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Summary. In this paper we are concerned with the performance of stock option
contracts in the provision of managerial incentives. In our simple framework, we
restrict the space of contracts available to the principal to those conformed by a fixed
payment and a call option on the firm’s stock. As compared to the fixed payment
and the option grant, we find that the strike price plays an intermediate role in
the provision of insurance and incentives. We also develop some methods for the
calibration of a standard principal-agent model based upon observed CEO earnings
schedules and the volatility of the firm’s value in the stock market. These methods
are useful to address some important issues such as the performance of stock option
contracts, the degree of risk aversion compatible with current earnings profiles and
the sensitivity of compensation to changes in firm’s characteristics.
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schedule, Stock price.
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1 Introduction

Most principal-agent models yield rather complex payment schedules, and it seems
quite challenging to test the predictions of these models.1 In practice there is a
widespread use of simple compensation schemes such as linear or piecewise linear
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1 Different components of compensation (e.g., base salary, bonus payments, restricted stock, stock
options of various maturities, probability of termination, severance payments) taken together may define
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(stock option) contracts. As is well understood (e.g., Stiglitz, 1991) these simple
contracts can only be generated under some specialized assumptions that seem
unsuitable for the construction of economic theories. Hence, a question that follows
naturally is if simpler contracts can be optimal or nearly optimal. We address this
question in a standard principal agent framework in which we evaluate the cost of
restricting compensation to a family of contracts composed of a fixed salary and a
call option on the company’s stock. Our analysis relies on numerical techniques,
since the optimal contract cannot be calculated analytically. We also develop some
methods for the calibration of a principal agent model. These methods should be
of independent interest.

In our simple setting, the principal represents the shareholders of a firm, and
the agent plays the role of the CEO. The random outcome, realized after the agent’s
action choice, is interpreted as the firm’s stock price. One major task is to under-
stand the incentives provided by each component of the stock option compensation
scheme. Clearly, the fixed payment discourages high effort. The strike price and
the option grant2 perform better as instruments to induce high effort, although the
option grant turns out to be the most powerful instrument. Thus, a marginal incre-
ment in cost devoted to lower the strike price has a greater impact on the provision
of incentives but it yields less utility than a marginal increment devoted to increase
the fixed component, and it has a lesser impact on the provision of incentives but it
yields more utility than a marginal increment invested in the option grant.

At a later stage in our analysis we address the issue of optimality of stock option
contracts. Our main purpose is to compare the cost of the stock option contract with
the cost of the optimal contract. First, some environments where the welfare loss
approaches zero are discussed. As one may anticipate, if the agent is risk neutral,
there exists a continuum of stock option contracts which are all first-best optimal.
Moreover, in some rather limited environments the stock option contract may be the
outcome of a general maximization program even if the agent is risk averse. Second,
we develop a methodology for the calibration of a general principal-agent model,
and we carry out several quantitative experiments to evaluate the performance of
the stock option contract. The most critical issue in the calibration of a principal-
agent model is the specification of the manager’s effort technology, that is, the
quantification of the effects on the firm’s stock value of the effort exerted by the
manager (cf. Haubrich, 1994; Haubrich and Popova, 1998; Margiotta and Miller,
2000). We assess these effects using a new approach based upon observed CEO
earnings schedules and the volatility of the firm’s stock value. This calibration
exercise should be of interest for further quantitative experiments in models of
agency.

In an influential paper, Jensen and Murphy (1990) claimed that observed con-
tracts are fairly insensitive to changes in shareholders’ wealth. Hall and Liebman
(1998) report a higher pay-performance sensitivity in more recent years. We ana-
lyze this empirical issue using our quantitative framework. We find that observed
CEO earnings schedules can be generated by plausible risk aversion coefficients,

a very complex contract (cf. Kole, 1997; and Murphy, 1999) but isolating the mechanisms generating
such contract seems an ambitious task.

2 The option grant is the number of shares specified by the option.
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which may range between 0 and 7. These numerical experiments confirm that ob-
served pay schedules can be generated by principal-agent models. We then analyze
the performance of the stock option contract. In all numerical exercises, our stock
option contract fares well in cost with the optimal contract, even though both payoff
profiles may take on different shapes, and may be quite distant from each other.
The small extra cost associated with restricting the choice space to three-parameter
contracts may account for the widespread use of stock option contracts.

Finally, we perform some other comparative numerical exercises of certain gen-
eral interest. Thus, from some controlled numerical exercises it appears that fixing
arbitrarily the strike price within a reasonable range does not result in a substantial
additional cost of the contract. As discussed above, in the optimal provision of
insurance and incentives the strike price p plays an intermediate role between the
option grant q and the fixed wage T . Hence, deviations from the optimal p may be
partially offset by a suitable reshuffling of both q and T . This seems key to explain
why in these contracts most options are granted at the money (i.e., at the grant-date
price), since these options receive a better fiscal treatment and the cost of departing
from the optimal p may be minor. Also, we find that the optimal wage schedule is
steeper if the gains to the agent of exerting low effort are higher and if low effort is
less detrimental to the firm. These results will be useful to understand how the stock
option contract varies with shifts in the mean and variance of the firm’s returns, and
with changes in the rank and productivity of the agent.

The rest of the present article is organized as follows. In the next section we de-
scribe our environment along with the basic assumptions about the primitives. Sec-
tion 3 studies qualitative properties of the stock option contract. Section 4 presents
several numerical experiments related to the calibration of the model and the afore-
mentioned comparative analysis exercises. In Section 5 we conclude and discuss
some ideas for future research. All proofs are gathered in a separate appendix.

2 The framework of analysis

The present section begins with a standard principal-agent model with fully-
contingent payment schemes. This model will serve as a useful benchmark to eval-
uate some dimensions of the stock option contract in the provision of insurance and
incentives and in a further quantitative study of its welfare properties.

2.1 A standard principal-agent model

We portray a stylized model of agency (e.g., see Mas-Collel et al., 1995, Ch. 14; Hart
and Holmström, 1987) for the managing of a corporation or a production activity.
The observable outcome y is assumed to be the market price of the firm’s stock,
and often called the value of the firm. The principal, representing the shareholders,
offers a contract specifying a compensation scheme, w(·), and a recommended
action, a. If the agent accepts the contract and chooses action a, the value of the
firm is realized according to the cumulative distribution F (·; a). Then, the payoff
of the principal is given by y − w(y), and the payoff of the agent is v(w(y)) − a,
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where v(·)−a is the agent’s utility function representing preferences over monetary
payments and effort.

The details concerning the fundamentals of the contracting problem in this
simple static framework are specified by the following assumptions:

Assumption 2.1 The agent selects an action from a finite set A = {a1, . . . , aN},
where ai ∈ R for all i = 1, . . . , N and a1 > · · · > aN .

Assumption 2.2 The value of the firm, y, is a continuous random variable, which
takes on values in the interval Y = [y, y] ⊆ R+. For each fixed a ∈ A, function
F (·; a) is the probability distribution of y with continuous density f(·; a) such that
f(y; a) > 0 for all y ∈ Y .

Assumption 2.3 Strong monotone likelihood ratio property (SMLRP): For all
pairs of actions ai and aj , if ai < aj then the ratio f(y; ai)/f(y; aj) is non-
increasing in y.

