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Summary. The purpose of this note is to shed some light on the relationship be-
tween the Copeland rule and the Condorcet principle in those cases where there
does not exist a Condorcet winner. It will be shown that the Copeland rule ranks
alternatives according to their distances to being a Condorcet winner.
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1 Introduction

In two papers, Saari and Merlin [12,15] provide an exhaustive investigation into
the properties and flaws of the widely used Copeland rule. It generates a complete
and transitive binary relation by ranking the alternatives according to the difference
between the number of alternatives they beat and the number of alternatives they
loose against. One of the properties it satisfies is the well known Condorcet prin-
ciple, which states that the Condorcet winner, i.e. the alternative that wins against
all other alternatives in a pairwise contest, should be considered best in the set of
alternatives. There is a strong intuitive appeal for this property in the sense that it
respects the idea of democratic decision making.1

The purpose of this note is to shed light on the intimate relationship between
the Copeland rule and the Condorcet principle even in those cases where there
does not exist a Condorcet winner. It will be shown that the Copeland rule ranks
alternatives according to their distances to being Condorcet winners. The use of

� I am very grateful to Daniel Eckert and Nick Baigent for their helpful comments.
1 See Fishburn [7] for a more detailed discussion.
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distance information in preference aggregation problems in a finite framework goes
back to Dodgson [4] and distance-based aggregation rules are discussed in recent
papers by Saari and Merlin [16], Ratliff [13,14] and Klamler [9,10].2

The next section sets out the formal framework. In Section 3 it will first be
proved that there exist two equivalent definitions of the Kemeny metric on the set
of complete binary relations. Then, it will be shown that the Copeland ranking is
equivalent to the “closeness to Condorcet” ranking.3 Section 4 concludes the paper.

2 Formal framework

Let X denote a finite set of n alternatives, and R ⊆ X2 be a binary relation on X ,
where �R denotes the asymmetric part of R and ∼R the symmetric part of R. The
restriction of R to any subset S of X is written R|S. Let B be the set of all complete
binary relations on X . For all x ∈ X , the set of all complete binary relations having
alternative x uniquely on top is given by Mx = {R ∈ B : (∀y ∈ X\ {x}) x �R y}.
Distance between any two binary relations R, R′ ∈ B will be measured by the
Kemeny metric δ : B × B → R+, where δ (R, R′) = |(R − R′) ∪ (R′ − R)|, i.e.
the distance between two complete binary relations is equal to the cardinality of
their symmetric difference (Kemeny [8]).

A basic way in which two binary relations differ can be seen in the number of
pairs of alternatives on which they have opposite strict preferences or differ by one
having an indifference where the other has a strict preference. Hence, three func-
tions, which count the number of pairs displaying the respective types of inversions,
will be introduced. Superscripts denote the respective change on pairs of alterna-
tives, e.g. for all R, R′ ∈ B, λIP (R, R′) counts the number of pairs x, y ∈ X such
that x and y are indifferent in R and x is strictly preferred to y in R′.4

λIP : B × B → R+ such that for all

R, R′ ∈ B, λIP (R, R′) =
∣
∣{(x, y) ∈ X2 : x ∼R y&x �R′ y

}∣
∣

λPI : B × B → R+ such that for all

R, R′ ∈ B, λPI(R, R′) =
∣
∣{(x, y) ∈ X2 : x �R y&x ∼R′ y

}∣
∣

λPP : B × B → R+ such that for all

R, R′ ∈ B, λPP (R, R′) =
∣
∣{(x, y) ∈ X2 : x �R y&y �R′ x

}∣
∣

2 The preservation of proximity, both in an ordinal and in the cardinal framework of distance functions
and metrics, is also used as a property for social choice rules (see Baigent [1] and Eckert and Lane [5]).
This use is partly justified by the analogy of proximity preservation to the continuity condition used in
topological social choice theory (see Baigent [2] and Lauwers [11] for surveys).

3 A comparable type of exercise can be found in Farkas & Nitzan [6]. They show that the alternative
which is closest to being the top alternative in all individual rankings relative to the Kemeny metric, is
precisely the top alternative in the ranking derived from the Borda rule.

4 An application of this framework can also be found in Baigent and Klamler [3] who provide a
characterization of the transitive closure rule.
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3 Results

The following Lemma 3.1 shows that the Kemeny distance between two complete
binary relations can be measured equivalently with the help of the above functions.
The simple proof is left to the reader.

Lemma 3.1. For all R, R′ ∈ B,

δ (R, R′) = |(R − R′) ∪ (R′ − R)| = 2λPP (R, R′)+λIP (R, R′)+λPI(R, R′)

Example 3.2. Let X = {x1, x2, x3, x4} and let R ∈ B be such that x1 �R x2,
x2 �R x3, x3 �R x4, x4 �R x1, x1 �R x3, x4 �R x2. Let R′ ∈ B be such that
x1 �R′ x2, x2 �R′ x3, x3 �R′ x4, x1 �R′ x4, x1 �R′ x3, x4 �R′ x2. Then
λPP (R, R′) = 1 and λIP (R, R′) = λPI(R, R′) = 0 and hence δ(R, R′) = 2.

