that makes possible the empirical identification of each
automaton.13 The third reduction does not eliminate any strategic behavior that
we can infer, it simply eliminates any duplication of identical strategic behavior
from the candidate set. For example, a twelve-state machine that indicates a player
should play R in each state is behaviorally identical to a one-state machine that
indicates playing R, and the third reduction would thus only consider one of these
two machines in the candidate set.

The three reductions to form the set of strategies we will empirically consider
result in a set of machines, M , that has the following properties. First, M includes
exactly one machine representation for each behavior we wanted to examine when
we selected the criteria. Second, since each machine in M is behaviorally unique,
realizations of actions can occur that allow us to identify each machine from every
other one. Third, the identical modeling approach can be used to examine many
distinct criteria and many strategies.

Although not to reduce the candidate set, but rather to aid in interpreting the
behavior of strategies in the candidate set, we represent each strategic behavior by
a machine with the minimum number of states that can represent the behavior. For
example, if we wish to include the strategic behavior to unconditionally play action
R, then we would include a one-state machine that indicates playing R rather than,
say, a two-state or 23-state machine that indicates playing R in every state. By
representing every strategic behavior using machines with the minimum number
of states, we facilitate interpreting the behavior of the machines.

13 The procedure to find the set of behaviorally unique automata involves deriving minimal state
representations for each behavior of interest, and then choosing one automaton from each resulting set
of isomorphic automata.
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4 The estimation procedure

This section describes the estimation procedure to find the best fitting subset of
strategies played by a population of players from the reduced strategy set M . To
avoid over-fitting the data (the goodness of fit of a strategy set weakly increases
with the number of strategies in the set), we include a fitness cost that increases
with the number of machines. To avoid spurious inference due to serial dependence
between supergame observations (i.e., due to multiple supergame observations per
subject or possible idiosyncratic learning effects), we test strategy set goodness of
fit on a statistically independent hold-out sample of data from a different set of
players.

Our procedure will examine deterministic strategies, counting the number of
supergames the strategies perfectly fit, because the relatively short length of the su-
pergames provides too little information for probabilistic inference. A probabilistic
model of strategies would introduce errors in state transitions and action plans; the
model would take the form of a markov process with a binomial process generating
a pair of actions in each possible state, and could be estimated using hidden Markov,
filtering, or Baysian procedures. We have attempted to estimate such a model but
due to the average length of five supergames in our experimental design we have
not been able to recover strategies in monte-carlo exercises: the short time series
does not provide enough information regarding underling state transitions.

Our experimental design involved a trade-off between viewing many game
histories in which we could assume the underlying strategic behavior is stationary
and viewing fewer game histories over a longer time in which play may not be
stationary. We chose the former experimental design and were surprised to find
that the simple, deterministic strategies fit the vast majority of supergame data.14

With the current experimental design with many game histories we are also able to
recover strategies with monte-carlo exercises that include different types of noise
in the data generating process. In fact, the fitness cost we employ in the estimation
procedure was directly calibrated from these monte-carlo exercises to account for
noisy decision makers.

4.1 Fitting the data

The notion of goodness of fit for finite automata is a simple one; a machine fits
a repeated game if, when it replaces the subject, it plays exactly the same actions
the subject played. The notion of goodness of fit for a set of machines is similar;
a set of machine fits a repeated game if any machine in the set, when it replaces
the subject, plays exactly the same actions the subject played. Our goal is to find
a subset of machines in M that fits the most data. The problem is that adding a
machine to a set weakly increases the set’s goodness of fit (we loosely refer to the

14 With different experimental designs researchers have fit probabilistic models in dynamic contexts:
Houser et al. (2004) have subjects play against a stationary strategy played with errors by a computer
and use a Bayesian procedure to determine the number and type of decision rules in a dynamic game;
Engle-Warnick and Ruffle (2003) extend a procedure first used by El-Gamal and Grether (1995) to a
dynamic game to fit probabilistic if-then statements to the actions of buyers in a monopoly game.
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number of machines in a set as the set’s complexity). Thus, our goal is to find a
subset of machines in M that maximize goodness of fit subject to a cost for the
set’s complexity.

