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Summary. In a (generalized) symmetric aggregative game, payoffs depend only
on individual strategy and an aggregate of all strategies. Players behaving as if
they were negligible would optimize taking the aggregate as given. We provide
evolutionary and dynamic foundations for such behavior when the game satisfies
supermodularity conditions. The results obtained are also useful to characterize
evolutionarily stable strategies in a finite population.
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1 Introduction

In perfectly competitive markets, price-taking behavior is often justified by assum-
ing that agents are small relative to market size. The implication of this assumption
is that prices are almost insensitive to individual actions. Hence, even if agents be-
have strategically, equilibrium behavior corresponds to price-taking optimization
as the economy becomes large. The crucial axioms underlying this non-cooperative
foundation of competitive equilibrium are anonymity – the names of the agents are
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and Culture under the Spain-Austria Acciones Integradas respective projects HU02-4 and 18/2003.



498 C. Alós-Ferrer and A.B. Ania

irrelevant to the market – and aggregation – individual actions affect market price
only through the average of all actions (Dubey et al. [8]).

Following Corchón [4], we say that a game is a (generalized) aggregative game
if payoffs depend only on individual strategies and an aggregate of all strategies.1

A prominent example is a Cournot oligopoly, where profits depend exclusively on
individual and total output. If, additionally, payoffs do not depend on the names
of the agents, the game is symmetric. Aggregate-taking optimization – the natural
generalization of price-taking behavior – is then still well defined even if agents are
not negligible, although it does not correspond to strategic, rational behavior. An
optimal aggregate-taking strategy (ATS) is one that is individually optimal given
the value of the aggregate that results when all players adopt it. In an ATS, players
who are not negligible behave as if they were.

Instead of absolute payoffs, evolutionary game theory proposes relative per-
formance as the important criterion for the survival of a strategy. The underlying
assumption is that if a strategy earns higher payoffs than opponent strategies, it
tends to be copied more frequently and propagates faster at the expense of worse
performing strategies. We then say that a strategy is evolutionarily stable (ESS)
if, once adopted by all players, it will not be discarded due to the appearance of
a small fraction2 of experimenters choosing a competing different strategy. If an
ESS resists the appearance of any fraction of such experimenters, we say that it is
globally stable. Evolutionary stability thus implies maximization of the difference
between own and opponents’ payoffs.3

In this context, Schaffer [20] observed that, in a Cournot duopoly, the output
corresponding to a competitive equilibrium – the output level that maximizes profits
at the market-clearing price – is evolutionarily stable. That is, a firm deviating
from the competitive equilibrium will earn lower profits than its competitor after
deviation.4 This result was extended to a general oligopoly by Vega-Redondo [26],
who additionally showed that the competitive equilibrium would be the only long-
run outcome of a learning dynamics based on imitative behavior. The evolutionary
approach, hence, provides foundations for competitive equilibrium dispensing with
the assumption of negligible agents.

In the present work, we identify the structural characteristics of the Cournot
oligopoly which underlie these results. The first is the fact that it is an aggregative
game. The second is the strategic substitutability between individual and total out-

1 Games with an aggregative structure of this sort appear very often in economic models (cf. Sec-
tion 2.3), although they are not always explicitly referred to as “aggregative games.” Cornes and Hartley
[5] also present examples of games which can be viewed as aggregative games after appropriate trans-
formations of the strategy spaces.

2 If the number of players is finite, the smallest fraction is one player (cf. Section 3).
3 The concept of evolutionarily stable strategy used here, due to Schaffer [19], refers to a finite

population and differs from the usual concept in evolutionary game theory for a continuum population
(cf. Sect. 3). For an introduction to evolutionary game theory see e.g. Vega-Redondo [25], or Weibull
[29].

4 The key for the evolutionary success of the competitive firm is its spiteful behavior. Quoting Schaffer
[20]: “When firms have market power, the potential for ‘spiteful’ behavior exists. A firm which forgoes
the opportunity to maximise its absolute profit may still enjoy a selective advantage over its competitors
if its ‘spiteful’ deviation from profit-maximisation harms its competitors more than itself.”
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put. Since the incentive to increase individual output decreases the higher the total
output in the market, the Cournot oligopoly has a submodular structure.5

Indeed, we find that the results for the Cournot oligopoly are but an instance
of a general phenomenon. An ATS is evolutionarily stable in any aggregative game
with a submodular structure. This has a natural counterpart in the supermodular
case, where any ESS corresponds to aggregate-taking optimization.

Possajennikov [18] already observed a relation between optimal aggregate-
taking strategies and evolutionarily stable strategies in aggregative games. Under
differentiability, he finds that the first-order conditions of their defining optimiza-
tion problems are identical. Careful examination of the second-order conditions
allows to determine conditions under which both concepts coincide. In contrast,
our approach relies exclusively on the structure of the game and provides an intuitive
and direct way of relating both concepts.

In the submodular case, we obtain even stronger results. Any ATS is weakly
globally stable, i. e. weakly better in relative terms independently of the fraction
of opponents behaving differently. If the game has a strict ATS, then this is strictly
globally stable and the unique ESS.

Furthermore, we show that a strictly globally stable ESS is always the long-
run outcome of a learning dynamics based on imitation and experimentation. This
result, which is of independent interest, is proven for arbitrary (not necessarily
aggregative) symmetric games. As a corollary, this will also hold for any strict
ATS of a submodular aggregative game. In short, the dynamic stability result of
price-taking behavior quoted above generalizes for aggregate-taking optimization
to arbitrary submodular aggregative games.

