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Summary. Several game theoretical topics require the analysis of hierarchical be-
liefs, particularly in incomplete information situations. For the problem of incom-
plete information, Harsányi suggested the concept of the type space. Later Mertens
and Zamir gave a construction of such a type space under topological assumptions
imposed on the parameter space. The topological assumptions were weakened by
Heifetz, and by Brandenburger & Dekel. In this paper we show that at very natural
assumptions upon the structure of the beliefs, the universal type space does exist.
We construct a universal type space, which employs purely a measurable parameter
space structure.
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1 Introduction

Modeling rationally behaving actors in a multi-person decision problem involves
the analysis of players’ information about all aspects, which have influence on the
decision making. During the decision making process the rational players use all
available information, so its analysis is necessary for modeling the actors’behavior.
Aumann[1] introduced a formal definition for the idea of common knowledge. The
distinction between common knowledge and knowledge leads to, among others,
the research of hierarchies of beliefs.
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The problem of incomplete information is related to the problem of hierarchical
beliefs. In an incomplete information situation, some parameters of the model are
not common knowledge. If something is not common knowledge, we must deal
with hierarchies of beliefs, that is, we have to consider arguments like what every
agent believes about what every agent believes about what every agent believes and
so on, which makes the model very complicated.

Harsányi [3] assumed a ready-made type space, which includes all possible
types of players, and hence, their knowledges, beliefs as well. Simultaneously he
assumed a probability measure, defined on the product of the parameter space and
the type spaces. This probability measure induces hierarchies of beliefs, so we
can consider this probability measure as a “summary of hierarchies of beliefs”.
However, the opposite question remains: how can we build a type space from
hierarchies of beliefs?

A very important step in this direction was made by Mertens and Zamir [10] who
built a universal type space based on a compact parameter space. Later, Heifetz [4]
relaxed the compactness, but other topological assumptions were retained. Almost
parallel Brandenburger and Dekel [2] proved the existence of a universal type space
in presence of a complete, separable metric (Polish) parameter space. More recently,
Mertens et al. [9] gave an elegant proof for the existence of a universal type space
in cases of parameter spaces with various structures. Ultimately, all of the above
proofs are based on the Kolmogorov’s Existence Theorem and its generalizations.

In 1998 Heifetz and Samet [5] proved the existence of a universal type space,
which possesses a purely measurable structure. In contrast to our paper, the authors
make a distinction between universal type space, and space of coherent hierarchies
of beliefs. They also gave an illuminating discussion on the problem of type spaces,
beliefs spaces. The same authors gave a counterexample showing that in general
circumstances, coherent beliefs are not always types (see Heifetz and Samet [6]).

Quite recently, Meier [8] investigated the problem of the existence of a uni-
versal type spaces, his model is based on finitely additive measures. By regarding
the opinions as finitely additive measures, the problem of existence of σ-additive
measures on type spaces can be eliminated. On the other hand, the author discusses
how “rich” the structure of a universal type space can be. This work brings to the
surface that, the problem of existence of σ-additive measures on type spaces is not
only the problem of σ-additivity.

Mertens and Zamir [10], Heifetz [4], Brandenburger and Dekel [2], and Mertens
et al. [9] use the concept of projective limit for proving the existence of a universal
type space. In all four papers the structure of beliefs is inherited from the topology
of lower ranked beliefs spaces or the parameter space, moreover beliefs are modeled
by compact regular probability measures.

Our main goal is to build a universal type space, that is apparently “purely mea-
surable”, and in which every coherent hierarchy of beliefs is a type. The structure
on the beliefs is naturally generated by the Baire sets of the pointwise convergence
topology. For metric spaces Baire sets and Borel sets coincide. However, in non-
metrizable cases (for instance when the cardinality of the players is greater than
countable), our approach results in a weaker then Borel structure, but this structure
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allows the players to distinguish between any pair of beliefs (i.e., regular probability
measures) yet.

An other new idea in this paper is that we cut the parameter space off the be-
liefs space. This truncated space has a sufficiently good topological structure (i.e., a
projective system of completely regular topological spaces), so the measure projec-
tive limit exists. After this, we re-fit the parameter space to the measure projective
limit, and we construct the universal type space. It is clear that the existence of a
measure projective limit crucially depends on topological assumptions. However,
if we remove finitely many elements of the projective system of measure spaces, it
does not influence the existence of the measure projective limit.