To operationalize the inference procedure, we need a few definitions.A repeated
game is henceforth referred to as a supergame. An observation oj ∈ O consists of a
pair of sequences of actions by opposing players during a supergame. Machine Mi

fits supergame oj if, when Mi replaces the subject in the supergame, Mi responds
to the sequence of actions of the subject’s opponent with the exact same sequence
of actions taken by the subject it replaced. Let the indicator function I(oj , Mi) = 1
if oj is fit by Mi and I(oj , Mi) = 0 otherwise.

Definition 1 The goodness of fit F (Mi) of machine Mi on the set of supergames
O is the number of observations oj ∈ O that Mi fits:

F (Mi) =
∑

oj∈O

I(oj , Mi).

To address heterogeneity that may occur across players (different players may
be using different strategies) and over time (individual players may be mixing or
learning), we examine the goodness of fit of subsets of n machines, Tn ⊆ M . Let
I(oj , Tn) = 1 if oj is fit by at least one machine in Tn and I(oj , Tn) = 0 otherwise.

Definition 2 The goodness of fit F (Tn) of the set of machines Tn on the set of
supergames O is the number of observations oj ∈ O that Tn fits:

F (Tn) =
∑

oj∈O

I(oj , Tn).

The best fitting set containing n machines, Bn, is found by maximizing the
goodness of fit over every possible subset Tn of n machines in M :

Bn = arg max
Tn

F (Tn).

Note that F (Bn+1) ≥ F (Bn), since Bn+1 could always contain all the ma-
chines in Bn (note also that Bn is not necessarily a subset of Bn+1). Thus the
goodness of fit of the best fitting set of machines is weakly increasing with the
number of machines in the set. To determine the number of strategies needed in
Bn to fit the data and to reduce over fitting the data, we introduce a cost function,
C(n), and assume the cost is proportional to the number of strategies in the set.
We select the overall best fitting set B from the best fitting sets for each set size,
Bn, by maximizing goodness of fit subject to the cost of the number of machines
in Bn:

B = arg max
n

f(Bn) − C(n).

For simplicity, we let C(n) = n · c · g(O), where 0 < c ≤ 1 and g(O) equals
the number of observations in O, so that the marginal cost of including another
strategy in B is constant: C(n + 1) − C(n) = c · g(O). To increase the number of
strategies in the set by one, the goodness of fit of the best-fitting set must increase
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by at least the minimum threshold of c ·g(O) (e.g., with g(O) = 1000 observations
and c = 5%, an additional fifty observations would need to be fit to increase the best
fitting set size by one). The appropriate value of c may depend on the number of data
generating machines (i.e., degree of heterogeneity), the number of and the actual
machines in M and noise in the data generating process. In general, the greater the
value of c, the more likely the method will reject actual data generating behavior
and the lower the value of c, the more likely the method will spuriously accept
non-data generating behavior. We used computer simulations to find a conservative
value for c to avoid accepting non-data generating behavior.15

4.2 Refining the model selection: out of sample goodness of fit

As a second guard against over fitting, we infer the best fitting set in one sample
(the training sample) and test its goodness of fit on an independent sample (the
test sample). We use a holdout sample to address the concern that when subjects
play many supergames, observations are not independent since there are multiple
observations per game and since there is likely to be path dependence in which
many players can be affected by common opponents. By requiring the best fitting
set of machines to fit an independent sample of data, we mitigate these dependency
concerns.

We proceed as follows. If the contribution of any machine in B to the goodness
of fit in the test sample is not enough (defined below), we reject the strategy set and
move to the best fitting set from the training sample that contains one less strategy.
We continue the process until we fail to reject a best fitting set.

The following definition quantifies the contribution of machine Mi to the good-
ness of fit of set Tn. Let Tn,−i denote set Tn excluding Mi, where Mi ∈ Tn.

Definition 3 The unique goodness of fit U(Tn, Mi) of Mi in the set Tn is the
number of supergames oj that Mi fits and that no other machines in Tn fits:

U(Tn, Mi) = F (Tn) − F (Tn,−i).

