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Summary. We characterize the solution to a dynamic model of risk sharing under
non-commitment when saving is possible. Savings can play two important roles.
First savings can be used to smooth aggregate consumption across different periods.
Second, when savings are observable, they can act as a collateral that can be seized in
the case of default. This relaxes the non-commitment constraint.When the aggregate
income is fixed or when one of the agent is risk neutral, the allocation tends to first-
best consumption. When one of the agent is risk neutral, this convergence occurs
in an expected finite number of periods.
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1 Introduction

The analysis of consumption dynamics under market incompleteness has been tra-
ditionally approached under one of two different environments. First, models of
consumption and savings have studied how liquidity constraints can limit con-
sumption smoothing. Second, models of bilateral risk sharing have presented the
limits to insurance in long-term contracts due to imperfect information or imper-
fect commitment. In this paper, we bridge the gap between these two environments
in a two-agent framework. Each agent is risk averse and receives a periodic ran-
dom income that can be partly saved. Agents are liquidity constrained in the sense
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that they cannot borrow at the savings interest rate. They can, however, mitigate
risk with bilateral contingent transfers. We describe the constrained efficient risk-
sharing contract with savings when agents cannot fully commit to the contract and
when they cannot borrow. We first give general properties of the optimal contract
under general assumptions. We then study the cases where 1) there is no aggregate
risk, and 2) one of the two agents is risk neutral. In these two particular cases, we
show that the optimal second-best allocation converges to a first-best allocation.
Furthermore, such convergence occurs in an expected finite time when one of the
agents is risk neutral.

In dynamic models of consumption and savings with a representative agent,
liquidity constraints have often been used as a reduced form for market incomplete-
ness. They limit an agent’s access to credit resulting in an imperfect smoothing of
consumption over time. For example, Ljungqvist and Sargent (2004) show that,
when income is independently and identically distributed over time, consumption
is not perfectly smoothed, and savings and consumption converge to infinity in the
limit.

In dynamic models of risk sharing, market incompleteness can endogenously
arise from imperfections due to the lack of commitment by the parties engaged in a
risk-sharing relationship.1 Kocherlakota (1996) analyzes efficient risk sharing under
non-commitment in a two-agent context with bilateral risk aversion, i.i.d. incomes,
and no savings. He shows that (ex ante) expected intertemporal utilities converge
monotonically towards first-best levels and that the distributions of individual con-
sumptions converge towards limit distributions. An agent’s consumption is always
positively correlated with current and lagged incomes unless first best is feasible
from the first period on. If first best is not feasible, perfect insurance is impossible.
In a similar model with one-sided risk aversion, Thomas and Worrall (1988) have
characterized an optimal risk-sharing labor contract with non-commitment. They
show that the risk-neutral firm cannot generally fully smooth the worker’s wage.
In all periods, the wage varies depending on the last-period wage and the worker’s
current productivity. In this context, Gauthier et al. (1997) show that, if the agents
can make a transfer before the realization of the state of nature, the commitment
problem is alleviated. In these models, non-commitment is the source of imperfect
insurance and smoothing.

The assumption of no-borrowing in the first class of models with liquidity
constraints and that of no-savings in the second class of models of contracting un-
der non-commitment may seem unreasonable in many circumstances. It therefore
seems natural to bridge the gap between these two strands of literature by introduc-
ing savings in a model of bilateral risk sharing with non-commitment, or alterna-
tively by allowing agents to sign contracts (even if plagued by non-commitment)
in a model of savings with liquidity constraints.

Ligon et al. (2000) analyze a mutual insurance relationship with imperfect
commitment and savings. They show that the possibility to save may not always
increase welfare in a risk-sharing relationship because high levels of savings may

1 Another source of market imperfections can be informational asymmetries. See Green (1987),
Thomas and Worrall (1990), or Wang (2005).



Non-commitment and savings in dynamic risk-sharing contracts 359

encourage agents to breach the contract and live in autarky with their savings.
Savings cannot be seized upon contractual breach. This assumption introduces
non-convexities in the optimization and they cannot fully characterize the solution
analytically. They provide simulated path for individual savings and welfare under
different specifications. They conclude that savings have two beneficial effects.
First, they help smooth aggregate consumption when aggregate income is risky.
Second, they are a way for agents to make ex-ante transfers à la Gauthier et al. (1997)
that relax future self-enforcing constraints. Those two effects are counterbalanced,
however, by the outside opportunities that savings create, hence limiting the extent
of risk sharing.

In this paper, we develop a two-agent risk-sharing contract with savings and
non-commitment. We suppose that savings are observable and can be posted as a
collateral to enhance commitment in the contractual relationship. Under this as-
sumption, we avoid the non-convexity problem encountered by Ligon et al. (2000)
and we are able to find analytic solutions. Under full commitment, savings and
contractual risk sharing have complementary roles: bilateral transfers guarantee
perfect risk sharing between agents, that is, the ratio of marginal utilities is main-
tained constant through time and states of nature, and savings are used to smooth
the aggregate income over time. When perfect risk sharing is made impossible by
imperfect commitment, savings act as a collateral relaxing the non-commitment
problem. With non-commitment, savings become beneficial even when they have
no use under full commitment. Savings can even lead to perfect insurance in some
circumstances.