In the next section we build up our model. In Section 3, we prove the main
result of our paper, finally, in Section 4 an illustrative example is provided.

2 The model

If something is common knowledge, then everybody knows that, everybody knows
that everybody knows that, and so on. So, common knowledge is more than knowl-
edge, it is some kind of knowledge that is the strongest knowledge in the situation.
If something is common knowledge, then somebody’s knowledge of this fact does
not influence the situation. If something is not common knowledge, then the ratio-
nal players must concern with the beliefs of other players, beliefs about beliefs of
other players and so on.

Therefore, if we have a parameter space S, and this includes all parameters of
the game, then we are about to construct a space generated by S, that includes all
reasonable beliefs, beliefs about beliefs and so on. This space is called the beliefs
space.

Definition 1 The parameter space is a measurable space (S,AS), whereAS is a
σ-algebra defined on S.

This space S contains all parameters, which have impact on the game. We
assume only measurability on this space. The players think in ideas like probability,
events, thus a purely measure theoretic model seems to be adequate. However, as is
well known from Heifetz and Samet [6], a purely measure theoretic universal type
space does not exist in our context.

Definition 2 Let ∆(S, AS) denote the space of the probability measures on (S,
AS), and put d(µ1, µ2) = supA∈AS

|µ1(A) − µ2(A)|. Then (∆(S,AS), d) or
briefly (∆, d) is a metric space. The collection of all Baire sets of (∆, d) is denoted
by B(∆, d)

If it will not lead to misunderstanding, instead of ∆(S,AS) we use the shorter
notation ∆(S) or simply ∆. Analogously, B(∆(S), d) is replaced by B(∆(S)).
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Definition 3 Let us define a sequence of spaces recursively, where M stands for
set of the players:

T0 = (S,AS)
T1 = T0 ⊗ (∆(T0)M , B(∆(T0)M ))
T2 = T1 ⊗ (∆(T1)M , B(∆(T1)M ))

= T0 ⊗ (∆(T0)M , B(∆(T0)M ))⊗ (∆(T1)M , B(∆(T1)M ))
...

Tn = Tn−1 ⊗ (∆(Tn−1)M , B(∆(Tn−1)M ))
= T0 ⊗⊗n−1

j=0 (∆(Tj)M , B(∆(Tj)M ))
...

where ⊗ denotes the product measurable structure.

A point in T0 is called parameter value, simply a parameter of the game. A point
in T1 is a combination of a parameter value and a 1-st order beliefs (the players’
beliefs on the parameter values), and so on.

Consider the infinite product T∞ = S××∞
j=0∆(Tj)M . If t ∈ T∞ then it has the

form t = (s, µ1
1, µ

2
1, . . . , µ1

2, µ
2
2, . . . ), where µi

j means the “i” player’s j-th order
belief. So, every element of T∞ describes an hierarchy of beliefs, i.e., (µi

1, µ
2
i , . . . )

for all players and a possible parameter, therefore it is a possible state of the world.
We call beliefs space the spaces of type of T∞.

Remark 1 The elements of (s, µ1
1, µ

2
1, . . . , µ1

2, µ
2
2, . . . ) can be regarded as mem-

bers of a generalized sequence, where the ordering is: the least element is s, and
µi

j < µl
k iff j < k.

Definition 4 Fix an i ∈ M . A hierarchy of beliefs (µi
1, µ

i
2, . . . ) is coherent if

n ≥ 2

– margTn−2µ
i
n = µi

n−1
– marg[∆(Tn−2)]iµ

i
n = µi

µi
n−1

,

where µi
n is taken from [∆(Tn−1)]i (which is the i-th copy of ∆(Tn−1)), further-

more, margTn
denotes the marginal distribution on Tn, and µi

µi
n−1

stands the Dirac

measure concentrated on the “point” µi
n−1.

The first condition declares the fact that the beliefs over some aspects of the
game do not change in the hierarchy. The second condition states that the players
know exactly their own beliefs (cf. Harsányi [3]). These two conditions describe
the “logic” of the players, we assume this logic to be common knowledge.