It is easy to show that the unique goodness of fit of each machine in B is at least
the threshold level in the training sample; i.e., for all Mi ∈ B, U(B, Mi) ≥ c·g(O).
We similarly require that the unique goodness of fit of all machines Mi ∈ B be at
least the threshold level in the test sample: U(B, Mi) ≥ c · g(OT ), where g(OT )
is the number of observations in the test sample. If the unique goodness of fit of
any machine in the test sample falls below this cutoff level, we reject the model
B = Bn and select the model B = Bn−1. We repeat the test until we find a model
B∗ where all Mi ∈ B∗ pass the threshold criterion for the test sample.

15 The simulation results are reported in an earlier version of this paper and are available from the
authors. The simulation exercises varied the number of data generating machines and included two error
specifications.
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Figure 2. Player A, set s ≤ 2

4.3 Selecting the candidate strategy set

We use three criteria to select candidate strategy sets NA and NB (superscripts
indicate the player type). Our first criterion is to include all strategies in NA and
NB that have no more than s = 2 states. Our motivation for this criterion is
primarily to avoid over fitting data, but also to reduce the computational burden
and to reflect bounded rationality and complexity.16 Figures 2 and 3 show sets MA

and MB that are constructed from sets NA and NB using the criterion that no
machine has more than s = 2 states. There are more machines in MB than in MA

because whenever Player A plays D Player A’s next action is unconditional (since
Player A does not observe a Player B action in that round of the game), whereas
Player B’s action may always be conditional on the action of Player A.

Though the number of machines in MA and MB , twelve and twenty-six, re-
spectively, is small, many behaviors are represented. Ma1, Ma2, Mb1 and Mb2 are
the unconditional strategies that play S or D for Player A and R or K for Player B.
The remaining strategies condition behavior on opponent actions and/or the round.
MA and MB include the non-cooperative equilibrium pair (Ma2, Mb2) for the finite
and indefinite games and many cooperative equilibrium pairs (e.g., {Ma3, Mb1},
{Ma3, Mb6}) for the indefinite game. MA and MB include trigger strategies such
as the extensive form game analogue to the grim-trigger for both players (Ma3,
Mb3) and tit-for-tat for Player B (Mb5). There is no tit-for-tat analogue for Player
A in this game.

16 Bounded rationality suggests a player may not consider all feasible strategies but instead limits
himself to “less complex” strategies. The complexity of finite automata machines may be defined in
a number of ways (see Osborne and Rubinstein, 1994). One definition is that complexity is positively
related to the number of states.
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Figure 3. Player B, set s ≤ 2

Our second criterion is based on theory that suggests different strategies may be
used in the finite and indefinite games. In finite games the unique subgame perfect
equilibrium is for Player A to never send, Ma2, and for Player B to never return,
Mb2. Past evidence (e.g., Selten and Stoeker, 1986), however, shows that behavior
unravels from cooperative behavior towards the non-cooperative equilibrium.17 To

17 For example, Player A may play S all five periods and Player B may play R the first four periods,
but play K in the fifth period. With experience, Player A may anticipate Player B’s behavior and so play
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examine this unravelling behavior, we create a set of strategies for each Player A
and B that allows unconditional permanent defection from cooperative behavior
after each round. Figures 4 and 5 show these strategies for Player A (Ma2, Ma4,
Ma13, Ma14 and Ma15) and B (Mb2, Mb11, Mb27, Mb28 and Mb29), respectively.18

Our third criterion is based on protocols collected in pilot sessions of the in-
definite game, which suggest a few additional strategies may be important to fit
the data. Subjects indicated they would “punish” an opponent who played his non-
cooperative action. The “punishment” involves playing the non-cooperative action

S the first four periods, but then play D in the fifth period. Player B may anticipate this behavior and
respond by playing R for only the first three periods and then playing K thereafter. And so on.

18 For these strategies we assume during the cooperative phase that if an opponent plays his non-
cooperative action then the player responds by playing his non-cooperative action thereafter.
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for a finite number of periods. Figures 4 and 5 show these machines for Player A
(Ma1, Ma5, Ma16, Ma17 and Ma18) and B (Mb1, Mb6, Mb30, Mb31 and Mb32),
respectively. To analyze the data, we combine the criteria motivated by the finite
game unravelling hypothesis and indefinite game protocols to form the “+” sets.
We define s+ as the union of s (i.e., strategies in MA and MB that have no more
than s states) and +.