The following Lemma 3.3 establishes a distance-based connection between
any binary relation R and any set Mx of binary relations with x as the unique top
alternative. We will use the fact that for any x ∈ X there are n− 1 pairs formed by
x and some y ∈ X\ {x}. Hence, for every R ∈ B and x ∈ X , there exist some non-
negative integers such that d+e+f = n−1 where |{y ∈ X\ {x} : x �R y}| = d,
|{y ∈ X\ {x} : x ∼R y}| = e and |{y ∈ X\ {x} : y �R x}| = f .

Lemma 3.3. Let R ∈ B, let x ∈ X , and assume that |{y ∈ X\ {x} : x ∼R y}| = e
and |{y ∈ X\ {x} : y �R x}| = f , where e, f ∈ Z+. Then min

R′∈Mx

δ(R, R′) =

2f + e.

Proof. R′ ∈ Mx implies |{y ∈ X\{x} : x ∼R′ y}| = |{y ∈ X\{x} : y �R′

x}| = 0. From the definition of λIP and λPP we get that λIP (R, R′) ≥ e and
λPP (R, R′) ≥ f . This implies, together with Lemma 3.1, that δ(R, R′) ≥ 2f + e.
Consider now R′ ∈ Mx to be such that R′|S = R|S for S = X\ {x}. This implies
that δ (R, R′) = 2f + e. Hence, the lemma is true. 	


The Copeland rule ranks the alternatives according to the difference between
the number of alternatives they beat and the number of alternatives they loose
against. Thus, we define, for all R ∈ B and all x ∈ X , the Copeland value cR(x)
as cR(x) = |{y ∈ X : x �R y}| − |{y ∈ X : y �R x}|.

For every R ∈ B, the Copeland ranking CR is now defined as follows:
For all x, y ∈ X , xCRy ⇔ cR(x) ≥ cR(y).
We now turn to the idea of measuring each alternative’s distance to being a

Condorcet winner relative to the Kemeny metric. For all R ∈ B and all x ∈ X , the
distance of x to being a Condorcet winner is measured by the smallest distance of
R ∈ B to some R′ ∈ Mx. It is given by c̃R(x), such that c̃R(x) = min

R′∈Mx

δ (R, R′).

Therefore, for every R ∈ B, we define the “closeness to Condorcet” ranking5

C̃R as follows:

5 At first sight this ranking might seem similar to the Slater [17] ranking. However, the essential
difference is that the Slater ranking is of shortest Kemeny distance to the original binary relation
whereas the “closeness to Condorcet” ranking ranks the alternatives according to their distances from
being Condorcet winners.
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For all x, y ∈ X , xC̃Ry ⇔ c̃R(x) ≤ c̃R(y)

Theorem 3.4. For all R ∈ B, the Copeland ranking and the “closeness to Con-
dorcet” ranking are equivalent, i.e. CR = C̃R.

Proof. The theorem will be proved by showing that for all R ∈ B it is the case that
for all x, y ∈ X , cR(x) ≥ cR(y) ⇔ c̃R(x) ≤ c̃R(y). Assume d, e, f, r, s, t ∈ Z+
and |X| = n = d + e + f + 1 = r + s + t + 1. For any R ∈ B, let, for some
distinct x, y ∈ X , |{z ∈ X\{x} : x �R z}| = d, |{z ∈ X\{x} : x ∼R

z}| = e, |{z ∈ X\{x} : z �R x}| = f , |{z ∈ X\{y} : y �R z}| = r,
|{z ∈ X\{y} : y ∼R z}| = s and |{z ∈ X\{y} : z �R y}| = t. This implies that
cR(x) = d − f and cR(y) = r − t. Furthermore, by Lemma 3.3, c̃R(x) = 2f + e
and c̃R(y) = 2t + s. As e = n − 1 − d − f and s = n − 1 − r − t this implies
c̃R(x) = f − d + n − 1 and c̃R(y) = t − r + n − 1. Hence c̃R(x) ≤ c̃R(y) is
equivalent to f −d+n−1 ≤ t−r+n−1, which can be simplified to f −d ≤ t−r
or d − f ≥ r − t. As this is equivalent to cR(x) ≥ cR(y), this proves the theorem.

	


4 Conclusion

In this paper it has been shown in what sense closeness to being a Condorcet winner
is implicit in the Copeland rule. Alternatives are ranked higher in the Copeland
ranking whenever their distance to being a Condorcet winner relative to the Kemeny
distance is smaller. This clarifies the relationship between the Copeland rule and
Condorcet’s principle. In addition, one could provide this as an argument for the
Copeland rule being a good procedure to overcome problems resulting from voting
cycles. It might also be taken as a starting point for comparing the Copeland rule to
other aggregation procedures explicitly based on distance information such as the
Slater rule, Kemeny’s rule or Dodgson’s rule.
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