Huggett and Krasa (1996) study the role of fiat money in dynamic economies.
They show that limited commitment can provide a role for fiat money since it
facilitates intertemporal exchanges. The main difference with our model is that they
do not consider dynamic relationships since agents meet with a different partner
every period. Furthermore, money becomes useless when a savings is introduced.

In the next section, we present the model and describe the first-best solution.
Section 3 presents results on the dynamics of financing and consumption with non
commitment in the general case. In Section 4 we derive some more results under the
restriction that there is no aggregate risk in the economy. In Section 5 we suppose
there is aggregate risk and find the dynamics of consumption when one agent is
risk neutral. The conclusion follows. All proofs are relegated to the Appendix.

2 The model

Consider two agents, 1 and 2, having an infinite-horizon life span. Each period,
agent i receives an exogenous income endowment yi which is a random variable on
the space of events S = {1, 2, · · · , S}. Incomes yi are i.i.d. on the time-independent
discrete set of possible states of nature S. The probability of state s is ps, with∑

s∈S p
s = 1. The income of agent i in state s is ys

i . Denote ys =
∑2

i=1 y
s
i the

aggregate income and by Si the state which maximizes agent i’s income.
We define a particular case where individual endowments can be correlated.

Outside this assumption, individual endowments are independently distributed.
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Assumption E. Individual endowments are perfectly negatively correlated, and
there is no aggregate risk so that ys = ȳ for all s ∈ S.

Agent i has preferences represented by a state- and time-independent concave,
and twice continuously differentiable utility function ui. Formally, we assume that
u′

i > 0, u′′
i ≤ 0, and u′

i(0) = ∞. Agent 1 is strictly risk averse, that is, u′′
1 < 0. At

times we may assume that agent 2 is risk neutral.

Assumption RN. Agent 2 is risk neutral with utility function u2(c) = c.

Both agents discount the future with a common factor β = 1/(1 + r).
Each agent has access to a savings account. Agent i’s savings at the end of

period t−1 are denoted by Ai
t. Initial savings are denoted by Ai

0 ≥ 0. Savings
earn a time-independent interest rate r per period. Agents are, however, liquidity
constrained in the sense that they cannot borrow at rate r. This amounts to assuming
that savings must be non-negative at all time. The savings account can be interpreted
as an investment in short-term riskless government bonds which earn r per dollar
invested. The liquidity constraint simply means that an agent cannot issue riskless
bonds.

In autarky, a risk-averse agent maximizes its lifetime utility by choosing con-
sumption and savings in each period. We denote by gi(Ai

t, y
s
i ) the value function

that represents agent i’s maximized expected lifetime utility at the beginning of
period t given savings of Ai

t and income ys
i . Under our assumptions, gi(·, ys

i ) is
continuous, strictly increasing, strictly concave, and continuously differentiable.
Optimal savings Ai

t+1 and consumption cit are both increasing in current financial
resourcesAi

t(1+r)+ys
i . In general, consumption remains risky and is imperfectly

smoothed across periods.2 Therefore, there are gains from trade to be realized in
underwriting a risk-sharing contract with another agent.

The purpose of this paper is to study the risk-sharing agreement that the two
agents can sign. The general model that we specify, although very stylized, can rep-
resent various economic environments. It can represent the relationship between a
borrower and its bank. In this case, the borrower is large enough that the bank can
be modelled as being risk averse (although this is not necessary since we also study
the model underAssumption RN). The borrower could be a large firm or a sovereign
country. The savings account represents investment in government bonds, a foreign
government in the second case. The model could also represent the relationship be-
tween two large banks that seek to diversify their portfolio risk. The savings account
could be government bonds or international financial markets. Finally, the model
could represent the relationship between two insurance companies that exchange
claims on their portfolios of policies. The savings account could be interpreted as
the reinsurance market. For the remainder of the paper, we do not focus on any
particular interpretation.

The two agents get together to share risks, and their relationship is governed
by a contract signed at date 0. This risk-sharing contract specifies, for all dates,

2 Deaton (1991) suggests that, if the discount rate is greater than r, that is, when savings are relatively
costly, the agent is reluctant to save, even in good states of nature.
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contingent transfers from agent 1 to agent 2, and contingent savings for both agents.3

Transfers and savings depend on the state st realized at that date, and more generally
on the whole history of states to date t, ht = (s0, · · · , st). Transfers and savings
are denoted respectively by bt(ht) and Ai

t+1(ht), t = 0, · · · ,∞. Transfers can be
either positive or negative, while savings must remain non-negative. Consumption
is given by:

c1t (ht−1, s) = ys
1 + (1 + r)A1

t −A1
t+1(ht−1, s) − bt(ht−1, s),

c2t (ht−1, s) = ys
2 + (1 + r)A2

t −A2
t+1(ht−1, s) + bt(ht−1, s).

Let Ci(ht) denote a consumption plan starting in period t and for the remaining
infinite horizon given that history ht has occurred. Agent i’s expected utility from
period t on is:

Ui,t(Ci, ht) ≡ ui(cit(ht)) + Et

∞∑
τ=1

βτui(cit+τ (ht+τ )), i = 1, 2.