5 Results

Section 5.1 presents criteria for the candidate strategy set that include machines: (1)
with a maximum number of states, (2) consistent with past evidence on repeated
games and (3) consistent with post-experiment protocol responses. Section 5.2
shows the goodness of fit of these strategy sets and justification for our criteria.
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Section 5.3 shows that a small number of inferred machines fit the vast majority
of the data and Section 5.4 presents these specific strategies and shows that they
are consistent with theoretical predictions and intuition. Section 5.5 shows that
strategies inferred over time evolve consistently with best response behavior to-
ward the unique non-cooperative equilibrium in the finite game and the maximally
cooperative outcome in the indefinite game.

5.1 Goodness of fit of the candidate sets

The top of each subsection of Table 2 shows the goodness of fit for the candidate sets
s and s+ for s = 1, 2, and 3. The four panels show results for Player A and B in the
finite and indefinite games. In the finite games the goodness of fit is much higher for
set s+ than s, holding the maximum number of states constant. For example, sets
1+ and 2+ fit over 30% more observations than sets s = 1 and s ≤ 2, respectively,
and set 3+ fits over 17% more observations than set s ≤ 3. Thus, the + strategies
are important to fit finite game data. In indefinite games the + sets have a smaller
effect. Although set 1+ fits almost 20% more observations than set s = 1, sets 2+
and 3+ fit on average only 5% more observations than sets s ≤ 2 and s ≤ 3.

Table 2 provides motivation for examining the 2+ candidate set. Note that while
the number of strategies in MA increases by a factor of ten from set 2+ to 3+ (18
to 180), set 3+ fits on average only 8% more of the data than set 2+ in finite or
indefinite games. Similarly, while the number of strategies in MB increases by a
factor of more than thirty from set 2+ to 3+ (32 to 1058), the 3+ set fits on average
only 4% more of the data than set 2+. We thus examine the strategies inferred in
the 2+ set; increasing the candidate set to include more strategies (sets 3 or 3+)
does not increase goodness of fit enough to justify the risk of over fitting the data
with the ten and thirty fold increases in candidate strategies.

5.2 Number of strategies in the data

The bottom of each subsection of Table 2 shows the goodness of fit of each best
fitting set containing n = 1 to n = 6 strategies for each candidate set. For the most
part, our choice of the 2+ set has little effect on the set goodness of fit, F (Bn);
holding n constant, the difference in goodness of fit of the 1+, 2+ and 3+ sets
is never greater than 6% (17 out of 280 observations) and is often much less. For
example, in finite games for Player B, F (B2) is 168, 168, and 171 observations
for the 1+, 2+ and 3+ sets, respectively. Also note that only a few strategies are
necessary to fit a majority of observations. For example, for the 1+, 2+ and 3+ sets
F (B2) ≥ 61% (i.e., the two best fitting strategies fit over 61% of the observations)
and F (B3) ≥ 71%.

Using our model selection criterion, Table 2 shows that more heterogeneity (i.e.,
more strategies) is inferred for Player B than A and more heterogeneity is inferred
in the finite than indefinite games. Examining the 2+ set at a complexity cost of
c = 5%, the best fitting sets contain six and three Player B strategies, and three and
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one Player A strategies in the finite and indefinite games, respectively.19 Inferring
more Player B than A strategies may be because Player B always observes Player
A actions whereas Player A does not always observe Player B actions.

The results in Table 2 are based on the training sample, and we now turn to the
test sample to guard against over fitting the data. With one exception we find that in
every case (i.e., in the finite and indefinite games for Players A and B) the inferred
strategies in the best fitting sets pass the out of sample selection criterion. The
exception is in the finite games for Player B; the unique goodness of fit of at least
one strategy in the best fitting set in this case is less than c = 5% out of sample. The
best fitting finite Player B model with the most strategies that passes the test sample
criterion has n = 3 strategies. Therefore, including our out of sample refinement,
we infer three Player A and B strategies to fit finite game data and one Player A
and three Player B strategies to fit indefinite game data.

5.3 Specific strategies in the data

Figure 6 shows the inferred strategies and Table 3 shows their unique and total
goodness of fit in the training and test samples. Henceforth, we refer to each ma-
chine’s goodness of fit (i.e., the number of machines that it fits, recall Definition 1)
as its total goodness of fit in contrast to its unique goodness of fit (i.e., the number
of machines that it fits that no other machine in the best fitting set fits, recall Defi-
nition 3). In the figures and tables we show the machines in order from the highest
to lowest total goodness of fit.