Assumption 2.4 Concavity of distribution function condition (CDFC): For any
triple of actions a∗, a′, and a′′, if a∗ = λa′ + (1 − λ)a′′, for λ ∈ (0, 1), then it
must hold that F (y; a∗) < λF (y; a′) + (1 − λ)F (y; a′′) for all y ∈ int(Y ).

Assumption 2.5 The agent’s utility of consumption, c, and effort, a, is given by
v(c) − a, where v : R → R is bounded, strictly increasing, strictly concave, and
continuously differentiable.

These assumptions are commonly used in the literature of principal-agent mod-
els (e.g., see Grossman and Hart, 1983), and ensure that the optimal contract is
monotone in the observable outcome. Regarding Assumption 2.1, our analysis is
easily extended to a countable number of actions, and it seems plausible to consider
a continuum convex domain of actions. Note that in Assumption 2.2 the observ-
able outcome y is a continuous variable. This condition will be convenient for the
computation and calibration of the model. Assumptions 2.3 and 2.4 are crucial to
guarantee the monotonicity of the optimal contract, and to build the analysis on
the comparison of two carefully chosen actions. Finally, the separable form of the
utility function in Assumption 2.5 will simplify the analysis considerably but it is
not needed for most of our results.

The expected utility of the agent under compensation scheme w(·) and action
a is defined as

V (w; a) =
∫

Y

[v(w(y)) − a]f(y; a)dy.

The agent will accept the contract offer and take action a if two conditions are
satisfied. The first condition is the individual rationality constraint,

V (w; a) ≥ v

for given v ∈ R, which represents the CEO’s reservation utility; and the second
condition is the incentive compatibility constraint,

V (w; a) ≥ V (w; a′) for all a′ ∈ A.
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The principal’s expected payoff is defined as

U(w; a) =
∫

Y

[y − w(y)]f(y; a)dy.

Let aH be the action that the principal wants to implement. Then, the optimal
payment scheme is a function w∗(·) that solves3 the optimization program

max
w

U(w; aH) (P1)

s. t. V (w; aH) ≥ v (IR)

V (w; aH) ≥ V (w; a′) for all a′ ∈ A. (IC)

From existing theoretical work, it is known that a multiple action framework
may become intractable in many respects unless ranking conditions are imposed
on the set of actions. The significance of Assumptions 2.3–2.4 is enhanced by the
following result:

Proposition 2.1 Assume that there exists a unique optimal action aH = aj >
aN for (P1). Then, the optimal contract w∗(·) is unique and nondecreasing in y.
Moreover, constraint (IC) only binds for action aj−1.

Let aL = aj−1 be the next most costly action after aH . An interior solution
must satisfy the following first-order condition:

1
v′(w∗(y))

= γ + φ

[
1 − f(y; aL)

f(y; aH)

]
(2.1)

where γ > 0 is the multiplier on constraint (IR), and φ > 0 is the multiplier on
constraint (IC). By the strict concavity of v, from (2.1) the compensation scheme
can be expressed as a function of the multipliers and the likelihood ratio:

w∗(y) = (v′)−1

([
γ + φ

[
1 − f(y; aL)

f(y; aH)

]]−1
)

. (2.2)

2.2 The stock option contract

We now restrict the principal to use compensation schemes consisting of a fixed
payment and a call option on the firm’s stock. A stock option contract σ = (p, q, T )
specifies the strike price p, the option grant q, and the fixed payment T . We assume
that p ∈ Y , q ≥ 0, and that the fixed component T of the payment schedule is
bounded below by some number T ∈ R.4 Hence, the agent’s payoff is v(T +q(y −
p)+) where (y − p)+ = max(0, y − p).

3 See Page (1987) for a rigorous discussion on the existence of an optimal contract in principal-agent
models with continuous random variables.

4 The possibility of a negative fixed component will allow us to approximate certain situations
discussed below in which the CEO has a positive initial wealth, and for some regions the payment
schedule may in fact take on negative values following a fall in price of the CEO’s stock holdings.
In what follows we suppose that the optimal choice involves T > T . Of course, certain interesting
contractual issues arise when the constraint T ≥ T is binding.
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Let V (σ; a) be the expected utility of the agent under compensation scheme
σ and action a, and let U(σ; a) be the expected utility of the principal. Let aS

be the action that the principal wants to implement over the space of all feasible
stock option contracts. An optimal stock option contract σ̃ solves the optimization
program

max
σ

U(σ; aS) (P2)

s. t. V (σ; aS) ≥ v (IR′)
V (σ; aS) ≥ V (σ; a′) for all a′ ∈ A (IC ′)

p ∈ Y, q ≥ 0, and T ≥ T .

Remark 2.1 As is typical in the principal-agent literature, in the sequel we assume
that a feasible σ exists. Then we can show (cf., Aseff and Santos, 2002) that the
maximization actually involves a continuous function U(σ; aS) on a compact set.
Therefore, (P2) always has a solution. Moreover, if aS > aN , then q > 0 and
p < y; for if not the contract becomes constant and (IC ′) is violated.

The monotonicity embedded in the stock option contract implies that only one
incentive compatibility constraint is binding.

Proposition 2.2 Assume that there exists a unique optimal action aS = ai > aN

for (P2). Then, at an optimal contract σ̃ constraint (IC ′) binds for action ai−1
only.

One should realize that the optimal action aH for (P1) may not be equal to the
optimal action aS for (P2). The next result, however, provides an upper bound for
the welfare loss of the stock option contract. Let L be the extra cost to the principal
of restricting the decision space to stock option contracts over the set of all actions
A; more precisely, from (P1)− (P2) above let L = U(w∗; aH)−U(σ̃; aS). Also,
let L̂ denote the corresponding extra cost when the optimization is confined to the
action set Â = {aH , aL}; by virtue of Proposition 2.1, L̂ = U(w∗; aH)−U(σ̂; aH),
where σ̂ solves the version of (P2) in which only actions aH and aL are considered.

Proposition 2.3 Under all the above conditions, L̂ ≥ L.

Hence, it follows from Proposition 2.3 that the welfare loss for the principal
from solving (P2) under actions aH and aL is an upper bound of the true loss of
restricting the decision space to stock option contracts over all possible actions. In
what follows the analysis will be confined to actions aH and aL.

3 Characterization of the optimal stock option contract

If the agent is risk neutral, it is well known that the first-best solution (i.e., a
solution in which the principal extracts the maximum feasible surplus) is to sell
the firm to the agent. With stock options, such contract can always be realized;
i.e., set p = y, q = 1 and solve for T from the individual rationality constraint.
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Furthermore, under risk neutrality there is usually a continuum of first-best stock
option contracts (seeAseff and Santos, 2002), since the agent values only the overall
expected revenue of the contract, independently of the relative size of the fixed and
contingent components. The main goal of this section is to explore the role played
by each variable defining the stock option contract in the provision of insurance
and incentives for a risk averse agent.

Let us first recast (P2) under actions aH and aL in the framework of the Kuhn-
Tucker conditions. Let λ be the multiplier on constraint (IR′), µ the multiplier on
constraint (IC ′), and ϕ the multiplier on constraint p ≥ y. Note that by Remark 2.1
constraints p ≤ y and q ≥ 0 need not be considered. For T > T , we now write the
Lagrangean

L(σ, λ, µ, ϕ) =U(σ, aH)+λ [V (σ; aH)−v] +µ [V (σ; aH)−V (σ; aL)] +ϕ(p−y).