In our view, these results might be taken to provide an alternative, evolutionary
foundation for the perfect competition paradigm. In contrast to the large-population
approach, this foundation does not rely on agents being negligible. In fact, the
evolutionary success of behaving as if they were negligible is due precisely to the
fact that they are not. When an agent optimizes assuming that she will not affect the
aggregate, the latter will actually change, but in such a way that it is her opponents
who will be more harmed. A key new insight is that this property derives directly
from the supermodular or submodular structure of the game.

These results are also of interest for evolutionary game theory, since they provide
either necessary or sufficient conditions to obtain ESS for a class of aggregative
games. In the submodular case, we actually provide shortcuts for the computation
of an ESS and the long-run outcomes of imitative learning dynamics. Further, our
result on imitative dynamics is, to our knowledge, the first general result on the
dynamic properties of finite-population ESS.

The paper is organized as follows. Section 2 introduces the notion of (general-
ized) aggregative games and presents examples beyond the Cournot oligopoly. Sec-
tion 3 presents the concepts of evolutionary and global stability for n-player games
and particularizes them for aggregative games. Section 4 discusses aggregate-taking

5 We refer here to n-firm Cournot oligopolies with homogeneous product. Certain Cournot oligopolies
are supermodular, or can be seen as such through suitable changes of variable. On this see e.g. Amir
[1], Amir and Lambson [2], Vives [27], which introduced supermodularity techniques in Economics, or
Vives [28].
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behavior. Section 5 presents the results relating aggregate-taking behavior and evo-
lutionary stability. Section 6 contains the dynamic results. Section 7 concludes.

2 Generalized symmetric aggregative games

A game is called aggregative if the payoffs to any player depend only on that player’s
strategy and the sum of all strategies chosen. If the sum is replaced by an arbitrary
aggregate g, we refer to a generalized aggregative game (Corchón [4]).

In the present work we will consider symmetric games with a strategy space S
common to all players, assumed to be a subset of a totally ordered space X . For
our purposes it will be enough to let S ⊆ X = R. Further we will assume the
aggregate g to be a symmetric and monotone increasing function.6 For the sake
of expositional simplicity we will drop the qualifiers generalized, symmetric, and
monotone, referring to such games simply as aggregative games.

Definition 1 A (generalized) symmetric aggregative game with aggregate g is a
tuple Γ ≡ (N, S, π) where N is the number of players, the strategy set S, common
to all players, is a subset of a totally ordered space X , π : S × X → R is a
real-valued function, and g : SN → X is a symmetric and monotone increasing
function, such that individual payoff functions are given by πi(s) ≡ π(si, g(s)) for
all s = (s1, . . . , sN ) ∈ SN and i = 1, . . . , N .

2.1 Families of aggregative games

Existence of a monotone aggregate function is the only requirement for a game to
be representable as an aggregative game. Hence, this class of games may be rather
large. Actually, in the examples we consider the aggregate is a functional form that
can be extended to any number of players as captured by the following definition.

Definition 2 A family of symmetric aggregative games is a collection of games
{Γn}∞

n=1 where Γn ≡ (n, S, π) is a (generalized) symmetric aggregative game
with aggregate gn such that g1(s) = s for all s ∈ S and there exists a function
g : X × S → X such that

gn+1(s1, . . . , sn, sn+1) = g (gn(s1, . . . , sn), sn+1) (1)

for all s1, . . . , sn+1 ∈ S, and all n ≥ 1.

Note that the construction of an aggregate in Definition 2 follows an inductive
scheme. The condition that g1(s) = s strikes us as natural, although it is not
necessary for our analysis. This condition implies that the restriction of g to S ×
S coincides with g2 and is, hence, symmetric. Constructing the aggregate in an
inductive way has two advantages. First, it allows us to speak of families of games
with a variable number of players but the same strategic structure. This will be useful

6 The analysis could be analogously performed for the case of decreasing aggregates.
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to perform comparative statics with respect to the number of players. Second, it
allows to formulate the payoffs of the game depending only on individual strategy
and either an aggregate of all strategies, or an aggregate of the strategies of the other
players. Indeed, consider a family of symmetric aggregative games {Γn}∞

n=1 with
Γn ≡ (n, S, π). Define π̃ : S × X → R by

π̃(s, x) = π(s, g(x, s)).

Now, using (1), we can view the payoffs of the game Γn as a function of individual
strategy and an aggregate (namely gn−1) of the strategies of the other players as
follows.

πi(si, s−i) = π(si, g
n(si, s−i)) = π̃(si, g

n−1(s−i))

In the literature, the dependence of the payoff function on an aggregate of the oppo-
nents’ strategies is exploited to simplify the analysis of best reply correspondences
(see e.g. Vives [28]).

2.2 Super- and submodularity in aggregative games

In this section we adapt the concepts of super- and submodular games (see e.g.
Topkis [24]) to the case of aggregative games.

Definition 3 We say that an aggregative game Γ ≡ (N, S, π) is supermodular
(resp. submodular) in individual strategy and the aggregate if π has increasing (resp.
decreasing) differences; i. e. if π(s′′, x) − π(s′, x) is increasing (resp. decreasing)
in x ∈ X for all s′′ > s′ ∈ S.

If X = R and π(s, x) is continuously twice differentiable, then π has increasing
(resp. decreasing) differences if and only if

∂2π(s, x)
∂x∂s

≥ (resp. ≤ ) 0

The concept of increasing differences captures the notion of complementarity –
the incentive to increase s increases with the level of the aggregate x. Respectively,
the concept of decreasing differences captures the notion of substitutability – the
incentive to increase s decreases with the level of the aggregate x.