Four of the six inferred finite strategies (Ma14, Ma15, Mb27, Mb28) are on the
backward induction path. The remaining two finite strategies, Ma1 and Mb1, are
the Unconditional Send and Return strategies. The strategies along the backward
induction path defect in the fourth or fifth round for Player A and in the third or
fourth round for Player B. The multiple inferred strategies along the backward
induction path are consistent with at least two hypotheses. First, there may be
heterogeneity across players; some players may backward induce one round while
others may backward induce two rounds. Second, players may initially backward
induce one round and then learn to backward induce two rounds. We examine
the second hypothesis below. The key insight is that the method is able to detect
heterogeneity.

All inferred finite game strategies are easy to interpret and justify. Four of them
are best responses to an opponent’s inferred strategy. Player A’s Unconditional
Send strategy (Ma1) is a best response to Player B’s Unconditional Return strategy
(Mb1). Player A’s 4th round defection strategy (Ma14) is a best response to Player
B’s 4th round defection strategy (Mb28). Player B’s 4th round defection strategy
(Mb28) is a best response to Player A’s 5th round defection strategy (Ma15) and
Player B’s 3rd round defection strategy (Mb27) is a best response to Player A’s 4th
round defection strategy (Ma14).

19 Computer simulations replicating game conditions indicate that c = 5% is conservative in the sense
that over fitting the data did not occur. The simulations also validated the ability to recover the known
data generating machines in the presence of noise.



Inferring repeated-game strategies 623

Table 2. Training sample goodness of fit of base and best-fitting machines

Finite games

A Players B Players
Goodness of fit of base sets Goodness of fit of base sets

No. of Goodness % No. of Goodness %
Set machines of fit Fit Set machines of fit Fit

1 state 2 70 25.0% 1 state 2 142 51.6%
2 state 12 171 61.1% 2 state 26 174 63.3%
3 state 176 206 73.6% 3 state 1054 208 75.5%

1 state + 10 255 91.1% 1 state + 10 265 86.4%
2 state + 18 256 91.4% 2 state + 32 268 97.5%
3 state + 180 278 99.3% 3 state + 1058 274 99.6%

Goodness of fit of best-fitting sets Bn Goodness of fit of best-fitting sets Bn

No. of Base set for Bn No. of Base set for Bn

machines 1 2 3 1+ 2+ 3+ machines 1 2 3 1+ 2+ 3+
1 65 145 145 145 145 145 1 121 124 126 124 124 126
2 70 156 169 197 197 205 2 142 153 157 168 168 171
3 n.a. 162 182 227 227 239 3 n.a. 172 183 196 196 199
4 n.a. 167 189 239 239 253 4 n.a. 174 203 222 223 225
5 n.a. 170 194 245 245 259 5 n.a. 174 205 246 247 249
6 n.a. 171 197 250 250 264 6 n.a. 174 206 265 266 269

280 total observations 275 total observations

Indefinite games

A Players B Players
Fitness of base sets Fitness of base sets

No. of Goodness % No. of Goodness %
Set machines of fit Fit Set machines of fit Fit

1 state 2 170 60.7% 1 state 2 187 66.8%
2 state 12 227 81.1% 2 state 26 225 80.4%
3 state 176 249 88.9% 3 state 1054 244 87.1%

1 state + 10 224 80.0% 1 state + 10 240 85.7%
2 state + 18 237 84.6% 2 state + 32 251 89.6%
3 state + 180 255 91.1% 3 state + 1058 261 93.2%

Goodness of fit of best-fitting sets Bn Goodness of fit of best-fitting sets Bn

No. of Base set for Bn No. of Base set for Bn

machines 1 2 3 1+ 2+ 3+ machines 1 2 3 1+ 2+ 3+

1 170 202 202 193 202 202 1 158 161 162 161 161 162
2 170 211 212 206 211 212 2 187 192 194 188 192 194
3 n.a. 218 222 213 218 222 3 n.a. 212 218 208 212 218
4 n.a. 222 227 216 222 227 4 n.a. 217 230 221 224 231
5 n.a. 224 231 218 225 231 5 n.a. 221 237 230 233 243
6 n.a. 226 235 220 227 237 6 n.a. 222 240 236 239 249