Differentiating with respect to p, q, and T , after some simple rearrangements we
obtain the following necessary conditions for a solution5

Up(σ; aH)
Vp(σ; aH)

+ λ + µ

[
1 − Vp(σ; aL)

Vp(σ; aH)

]
+ ϕ

1
Vp(σ; aH)

= 0 (3.1)

Uq(σ; aH)
Vq(σ; aH)

+ λ + µ

[
1 − Vq(σ; aL)

Vq(σ; aH)

]
= 0 (3.2)

UT (σ; aH)
VT (σ; aH)

+ λ + µ

[
1 − VT (σ; aL)

VT (σ; aH)

]
= 0. (3.3)

These conditions should be familiar from related models of risk sharing and agency
(cf. Borch, 1962; Holmström, 1979), and reflect the usual trade-offs in the provision
of insurance and incentives.

Proposition 3.1 The derivatives of U and V must satisfy the following properties∣∣∣∣VT (σ; aH)
UT (σ; aH)

∣∣∣∣ ≥ ∣∣∣∣Vp(σ; aH)
Up(σ; aH)

∣∣∣∣ > ∣∣∣∣Vq(σ; aH)
Uq(σ; aH)

∣∣∣∣ . (3.4)

Suppose that the principal wants to increase marginally the expected cost of
the contract. Consider first an infinitesimal increase in T . The surplus of the prin-

cipal decreases by UT (σ; aH). Thus,
∣∣∣ VT (σ;aH)
UT (σ;aH)

∣∣∣ denotes the change in the agent’s

marginal utility after an infinitesimal increase in T . Alternatively, the principal
could devote this marginal increase in cost to lower the strike price. In this case,

the effect on the agent’s marginal utility is
∣∣∣ Vp(σ;aH)
Up(σ;aH)

∣∣∣. In the same way
∣∣∣ Vq(σ;aH)
Uq(σ;aH)

∣∣∣
represents the marginal utility of an infinitesimal increase in the cost of the contract
invested in q. The inequalities indicate that for a marginal rise in compensation the
agent would prefer an increase in T to a reduction in p or an increase in q. The

5 Subscripts denote partial derivatives of functions U and V with respect to i ∈ {p, q, T}.
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more interesting feature is that the agent prefers a lower p to a larger q. Essen-
tially, if p goes down, then the agent’s compensation goes up uniformly over the
set E = {y : y ≥ p}; but if q goes up, then the gains are slanted towards the high
end of the distribution. Therefore, for the same marginal increase in compensation
a risk averse agent will prefer a reduction in p.

There are two other aspects of the characterization of the stock option contract
that we would like to address. The first one relates to the values of λ, µ, and ϕ. The
second aspect relates to the incentives provided by the different components of the
compensation scheme.

Proposition 3.2 At an optimum, (i) λ > 0, which implies that constraint (IR′)
will be binding; (ii) µ > 0, which implies that constraint (IC ′) will be binding;
and (iii) ϕ = 0.

Parts (i)−(ii) of this proposition seem a minimal requirement for the specifica-
tion of contracts with good optimality properties and facilitate the characterization
of the optimal stock option contract from the first-order conditions. Concerning
(iii), note that ϕ = 0 regardless of whether the constraint p ≥ y binds. Hence, re-
laxing the constraint by a very small amount (i.e., a small change in the distribution
of the company’s returns that lowers marginally the bound y) will not yield extra
profits to the principal, since at point p = y an infinitesimal decrease in p can be
fully offset by a corresponding reduction in T [see (3.1) and (3.3)].

Finally, the provision of incentives is reflected in expressions (3.1)–(3.3) in all
the ratios of the form [1 − Vi(σ; aL)/Vi(σ; aH)] for i ∈ {p, q, T}. With regard to
the fixed payment T , in the proof of Proposition 3.2 we show that VT (σ; aH) <
VT (σ; aL), and thus [1 − VT (σ; aL)/VT (σ; aH)] < 0. Therefore, an increment in
T discourages high effort. Indeed, a larger T increases the payoff of the agent in
all states, and as a consequence of risk aversion and stochastic dominance, it yields
a larger marginal value under action aL. Concerning the strike price p, as already
pointed out the effects of a decrease in p near y can be nullified by a corresponding
increase in T . Hence, the continuity of Vp implies that [1−Vp(σ; aL)/Vp(σ; aH)] <
0 for p sufficiently close to y. In the opposite situation, for p near y a marginal unit
spent in lowering p confines all extra wage gains at the high-end of the distribution.
Therefore, [1 − Vp(σ; aL)/Vp(σ; aH)] > 0 for p sufficiently close to y, since
f(y; aH) > f(y; aL) by Assumption 2.3. Similarly, one may expect that changes in
the option grant may have indeterminate effects in the provision of incentives. And,
indeed, we have not been able to rule out the possibility that in cases of extreme risk
aversion, for p = y an increase in the option grant may lead to the implementation
of action aL.6 We nevertheless show that if [1 − Vp(σ; aL)/Vp(σ; aH)] ≥ 0 then
[1 − Vq(σ; aL)/Vq(σ; aH)] > 0 (Proposition 3.3 in the Appendix). Also, [1 −
Vq(σ; aL)/Vq(σ; aH)] ≥ 0 if the coefficient of relative risk aversion is always less
than or equal to one (Proposition 3.4 in the Appendix). These results corroborate
the role of the option grant as the most powerful instrument in the provision of
incentives.

6 Observe that the expression, Vq(σ; aH)−Vq(σ; aL) =
∫

E v′(q(y−p)+T )(y−p)[f(y; aH)−
f(y; aL)]dy, is highly non-linear.
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4 A quantitative analysis

Will the stock option contract be optimal or nearly optimal? Under some rather
restrictive conditions, problem (P1) may generate a piecewise linear contract. For
instance, assume that the utility function v(c) = log(c) and the term 1 − f(y;aL)

f(y;aH)
has the form max{−k0, (y − k1) − k0} for some constant k0 > 0 and some point
k1 ∈ Y . Then (2.1) implies that the solution w∗(·) takes the form of a stock option
contract. Analogous conditions can be imposed on the likelihood ratio for the more
general class of CES utility functions.7 Since these conditions on the likelihood ra-
tio are rather fragile, we assess the optimality of stock option contracts numerically.
We find that observed CEO payment profiles can be generated under plausible coef-
ficients of risk aversion; moreover, the additional costs of implementing the stock
option contract are always negligible. We also consider some other comparative
exercises on the structure of the stock option contract for changes in the rank and
productivity of the manager and the distribution of the firm’s value.