Definition 4 We say that an aggregative game Γ ≡ (N, S, π) is quasisupermodular
in individual strategy and the aggregate if π satisfies the single-crossing property
in (s, x) ∈ S × X; i. e. if, for all s′′ > s′ and x′′ > x′

π(s′′, x′) ≥ π(s′, x′) ⇒ π(s′′, x′′) ≥ π(s′, x′′)
π(s′′, x′) > π(s′, x′) ⇒ π(s′′, x′′) > π(s′, x′′)

We say that Γ is quasisubmodular in individual strategy and the aggregate if π
satisfies the dual single crossing property in (s, x); i. e. if the conditions above hold
with the reversed inequalities.
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The single-crossing property (SCP) is an ordinal version of complementarity
weaker than increasing differences. If s′′ is preferred to s′ given x = x′, then s′′ is
preferred to s′ given a higher x = x′′, although we cannot say whether the incentive
to replace s′ with s′′ has increased. Thus, increasing differences implies the SCP,
but not vice versa. An analogous remark can be made for the dual SCP.

2.3 Examples of aggregative games

Example 1
Cournot oligopoly. Consider an oligopolistic market for a homogeneous good with
quantity-setting firms. Let qi ∈ R+ be the quantity supplied by firm i = 1, . . . , n.
Inverse demand is given by a strictly decreasing function P (·) that depends on the
aggregate output level Q =

∑
i qi. All firms face the same increasing cost function

C(q). The profit to firm i is then given by

πi(q) = π(qi, g
n(q)) = P (gn(q)) qi − C(qi)

withq ∈ Rn
+ and gn(q) =

∑n
j=1 qj increasing. This defines a family of aggregative

games in the sense of Definition 2, with aggregate equal to the sum of all quantities.7

The Cournot game is submodular in own (qi) and total (Q) output. To see this,
let q′′

i > q′
i, and note that

π(q′′
i , Q) − π(q′

i, Q) = P (Q)(q′′
i − q′

i) − (C(q′′
i ) − C(q′

i))

is decreasing in Q for P decreasing.
No further assumptions are required for the Cournot oligopoly to be submodular

in individual strategy and the aggregate. If, alternatively, we conceive the payoffs
of this game as a function of individual strategy and an aggregate of the opponents’
strategies, the corresponding submodularity is obtained only under the additional
assumption of decreasing marginal revenues. Particular instances of the Cournot
game are usually analyzed in the literature as supermodular in own output and the
opponents’ total output through convenient changes of variable (see Amir [1], or
Vives [28, Ch.4]).

Example 2
Rent-seeking. There is a rent V to be obtained – e.g. rent derived from monopoly
power, a prize, some commonly valued good (auction). Players compete for this
rent by investing some effort or income, si ∈ R+, i = 1, . . . , n. Only the player
that wins the contest obtains the rent, while all other expenditures are lost. The
higher the expenditure of a player, si, the higher the probability that i obtains the
rent, given by

Prob{i gets V | s1, . . . , sn} =
sr

i∑n
j=1 sr

j

7 Alternatively, we could have chosen the inverse demand function itself as a (decreasing) aggregate.
As noted above, our results could be rewritten for such aggregates.
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The parameter r models a technology that turns expenditures or efforts into prob-
abilities of winning. If r < 1 there are decreasing returns to these efforts. If r > 1
there are increasing returns. The borderline case r = 1 corresponds to constant
returns.

In a Nash equilibrium total expenditure is always lower than V . In particular,
if the number of players is n ≤ r/(r − 1), there is a symmetric Nash equilibrium
of this game with ŝ = n−1

n2 rV (see e.g. Lockard and Tullock (eds.) [13]).
Rent-seeking corresponds to a family of aggregative games with payoff function

πi(s) = π(si, g
n(s)) =

(
si

gn(s)

)r

V − si

with gn(s) =
(∑n

j=1 sr
j

)1/r

and r > 0.

Note that rent-seeking games are submodular in individual strategy and the
aggregate, since

∂2π

∂x∂s
= −r2 sr−1

xr+1 V ≤ 0.

Alternatively, we could have defined the aggregate to be g(s) =
∑n

j=1 sr
j . The

payoff function would then be

πi(s) =
sr

i

g(s)
V − si

This, however, would not fulfill Definition 2.

Example 3
Tragedy of the commons. Consider the following version of the problem of
the commons. A set of agents operate a commonly owned production process with
decreasing returns to scale. Agents choose their input contributions and total output
is distributed in proportion to individual contributions. This results in an average
return game as defined by Moulin and Watts [16]. Let si ∈ R+ denote the individual
contribution of agent i = 1, . . . , n, and let gn(s) =

∑
i si be the aggregate input.

Output is produced with a technology given by y = f(gn(s)), with f(0) = 0 and
f concave.8 Payoffs are given by

πi(s) = π(si, g
n(s)) =

si

gn(s)
· f(gn(s)) − si

A Nash equilibrium of this game involves an overutilization of the technology due to
the presence of a negative externality which is not taken into account by individual
agents.9

8 The production function f need not be differentiable. E. g. f(x) = ax for all x ≤ x̄ and f(x) =
b0 + b1x for all x ≥ x̄, with b1 < a < 1 and b0 = (a − b1)x̄.

9 Moulin and Watts [16] show this in a general framework where agents are endowed with convex
preferences on output share and input consumption, and both goods are normal. The version presented
here is akin to the common pool resource extraction game in Sethi and Somanathan [22].
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Let A(x) = f(x)/x denote the average output. Set A(0) = limx→0 f(x)/x,
i. e. the slope of f at zero, and assume A(0) > 1. The function A is decreasing by
concavity of f . Note that payoffs can be written as π(s, x) = s[A(x) − 1].

The game is submodular in own contribution and the aggregate. To see this, let
s′′ > s′ and note that

π(s′′, x) − π(s′, x) = (s′′ − s′)[A(x) − 1]

is decreasing in x.