Remark 2 The measurable structure on [∆(Tn−1)]i ∀i, n is defined by the Baire
sets, which coincide with Borel sets in the case of metric spaces, hence any singleton
is measurable.
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Consider an element (s, µ1
1, µ

2
1, . . . , µ1

2, µ
2
2, . . . ) from T∞ such that the hier-

archies of beliefs (µi
1, µ

2
i , . . . ) are coherent for every i ∈ M . The set all those

elements is denoted by T c
∞ and called the coherent subspace of T∞. (The super-

script c will be used in the same context throughout the paper.)

Definition 5 Fix an i ∈M and set

T i = (×∞
k=0[∆(T c

k )]i)c.

T i is called the type space for player i. A point in T i is a possible type of player i.

The type space of player i consists of all coherent hierarchies of beliefs. In
particular, if t ∈ T i, then t = (µi

1, µ
i
2, µ

i
3, . . . ), and t is coherent.

Corollary 1 T i is metrizable since it is a subspace of a countable product of metric
spaces. This metric is given by dp(µ, µ′) =

∑
n

1
2n d(µn, µ′

n) where µ, µ′ ∈ T i,
and µn, µ′

n ∈ [∆(T c
n−1)]

i (d is given in Definition 2).

Remark 3 If the cardinality of M is more than countable, then the Baire structure
of ∆(Tn)M is weaker than the Borel structure. On the other hand, this structure
(Baire sets) coincides with the product measurable structure ⊗m∈MB(∆(Tn))m.
It is worth noting that our construction very similar to a purely measurable type
space, because no topology is used to make a stronger measurable structure for
product spaces.

Corollary 2 For a given i ∈M ,

(((T c
n, B(T c

n), µi
n+1), prmn)m<n) (1)

is a projective system of measure spaces, where prmn is the coordinate projection
from T c

n to T c
m, and (µi

1, . . . , µi
n+1, . . . ) ∈ T i.

Proof. For the definition of projective systems we refer to M. M. Rao ([11], p. 117).

– prmn = prmk ◦prkn ∀m < k < n, by the definition of coordinate projections.
– prnn = idT c

n
∀n follows from the definition of coordinate projections.

– prmn is measurable ∀m < n, because of the definition of product measurable
spaces.

– µi
n+1(pr−1

mn(A)) = µi
m+1(A) ∀m < n and ∀A ∈ B(T c

m) is a consequence of
the coherency of beliefs.

The above Corollary establishes the connection between the idea of projec-
tive system and beliefs space. The main question is that, whether or not a proper
projective limit of the above defined system exists.

3 The main result

Before we take the next step, we clarify the role of Baire sets in our model. In
Mertens and Zamir [10], the opinions were modeled by regular probability measures
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on Borel sets of a compact space. However, if there is a compact regular probability
measure on the Baire sets of a topological space, then it can uniquely be extended to
the Borel sets as a compact regular measure. So, there is one-to-one correspondence
between compact regular probability measures on Baire sets and on Borel sets.
In conclusion, regular probability measures are compact regular measures on a
compact topological space hence, there is a bijection between opinions in Mertens
and Zamir [10] and opinions in our model.

In Brandenburger and Dekel [2], the opinions are compact regular probability
measures on the Borel sets of a Polish (separable, complete, metric) space. As
is well known, Borel sets and Baire sets coincide in the case of metric spaces,
and all regular probability measures on Borel sets of a Polish space are compact
regular. Therefore, the opinions in Brandenburger and Dekel [2] and the opinions
in our model are related the same way as Mertens and Zamir [10] and our model,
respectively.

In Heifetz [4], and Mertens et al. [9] the opinions are compact regular probability
measures on different kinds of spaces. According to our previous discussion, all
compact regular probability measures on Borel sets are regular probability measures
on Baire sets, but there may be regular probability measures on Baire sets, which
are not necessarily compact regular. In an informal way we may say that the set of
opinions in our model is, in a certain context broader than that in Heifetz [4], or
Mertens et al. [9].