Suppose the two agents can fully commit to a long-term risk-sharing contract.
An optimal consumption plan shares the gains from trade between the two agents.
The full commitment solution prescribes perfect insurance between the two agents,
characterized by a constant ratio of marginal utilities. Savings are governed by two
individual Euler conditions. The two individual savings accounts are not indepen-
dent, however. Since an agent’s consumption is adjusted through the contingent
transfer bt(ht), any change in individual savings can be offset by a compensating
change in the transfer. Only the sum of savings At = A1

t + A2
t is important in

determining the agents’ welfare.
In a first-best environment, savings play the same role in this model with two

agents as they would in a standard model of consumption and savings with one agent
having the aggregate endowment. Savings are used to smooth aggregate income as
much as possible, and bilateral transfers offer protection against individual risks.
Therefore, as long as there exists aggregate risk, aggregate savings evolve with
aggregate income y1 + y2, so that savings increase when aggregate income is high,
and decrease when aggregate income is low.

If there is no aggregate risk (Assumption E), however, the first-best solution is
such that consumption and savings are constant across time and states of nature.
In each period, the two agents consume the aggregate income endowment plus the
return on initial savings. Any time-independent sharing of total assets is optimal.
Since aggregate income is constant, there is no incentive to save. On the other hand,
if agent 2 is assumed risk neutral (Assumption RN), optimal risk sharing trivially
imposes that agent 2 fully insures agent 1 in every period and there is no savings.

The first-best model rests on the assumption that the two agents can fully com-
mit to the transfers prescribed by the contract. When enforcement costs are high,

3 We assume here that savings are verifiable and thus contractible. If savings were not observable, this
would introduce moral hazard since agents could secretly select savings. Furthermore, once selected,
savings become an attribute of an agent, that is, a type in the next period. Hence, there would be adverse
selection as well. Although it would be interesting to study these (very hard) cases, it is still relevant to
understand the case of contractible savings.
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however, it is not possible to bind the agents to the contract in all circumstances.
It is then relevant to study the optimal contract in an environment where agents
cannot commit.

3 The risk-sharing contract with non-commitment

Each agent can decide to renege on the contract if the current payment to be made
is greater than the expected future surplus of staying in the relationship. To prevent
reneging, self-enforcing constraints are introduced into the contracting problem.
These constraints impose that, in each period, following any history, agents have
no incentives to renege on the contract.

When reneging on the contract, an agent is prevented from future trading and
gets its autarkic utility level forever.4 We assume that an agent loses its financial
assets when breaching the contract. It is as if savings were put up as a collateral
against each agent’s borrowing. The reneging agent’s autarkic life therefore starts
with no savings.5 The autarkic allocation is represented by the solution to the savings
model with liquidity constraints characterized by the value function gi(0, ys

i ). Under
these assumptions, self-enforcing constraints can be written as:

U1,t(C1, ht−1, s) ≥ g1(0, ys
1) ∀ (ht−1, s), ∀ t, (1)

U2,t(C2, ht−1, s) ≥ g2(0, ys
2) ∀ (ht−1, s), ∀ t, (2)

where gi is the expected discounted utility of agent i under autarky.
Given initial savings (A1

0, A
2
0), the optimal contract solves an optimization

problem in t = 0 with the instruments being a sequence of savings and transfers
for each date and possible history. The set Γ(st) of instruments that satisfy self-
enforcing constraints (1) and (2) and liquidity constraintsAi

t ≥ 0, ∀i,∀t, represents
the set of feasible continuation contracts. If there are gains from trade, this set is
nonempty because at least one agent can have more than autarky in each period.
Furthermore, it is easy to show that it is compact and convex.6

As stated by Thomas and Worrall (1988), an optimal contract must be efficient
starting in any period following any history. Consequently, an optimal contract
maximizes at each date t the expected utility of agent 1 subject to a participation
constraint for the agent 2 and subject to self-enforcing constraints (1) and (2) and
liquidity constraints Ai

t ≥ 0, ∀i,∀t. However, only aggregate savings matter since
income is transferred from an agent to the other through the contractual transfer
b(ht). In the remainder of the paper, we denote total savings by A = A1 +A2 and
aggregate financial resources by Xs = ys + (1 + r)A, ∀s.

The optimal contract is characterized by a Pareto frontier f(Xs, V ) that gives
the optimal utility agent 1 can get when agent 2 is granted utility level V and

4 Asheim and Strand (1991) show that this punishment is renegotiation-proof in the repeated-game
formulation of a closely related model.

5 Ligon et al. (2000) consider the case where agents keep their savings following a breach of contract.
This introduces non-convexities, so that they cannot find an analytical solution for the path of savings
and consumptions.