Example 4
Diamond’s search. Milgrom and Roberts [14] present a simplified version of
Diamond’s search model (Diamond [7]) of an economy where production results
from a technology with specialized labor, modelled through an individual level of
effort, si ∈ R+. In order to consume, each individual must first produce a good
at cost C(si), increasing with si, that must be exchanged for another individual’s
good. Success in finding a trading partner – and thus in consumption of produced
goods – depends proportionally on the own effort and the total level of effort in
the economy. The latter is then interpreted as employment. The point was to show
that there may be multiple equilibria, i. e., multiple natural rates of unemployment.
This is captured by a family of aggregative games with payoff function

πi(s) = π(si, g
n(s)) = αsig

n(s) − C(si)

with gn(s) =
∑n

j=1 sj and α > 0.
This game is supermodular, since for s′′ > s′

π(s′′, x) − π(s′, x) = α(s′′ − s′)x − (C(s′′) − C(s′))

is increasing in the aggregate x.

Example 5
Minimum effort. The minimum-effort game can be used to model a Stag-Hunt
production game where the inputs are n different types of specialized labor, all of
them perfect complements for the production of the output (see e.g. Bryant [3]).
Individual level of effort is denoted si ∈ R+ and production costs are linear. This
can be seen as a family of aggregative games with payoff function

πi(s) = π(si, g
n(s)) = agn(s) − bsi

aggregate gn(s) = mini{si}, and a > b ≥ 0.
This game is simultaneously super- and submodular, since for s′′ > s′

π(s′′, x) − π(s′, x) = −b(s′′ − s′)

is constant in x.10

The focus of this paper is on symmetric games. Classic examples of aggrega-
tive games include, however, models of Bertrand competition with differentiated
products and monopolistic competition. We refer to Cornes and Hartley (2001) for
further examples of asymmetric games which can be seen as symmetric aggregative
games through suitable transformations.

10 This holds true for any separable payoff function π(s, x) = h1(s) + h2(x).
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3 Evolutionary stability in a finite population

Standard evolutionary game theory considers random, pairwise contests between
individuals drawn from an infinite population – two individuals are repeatedly
chosen at random to play a given two-player game. In that context, a strategy is
an evolutionarily stable strategy (ESS) if, once adopted by the whole population,
it cannot be invaded by a small mass of mutants, that is, individuals displaying
different behavior (see e.g. Weibull [29]).

To apply the principle of natural selection to, say, firms in an industry, we need
a definition of an ESS for a finite population of players which “play the field”, that
is all compete with each other simultaneously (Schaffer [19]). This will differ from
the analogous concept for an infinite population. In a small population with mutants
coming in one at a time, the single mutant will not face other mutants.

Let Γ ≡ (N, S, Π) be a symmetric N -player game. That is, S is the common
strategy set for all players, Π : S × SN−1 → R, and the individual payoff func-
tions are given by πi(s) ≡ Π(si|s−i) for all s ∈ SN and i = 1, . . . , N , where
Π(si|s−i) = Π(si|s′

−i) if s′
−i is a permutation of s−i.

Definition 5 We say that s ∈ S is an ESS of a symmetric game Γ ≡ (N, S, Π) if
for all s′ ∈ S,

Π(s|s′, s, . . . , s) ≥ Π(s′|s, s, . . . , s).

An ESS is strict if the inequality holds strictly for all s′ �= s.

In a finite population, an ESS strategist does not maximize own payoffs in
general; rather, it is relative payoffs that are maximized – the difference between
own and opponents’ payoffs. A deviation to an ESS may decrease own survival
probability, but in that case it will decrease the opponents’ probability of survival
even more. This is called spiteful behavior (Hamilton [10]).As observed by Schaffer
[19], an ESS is a strategy s such that

s ∈ arg max
s′

[Π(s′|s, s, . . . , s) − Π(s|s′, s, . . . , s)]

Thus, an ESS corresponds to a symmetric Nash equilibrium of the game with
relative payoffs. In general, however, a finite-population ESS does not necessarily
correspond to a Nash equilibrium of the original game in stark contrast to the
standard ESS concept for an infinite population.

Allowing for the appearance of mutants in groups results in a more stringent
concept of stability of a finite-population ESS.

Definition 6 Let s be an ESS of a symmetric game Γ ≡ (N, S, Π). We say that s
is weakly (strictly) globally stable if for all s′ ∈ S, s′ �= s

Π(s|s′, m. . ., s′, s, . . . , s) ≥ (>)Π(s′|s′, m−1. . . , s′, s, . . . , s)

for all 1 ≤ m ≤ N − 1.
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Note that in a finite population of N players with m mutants, players choosing
the incumbent strategy face m mutants, while mutants face only m − 1 other
mutants, since the mutant never faces herself.

Definition 6 differs slightly from the one by Schaffer [19], who calls an ESS
globally stable if it fulfills the strict inequality in Definition 6 for m ≥ 2 (see
Crawford [6] and Tanaka [23] for closely related concepts).

Both ESS and global stability constitute a stability check against a single com-
peting strategy. An ESS is robust against all possible mutants coming in small
fractions; i. e. in a finite population only one at a time. A globally stable strat-
egy is robust against all possible mutant strategies independently of the fraction of
mutants.11

3.1 ESS in an aggregative game

Let Γ ≡ (N, S, π) be a symmetric aggregative game with aggregate g. Then, s ∈ S
is an ESS if, for all s′ ∈ S,

π(s, g(s′, s, . . . , s)) ≥ π(s′, g(s′, s, . . . , s)).