280 total observations 280 total observations
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Figure 6. a Inferred strategies in all finite supergames. b Inferred strategies in all indefinite supergames

The remaining two inferred finite game strategies are also easily justified. Al-
though Player A’s 5th round defection strategy (Ma15) is not a best response to
any of Player B’s inferred strategies, it may reflect Player A anticipating Player B
playing K in the last round; Player B on average plays K 44% of the time in the last
round.20 And although Player B’s Unconditional Return strategy (Mb1) is also not
a best response to any of Player A’s inferred strategies, it reflects a preference for
fairness or equity consistent with utility functions proposed by Fehr and Schmidt
(1999) and Bolton and Ockenfels (2000).

In the indefinite game the only Player A strategy inferred, Ma3, is the analogue
to the Grim Trigger strategy in the repeated Prisoner’s Dilemma game. Strategy Ma3
fits 72% and 67% of the observations in the training and test samples, respectively.
This strategy is a best response to Player B’s inferred strategy Mb6. In fact, Ma3 and
Mb6 form a cooperative equilibrium pair. The two other inferred Player B strategies,
Mb11 and Mb25, are not best responses to Ma3. However, given that 28% of Player
A observations are not consistent with the Grim Trigger (Ma3), Mb11 and Mb25
may be justified in terms of profit maximization.

Figure 7 shows the total goodness of fit (combining the training and test sam-
ples), for the first and last ten supergames separately, for inferred strategies that
are best responses to at least one inferred opponent strategy. In the finite game, the
total goodness of fit of the two inferred Player A best response strategies (MA1 and

20 All best fitting strategy sets for Player B with more than three strategies include the 5th round
defection strategy Mb29.
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Figure 7. Goodness of fit and average payoff of inferred best response strategies

MA14) increases by 5% (from 52% to 57%), and the total goodness of fit of the
inferred Player B best response strategy (MB28) increases by 8%. In the indefinite
game, the total goodness of fit of the inferred best response Player A and Player
B strategies increases by 9% and 11%, respectively. The increased goodness of
fit of the inferred strategies over time suggests that players are increasingly best
responding to the strategic behavior of their opponents.

Figure 7 also presents the average per round payoff received by playing the
inferred best response strategies.21 In the finite game, the average per round payoff
decreases for both players, moving toward the unique non-cooperative equilibrium
per round payoff of $0.40. For instance, Player B’s average per round payoff de-
creases from $0.590 to $0.558. In the indefinite game, the average per round payoff
increases for both players, moving toward to the cooperative equilibrium per round
payoff of $0.60. For instance, Player A’s average per round payoff increases from
$0.493 to $0.523. Thus, not only are the inferred best response strategies fitting
an increasing proportion of supergames over time, but payoffs are also moving
towards equilibrium payoffs in both finite and indefinite games.

In sum, inferred strategies differ across conditions in behaviorally meaningful
ways. Four of the six inferred finite game strategies reflect end game effects on the
backward induction path while none of the inferred indefinite game strategies reflect
end game effects. Further, four of the six finite game strategies are best responses to
inferred opponent strategies and one more reflects preferences modeled by Fehr and
Schmidt (1999) and Bolton and Ockenfels (2000)). Two of the inferred strategies
in the indefinite game form a cooperative equilibrium pair. Finally, in both the
finite and indefinite games, the total goodness of fit of inferred strategies that are a
best response to inferred opponent strategies increased over time, and the average

21 This payoff is calculated by determining the average payoff per round for each supergame the
strategy fits, and then averaging across all supergames fit by the strategy.
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Table 3. Inferred strategies and their goodness of fit

Training sample Test sample
Machine Unique Total Unique Total

fit fit fit fit

Ma15 20% 40% 15% 42%
Player A Ma14 17% 38% 8% 35%

Finite Ma1 23% 23% 9% 9%
games Mb1 20% 44% 12% 29%

Player B Mb28 15% 41% 13% 43%
Mb27 10% 19% 17% 38%

Player A Ma3 72% 72% 67% 67%

Indefinite Mb6 43% 57% 32% 46%
games Player B Mb11 7% 22% 5% 21%

Mb25 11% 11% 15% 17%

Notes:
1. Bold face indicates strategies that are best responses to inferred opponent
strategies.
2. Calculations based on c = 5% threshold.

payoff received from playing these strategies moved toward the average payoff for
an equilibrium payoff for each game.