6 See Thomas and Worrall (1988) for a formal proof in a related model without savings.
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aggregate available income is equal toXs, given that self-enforcing constraints (1)
and (2) hold in state s and individual savings are non-negative. Following Spear and
Srivastava (1987), solving the problem amounts to picking current consumption c2t
of agent 2, future utility levels to be conceded to agent 2 next period contingent on
the then realized state z, {V z

t+1}z∈S , and a level of savings At+1 for next period,
and all this to maximize agent 1’s expected future utility. Therefore, the optimal
contract solves the following Bellman equation:

f(ys + (1 + r)At, Vt) =
max

At+1,c2
t ,{V z

t+1}S
z=1

u1(ys + (1 + r)At −At+1 − c2t )

+βEz∈Sf(yz+(1+r)At+1, V
z
t+1) (3)

s.t. f(yz+(1+r)At+1, V
z
t+1) ≥ g1(0, yz

1) ∀ z ∈ S, (4)

V z
t+1 ≥ g2(0, yz

2) ∀ z ∈ S, (5)

u2(c2t ) + βEzV
z
t+1 ≥ Vt, (6)

At+1 ≥ 0. (7)

Constraints (4)–(5) represent the self-enforcing constraints of agents 1 and 2 re-
spectively, while constraint (6) ensures the intertemporal consistency of the optimal
solution. Note that these constraints depend on individual incomes through the au-
tarky levels of utility gi(0, ys

i ).
The value function f is state independent because states of nature are i.i.d., so

that continuation utilities are independent of the current state. Hence, the period-
t state matters only because it determines the level of aggregate income ys and
therefore, the available income at handXs that has to be shared between individual
consumptions and aggregate savings.

Since agent 1’s utility is increasing inXs, so is functionf . Moreover, an increase
in agent 2’s minimum utility level V shrinks the set of feasible contracts and, hence,
the maximum utility agent 1 can get. Therefore, f is decreasing in V . The utility
function u1 is strictly concave and continuously differentiable so that f is concave
and continuously differentiable in (Xs, V ).

The variable V z
t+1 represents the expected utility promised to agent 2 in state z

in period t+1. If there are gains from trade, the set of admissible values for V z
t+1 for

a given At+1 is non-empty. This set is bounded below by V z = g2(0, yz
2), which

is increasing in yz
2 . The upper bound V

z
(Xz, yz

1) depends on At+1 as implicitly
defined by condition (4): f(Xz, V

z
(Xz, yz

1)) = g1(0, yz
1). V

z
(Xz, yz

1) increases
with Xz and decreases with yz

1 . Hence, gains from trade increase with the level of
savingsA. Since agents lose access to the savings account if they breach the contract,
it is as if savings act as a collateral that prevents them from leaving. Agent 1 can
promise a higher expected utility to agent 2 tomorrow if a larger amount in the
savings account is committed to today. This differs from the results of Thomas and
Worrall (1988) and Kocherlakota (1996) who show that agent 2’s surplus belongs
to a time-independent interval.

The maximization problem on the right-hand side of the Bellman equation is
a concave program. First-order conditions are therefore sufficient to characterize
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the optimal solution. Moreover, the policy functionsAt+1(Xs
t , Vt), c2t (X

s
t , Vt) and

{V z
t+1(X

s
t , Vt)}z∈S are continuous.7

Let the variables βpzθz and βpzλz represent the Lagrange multipliers of self-
enforcing constraints (4) and (5) respectively, for all z ∈ S. We denote by ψ the
multiplier of constraint (6), and by µ, the multiplier of the liquidity constraint (7).
First-order conditions with respect toAt+1, c2t and V z

t+1 for all z, and the envelope
conditions can be rearranged to give the following set of conditions:

u′
1(c

1
t ) = Ez(1 + θz)u′

1(c
1,z
t+1) + µ, (8)

u′
2(c

2
t ) = Ez

(
1 +

λz

ψ

)
u′

2(c
2,z
t+1) +

µ

ψ
, (9)

u′
1(c

1
t )

u′
2(c

2
t )

= (1 + θz)
u′

1(c
1,z
t+1)

u′
2(c

2,z
t+1)

− λz ∀ z ∈ S. (10)

Equations (8)–(9) are the Euler equations that determine the optimal dynamics
of consumption. Equation (10) characterizes the optimal risk sharing for period
t + 1, constrained by the presence of non-commitment. Note that if an agent’s
self-enforcing constraint binds in a state, the contract must give this agent a greater
consumption in that state than what a standard Euler equation would otherwise
suggest. The ratio of marginal utilities is modified accordingly.

If the policy function c2t (X
s
t , Vt) is continuously differentiable, then the value

function f is twice continuously differentiable. In that case, we can derive basic
properties for the optimal consumption of each agent.

Proposition 1.

i) Agent 1’s consumption is decreasing in Vt and agent 2’s consumption is
increasing in Vt, that is, dc1t/dVt < 0 and dc2t/dVt > 0.

ii) The consumption of agent 1 is increasing in Xs, that is, dc1t/dX
s > 0.

Agent 2’s current consumption must increase with the expected utility Vt

promised to agent 2. Since the contract solution lies on the Pareto frontier in in-
tertemporal utility space, any increase in the utility promised to agent 2 entails a
decrease in the utility of agent 1. This implies that agent 1’s current consumption
decreases with this promise. Finally, the consumption of agent 1 is increasing in
available aggregate financial resources. The effect of Xs on the consumption of
agent 2 is ambiguous. It all depends on its effect on risk sharing and smoothing.
When increasing aggregate financial resources, the intertemporal utility of agent 2
remains at Vt, so that current consumption can either increase or decrease whenXs

increases depending on how this increase affects future self-enforcing constraints.
For example, it is easy to show that agent 2’s consumption is unaffected by a change
in Xs in the first best under Assumption E. In this case, its consumption is con-
stant and determined solely by its participation constraint. All increases in financial
resources accrue to agent 1.