That is, s performs better than the mutant strategy s′ in the post-mutation strategy
profile with aggregate g(s′, s, . . . , s). Thus, an ESS solves

s ∈ arg max
s′

[π(s′, g(s′, s, . . . , s)) − π(s, g(s′, s, . . . , s))] (2)

An ESS, s, is weakly (strictly) globally stable if, for all s′ �= s and all 1 ≤ m ≤
N − 1

π(s, g(s′, m. . ., s′, s, . . . , s)) ≥ (>)π(s′, g(s′, m. . ., s′, s, . . . , s)). (3)

Example 1
Cournot oligopoly (continued). Denote by qw the output level corresponding to a
Walrasian equilibrium, which satisfies

P (n · qw) qw − C (qw) ≥ P (n · qw) q − C (q)

for all q �= qw. In words, qw maximizes profits given the price. Vega-Redondo [26]
shows that for all q �= qw and 1 ≤ k ≤ n

π(qw, g(q, n−k. . . , q, qw, k. . ., qw)) = P ((n − k)q + kqw)qw − C(qw) >

P ((n − k)q + kqw)q − C(q) = π(q, g(q, n−k. . . , q, qw, k. . ., qw))

which implies that qw is a strictly globally stable ESS. To see this, note that it
follows from P (.) strictly decreasing that

[P (nqw) − P ((n − k)q + kqw)] (qw − q) < 0
11 In Section 6 we will postulate a dynamic model where simultaneous mutations to different strategies

are allowed.
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Subtracting C(q) + C(qw) and rearranging we obtain

[P ((n − k)q + kqw) qw − C (qw)] − [P ((n − k)q + kqw) q − C (q)] >

[P (nqw) qw − C (qw)] − [P (nqw) q − C (q)]

It suffices to notice that the right-hand side of the previous inequality is non-negative
by definition of qw.

Remark 1 In general, the output corresponding to a competitive equilibrium is
larger than the output corresponding to a Cournot equilibrium. It is worth noting that
this fact generalizes as follows. For any aggregative game with strictly increasing
aggregate g and payoff function π(s, x) strictly decreasing in x, a globally stable
ESS, s∗, will always be larger than the strategy corresponding to a symmetric Nash
equilibrium, s̃. For

π(s̃, g(s̃, . . . , s̃)) ≥ π(s∗, g(s∗, s̃, . . . , s̃)) ≥ π(s̃, g(s∗, s̃, . . . , s̃)),

but s̃ > s∗ would imply g(s∗, s̃, . . . , s̃) < g(s̃, . . . , s̃) and π(s̃, g(s∗, s̃, . . . , s̃)) >
π(s̃, g(s̃, . . . , s̃)), a contradiction.

4 Aggregate-taking behavior

We have just seen in Example 1 that the outcome of price-taking behavior corre-
sponds to a finite population ESS. By price-taking behavior it is meant that agents
ignore the effect of their individual decisions on the market price. The generalization
of this idea to an arbitrary aggregative game results in the concept of aggregate-
taking behavior.

Definition 7 Let Γ ≡ (N, S, π) be a symmetric aggregative game. We say that
s∗ ∈ S is an optimal aggregate-taking strategy (ATS) if

s∗ ∈ arg max
s

π(s, g(s∗, . . . , s∗)) (4)

A strict ATS is an ATS which is a strict maximizer of this problem.

Example 2
Rent-seeking (continued). The first order condition of problem (4) for this case
yields

∂π(si, g(s∗, . . . , s∗))
∂si

∣∣∣∣
si=s∗

=
r

ns∗ · V − 1 = 0.

Moreover, since

∂2π(si, g(s∗, . . . , s∗))
∂s2

i

=
r(r − 1)sr−2

i

n(s∗)r
· V

it follows thatπ(si, g(s∗, . . . , s∗)) is strictly concave in si if r < 1. Thus, s∗ = r
n ·V

is a strict maximum and, hence, a strict ATS in that case. Note that total investment
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is n ·s∗ = r ·V < V ; i. e., there is no overdissipation of rent. The Nash equilibrium
of the game, however, is given by ŝ = n−1

n2 · r · V �= s∗.
Hehenkamp et al. [11] find that s∗ is an ESS of this game for r ≤ 1+ 1

n−1 . This
is a second example whereATS and ESS coincide, for a certain range of parameters.
The ESS problem in this example captures the tradeoff between increasing the rela-
tive probability of winning the prize and the additional relative per unit investment
necessary to do so, where relative here means in comparison with the opponents.
The fact that s∗ is an ESS means that ignoring the effect of individual investments
on the aggregate level of investment is a shortcut to solve that problem. In a sense,
an ATS maximizes the relative probability of winning the prize taking the cost into
account.

4.1 Existence of ATS

Existence of a solution to problem (4) is guaranteed by Kakutani’s fixed point
theorem if the strategy set S is a compact, convex subset of R and the payoff
function π(s, x) is continuous in (s, x) and quasiconcave in s. Here we provide
alternative conditions based on supermodularity for the existence of an ATS.

Proposition 1 Let Γ ≡ (N, S, π) be a symmetric, quasisupermodular aggregative
game. If S ⊂ R is compact and π(s, x) is upper semicontinuous in s for each x,
then an ATS exists.

Proof. The result follows as an application of Lemma 1 in the Appendix to the
function F (s, t) = π(s, g(t, . . . , t)). The function F satisfies the single-crossing
property by quasisupermodularity of Γ and the fact that g is increasing. 
�

Existence of anATS for a quasisubmodular game cannot be directly established.
For the case of a Cournot oligopoly, Amir and Lambson [2] observe that payoff
functions can be rewritten to depend only on total output and the sum of the oppo-
nents’output levels. Under mild, additional assumptions, the game is supermodular
in these two variables, a fact that can be used to show existence of Cournot-Nash
equilibria. This approach can be generalized to show existence of Nash equilib-
rium in families of aggregative games, for which the aggregate of the opponents’
strategies is well defined by gn−1. It can be shown by means of counterexamples,
however, that this method fails to provide an existence result for ATS.

5 ESS, ATS, and supermodularity

In Examples 1 and 2 we saw that ESS andATS coincide at least for certain parameter
ranges. We also saw that both are examples of submodular aggregative games. In
the present section, we explore the relation between ATS and ESS in the framework
of a general super- or submodular aggregative game.