4.1 Calibration of a standard principal-agent model

Some previous work on the calibration of models of agency (e.g., Haubrich, 1994;
Haubrich and Popova, 1998; Robe, 1999) postulate functional forms for the man-
ager’s contribution to the company. A major objection to these studies is that there
is a lack of evidence about the form of f(·; aH) and f(·; aL); moreover, the shape of
the optimal contract is very sensitive to the functional forms of these densities and
the assigned parameter values (e.g., Haubrich and Popova, 1998). Our calibration
imposes no functional restrictions on these technologies. In the absence of reliable
data to estimate these densities, we introduce independent estimates for all the other
primitives of the model. Then, from a postulated optimal wage schedule, we infer
the likelihood ratio f(y;aL)

f(y;aH) from optimality conditions. Hence, the likelihood ratio
is obtained indirectly from available data on all other specifications of the model.
Margiotta and Miller (2000) propose a related estimation procedure but their gen-
eralized method of moments estimator is defined under a restrictive utility function
and a parametric form for the likelihood ratio. Also, their data set is quite limited.

(A) Calibration of density f(·; aH): As in our previous analysis we presuppose
that the shareholders offer an incentive scheme to implement action aH . If our
principal-agent model is intended to predict observed earnings schedules, it seems
then pertinent to impose the identifying restriction that the probability distribution
F (·; aH) mimics the observed distribution of returns of a certain representative
firm. Hence, density f(·; aH) should be estimated from a proposed distribution of
stock price returns. But even when averaged out over decades, equity returns have

7 In insurance models Holmström (1979) shows that there are scenarios in which pure deductible
contracts (i.e., option-like contracts) are optimal. For a similar result to hold in our context, a mass point
at y is needed. Also, the agent’s action should only affect the probability of departing from y, and not
the magnitude by which y departs from y. Such an environment is clearly unattractive in a managerial
compensation framework.
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fluctuated wildly (cf., Mehra and Prescott, 1985, Table 1), and so any proposed dis-
tribution of returns can just be considered as a rough approximation of the volatility
of a firm’s stock. Numerous studies have gathered observed distributions of returns
for various samples of firms and time periods (e.g., Fama. 1976, Ch. 1; Hull, 1993,
Ch. 11). Here we follow Hall and Liebman (1998, Table V) who report the nine
decile cutoffs of observed annual returns corresponding to the pool of firms in the
S&P 500 for the period 1970 to 1994. Then, using some simple bootstraping pro-
cedures we construct density f(·; aH) defined over a selected domain [0.55, 1.70]
of possible annual stock price returns. This density function is depicted as the solid
line in Figure 1. The mean of this distribution is equal to 1.0811 and the standard
deviation is equal to 0.2750. These values fall roughly within the accepted region
of various empirical studies on annual stock price returns.

(B)Theoptimal contract: For the calibration of our model we identify the optimal
contract with a payments profile constructed by Hall and Liebman (1998). Under the
observed distribution of returns from corporate proxy statements and 10-K forms
on CEO’s holdings of stock and stock options these authors compute compensation
schedules for a median manager for the years 1980 and 1994. We should remark
that these earnings profiles are not observed compensation schemes, since they
have been simulated from information of median salary, bonus and CEO’s company
portfolios as applied to the hypothesized distribution of returns. In 1994 dollars, this
representative CEO would get an expected annual compensation of about $968,269
in 1980, and $3,695,540 in 1994. Hall and Liebman compute the gains from stocks
and stock options with the Black and Scholes formula. However, these gains are
not liquid and thus may be less valuable to a risk averse manager. To correct for this
bias all deferred compensation is scaled down by 0.85.8 Also, in our analysis below
we assume that preferences are defined over earnings and initial wealth. Then,
following related back-of-the-envelope calculations by these authors we consider
that in real terms the initial wealth for the median CEO is $10,000,000 in 1980
and $20,000,000 in 1994. The solid lines in Figure 2 display the wage-over-wealth
schedules for both 1980 and 1994. Observe that relative earnings are close to zero
for low realizations of returns, and they represent a substantial fraction of estimated
wealth for high realizations. As discussed by these authors the 1994 schedule is
steeper, and this is reflected in more extreme values at both ends.

(C) Calibration of the utility function: The following procedures are used to
specify the parameter values corresponding to the agent’s utility of consumption
and disutility of effort. First, the value aH is determined from an optimization
condition in which the marginal disutility of effort must be equal to its marginal
benefit. More specifically, for the above utility function v(c) − a let a = lα where

8 This adjusting factor is derived from several calculations based on vesting periods of stock option
contracts, and standard values for the interest rate and coefficients of risk aversion. This linear approxi-
mation is exact for a CES utility function in which the initial wealth and the fixed payment are equal to
zero. In our static model, this approximation is not exact since we aggregate all the components of the
contract.
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l is quantity of time worked and α is the marginal disutility. Then,∫
Y

v′(lw(y))w(y)f(y; aH)dy = α. (4.1)

Assuming that the solution is attained at l = 1, we get α from (4.1); furthermore,
aH = α and v =

∫
Y

v(w(y))f(y; aH)dy −aH . Second, the value of the less desir-
able action aL is taken from Margiotta and Miller (2000, Table 7). They estimate
a three-action model and obtain that aH/aL = 1.172. Finally, for the utility of
consumption we postulate the following functional form

v(c) =


log(c + m) if ρ = 1,

(c + m)1−ρ − 1
1 − ρ

otherwise,

where m denotes the initial wealth of the agent, and without loss of generality will
be normalized to unity. Hence, c will be interpreted as the ratio of earnings over
initial wealth. We let the risk aversion coefficient ρ = 1, which is within the range
of feasible estimates considered in the finance literature (e.g., Mehra and Prescot,
1985).

(D) Derivation of density f(·; aL): This density is not observable but may be
recovered from (IR)− (IC) and the first-order condition (2.1) using our estimates
of f(·; aH), the relative compensation schedule w(·), and the utility function v(c)−
a. Thus,

f(y; aL) =
[
1 − [v′(w(y))]−1 − γ

φ

]
f(y; aH). (4.2)

Therefore, for any (γ, φ) we obtain f(·; aL) from (4.2). Since f(·; aL) is a proba-
bility density function, by condition (IC) it follows that∫

Y

[
1 − [v′(w(y))]−1 − γ

φ

]
f(y; aH)dy = 1 (4.3)∫

Y

v(w(y))
[
1 − [v′(w(y))]−1 − γ

φ

]
f(y; aH)dy = aL + v. (4.4)

We can now obtain the pair (γ∗, φ∗) that solves the system of equations (4.3)-(4.4)
from the following expressions,

γ∗ =
∫

Y

[v′(w(y))]−1f(y; aH)dy (4.5)

φ∗ =

∫
Y

v(w(y))
[
[v′(w(y))]−1 − γ∗] f(y; aH)dy

aH − aL
. (4.6)

(E) A consistency test: This procedure does not guarantee that f(y; aL) > 0
for all y ∈ Y . Since v(·) is a concave function, expression (4.5) implies that
[v′(w(y))]−1 − γ∗ > 0 for large values of y; hence, by (4.2) we may have that
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f(y; aL) < 0. If for a given compensation schedule w(·), function f(y; aL) takes
on negative values over a certain region of the domain, then we may conclude that
under the postulated functional forms for the observed density f(·; aH) and the
utility function v(·) − a, contract w(·) cannot be generated by problem (P1). This
is a rather weak consistency test but we are unwilling to impose further restrictions
on f(·; aL) as such density is not observable.