A special case can be characterized when agent 2 is risk neutral (RN).
7 See Stockey and Lucas (1989) and the proof of Lemma 1 in Thomas and Worrall (1988).
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Proposition 2. Under Assumption RN, the value function f can be written as

f(ys + (1 + r)A, V ) = h(ys + (1 + r)A− V ),

where h is increasing and concave.

This proposition states that the value function f can be rewritten as a function of
a single variable ys +(1+ r)A−V . The variable V can be interpreted as the value
of the debt agent 1 has contracted with agent 2. The solution then only depends on
the net asset value of agent 1 following the realization of the current state of nature
s, Y s = ys + (1 + r)A − V . Finally, the function h inherits the properties of the
function f , namely monotonicity and concavity.

Before characterizing further the solution, it is instructive to see whether there
is a level of savings such that the first best becomes self-enforcing. Under general
conditions, it appears that this is not necessary the case. Recall that savings play a
smoothing role in the first best and that they can vary with the history of income
realizations. Following a long enough sequence of low incomes, savings in the first
best tend towards zero. If the first best was feasible, this would imply that savings
should tend to zero following such history. Since the first best is not necessarily
self-enforcing with low (near zero) savings,8 no level of savings could make the
first best feasible.

As in the first-best case, it is difficult to provide a more detailed characterization
of savings and consumption for arbitrary preferences and income distributions. We
can, however, do so under two special but relevant cases, that of no aggregate risk
and that of risk neutrality of agent 2. This is the object of the next two sections.

4 No aggregate risk

Assume there is no aggregate risk (E). The next two propositions characterize the
dynamics of savings.

Proposition 3. Fix the value of β > 0.

(i) There exists a non-empty convex set ∆∗(β) such that if (At, Vt) ∈ ∆∗(β), the
first best is feasible and hence optimal.

(ii) For any value of Vt, there is a finite level of savings such that (At, Vt) ∈ ∆∗(β).

Gains from trade relative to autarky increase with the level of savings since
savings are confiscated if an agent reneges on the contract. When the level of
savings is large enough, gains from trade are so high that it is always possible to
find a time-independent sharing rule {αi} that offers the optimal insurance and
doesn’t give incentives for the agents to cheat. It is the perspective of losing a
high-value collateral (savings) that induces the agents to maintain the contractual
relationship.

8 It depends on the discount factor β. It must be high enough for self-enforcing constraints not to
bind.
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More specifically, the set ∆∗(β) is characterized by the following inequalities.

f(ȳ + (1 + r)At, Vt) = u1(α1(ȳ + rAt))/(1 − β) ≥ g1(0, yS1
1 ), (11)

Vt = u2(α2(ȳ + rAt))/(1 − β) ≥ g2(0, yS2
2 ), (12)

where αi is the constant share of aggregate resources consumed by agent i at first
best, α1 + α2 = 1. Consider the first-best allocation. It provides utility equal to
the term to the right of the equality sign. If this allocation is self-enforcing in the
state for which autarky is mostly profitable, namely when income is ySi

i , then it
is self-enforcing in all states. For a given Vt, which determines {αi}, there is a
(finite) level of savings such that the inequalities (11–12) are satisfied. Note that
the level of savings for which the first best can be implemented is not independent
of agent 2’s intertemporal utility. When this utility increases, the level of savings
must increase to satisfy all of agent 1’s self-enforcing constraints.

There is an important difference that savings bring to the feasibility of first best.
In Thomas and Worrall’s (1988) and Kocherlakota’s (1996) models, there are no
savings, and, in many cases, the first best is never feasible, unless β is close enough
to 1. With savings, for any β > 0, there are values for (A, V ) such that the first
best is feasible. This is because savings act as a collateral or a bond that relaxes
the agents’ self-enforcing constraints. The future of the relationship is not the only
means of binding agents. The perspective of losing a bond can be sufficient if it is
large enough.

We can now show a stronger result. Even if (A0, V0) /∈ ∆∗(β), agents still
converge to a first-best allocation by accumulating savings.

Proposition 4. Savings At increase until the first best is reached.

With no aggregate risk, agents build up their collateral until first best can be
implemented. With non-commitment, there are future benefits to save as long as the
first best is not attained since savings can relax future self-enforcing constraints. In
each period, agents trade off the benefit of relaxing future self-enforcing constraints
to the immediate cost of reducing consumption. Savings increase as long as the first-
best allocation is not self-enforcing, after which, savings and consumptions remain
constant forever. This implies that the limit value of (At, Vt) is an element of∆∗(β).