5.4 Behavior over time

In this section we examine whether inferring multiple strategies is due to players
adapting different strategies over time. We address this question by inferring strate-
gies for the first and last ten supergames. Figures 8 and 9 show the inferred finite
and indefinite game strategies, respectively, for the first and last ten supergames
and Table 3 shows the goodness of fit of these strategies.

In the finite game, the same strategy sets that are inferred for all twenty su-
pergames for Player A and Player B are inferred for the first ten supergames (see
Fig. 8a for Player A and Fig. 8b for Player B). However, for Player A for the last
ten supergames the five-round counter (Ma15), which was not a best response to
any inferred opponent strategy, and the always send (Ma1) machines are no longer
inferred. On the other hand, the four round counter (Ma14), which is a best re-
sponse to the Player B four round counter (Mb28), fits increasingly more of the
data over time. This change in behavior likely reflects Player A backward induc-
ing to a greater degree. For Player B, all three inferred strategies for the first ten
supergames are replaced with two new strategies for the last ten supergames. First,
Player B may be replacing the always return strategy (Mb1) with a similar strategy
(Mb30) that returns so long as Player A plays S but plays K for two rounds if Player
A plays D, and then starts over again (subjects in the pilot sessions articulated a
similar strategy). In other words, Player B appears to be substituting unconditional
reciprocity for a two round trigger punishment strategy. Second, Player B may be
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Figure 8. a Inferred player A strategies in finite supergames. b Inferred player B strategies in finite
supergames
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Figure 9. a Inferred player A strategies in indefinite supergames. b Inferred player B strategies in
indefinite supergames
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replacing the three and four round conditional counters (Mb27 and Mb28) with a
strategy (Mb7) that is functionally similar to a two period counter.

In the indefinite games (see Fig. 9a for Player A and Fig. 9b for Player B)
we continue to only infer the Grim Trigger strategy for Player A (Ma3). Averaging
across the training and test samples, note that over time PlayerA increasingly makes
choices consistent with this strategy; its goodness of fit rises from 65% in the first
ten to 74% in the last ten supergames. Likewise, Player B increasingly makes
choices consistent with machine Mb6, fitting 44% in the first 10 and 58% in the
last ten supergames. Thus, the inferred equilibria pair (Ma3, Mb6) over all twenty
supergames is inferred in both the first and last ten supergames and, as already
noted, these strategies increasingly fit the data over time. In the last ten indefinite
games the four round counter (Mb28) is also inferred and fits over 40% of the
supergames. This behavior may reflect a form of gambler’s fallacy in which Player
B incorrectly anticipates that the supergame relationship is increasingly likely to
end after the fourth round. The other Player B strategies we infer in the first and
last ten supergames, Mb16 and Mb24, respectively, play K in the first round. Note
that we also infer a Player B strategy that plays K in the first round using all twenty
supergames (Mb25). Thus, it appears that to describe Player B’s behavior, we must
include a strategy that plays K in the first round, but it is not clear what behavior
occurs once he plays K.22

In sum, behavior in the finite and indefinite games evolves in a best-response
manner. In the indefinite game, both players increasingly play strategies consistent
with a cooperative equilibrium. In the finite game Player A increasingly backward
induces and Player B adapts a two-round trigger punishment strategy. Thus, the
heterogeneity observed over all twenty supergames may be partially explained by
players adapting different strategies over time.

6 Validity of the procedure

We contribute to our knowledge of play in repeated games with a model of strategies,
an inference procedure, and an experimental design. We first presented evidence
with a fixed effects panel model that game histories affect play in repeated games.
We developed an inference procedure that uncovered simple models of computation
as likely strategies behind the actions of subjects in the experiments.