A key parameter in this calibration exercise is the agent’s degree of risk aversion,
ρ. In fact, following the above steps we can search for the feasible region of degrees
of risk aversion ρ which may generate the given earnings profile, i.e., the range of
values of ρ > 0 under which f(y; aL) ≥ 0 for all y ∈ [0.55, 1.70]. We find that
the compensation schedule9 of 1994 is compatible with values of ρ in the interval
(0, 7.34] and the less steep compensation schedule of 1980 is compatible with
values of ρ in the interval (0, 15.2]. This simple test confirms that observed CEO
compensation schedules can be explained by models of agency.

Before closing this part, let us offer a more detailed comparison of these meth-
ods to those of Haubrich and Popova (1998) whose analysis seems closest to ours.
Technically, Haubrich and Popova propose an estimation procedure in which pa-
rameter values are determined as solutions to the minimization of the squared sum
of errors between model-predicted data and data from a sample of firms, and match-
ing data’s first and second moments. Our parameters are calibrated from a median
CEO’s payment schedule and further independent evidence. Also, Haubrich and
Popova map states and probabilities to company payoffs in a way that seems quite
close to ours. These are, however, some minor differences. The main point of de-
parture is in the calibration of the manager’s effort technology. We back out this
technology in a non-parametric way from the first-order conditions of the decision
problem subject to the above consistency condition. Given the lack of independent
evidence, this procedure seems very reasonable. In contrast, Haubrich and Popova
search over various arbitrary functional forms until they consider that a solution is
adequate.10

9 To evaluate variations in the risk aversion coefficient, a more satisfactory approach would be to
consider a utility function of the following form,

[v(c) − a]1−ρ − 1
1 − ρ

All results reported below did not experience substantial variations under the following alternative
functional form,

[log(c + 1) − a]1−ρ − 1
1 − ρ

.

10 The limitations of this analysis are actually acknowledged by the authors. Thus, one can read (see
Haubrich and Popova, 1998, p. 564)

Of central concern here is the proper specification of the πi(a) function: Measuring CEO’s
contribution to the firm is the most problematic aspect of calibrating the principal-agent prob-
lem. The available evidence on how CEOs affect firm value is rare... Finding an intuitively
appealing specification proved difficult. Even after restricting the search to probability struc-
tures that satisfy the “spanning condition”,... many structures had only degenerate feasible
solutions or required implausible CEO productivity.

Moreover, in page 566 (see op. cit.) one also reads: “This admittedly falls short of the the ideal calibration,
which would optimize over functional forms as well as parameters, but the experiment was enough to
establish some level of robustness...”
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Figure 1. Densities f(y; aH) and f(y; aL)

4.2 The performance of stock option contracts: a baseline parameterization

For the above density f(·; aH), and the relative compensation schedule of year
1994, we now focus on our baseline parameterization in which ρ = 1, and aH and
aL are obtained from the above calibration methods. Using this parameterization,
we examine the implied costs of agency and the distribution of returns under action
aL. Then we consider several numerical exercises to assess the performance of
stock option contracts.

We first compute the optimal flat wage that the CEO would receive in the
absence of agency problems. That is, the constant payment w under the same aH

and v such that ∫
Y

v(w)f(y; aH)dy − aH = v. (4.7)

We find that w = 0.155705. Since the expected value of w(·) under f(·; aH) is
equal to 0.164909, our model predicts that agency problems increase expected
compensation by approximately 5.9%. Note that this figure is obtained from an
evaluation of the manager’s earnings profile, and ignores supervision and coordi-
nation activities and other measures that may mitigate the costs of moral hazard.
Haubrich (1994), Haubrich and Popova (1998), Margiotta and Miller (2000) and
Robe (1999) present alternative analyses of the importance of moral hazard, but as
already pointed out their calibration exercises are substantially different.

Next, from (4.2)–(4.6) we compute the implied density function f(·; aL). This
density is also portrayed in Figure 1.The mean of this distribution is equal to 1.04047
and the standard deviation is equal to 0.263295. As compared to f(·; aH), the mean
for the new distribution drops by approximately 4%. Considering that in our sample
the value of a median company in the S&P 500 is of about 2 billion dollars, we
have that the expected loss for the shareholders of implementing action aL would be
around 80 million dollars. Furthermore, under the above parameter values we can
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Figure 2. Observed earnings profiles and stock option contracts

easily compute from (4.7) that the extra gain for the shareholders of implementing
action aL would amount to a 23.9% drop on the expected wage, which is about
$788,872. Hence, our simple model is able to rationalize a commonly disputed
paradox in agency theory that a relatively small change in the manager’s expected
pay may result in a large gain to the shareholders. This gain to the shareholders is
over 100 times greater than the cost.

By construction, for our baseline parameterization and above densities f(·; aH)
and f(·; aL), the solution to (P1) is the payment schedule of 1994 normalized by
the initial wealth. We now evaluate the performance of the stock option contract by
computing the solution to (P2) under the same conditions. This is the stock option
contract depicted in the left panel of Figure 2. The first row of Table 1 reports values
for p, q and T and the costs of the stock option contract and the optimal contract.
Restricting the space of contracts to a fixed salary and a call option does not increase
the cost of compensation significantly. The upper bound L̂ = C(σ; aH)−C(w; aH)
from Proposition 2.3 is of order of 0.0478%.

From the first row of Table 1, we can observe that the fixed component of
the contract, T is actually negative. In our static setting in which all components
of compensation are aggregated, a negative T means that pronounced falls in the
value of the stock may lead to actual losses in the CEO’s total compensation.
Also, note that q = 0.618804. Given that our estimate for an initial wealth of 20
million dollars has been normalized to unity, a stock value of 2 billion dollars for
a representative company in S&P 500 would imply that an increase of $1,000 in
value to the shareholders would result in an extra gain of $6.19 for the CEO. This
latter estimate is of course fairly close to the ones in Hall and Liebman (1998),
since our stock option contract is a fairly good piecewise linear approximation of
their simulated payment schedule (cf. Fig. 2).

In our baseline parameterization, the value of the strike price, p = 0.827586,
is substantially below the current value of the firm, which has been normalized to
unity. In our view, there are at least two plausible explanations as to why in practice
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Figure 3. Cost of compensation as a function of p

options are usually granted at the money. First, for each p let C(p, q(p), T (p); aH)
be the cost of a stock option contract that satisfies (IC ′) − (IR′). This function is
depicted in Figure 3. As one can see, the function contains a rather flat basin around
the point of minimal cost, which seems to confirm a point stressed in this paper that
in the provision of insurance and incentives p plays an intermediate role between
q and T . Hence, controlled changes in p will result in relatively small incremental
costs, since the variation in p may be partially offset by countervailing changes in
q and T . Second, in a real world situation, a deviation from the optimal strike price
may be supported by other compensation mechanisms. For instance, a package of
stock options granted at the money may be complemented with a bonus policy so
that in effect the strike price is below the actual price of the share.

The same computational experiment has been replicated under the compensa-
tion scheme of 1980 (see Fig. 2) with similar results concerning the extra cost of
restricting the optimization to a simple stock option contract. As pointed out in
Hall and Liebman (1998), the 1980 contract is less sensitive to changes in the stock
value. With respect to our previous exercise the most noticeable change is the value
of q that drops to 0.204442.