Proposition 2 Let Γ ≡ (N, S, π) be a symmetric aggregative game. Suppose Γ is
quasisupermodular in individual strategy and the aggregate. If s∗ ∈ S is an ESS,
then s∗ is also an ATS. If s∗ is a strict ESS, then s∗ is also a strict ATS.



The evolutionary stability of perfectly competitive behavior 509

Proof. Let s∗ be an ESS. Consider a mutation to a strategy s < s∗. By monotonicity
of the aggregate,

g(s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (5)

Since s∗ is an ESS, we have that

π(s, g(s, s∗, . . . , s∗)) ≤ π(s∗, g(s, s∗, . . . , s∗)). (6)

Since π satisfies the SCP, (5) and (6) imply that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)), (7)

verifying the ATS property for s.
Consider now a mutation to s > s∗. By monotonicity of the aggregate,

g(s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (8)

By contradiction, suppose that the ATS property is not fulfilled:

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)). (9)

By the SCP, (8) and (9) imply that

π(s∗, g(s, s∗, . . . , s∗)) < π(s, g(s, s∗, . . . , s∗)), (10)

which contradicts that s∗ is an ESS.
The proof that strict ESS implies strict ATS follows analogously, with strict

inequalities in (6) and (7), and weak inequalities in (9) and (10). 
�
Proposition 3 Let Γ ≡ (N, S, π) be a symmetric aggregative game. Suppose Γ
is quasisubmodular in individual strategy and the aggregate. If s∗ ∈ S is an ATS,
then s∗ is also an ESS and it is weakly globally stable. If s∗ is a strict ATS, then s∗

is the unique ESS (and hence also the unique ATS) and it is strictly globally stable.

Proof. Let s∗ be an ATS. To check weak global stability and, in particular, the
ESS property, we consider first m mutations to the same strategy s > s∗, with
1 ≤ m ≤ N − 1. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (11)

Since s∗ is an ATS, we have that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)). (12)

Since π satisfies the dual SCP, (11) and (12) imply that

π(s, g(s, m. . ., s, s∗, . . . , s∗)) ≤ π(s∗, g(s, m. . ., s, s∗, . . . , s∗)), (13)

verifying the ESS property for s.
Consider now m mutations to s < s∗. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (14)
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By contradiction, suppose that the weak global stability property is not fulfilled:

π(s∗, g(s, m. . ., s, s∗, . . . , s∗)) < π(s, g(s, m. . ., s, s∗, . . . , s∗)). (15)

By the dual SCP, (14) and (15) imply that

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)), (16)

which contradicts that s∗ is an ATS.
The proof that strict ATS implies strict global stability and, in particular strict

ESS follows analogously, with strict inequalities in (12) and (13), and weak in-
equalities in (15) and (16). To see uniqueness, suppose there is a different ESS
s̃ �= s∗. Applying strict global stability of s∗ for m = N − 1, we obtain

π(s∗, g(s∗, s̃, . . . , s̃)) > π(s̃, g(s∗, s̃, . . . , s̃)),

in contradiction with s̃ being an ESS. 
�
Summarizing, the last two propositions show that ESS implies ATS in the su-

permodular case, and the reverse implication is true in the submodular case.12 For
instance, the Cournot oligopoly of Example 1 is submodular in own and aggregate
output. Hence, the individual output level of a Walrasian equilibrium (by definition,
an ATS) is an ESS by Proposition 3.

To get an intuition for these results, consider an ATS s∗ and an arbitrary strategy
s > s∗ in the quasisubmodular case. By definition of ATS, there is no incentive to
switch from s∗ to s given the value of the aggregate. Mutations to s will increase
the value of the aggregate. Quasisubmodularity implies that there are no gains in
relative terms from playing s rather than s∗ in the post-mutation profile.

Note that our results for the submodular case are stronger than those for su-
permodularity. This is due to an asymmetry in the concepts of ATS and ESS. In
particular, Proposition 3 will be more useful than Proposition 2, as we will illustrate
in examples below. Recall an ESS solves the maximization problem (2) and an ATS
solves the maximization problem (4). In general, the latter is much easier to solve
than the former. In the supermodular case, Proposition 2 implies that solving (4)
yields a necessary condition for an ESS. In that case, sufficient conditions for ESS
need still be checked. In the submodular case, though, solving (4) is sufficient to find
an ESS by Proposition 3. Moreover, in this case, strict ATS will always be strictly
globally stable, a fact that will have strong implications for dynamic stability (see
Sect. 6).

5.1 The differentiable case

Propositions 2 and 3 do not require any differentiability assumptions on the con-
sidered aggregative game, relying only on sub- or supermodularity. For specific
examples, however, differentiability helps to establish the equivalence of ESS and

12 If we allow for decreasing aggregates in Definition 1, we obtain the dual results, i. e., ESS implies
ATS if π satisfies the dual SCP, and ATS implies ESS if π satisfies the SCP.
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ATS (or to identify the parameter range where this equivalence holds). Possajen-
nikov [18] observes that under differentiability, the first order conditions of prob-
lems (2) and (4) are identical. He then finds sufficient conditions for (interior) ESS
and ATS to coincide. These conditions can be summarized as follows. If relative
payoffs (the argument in problem (2)) are quasiconcave in the mutant’s strategy
(s′) – and hence the second-order condition for a global maximum of (2) is fulfilled
– then ATS implies ESS; conversely, if the function π (the argument in problem
(4)) is quasiconcave in individual strategy – the second-order condition for a global
maximum of (4) is fulfilled – then ESS implies ATS. The difference between these
and our results is illustrated in Example 2 below.