As we have seen, the collection of Baire sets is essentially smaller than the
collection of Borel sets if the cardinality of M is more than countable. In this case,
a point is not measurable in T c

n n > 0 space. We can interpret this phenomenon as
the players’inability of knowing what the others’beliefs exactly are. The players can
concentrate on countably many players’ beliefs only. We often meet the following
argument: “I don’t know who, but I’m sure somebody believes that ....!”. In the
language of probability theory: “Mr. X believes that ....” is the outcome, “somebody
believes that ...” is the event. In this example, we mean that the players cannot make
an argument like “Mr. i believes that ..., Mr. j believes that ..., ” for all players, but our
players can argue that “Mr. 1 believes that ..., Mr. 2 believes that ..., ..., somebody
believes that ...”. This feature of our model is a typical pure measure theoretic
feature.

In the next proposition we show that, the central question in our model is the
σ-additivity of µi in the projective limit (definition is given in the Appendix).

Proposition 1 Let i ∈ M be fixed. The projective limit (T,AT , µi) = lim←−(((T c
n,

B(T c
n), µi

n+1), prmn)m<n) of the projective system (1) exists. Further, T = T c
∞,

AT is a field and µi is an additive set function on AT .

Proof. The proof essentially follows the ideas of Rao ([11], p. 118).
Since every prmn is a coordinate projection we deduce that T is not empty

and T = T c
∞. Pick an A ∈ AT , then there is an index n, and B ∈ B(T c

n), A =
p−1

n (B). Moreover, if B ∈ B(T c
n), then also �B ∈ B(T c

n), so �A = p−1
n (�B) ∈

AT . If A1, ...., Am ∈ AT , then for every 1 ≤ j ≤ m there exists an index nj

such that Aj = p−1
nj

(Bj). Let k be the maximal element of {n1, ..., nm}, and let
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Kj = p−1
njk(Bj), we know Kj ∈ B(T c

k ) ∀j, so ∪jKj ∈ B(T c
k ). Making use of

Aj = p−1
k (Kj) we obtain ∪jAj ∈ AT . Thus, AT is an algebra.

Since every pnm is a coordinate projection, we conclude that pn is onto. This
implies that p−1

n is one-to-one. Therefore, the set function µi defined by the equality
µi ◦ p−1

n = µi
n is uniquely defined.

Take A1, ...., Am ∈ AT disjoint sets, then∪jAj ∈ AT . For each 1 ≤ j ≤ m se-
lect Bj and Kj as above. We know Kjs are disjoint, and therefore,

∑
j µi

k+1(Kj) =
µi

k+1(∪jKj), and
∑

j µi(Aj) =
∑

j µi(p−1
k (Kj)) =

∑
j µi

k+1(Kj) = µi
k+1(∪j

Kj) = µi(∪jp
−1
k (Kj)), hence µi is finitely additive ∀i.

Proposition 1 concentrates on the additivity of µi. Generally, the problem of
existence of a proper measure projective limit is twofold: the first problem is the
“richness” of the projective limit set (Heifetz and Samet [6] address this problem),
the second is the problem of σ-additivity of µi. We use the idea of coordinate pro-
jections in the projective system, which ensures that the projective limit set is “rich”
enough. The second problem demands regularity (but not compact regularity).

In the next proposition, we take preliminary steps for proving our main result.

Proposition 2 Let us define the following sequence of truncated spaces (c.f. Def-
inition 3):

C0 = (∆(T0)M , B(∆(T0)M )
C1 = C0 ⊗ (∆(T1)M , B(∆(T1)M ))

= (∆(T0)M , B(∆(T0)M ))⊗ (∆(T1)M , B(∆(T1)M ))
...

Cn = Cn−1 ⊗ (∆(Tn−1)M , B(∆(Tn−1)M ))
= ⊗n−1

j=0 (∆(Tj)M , B(∆(Tj)M ))
...

Consider the projective limit

(C,AC , νi) = lim←−(((Cc
n, B(Cc

n), νi
n), prmn)m<n),

where νi
n = margCc

n
µi

n+2. Then νi is σ-additive for every i ∈M .