4.3 Constant elasticity contracts

The shape of the contract in Hall and Liebman (1998) is relatively simple and hence
the good performance of the stock option contract should not be so surprising. Then,
it seems useful to test the robustness of the good performance of stock options
against the general class of constant elasticity contracts, wθ(y) = Byθ. Parameter
θ represents the elasticity of the compensation scheme with respect to the value of
the firm. Parameter B is used to set the level of compensation.

To determine the value of θ we use information on the fraction of compensation
that corresponds to fixed wages (cf. Murphy, 1999). Let κ denote the fraction of



828 J.G. Aseff and M.S. Santos

Figure 4. Constant elasticity and stock option contracts

compensation attributed to fixed wages. Then,

κ

∫
Y

yθf(y; aH)dy = yθ

Thus, parameter θ is univocally determined by κ. In fact, θ moves inversely with
κ; a convex contract wθ(y) is obtained for low values of κ, and a concave contract
wθ(y) entails a high enough value for κ. Regarding B, it is normalized so that
E[Byθ; aH ] = E[w(y); aH)]. Therefore, θ is defined from κ, and B is determined
by the level of expected pay.

Our numerical experiments are as follows. We vary parameter θ and leave
unchanged density f(·; aH) and ρ = 1. Then, we recover values for v, aH , aL,
and density f(·, aL) using the computational procedure (4.1)-(4.6).11 We employ
this procedure for the cases in which 1%, 5%, and 20% of compensation is fixed;
i.e., for κ = 0.01, κ = 0.05, and κ = 0.20. Even in the extreme case in which
κ = 0.01 the extra cost of implementing action aH under the stock option contract
is of the order of 0.45%. This is a relatively small deviation in cost, although as
illustrated in the left panel of Figure 4 this latter contract may be quite distant from
the postulated optimal non-linear contract.

4.4 Comparative statics

We now explore numerically how the stock option contract varies with changes in
the model’s primitives. These findings may hold analytically under further specific

11 Hence, with respect to the preceding analysis, the interpolated contract w(y) from Hall and Liebman
is now replaced by contract wθ .
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Table 1. Changes in the reservation utility

p q T v C(σ; aH) C(w(·); aH)

0.827586 0.618804 −0.006723 0.009983 0.164979 0.164909
0.827586 0.615724 −0.011669 0.004991 0.159174
0.827586 0.625009 0.003243 0.019966 0.176663

Table 2. Shifts in the distribution

λ p q T C(σ; aH)

0.3 0.827586 0.897756 −0.074251 0.174846
0.5 0.827586 1.281470 −0.161775 0.193789
0.7 0.827586 2.224275 −0.352230 0.264932

Table 3. Changes in the effort ratios

aH/aL p q T C(σ; aH)

1.002 0.827586 0.008051 0.153474 0.155707
1.080 0.827586 0.306487 0.072993 0.158033
1.172 0.827586 0.618804 −0.006723 0.164974
1.260 0.827586 0.882907 −0.070740 0.174237

assumptions, but our main interest is to offer some simple illustrations on the fol-
lowing empirical issues: the widespread use of stock options for non CEO workers
and the more prevalent use of stock options in riskier companies.

(I) Changes in the reservation utility v: Table 1 displays three examples in
which the structure of compensation varies with the level of v. All other parameters
are fixed. We can see that an increase in v results in higher q and T with no noticeable
change in p. As already discussed controlled variations in p do not have a first-order
effect on utility, and so p may be assumed constant for present purposes.

(II) Changes in density f(·; aL): Table 2 reports a similar experiment for varia-
tions in f(·; aL). We let this density vary over the parameterized family of functions
fλ(y; aL) = λf(y; aH)+(1−λ)f(y; aL). Note that lower λ-values relax constraint
(IC), and action aL becomes more detrimental to the firm. Then, the shareholders
can afford to offer a flatter, less costly wage profile, since action aL is also more
harmful to the agent. Another way to see this result is that for lower λ-values it is
easier for the shareholders to infer the action taken by the agent.

(III) Changes in the value of shirking: Monitoring and supervision are more
prevalent for non-executives. An executive usually enjoys more autonomy in the
use of the company resources; hence, shirking may be substantially more attractive
for higher-level employees. In their quantitative study, Margiotta and Miller (2000)
obtain a point estimate aH/aL = 1.172 for a CEO worker, and aH/aL = 1.002
for a non CEO worker. As we let aL move closer to aH we are relaxing constraint
(IC) and so the payment schedule should be flatter. This is illustrated in Table 3.
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We can now combine (I)–(III) to evaluate whether stock options should be
granted to non-executives. Several authors (e.g., Core and Guay, 2001; Hall and
Murphy, 2003; Oyer and Schaefer, 2003) have argued that stock options are an
expensive way to provide incentives to these employees, and have suggested some
other reasons such as retention for the widespread use of stock option contracts.
Their arguments, however, ignore some of the above considerations.

As shown above, in our calibrated model the differential gain to the sharehold-
ers of taking action aH , instead of aL, is over 100 times greater than the extra cost
to induce the manager to take such action. In view of this productivity gap between
the two actions, it may be worth granting options to less influential workers. In-
deed, from computations along the lines of Table 2 we can tell that stock options
will be granted for values of λ up to 0.98, which means that these options should
be awarded for a wide range of levels of workers’ efficiency. The problem is that
as noted in (II) for higher λ-values the compensation schedule becomes steeper,
and hence the model would predict that less productive workers should receive a
higher fraction of their pay in stock options. This is counterfactual (e.g., see Oyer
and Schaefer, 2003), since stock options have less weight in the compensation of
non-executives. But apart from changes in the reservation utility v, an executive
may enjoy privileges and fringe benefits from shirking that are not available to a
middle manager or a lower level employee. As discussed in (III), Margiotta and
Miller (2000) obtain that aH/aL = 1.172 for a CEO worker and aH/aL = 1.002
for a non CEO worker. Hence, the shareholders should be less concerned with the
provision of incentives to non-executives and should offer less variable compen-
sation. For illustrative purposes consider an employee for which the productivity
gap between actions aH and aL is only 10 percent of our original calibration so
that for fλ(·; aL) defined above we let λ = 0.9; also, assume that for such an
employee aH/aL = 1.01, which is one order of magnitude higher than the esti-
mate obtained by Margiotta and Miller. Letting constant all other calibrated values,
we now get that p = 0.827586, q = 0.412382 and T = 0.0444628. Hence, as
compared to our original baseline calibration, the present contract involves a lower
option grant. These computations highlight the crucial role played in this analysis
by the agent’s differential utility of actions aH and aL, and the differential gains to
the shareholders from densities f(·; aH) and f(·; aL).