In the limit, our model is significantly different from the stationary distribution
in autarky or that without savings. In autarky, Ljungqvist and Sargent (2004) have
shown that the solution in the limit has infinite savings, while consumption also
converges to infinity. In our model, convergence can occur for finite levels of sav-
ings, in which case aggregate consumption is mean income plus the net returns on
savings, that is, ȳ + rA. This is certainly different from the autarkic situation.

In the model without savings, Kocherlakota (1996) has shown that there exists
a limiting distribution of consumption. This limit is the first-best distribution only
if the first best is self-enforcing. In our case, there is always a set ∆∗(β) of values
for savings and individual utilities such that the first best is self-enforcing. The
solution converges to an element of this set.
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5 Agent 2 is risk neutral

If agent 2 is risk neutral, Proposition 2 states that the value function is h(ys + (1 +
r)A− V ). From first-order conditions (8–10), the first best implies a constant net
asset value Y = ys + (1 + r)At − V s

t for all t and all s, as well as a constant
consumption c1 = u′−1(h′(Y )) for agent 1. The set of values for (At, Y ) such that

Y ≥ h−1(g1(0, yz
1)),

(1 + r)At − Y ≥ max
z

{g2(0, yz
2) − yz},

makes the first best feasible and optimal. This set is convex and includes finite
values.

Writing condition (9) with u′
2 = 1, it is easy to show that when agent 2 is risk

neutral, agent 2’s self-enforcing constraints and the liquidity constraint are never
binding. With the interest rate on savings exactly equal to the discount rate,9 saving
is as profitable as lending to agent 2. Since the savings account is not subject to
self-enforcing constraints whereas saving through agent 2 is, savings effectively
allow agent 1 to increase its future consumption in good states thus relaxing all
agent 2’s self-enforcing constraints.

The liquidity constraint is not binding because agent 1 can always save some
negative amount by borrowing from agent 2. There is, however, an upper bound
on the amount agent 1 can borrow. This amount is contingent on the amount of
savings which act as a collateral in the case of default by agent 1. This means
that V s, the amount due to agent 2 in state s, can increase if the collateral A also
increases sufficiently. This borrowing constraint has real consequences because the
self-enforcing constraints of agent 1 can be binding, that is, in a high-income state,
agent 1 may be tempted to not reimburse agent 2 and renege on the contract.

Without a binding liquidity constraint and self-enforcing constraints for agent 2,
the model has some similarities with that of Harris and Holmström (1982), where
agent 2 can fully commit to a long-term contract. We show below that the dynamics
of consumption are similar to the dynamics they derive in their model.

Proposition 5. Agent 1’s net assets ys + (1 + r)At − Vt and consumption are
non-decreasing in time.

Agent 1’s consumption in period t is equal to consumption in period t + 1
unless a self-enforcing constraint for agent 1 is binding in period t + 1, in
which case consumption is equal to the minimum self-enforcing level cs =
u′−1(h′(h−1(g1(0, ys

1)))). This minimum level of consumption cs is increasing
in agent 1’s current income. Hence, a self-enforcing constraint can only be bind-
ing following a positive income shock for agent 1. This implies that consumption
cannot decrease in time.

Proposition 6. The first best is reached in an expected finite number of periods,
when agent 1’s net asset value and consumption reach a stationary state.

9 The result does not hold when the discount rate is not equal to the interest rate.
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Suppose that income yS1
1 is realized for the first time in period t. The function

h then attains a stationary value h(yS1 + (1 + r)At − V S1
t ) = h(Yt) for all future

states and periods since consumption and net assets are non-decreasing. No self-
enforcing constraints can ever bind and the first-best becomes feasible. From then
on, agent 2 bears all aggregate risk and agent 1’s consumption remains constant.

There are two important characteristics of the stationary solution. First, since
Yt = ys +(1+ r)At −V s

t is constant, agent 2’s utility is increasing in the states of
nature, that is, V 1 < · · · < V S . Positive shocks to aggregate income are captured
by agent 2 since agent 1’s consumption is constant. Second, in any state, debt
can increase to arbitrary large levels as long as the collateral A increases also.
However, even though there exists an infinity of solutions in (A, V ), an interesting
characterization is that settingAs

t = A and V s
t = V s (increasing in s) for all s and

t. Savings do not need to tend to infinity to achieve perfect income smoothing as it
does in models of savings with liquidity constraints.

6 Conclusion

We study the dynamic behavior of consumption when agents have access simulta-
neously to a risk-sharing contract and a savings account. We show that savings and
contingent contractual transfers complement each other so that savings are used to
smooth aggregate income whereas contingent transfers support risk sharing. When
non-commitment makes transfers unable to provide perfect risk sharing, savings
are accumulated (1) to act as a collateral that precommits both agents in the rela-
tionship, and (2) as a way to replace transfers when one agent would prefer to quit
the relationship rather than make a transfer to the other agent.

In two special cases, we are able to characterize the path of savings. First,
when individual incomes are perfectly correlated so that the aggregate income is
constant, savings have no smoothing role, but still are accumulated to relax the
non-commitment constraints. Second, when incomes are uncorrelated but one of
the agent is risk-neutral, savings are necessary only as long as the best possible
income for the risk-averse agent has not occurred. Agent 1 saves in order to avoid
in the future resorting to the non-committed agent 2 for consuming more than its
income.