The difficulty with inferring strategies from actions is that strategies are un-
observed, and many different strategies could have generated any sequence of
observed actions. To overcome this difficulty we made modelling decisions that
traded off our ability to use conventional means of inference with our ability to
observe play in many repeated games. Specifically, we chose an average length of
five rounds per supergame so that we could observe many game histories to help

22 We may infer different behavior for Player B after he plays K across the first and last ten supergames
as well as across all twenty supergames because we rarely observe this path of play. To see this, recall
Player A’s Grim Trigger strategy (MA3) fits 72% of all supergames, so in only 28% of the supergames
in which Player B plays K do we observe him taking another action. And since Player B only plays K
in the first round in 11% of the supergames, we only observe Player B’s behavior after he plays K in
3% of the supergames.
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us uncover strategies. And since these relatively short supergames provided rela-
tively little information regarding the transition of play from one state to another
we employed deterministic finite automata to explain our data.

We think it is extraordinary that such simple, deterministic models (1) explained
the vast majority of supergame play, (2) dramatically confirmed theoretical predic-
tions in repeated games and (3) provided such a clear and coherent characterization
of play. Not only do inferred strategies seem to be evolving toward equilibrium
strategies in both cases, the heterogeneity that exists provides evidence that sub-
jects are best responding to play in our dynamic framework. With these results
in hand, we can explore longer repeated games, introducing errors into the finite
automata, collecting more state transition information to do formal inference. We
can do so with the confidence that relatively few basic strategies seem to be behind
the actions of subjects in repeated games. The inferred strategies are consistent
with the panel data results and provide additional insights to our understanding of
repeated-game behavior of the subjects. Subjects are mostly making choices con-
sistent with just one to three specific repeated game strategies and the choice of
strategies evolved over time in an apparently best response manner.

7 Conclusion

This paper is a step toward bridging the gap between theory and empirical observa-
tion in repeated games. Repeated-game strategy inference will allow researchers to
form and examine hypotheses regarding strategies based on empirical observation.
In our case, evidence for the use of relatively few strategies that are best responses
to opponent strategies contributes to the refinement of equilibria in the repeated
game.

In this paper we combine a strategy model, an inference procedure and an
experimental design to infer unobserved repeated-game strategies from observed
actions. To demonstrate the inference method, we examine finitely and indefinitely
repeated trust games. In finite games we find evidence of players using strategies
with end-game effects. In indefinite games we find substantial evidence for a harsh
trigger strategy for Player A. The punishment phase of this trigger strategy is harsh
enough that the strategy may be included in the construction of repeated-game
equilibria. Further, in both finite and indefinite games only a small number of
strategies are needed to fit the vast majority of the data, most of the inferred Player
A and B strategies are best responses to one of the inferred strategies of their
opponents and the inferred strategies evolve in a best-response manner. And the
data we do not explain could represent either trembles or rarely-used strategies.

More generally, by starting to bridge the gap between observed behavior and
theoretical predictions of play in repeated games, this paper moves researchers
closer to applying similar models to behavior in the field. The next step will require
introducing errors in the strategies for the purpose of fitting them to more general
decision-making environments than those found in the lab. As such, this paper is a
necessary foundation in a larger research agenda; if we fail to find evidence for the
repeated game strategy model in our experimental environment, then the application
of the strategy model to less controlled environments could be called into question.
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However, since a small number of deterministic strategies fit the vast majority of
decision-making events (repeated games) in our experiment, we have confidence to
move forward. In related work making advances in this direction, Engle-Warnick
and Ruffle (2003) fit probabilistic if-then statements to decision making in market
experiments. We are also in the process of applying filtering techniques from time
series analysis to the strategy inference problem, taking observed actions as noisy
representations of unobservable states, in a direct extension of the finite automata
model in this paper.

Although we think introducing errors into the empirical analysis to examine
decision-making rules is an important next step in this research agenda, we are
cautious to note that introducing errors will likely change the behavioral interpreta-
tion of the strategies in fundamental ways. For example, two harsh trigger strategies
that exhibit a non-zero probability of making errors when transitioning ultimately
end up jointly in their punishment states with high probability, a result that is in
direct contrast with the deterministic case. When decisions are made for longer
periods of time, more complex models (e.g., learning models and models that al-
low switching strategies over time) will be necessary. Our study provides a starting
point for choosing which strategies to include in these more complex models. For
these reasons, the focus in this paper on deterministic strategies and the finding that
they describe much of the data, is an important foundation for future research.
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