In the agency model of Holmströn and Milgrom (1987) the slope of the optimal
contract varies inversely with the variance of the firm’s returns. But many “new
economy” firms are highly volatile and rely heavily on stock options for compen-
sating their employees. As seen from (2.2), in our principal-agent model the shape
of the optimal contract depends on the likelihood ratio f(y; aH)/f(y; aL) rather
than on f(·; aH) directly. As the stock option contract can be viewed as an approx-
imation of the optimal contract, then the structure of the stock option contract will
also be expected to depend on the likelihood ratio f(y; aH)/f(y; aL). To illustrate
these complex effects of uncertainty on the fundamentals, several numerical exer-
cises are reported in Table 4. For simplicity, in all these experiments we let p = 1.
In the first three rows we increase progressively the mean of density f(·; aH). As
already known from (II), after these changes the value of the option grant q goes
down. In the second three rows we increase at the same time the variance generated
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Table 4. Shifts in the distributions

f(y; aH) f(y; aL) Contract
Mean Std. Dev. Mean Std. Dev. p q T

1.08 0.274 1.04 0.261 1 0.814548 0.0307247
1.09 0.274 1.04 0.261 1 0.659639 0.0490021
1.10 0.274 1.04 0.261 1 0.552484 0.0619524

1.08 0.274 1.04 0.261 1 0.814548 0.0307247
1.09 0.311 1.04 0.261 1 0.455818 0.0738587
1.10 0.324 1.04 0.261 1 0.363543 0.0854285

1.08 0.274 1.04 0.261 1 0.814548 0.0307247
1.09 0.311 1.04 0.305 1 0.742235 0.0263439
1.10 0.324 1.04 0.315 1 0.582124 0.0458039

1.08 0.274 1.04 0.261 1 0.814548 0.0307247
1.09 0.311 1.05 0.305 1 0.900826 0.0012279
1.10 0.324 1.06 0.315 1 0.880244 −0.00530156

by f(·; aH). As compared to the first set of experiments, and since the difference
in the means generated by f(·; aH) and f(·; aL) is quite large, an increase in the
volatility of the distribution of f(·; aH) allows the shareholders to infer more easily
the action taken by the agent, and hence q goes further down. In the third set of rows
the additional change is in the variance generated by f(·; aL). This higher volatility
makes harder to infer the action taken by the agent, and for each corresponding
row the option grant is always greater than in the other two sets of experiments.
Finally, in the last three rows we shift the mean of f(·; aL). Then, from (II) this
shift increases the slope of the contract. In summary, an increase in the volatility of
the firm’s returns may have rather complex effects on the structure of compensation
as it may affect the likelihood ratio f(y; aH)/f(y; aL) in various ways. An increase
in volatility results in a steeper compensation profile if it becomes harder for the
shareholders to infer the action taken by the agent.

5 Concluding remarks

This paper is concerned with the workings and performance of stock option con-
tracts in the provision of managerial incentives. In our simple stylized model a
marginal dollar spent in lowering the strike price has a greater impact on the pro-
vision of incentives but it yields less utility to the manager than a dollar spent in
increasing the fixed component, and it has a lesser impact on the provision of incen-
tives but it yields more utility than a dollar spent in increasing the option grant. This
intermediate role of the strike price may explain why most stock options are granted
at the money, since these options have a favorable tax and accounting treatment (cf.
Hall and Murphy, 2003) and the costs of deviating from the optimal strike price
seem to be minimal. These costs are accommodated by an appropriate reshuffling
of the option grant and the fixed component of the contract.
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In our principal-agent model, a contract cannot be dismissed simply because
the sensitivity of pay-performance seems low. There are other components in the
configuration of the optimal contract such as the opportunity cost of the manager
relative to the size of the corporation, the disutility of effort, the degree of risk
aversion, and the manager’s technology linking productivity to effort. In order to
assess numerically all these effects, we develop some methods for the calibration
of the model. Our numerical experiments attest that if the agent takes the low ac-
tion then the cost to the shareholders is over 100 times greater than the implied
extra savings in compensation. Therefore, a relatively small additional amount in
compensation may be enough to incentivize the agent to exert high effort. This as-
pect seems crucial to understand why observed payment schemes can be generated
by plausible parameter values. Thus, we consider a representative compensation
contract from Hall and Liebman (1998), and we get that such a wage profile can
be generated by coefficients of relative risk aversion that range between 0 and 7.
Moreover, as compared to the optimal non-linear contract, we should note the re-
markable performance of the simple stock option contract. In all our numerical
exercises the additional cost of implementing this latter contract is always below
0.5%. Of course, such small costs coupled with the benefits of implementing this
simple contract may account for the popularity of stock options.

We would like to emphasize that the main intuition behind the remarkable per-
formance of the stock option contract seems to go beyond our calibration exercises.
It is just the simple insight that it is possible to implement action aH over action
aL via a piecewise linear contract and at a very small extra cost. To simply separate
these two actions, it seems even preposterous to resort to an infinite-dimensional
contract. Furthermore, our results demonstrate that this underlying reasoning pre-
vails in a setting with a finite or countable number of actions provided that certain
standard regularity conditions hold.12

These results may lend further insights to ongoing discussions on the nature
of executive compensation. As an illustration, we considered the structure of com-
pensation for rank-and-file workers and for riskier firms. The shape of the stock
option contract will depend upon the effects that the low action has on the loss of
revenues to the firm and on the extra utility to the employee. These two margins
have been overlooked by previous studies, and play a crucial role in the present
analysis. Also, it is not clear that a riskier company should offer higher incentives,
since the slope of the optimal contract depends on the variability of the likelihood
ratio f(y; aL)/f(y; aH), rather than on the observed volatility of the firm’s returns
defined by f(·; aH). Therefore, the structure of compensation across the spectrum
of employees in a company will be influenced by monitoring costs and hence by
the differential gains of exerting low effort for each category of workers. Top exec-
utives and consultants are usually harder to monitor, and hence their pay should be
more sensitive to performance. Moreover, to explain the shape of the stock option
contract what counts is not the volatility of the company but rather how the actions
of each worker may interact with this volatility.

12 There are other environments in which payment schedules may be linear or nearly linear; e.g.,
see Laffont and Tirole (1986), Holmström and Milgrom (1987), McAfee and McMillan (1987) and
Diamond (1998).
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At the heart of our contribution, there is the idea that high-powered incentives
induce desired levels of effort, and relieve agency contracts from the problem of
moral hazard. This is not to deny the existence of other considerations that may
shape executive compensation. For instance, a body of the literature has focused
on career concerns (cf., Holmström, 1999; Holmström and Ricart-i-Costa, 1986;
Gibbons and Murphy, 1992; Prendergast and Stole, 1996; Caruana and Celentani,
2002), and on multi-task efficiency (cf., Holmström and Milgrom, 1991).

Let us now conclude with some extensions for further research. In the above
models the agent is not allowed to borrow or to invest in other assets. In practi-
cal situations, however, the CEO may be willing to hedge against the firm’s risk
stemming from the contingent compensation scheme. Therefore, it is of interest to
analyze the investment decision problem of the agent, and the optimal restrictions
on portfolio holdings that should be imposed by the principal in order to implement
the most desirable action. Also, further research is needed to understand why the
strike price is not indexed to other variables such as the evolution of stock prices
in the sector.

Dynamic considerations may play an important role in current compensation
schemes. Most executive stock options are not tradable, and cannot be exercised
over certain time periods. Moreover, CEOs usually face rather undiversified portfo-
lios over time, and most option grants and pay revisions are based upon past perfor-
mance. These issues cannot be addressed properly in our static framework. Some
recent contributions (e.g., Wang, 1997; Clementi and Cooley, 2001; Cadenillas et
al., 2002) aim at the computation of solutions in infinite-horizon principal-agent
models. This seems to be a research area in which the construction and analysis
of structural models should further our understanding on executive compensation,
and for which the results of the present paper should be useful.