The main characteristic of our solution is that the first best becomes self-
enforcing when savings are introduced in the model. Thus, it appears that risk-
mitigating instruments cannot be studied in isolation. Even if the imperfections
proper to each instrument create market incompleteness, consumers may circum-
vent them by using a bundle of instruments, each reducing the imperfections created
by the others.

A main concern of the literature on consumption is trying to explain co-
movements in consumption and income. Our paper has characterized conditions
under which such co-movements are limited, that is, when perfect risk sharing is
achieved. It helps us, however, better understand when perfect risk sharing cannot
be achieved. There are two issues that need to be addressed: that of intratemporal
risk sharing, and that of intertemporal smoothing.
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In the first best (with full commitment), when β(1+r) = 1, perfect risk sharing
can be attained while some smoothing can be achieved with non-negative savings.
Perfect smoothing can be achieved if there is no aggregate risk. In the second best
(with non-commitment), perfect risk sharing and consumption smoothing can be
achieved under either one of Assumptions RN or E. If these assumptions do not
hold, namely, if there is widespread risk aversion and aggregate risk, it is unlikely
that perfect risk sharing or consumption smoothing can be achieved. Consumption
would vary with income, but co-movements would be reduced due to the presence
of savings and risk sharing contracts. In the case where β(1 + r) < 1, savings
become costly and hence even less smoothing can be achieved in both the first best
and the second best.

Appendix

The following proofs refer to the first-order conditions of the problem that write:

u′
1(c

1
t ) = Ez(1 + θz

t )fX(Xz
t+1, V

z
t+1) + µ, (13)

u′
1(c

1
t ) = ψu′

2(c
2
t ), (14)

(1 + θz)fV (Xz
t+1, V

z
t+1) = −λz − ψ ∀ z ∈ S, (15)

fX(Xs
t , Vt) = u′

1(c
1
t ) = u′

1(X
s
t − c2t −As

t+1), (16)

fV (Xs
t , Vt) = −ψ. (17)

Proof of Proposition 1

i) From (16) and (17), the derivatives of f are continuously differentiable if the
policy function c2(X,V ) is. Suppose this is the case. Differentiating the enve-
lope condition (17) and using the first-order condition (14) to substitute for ψ,
we obtain

fV V (ys + (1 + r)A, V ) =
u′

1

u′
2

[−u′′
1

u′
1

dc1t
dV

− −u′′
2

u′
2

dc2t
dV

]
< 0,

since f is concave. We now show that dc1t/dV and dc2t/dV have opposite signs.
Suppose they have the same sign and consider the dual problem:

F (ys + (1 + r)A,U) = max U2 s.t. U1 ≥ U,

self-enforcing and liquidity constraints,

where U = f(ys +(1+ r)A, V ) and F (ys +(1+ r)A,U) = V . This problem
gives the same solution as the primal does. Then, dc1t/dU and dc2t/dU should
have the same sign given our supposition above. By symmetry of the primal
and the dual problems, dc2t/dV and dc1t/dU must have the same sign. These
relations imply that dc1t/dV and dc1t/dU have the same sign. This is not possible
because of the negative relationship between U and V (the value functions are
decreasing). Then, it must be that dc1t/dV and dc2t/dV have opposite signs.
Finally, since fV V (ys + (1 + r)A, V ) < 0 above, we must have dc1t/dV < 0
and dc2t/dV > 0.
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ii) Differentiating the envelope condition (16) with respect to Xs, we have:

fXX(ys + (1 + r)A, V ) = u′′
1(c1t )dc

1
t/dX

s < 0,

with the sign coming from the concavity of the value function. This implies that
dc1t/dX

s > 0. ��

Proof of Proposition 2

When agent 2 is risk neutral, set w.l.o.g. u′
2 = 1. Using condition (14) and the

envelope conditions (16–17), we have

fX(ys + (1 + r)A, V ) + fV (ys + (1 + r)A, V ) = 0,

for all (Xs, V ) and all s in S. This is a homogeneous linear differential equation in
f whose solution must be the functional form h(Xs −V ). Function h is increasing
since h′(Xs −V ) = fX(Xs, V ) > 0. Function h is concave since h′′(Xs −V ) =
fXX(Xs, V ) < 0. ��

Proof of Proposition 3

i) With no aggregate risk, the first best is characterized by a time-independent
sharing rule {αi} and constant savings. The sharing rule is such that agent 2
gets its reservation utility. For first best to be implemented, the solution to the
non-commitment problem must have V z

t+1 = Vt for all z, At+1 = At. This
solution is self-enforcing if and only if

f(ȳ + (1 + r)At, Vt) =
u1(α1(ȳ + rAt))

1 − β
≥ g1(0, yS1

1 ), (18)

Vt =
u2((1 − α1)(ȳ + rAt))

(1 − β)
≥ g2(0, yS2

2 ). (19)

Denote the set of (At, Vt) that satisfies these two equations by ∆∗(β).
We now show that it is convex. Use the l.h.s. equality of (19) to substitute for
α1 in (18). The set ∆∗(β) is then defined by

u1
(
ȳ + rAt − u−1

2 ((1 − β)Vt)
)

1 − β
≥ g1(0, yS1

1 ), (20)

Vt ≥ g2(0, yS2
2 ).