Proof. The proof based on M. M. Rao ([12], pp. 357–358).
Let i ∈M be fixed and arbitrary.
The preceding proposition tells us that AC is a field, and νi is an additive set

function on it for each i. Furthermore, AC ⊂ B(C) because all pn are continuous
with respect to the product topology on C (which is the weakest topology for which
all pn are continuous).

Since the topological product of completely regular spaces is completely reg-
ular, it follows that C enjoys complete regularity. It is not hard to verify that νi is
inner regular set function.
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The completely regular topological spaces are characterized by the fact, that
they can be embedded into a compact space as a dense set (Ĉech-Stone compact-
ification). Let I be the one-to-one function, which embeds C into a K compact
space, and let νi

K = νi ◦ I−1 be a set function onAK , the subsets of K, which are
defined byAK = {X ⊆ K|I−1(X) ∈ AC}. The direct corollary of this definition
that, νi

K is inner regular, therefore (inner) compact regular as well.
As is well known, if an additive set function is compact regular, then it is σ-

additive as well. Hence, νi
K is σ-additive. On the other hand, C contains the support

of νi
K , and νi is the restriction of νi

K on C, hence νi is σ-additive as well.
Consequently, νi is σ-additive on AC ∀i.

Remark 4 The role of compact regularity in the proofs of existence theorems of
measure projective limit is twofold. First, compact regularity ensures σ-additivity.
On the other hand, every compact regular measure can uniquely be extended from
Baire sets to Borel sets. This later proves to be very important in the case of stochas-
tic processes (the measurability of the sample function), but it is not relevant in our
problem. We do not want to introduce events into our model that cannot be deduced
directly by probabilistic logic.

The next theorem is our main result.

Theorem 1 T i is universal type space, so there exists a homeomorphism f : T i →
(∆(AT ), τp), where (∆(), τp) means the pointwise topology on ∆().

The proof of the theorem is basically divided into two parts.

Definition 6 Let g : ∆(AT ) → T i that associates with every measure µ a point
t = (µi

1, µ
i
2, . . . , µi

n, . . . ) in T i, where

µi
n = margTn−1µ

for every integer n.

Lemma 1 Let (M,AM , µM ), (N,AN , µN ) be probability measure spaces, and
let µ be an additive set function on AM ⊗ AN , and let pM and pN denote the
coordinate projections. If µ ◦ p−1

M = µM and µ ◦ p−1
N = µN , then µ is σ-additive

on the field A generated by the cylinder sets.

Proof. It is easy verify that every element of A has the form ∪jMj ×Nj , where
j < ∞, Mj ∈ AM , Nj ∈ AN . It is well known ([7]) that, µ is σ-additive
on A iff for a sequence An+1 ⊆ An, ∩nAn = ∅ =⇒ limn→∞ µ(An) = 0.
For every finite intersection ∩nAn = ∪j(Mj × Nj), for a finite set of indices
j. Therefore, if the countable intersection ∩nAn = ∅, then the corresponding
Mj × Nj = ∅. Let us divide the sets Mj × Nj into two groups. Let the first
group contain those products Mj ×Nj where Mj = ∅, and let the second contain
the others. Let us take the union of the members of the first group, it has the
form ∅ × (∪jNj). Similarly, the union of the elements of the second group can
be expressed as (∪jMj) × ∅. We have µ(∅ × (∪jNj)) = µ((∪jMj) × ∅) = 0,
from the additivity of µ, µ(∅× (∪jNj)) + µ((∪jMj)×∅) = µ(∅), which implies
limn→∞ µ(An) = 0, hence µ is σ-additive on A.
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Lemma 2 g is a bijection.

Proof. First we show that g is injective. If µ ∈ ∆(AT ) is given, then µ determines
its marginals, in other words, it determines a unique point in T i.