5.2 Examples

Example 2
Rent-seeking (continued). We saw that this game is submodular in individual
strategy and the aggregate, and that s∗ = r

n · V is a strict ATS for 0 < r < 1. By
Proposition 3, it follows that s∗ is the unique ESS. Hence, ATS implies ESS, and
vice versa (by uniqueness). Therefore, ATS and ESS coincide for 0 < r < 1.

In order to apply the approach in Possajennikov [18] the second-order conditions
of both problems must be carefully examined to reach the previous conclusion. The
point here is that examination of the second-order condition for problem (2) is more
cumbersome than the direct application of Proposition 3.

For r > 1 there is no ATS, so neither Proposition 3 nor the results in Possajen-
nikov [18] can be applied. Hehenkamp et al. [11] show, however, that s∗ is an ESS
for r ≤ 1 + 1

n−1 . For 1 < r < 1 + 1
n−1 , s∗ is an ESS but not an ATS.

Example 3
Tragedy of the Commons (continued). We saw that this game is submodular in
individual strategy and the aggregate. An interior ATS is given by the condition
A(ns∗) = 1.13 By Proposition 3, it follows that every ATS is a globally stable
ESS. By Remark 1, in a globally stable ESS input contributions are larger than in
a Nash equilibrium, and the tragedy of the commons is exacerbated. The intuition
is straightforward. If selfish agents act strategically, they neglect to consider the
negative externality that increasing their contribution imposes on the other agents.
Under aggregate-taking behavior, they further neglect to consider the negative effect
that an increase of their input has on their own payoff. This resembles the case of a
Cournot oligopoly with constant returns to scale. From the firms’ point of view, the
Cournot-Nash equilibrium is strictly worse than the “efficient” collusive outcome,
and the Walrasian outcome (which is an ATS) is even worse.

Example 4
Diamond’s search (continued). We saw that this game is supermodular in individ-
ual strategy and the aggregate. In this case, by Proposition 2, it follows that every
ESS is an ATS. If C ′′ > 0, an ATS is given by the first-order condition for problem

13 If S = [0, K] and A(nK) > 1, the ATS is given by s∗ = K.
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(4), αns∗ −C ′(s∗) = 0. Hence, this is also a necessary conditions for an ESS.14 As
in Possajennikov [18], here we must check the second-order condition for problem
(2). Direct computations show that if C ′′ > 2α, then the condition above is also
sufficient for ESS. Therefore, ESS and ATS coincide for C ′′ > 2α, but it is easy to
construct examples (with C ′′ > 0 but C ′′ ≯ 2α) where there is no ESS but there is
an ATS.

Example 5
Minimum effort (continued). In this case, since the aggregate is a minimum func-
tion, the individual payoff functions are not differentiable and the analysis based
on first- and second-order conditions does not apply. The game, though, is both
super- and submodular in individual strategy and the aggregate. By Propositions 2
and 3, every ESS is an ATS and vice versa. Since π is decreasing in si the only ATS
(hence, the only ESS) is s∗ = 0. Note that all symmetric profiles (s, . . . , s) with
s ∈ R+ are Nash equilibria. Thus, in this case the finite-population ESS is a Nash
equilibrium.

6 Stochastic stability of an ESS

Vega-Redondo [26] considers a discrete-time dynamic model of a Cournot oligop-
oly where firms choose quantities from a finite grid.15 Each period, imperfectly
informed, boundedly rational firms imitate the output level of any firm with highest
profits in the previous period. Occasionally, with an exogenous probability ε > 0,
firms experiment with an arbitrary output level. The prediction of the model is that,
for small ε, the system spends most of the time at the state where all firms pro-
duce the output corresponding to the Walrasian equilibrium – strict ATS (hence,
strictly globally stable ESS) of the Cournot game with strictly decreasing demand.
Formally, this state is stochastically stable.16 Using recent results on stochastic
stability from Ellison [9], it is easy to show that the former conclusion generalizes
to any strictly globally stable ESS. This result is of independent interest and can be
stated for symmetric games in general, and not only for aggregative games. To our
knowledge, this is the first result on dynamic stability of a finite-population ESS.

Let Γ ≡ (N, S, Π) be any symmetric game with finite S. Assume players
choose strategies from S in discrete time t = 0, 1, . . . according to the following
two rules:

(i) Imitation: Each period t ≥ 1, players mimic one of the strategies that gave
highest payoffs in the previous period.

(ii) Experimentation: With independent probability ε > 0, players ignore the pre-
scription of imitation, and choose a strategy from S according to a probability
distribution with full support.

14 In contrast, the necessary condition for a symmetric Nash equilibrium is α(n+1)·sN −C′(sN ) =
0.

15 This requirement is for tractability. For a discussion of this model with a continuum of strategies
see K.R.Schenk-Hoppé [12].

16 A state is stochastically stable if it is in the support of the limit invariant distribution of the process
as ε → 0.
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Proposition 4 Let Γ ≡ (N, S, Π) be a symmetric N -player game with finite S.
Let s∗ be a strictly globally stable ESS. Then, the profile (s∗, . . . , s∗) is the unique
stochastically stable state of the imitation dynamics with experimentation.

Proof. s∗ is a strictly globally stable ESS; i. e., it is resistant to any number of
simultaneous experiments (mutations) with the same strategy. Taking m = 1 and
m = N − 1 in Definition 6, we obtain that

(a) starting at s∗, an ‘experimenter’ choosing any other s �= s∗ performs strictly
worse, and

(b) starting at any s �= s∗, an ‘experimenter’ with s∗ performs strictly better.

Ellison [9, Theorem 1] provides the following result for stochastic stability of a
state ω. Let the radius of the state, R(ω), be the minimum number of experiments
necessary to leave ω. Let the coradius of the state, CR(ω), be the maximum number
of experiments necessary to reach ω from any other state. If R(ω) > CR(ω), then
ω is the only stochastically stable state.