Since u1 and −u−1
2 are concave functions, we can show that the l.h.s. of ex-

pression (20) is concave in both variables of interest At and Vt. This implies
that ∆∗(β) is convex.
Using condition (20), we see that for any value of β ∈ (0, 1), the set ∆∗(β)
is non-empty. For β = 1, we know from Thomas and Worrall (1988) that the
first best is implementable even without savings. The set ∆∗(β) is therefore
non-empty for all β > 0.

(ii) From condition (20), it is easy to find finite values of (A, V ) ∈ ∆∗(β). ��
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Proof of Proposition 4

Consider a constrained version of the maximization problem on the r.h.s. of the
Bellman equation (3–7) whereAt+τ = At for all τ ≥ 1 and denote byU c

1 agent 1’s
constrained maximized utility. This corresponds to the maximization problem in
Kocherlakota (1996). In his solution agent 1’s consumption is increasing in its
individual income. Suppose that yS1

1 is realized in period t. We know that c1t ≥ c1,z
t+1

for all z ∈ S with some strict inequality if some self-enforcing constraints for
agent 2 are binding. This implies that the Euler equation (8) for savings is not
satisfied, and hence that agent 1 would like to save more thanAt at this constrained
solution.

Consider the set Γt(S1) of instruments (including savings) that satisfy all con-
straints of the maximization problem. We know that this set is convex. Take the
intersection of this set and the set of instruments that yield strictly more utility to
agent 1 than U c

1 . Since agent 1’s intertemporal utility function is concave in in-
struments, this intersection set must be convex. Furthermore, the solution to (3–7)
(where savings can be chosen optimally) must be in this set. From the previous
paragraph we also know that this set includes instruments where At+1 > At.

We want to argue that there can be in this set no instruments for which
At+1 < At. Suppose there were. By convexity, this would imply that there are
also instruments where At+1 = At. But this contradicts the fact that instruments
in this set give strictly more utility than U c

1 . Hence, if yS1
1 is realized and if some

self-enforcing constraints for agent 2 are binding, it must be thatAt+1 > At. Since
the solution to (3–7) is independent of the current state and is symmetric with re-
spect to the two agents, it must be that At+1 > At as long as some self-enforcing
constraint is binding. ��

Proof of Proposition 5

Condition (8) with µ = 0 implies that agent 1’s consumption is non-decreasing in
time. Conditions (16) and the concavity of h imply that net assets are also non-
decreasing in time. ��

The following lemmas help prove Proposition 6.

Lemma 1. If ys
1 > yz

1 , then θs
t = 0 implies θz

t = 0.

Proof of Lemma 1

Let Yt ≡ y+ (1 + r)At −Vt denote agent 1’s net asset value. Suppose θz
t > 0 and

θs
t = 0 with ys

1 > yz
1 . This gives: h(Y z

t+1) = g1(0, yz
1) < g1(0, ys

1) ≤ h(Y s
t+1). By

first-order condition (15), θz
t > 0 also implies h′(Y z

t+1) < h′(Y s
t+1). But, since h is

increasing and concave, these inequalities lead to Y z
t+1 < Y s

t+1 and Y z
t+1 > Y s

t+1,
that is, a contradiction. ��
Lemma 2.

(i) If state s is realized in period t, then agent 1’s self-enforcing constraint in that
state cannot be binding in subsequent periods. Formally, st = s ⇒ θs

t+τ =
0 ∀ τ ≥ 1.
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(ii) If stateS1 is realized in period t, then from t+1 on, no self-enforcing constraint
for agent 1 is ever binding. Formally, st=S1 ⇒ θs

t+τ = 0 ∀ s, ∀τ ≥ 1.

Proof of Lemma 2

(i) Suppose state s realizes in period t. In period t+τ , suppose that state s realizes
and that the self-enforcing constraint for agent 1 is binding: θs

t+τ > 0. Then,
from first-order conditions (15) and (16), we have h′(Y s

t+τ+1) < h′(Yt+τ ) ≤
h′(Y s

t ). By the concavity of h, this implies Y s
t+τ+1 > Y s

t . However, a binding
constraint in period t + τ implies: h(Y s

t+τ+1) = g1(0, ys
1) ≤ h(Y s

t ) , that is,
Y s

t+τ+1 ≤ Y s
t which is a contradiction.

(ii) Lemma 1 implies (θs
t = 0 ⇒ θz

t = 0) for all ys
1 > yz

1 and part (i) of this
Lemma (st = s ⇒ θs

τ = 0) for all τ > t. ��

Proof of Proposition 6

From Lemma 2, no constraint can be binding after state S1 has occurred. Consump-
tion and net assets then become constant as soon as S1 has realized, that is, first
best is reached. The probability of state S1 being reached in period n for the first
time is pS1(1 − pS1)n−1 where pS1 is the probability of state S1 occurring. The
expected time for first best to be reached is then

pS1

∞∑
n=1

n(1 − pS1)n−1.

This converges to 1/pS1 which is finite for any pS1 > 0. ��
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