Now we verify that g is onto. Let a point t ∈ T i be given. From Proposition 1
and 2 we have that AS × AC ⊂ AT . Let us define q1 : (T,AT ) → (S,AS), and
q2 : (T,AT ) → (C,AC) as coordinate projections. Define µ on the cylinder sets
by the equalities:

µ = µi
1 ◦ q1, and µ = νi ◦ q2

(see Definition 3 and Proposition 2). On the cylinder sets, µ and µi coincide (µi is
taken from the projective limit, see Proposition 1) and µi is an additive set function,
hence we can extend µ to the field generated by the cylinder sets, in the way that,
µ and µi coincide on this field. From Lemma 1 µ is σ-additive set function on
this field, so it can be extended uniquely onto AT . We prove that µ = µi on AT .
Indeed, if there were an A ∈ AT with µ(A) �= µi(A), then there would exist a
k, and B ∈ B(T c

k ) such that A = p−1
k (B). We know µi

k+1 is σ-additive, hence
µ = µi on T c

k , which is a contradiction. Thus, g is a bijection.

Definition 7 Set f = g−1.

Lemma 3 f is a homeomorphism.

Proof. f is continuous (tk
dp→ t =⇒ f(tk)

p→ f(t)): tk
dp→ t means ∀l, ∀Al ∈

B(T c
l ) tlk(Al)→ tl(Al), moreover p−1

l (Al) ∈ AT , and f(tk)◦p−1
l (Al) = tlk(Al),

hence f(tk)
p→ f(t) on AT .

f−1 is continuous (µk
p→ µ =⇒ f−1(µk)

dp→ f−1(µ)): µk
p→ µ onAT , which

means the marginals of µk converge to µ pointwise, so f−1(µk)
dp→ f−1(µ).

Proof of the Theorem. Let f be defined by Definition 7.
From Lemma 2, f is a bijection.
From Lemma 3 f is a homeomorphism.

Remark 5 We proved the homeomorphism for AT , but not for σ(AT ), because
the homeomorphism is not valid in the latter case. Our theorem can be extended
to the σ(AT ), if the structure of σ(AT ) is induced by the pointwise convergence
topology on AT .

Remark 6 This Theorem shows the importance of pointwise convergence topol-
ogy. If T is a topological space, then the weak or weak* topology is less then our
structure on ∆(σ(AT )).

4 Conclusion

The main advantage of this model comes from the pointwise convergence topology
on beliefs, that is independent of the topology of the original space. This space
is a completely regular topological space, so we can use Kolmogorov’s Existence
Theorem in a general form (Proposition 2, Theorem 1).

Let us see an example for the usage of this model.
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Example 1 Let there be two players, every player has two strategies. This game in
normal form is a point in R

8. There are two random variables, which determine the

payoffs of the players. Therefore, the parameter space: S = R
8R2

(the parameters
are functions from R

2 to R
8). S is not compact, nor Polish, so Mertens and Zamir’s

and Brandenburger and Dekel’s construction do not work in this case. Let the
measurable structure of S be the Borel sets of S. In our model, the opinions are
the probability measures on S, but these are not necessarily compact regular, so
Heifetz’s, Mertens, Sorin and Zamir’s models are less general, than ours.

It seems that, our model performs better, than the previous ones. On the other
hand, recently, Simon [13] showed that, there may be problem with the existence
of measurable equilibrium of the games with incomplete information. Hence, a
model, in which , the beliefs of the players are modeled by probability measures,
is not necessarily appropriate for some problems.

We think the existence of measurable equilibrium is out of the scope of our
paper, hence we refer to this problem as an open problem in general, so in the case
of our model as well.

Appendix: Definition of measure projective limit

We define the idea of projective limit of measure spaces for completeness. Rao’s
[11] definition is a little bite different from ours.

Definition 8 Let (((Mn,Mn, µn), pmn)m<n, I) be a projective system, where
(Mn,Mn, µn)s are measure spaces, pmns are the measurable projections, and I is
a directed set. The projective limit of (((Mn,Mn, µn), pmn)m<n, I) is (M,M, µ)
= lim←−(((Mn,Mn, µn), pmn)m<n, I), where

– prn : ×nMn →Mn coordinate projection,
– M = {ω ∈ ×nMn|prm(ω) = pmn ◦ prn(ω), ∀m < n ∈ I},
– pn = prn|M ,
– M = ∪nΣn, where Σn = {p−1

n (A)|A ∈Mn},
– µ is onM, defined by the equality µ ◦ p−1

n = µn ∀n, and it is unique.

The main difference between our and Rao’s definition is in the properties of µ.
Rao recommends µ to be σ-additive, we do not. Our definition makes the discussion
more clear.
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