For our particular imitation dynamics with experimentation, (a) above im-
plies that R(s∗, . . . , s∗) > 1 and CR(ω) > 1 for any other state. By
(b), CR(s∗, . . . , s∗) = 1 and R(ω) = 1 for any other state. In particular,
R(s∗, . . . , s∗) > CR(s∗, . . . , s∗), implying that (s∗, . . . , s∗) is the only stochas-
tically stable state.17 Intuitively, this state is harder to destabilize through experi-
mentation than any other state. 
�

We mentioned in Section 3 that a finite-population ESS is not necessarily a
Nash equilibrium of the game. This implies that there may be incentives to devi-
ate from an ESS. By definition, though, starting at a population profile where all
players are choosing an ESS, any experimenter would be worse in relative terms
after deviation. We should stress the fact that the latter holds even if the ‘experi-
menter’ cleverly chooses a best response to her opponents’ strategies. Note that by
allowing experimentation with full support we allow, among others, also ‘clever’
experimentation with best replies.

Corollary 1 Let Γ ≡ (N, S, π) be a quasisubmodular aggregative game with finite
S. Let s∗ be a strict ATS. Then the profile (s∗, . . . , s∗) is the unique stochastically
stable state of the imitation dynamics with experimentation.

Corollary 1 follows from Propositions 3 and 4.18 It provides a link between
the ATS concept in submodular aggregative games and the long-run outcome of
dynamical models based on imitative behavior. Applied to a Cournot oligopoly as
in Example 1, it yields the result in Vega-Redondo [26]. Applied to a rent-seeking
game as in Example 2, it implies stochastic stability of the profile where each player
invests s∗ = r

n · V when r < 1. This can be seen as an efficient outcome since it
avoids overdissipation of rent.

17 Moreover, the expected waiting time until this state is first reached is of order ε−1. In particular,
the order of convergence is independent of population size.

18 It has come to our attention after circulating our paper that Corollary 1 has independently been
shown by Schipper [21], using the concept of recurrent set introduced by Nöldeke and Samuelson [17].
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7 Conclusions

The present work deals with the class of (generalized) symmetric aggregative
games, whose payoff function may be written to depend only on individual strategy
and an aggregate of all strategies. If players were negligible, in a Nash equilibrium
of such games their behavior would correspond to optimization given the value of
the aggregate. If players are not negligible, this kind of aggregate-taking behavior
is still well defined, although it does not correspond to rational behavior. We refer
to an optimal aggregate-taking strategy (ATS) as an optimizing strategy given the
value of the aggregate, when all players choose that strategy. This is a generalization
of the concept of competitive equilibrium.

We consider two dual cases. Under submodularity of the payoff function, which
includes the case of Cournot oligopoly, an ATS satisfies an evolutionary stability
criterion. Specifically, any deviation from an ATS in that case leaves the deviator
worse off in relative terms. A strategy verifying this property is called a finite-
population ESS. Under supermodularity of the payoff function, the converse result
obtains; i. e. aggregate-taking behavior is a necessary condition for evolutionary
stability.

Moreover, in the submodular case, we show that a strict ATS is also the long-
run outcome of a learning dynamics based on imitation and experimentation. This
provides dynamic foundation for aggregate-taking behavior in such settings.

In other words, in the supermodular case we find that ATS is a necessary con-
dition for ESS, while in the submodular case it is a sufficient condition for globally
stable ESS. In the latter case, this provides a shortcut for the computation of an ESS
and the long-run outcomes of imitative learning dynamics. Of course, these findings
are useful provided an ATS exists. Existence is guaranteed if the payoff function of
the game is quasiconcave in individual strategy. It turns out that this requirement
is easier to verify than the conditions required to find an ESS directly, due to the
complexity of the objective function of the associated optimization problem.

Appendix

We say that F : R2 → R satisfies the single-crossing property in (s, x) ∈ R2 if,
for all s′′ > s′ and x′′ > x′

F (s′′, x′) ≥ F (s′, x′) ⇒ F (s′′, x′′) ≥ F (s′, x′′)
F (s′′, x′) > F (s′, x′) ⇒ F (s′′, x′′) > F (s′, x′′)

The following result is an application of well known lattice programming re-
sults. We refer the reader to Topkis [24] for further details.

Lemma 1 Let S ⊂ R be compact. Suppose F : R2 → R satisfies the single-
crossing property and F (s, x) is upper semicontinuous in s for each value of x.
Then there exists s∗ ∈ S such that

s∗ ∈ arg max
s∈S

F (s, s∗)
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Proof. Upper-semicontinuity of F and compactness of S guarantee that
arg maxs∈S F (s, x) is non-empty for each x. By Topkis [24, Theorem 2.8.6] (due
to Milgrom and Shannon [15]) and Topkis [24, Corollary 2.7.1 and Theorem 2.4.3]
the maximum and minimum selections of arg maxs∈S F (s, x) are increasing. By
Tarski’s fixed point theorem (see e.g. Topkis [24, Corollary 2.5.1]) these selections
have a fixed point. 
�
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12. Schenk-Hoppé, K.R.: The evolution of Walrasian behavior in oligopolies. Journal of Mathematical
Economics 33, 35–55 (2000)

13. Lockard, A.A., Tullock, G. (eds.).: Efficient rent-seeking: chronicle of an intellectual quagmire.
Boston: Kluwer Academic Publishers 2001

14. Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic
complementarities. Econometrica 58(6), 1255–1277 (1990)

15. Milgrom, P., Shannon, C.: Monotone comparative statics. Econometrica 62(1), 157–180 (1994).
16. Moulin, H., Watts, A.: Two versions of the tragedy of the commons. Economic Design 2, 399–421

(1997)
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