Appendix

The proof of Proposition 2.1 parallels that of Grossman and Hart (1983, Prop. 8),
and it is offered here since it is relevant for further purposes. By an approximation
argument, these results could in fact be extended to a setting with a countable,
infinite number of actions.

Proof of Proposition 2.1. As is well known, program (P1) can be formulated in the
space of utility levels using the change of variable u(y) = v(w(y)) for all y ∈ Y ,
and defining s(u(y)) = v−1(u(y)). Then, (P1) involves the maximization of a
strictly concave function over a convex set conformed by a set of linear constraints.
Hence, the optimal solution is unique whenever only one action aH = aj is the
optimal one.

Consider now a version of (P1) in which the action space is limited to those
actions a′ such that a′ ≤ aH . By Assumption 2.3, it is easy to show from the first-
order conditions of the Lagrangean that for the restricted maximization problem the
optimal contract w∗(y) is monotone, given that constraint (IC) must be binding
for at least one action a′. We next show that there is not any other action a′′ >
aH for which the agent obtains a higher utility under contract w∗(y). By way of
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contradiction, assume that for a′′ > aH = a∗ > a′ we have∫
Y

v(w∗(y))f(y; a′′)dy − a′′ ≥
∫

Y

v(w∗(y))f(y; a∗)dy − a∗ (A.1)

=
∫

Y

v(w∗(y))f(y; a′)dy − a′.

Now, observe that there is λ ∈ (0, 1) such that

a∗ = λa′ + (1 − λ)a′′. (A.2)

Also, as w∗(y) is increasingly monotone, the CDFC condition of Assumption 2.4
implies that∫

Y

v(w∗(y))f(y; a∗)dy > λ

∫
Y

v(w∗(y))f(y; a′)dy+(1−λ)

×
∫

Y

v(w∗(y))f(y; a′′)dy. (A.3)

Then, combining (A.2) and (A.3) we get the desired contradiction with (A.1).
As a matter of fact, this same argument can be used to show that if aH = aj is
the optimal action, then constraint (IC) can only bind for action aL = aj−1. For
if there were an additional action a′ < aL < aH for which constraint (IC) is
binding, it follows from Assumption 2.4 that the agent would strictly prefer to take
the intermediate action aj−1. ��
Proof of Proposition 2.2. The proof of this proposition follows from the previ-
ous arguments, since the stock option contract generates a nondecreasing payment
schedule.

Proof of Proposition 2.3. This result follows immediately from the definitions of
L̂ and L.

Proof of Proposition 3.1. Let s(y; aH) = f(y;aH)
1−F (p;aH) . Then, the first inequality in

(3.4) may be rewritten as∫
E

v′(q(y − p) + T )s(y; aH)dy ≤
∫

Y

v′(q(y − p)+ + T )f(y; aH)dy.

Notice that s(·; aH) is a density in E ⊆ Y with s(y; aH) ≥ f(y; aH) for all y ∈ E.
Hence, by concavity of v(·), the expected marginal utility over Y must be at least
as large as the expected marginal utility over E, which is the desired result.

Now, let δ(y; aH) = (y−p)f(y;aH)∫
E

(y−p)f(y;aH)dy
. Notice that both s(·; aH) and δ(·; aH)

are densities in E. Moreover, one readily shows that the distribution resulting from
δ(·; aH) stochastically dominates the distribution resulting from s(·; aH). There-
fore, by the concavity of v(·), we get∫

E

v′(q(y − p) + T )δ(y; aH)dy <

∫
E

v′(q(y − p) + T )s(y; aH)dy.

This latter expression validates the second inequality in (3.4). ��
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Proof of Proposition 3.2. (i) From equation (3.3) we obtain

λ =
1 − µ[VT (σ; aH) − VT (σ; aL)]

VT (σ; aH)
. (A.4)

Note that by Assumption 2.3 the distribution induced by action aH stochastically
dominates the distribution induced by action aL. Then, the concavity of v(·) implies
that VT (σ, aH)−VT (σ, aL) =

∫
Y

v′(q(y−p)++T )[f(y; aH)−f(y, aL)]dy < 0.
Therefore, the desired result follows now from (A.4).

(ii) Assume that µ = 0. Then, combining expressions (3.2) and (3.3) we obtain

Vq(σ; aH)
Uq(σ; aH)

=
VT (σ; aH)
UT (σ; aH)

,

which contradicts Proposition 3.1.

(iii) Suppose that ϕ > 0. Then, by definition of ϕ it must be the case that p = y.
But if p = y, it is easy to show that

Up(σ; aH)
Vp(σ; aH)

=
UT (σ; aH)
VT (σ; aH)

.

Therefore, combining conditions (3.1) and (3.3) we obtain ϕ/Vp(σ; aH) = 0,
which contradicts the hypothesis ϕ > 0, since Vp(σ; aH) < 0. ��
Proposition 3.3 If [1 − Vp(σ; aL)/Vp(σ; aH)] ≥ 0, then [1 −
Vq(σ; aL)/Vq(σ; aH)] > 0.

Proof. Assumption 2.3 implies that there exists ŷ such that f(y; aL) ≥ f(y; aH)
for y ∈ [y, ŷ], and f(y; aL) ≤ f(y; aH) for y ∈ [ŷ, y]. Suppose that p < ŷ since
otherwise the result follows trivially. Let E1 = [p, ŷ] and E2 = [ŷ, y]. Then, by the
asserted condition in this proposition,13∫

E1

v′[f(y; aL) − f(y; aH)]dy ≤
∫

E2

v′[f(y; aH) − f(y; aL)]dy. (A.5)

It follows that∫
E1

(y − p)v′[f(y; aL) − f(y; aH)]dy <

∫
E1

(ŷ − p)v′[f(y; aL) − f(y; aH)]dy

≤
∫

E2

(ŷ − p)v′[f(y; aH) − f(y; aL)]dy

<

∫
E2

(y − p)v′[f(y; aH) − f(y; aL)]dy.

Here, the first and third inequalities come from the definitions of ŷ, E1, and E2.
The second inequality comes from expression (A.5), since this expression has been
multiplied by a constant term. Thus, [1 − Vq(σ; aL)/Vq(σ; aH)] > 0. ��

13 For convenience, v′ denotes v′(q(y − p) + T ).
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Proposition 3.4 Let T ≥ 0. Assume that |c v′′(c)/v′(c)| ≤ 1 for all c ≥ 0. Then,
[1 − Vq(σ; aL)/Vq(σ; aH)] ≥ 0.

Proof. Observe that

Vq(σ; aH) − Vq(σ; aL) =
∫

E

[F (y; aL) − F (y; aH)](q(y − p)v′′ + v′)dy.

Therefore, we will have that Vq(σ; aH) − Vq(σ; aL) ≥ 0 whenever the term
[q(y − p)v′′ + v′] ≥ 0. By the asserted condition on the degree of risk aver-
sion, we have 1 ≥ |[q(y − p) + T ]v′′/v′|. Moreover, for T ≥ 0 it follows that
|[q(y − p) + T ]v′′/v′| ≥ |q(y − p)v′′/v′|. Consequently,

[q(y − p)v′′ + v′] = [q(y − p)v′′/v′ + 1] v′ ≥ 0.

The result is thus established. ��
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