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Summary. This paper reports an experiment on two-player sequential bargain-
ing with asymmetric information that features some forces present in multi-round
monopoly pricing environments. Buyer-seller pairs play a series of bargaining
games that last for either one or two rounds of offers. The treatment variable is
the probability of continuing into a second round. Equilibrium predictions do a
poor job of explaining levels of prices and treatment effects. As an alternative to
the conventional equilibrium model, we consider models that allow for bounded
rationality of subjects. The quantal response equilibrium model captures some of
the important features of the results.
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1 Introduction

The literatures on sequential bargaining theory and durable goods monopoly
theory focus on how repeated interaction between a single seller and one or more

� This research was funded in part by the National Science Foundation (SBR-9809110). The exper-
iments were run at the Economic Science Laboratory of the University of Arizona and the Krannert
Laboratory for Experimental Economic Research at Purdue University, using the z-Tree software de-
veloped at the Institute for Empirical Research at the University of Zurich (Fischbacher [8]). David
Cooper, Rachel Croson, Charles Noussair, an anonymous referee, and conference participants at the
Economic Science Association and the Society for the Advancement of Economic Theory meetings
provided helpful comments. Timothy O’Neill Dang, Thomas Wilkening and Marikah Mancini provided
expert research assistance.
Correspondence to: T.N. Cason



554 T.N. Cason and S.S. Reynolds

buyers influence market outcomes. Three types of forces shape outcomes in this
environment. First, a buyer who has the option of deferring a purchase until later
may have an incentive to wait for a better price offer even if their current payoff
from making a purchase (consumer surplus) is positive. Second, a seller should
anticipate strategic behavior by buyers when choosing prices. If a buyer is waiting
for a better offer then the seller may have to set a price below the price they would
set in a take-it-or-leave-it situation, in order to induce the buyer to purchase earlier.
Third, the possibility of making multiple price offers may permit a seller to practice
a form of inter-temporal price discrimination and extract more surplus from buyers
than is possible in a static setting.

Researchers have utilized a variety of game theoretic formulations to examine
how these forces play out. These formulations include models of sequential bar-
gaining with asymmetric information and dynamic market models with complete
information. These models yield equilibrium predictions about initial price offers,
changes in prices over time, and buyer purchasing behavior.1 Under some assump-
tions, the seller’s initial price offer in equilibrium falls as the discount factor rises;
as the discount factor approaches unity the equilibrium initial price offer converges
to marginal cost (see Stokey [21]; Gul, Sonnenschein, and Wilson [12]. This last
result seems to capture the essence of Coase’s conjecture (Coase [5)] on durable
goods monopoly pricing. However, equilibrium results are quite sensitive to as-
sumptions. If one assumes complete information in a setting with a finite number
of buyers and discrete demands, rather than a continuum of buyers or bargaining
with a single privately-informed buyer, then the equilibrium may involve perfect
price discrimination over time rather than prices close to marginal cost (see Bagnoli,
Salant and Swierzbinski [1]).

Recent laboratory experimental studies by Güth, Ockenfels, and Ritzberger
[13], Rapoport, Erev, and Zwick [18], Cason and Sharma [4], and Reynolds [19]
have examined equilibrium predictions from these models. By and large, equilib-
rium predictions from game theoretic models of multi-round pricing have fared
poorly in these experiments. Prices are often far from predicted levels, and buyers’
purchasing behavior fails to conform to some predictions. Perhaps most significant
is the typical failure of comparative statics predictions about the effects of changes
in information, changes in the discount factor, or changes in the time horizon. More-
over, adjustments to the models to take into account risk preferences or preferences
for fairness are not adequate to explain the results in these experiments (e.g., see
the discussion in Reynolds [19]). And although rules of thumb and social norms
about fairness can provide a partial explanation (Rapoport et al. [18]), no formal
and systematic model has been proposed to explain the observed deviations from
equilibrium.

The present paper reports on a new experimental design for sequential bargain-
ing with asymmetric information. The design specifies a relatively simple decision-
making environment, while maintaining enough richness to capture the forces at
work in multi-round pricing environments. The simplicity of the experimental de-

1 Reynolds [19] describes how the durable goods monopoly model has been extended in a variety of
directions in recent papers.
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sign serves two purposes. First, it gives equilibrium theory its best shot at suc-
cessfully predicting subjects’ behavior. This is important in light of the predictive
failures noted above. Second, the simplicity of the design allows us to compute
predictions for some general models of bounded rationality.

We have designed experiments in which buyer-seller pairs play a series of
bargaining games that last either one or two rounds. The seller is uninformed about
the resale value for the buyer she is matched with. The seller simply chooses a
price offer from a set of ten possible prices in the first round and the buyer either
accepts or rejects the offer. If the buyer rejects the offer then the game moves into a
second round with some known, exogenous probability. If there is a second round,
the seller chooses a price offer from this same set and the buyer either accepts or
rejects.

The treatment variable in our experiments is the probability of continuing into
a second round. We ran experiments with the following continuation probabilities:
zero percent, 30 percent, 60 percent, and 90 percent. The game theoretic equilibrium
prediction is that the opening price will fall as the continuation probability rises
from zero to 30 percent and from 30 to 60 percent, and that the opening price will rise
as the continuation probability rises from 60 to 90 percent. Strategic withholding
of demand by buyers is predicted (on the equilibrium path) only for the case of a
90 percent continuation probability.

The environment is kept simple by employing a finite set of ten possible prices
for the seller, two possible buyer values (high or low), and at most two rounds in
a “game.” This allows for straightforward computation of perfect Bayesian equi-
librium predictions. More importantly, this relatively simple setup facilitates com-
putations for models of bounded rationality in games. We present results for two
such models: the Noisy Nash Model (Nash equilibrium play, plus random decision
errors) and the agent quantal response equilibrium (AQRE) model proposed by
McKelvey and Palfrey [17].

2 Experimental background

Several recent studies report on experiments that were designed to test game the-
oretic predictions of multi-round monopoly pricing models. The experiments of
Güth, Ockenfels and Ritzberger [13] match a single seller with 10 buyers. Each ex-
periment consisted of 5 or 6 experimental games. In each game there was a different
combination of maximum number of trading rounds (two or three) and discount fac-
tors. In one experiment subjects received prior training in durable goods monopoly
pricing games. The results for untrained subjects were grossly inconsistent with
theoretical predictions from a model with a continuum of buyers. Prices failed to
conform to comparative statics predictions and prices tended to be much higher
than predicted. The levels of prices with trained subjects were closer to theoretical
predictions, but prices still failed to satisfy comparative statics predictions.

Rapoport, Erev and Zwick [18] report on bargaining experiments with time
discounting, one-sided incomplete information, and an infinite (unlimited) time
horizon. They find that: (1) price offers tended to decline over time, as predicted by
the sequential equilibrium (SE), (2) average initial prices were higher the higher the
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discount factor, contrary to the SE, and (3) for some discount factors the average
initial price was above the static monopoly price, contrary to the SE. Rapoport
et al. suggest that the SE theory may be failing because some buyers are using
suboptimal rules of thumb for making purchases and because of a social norm
about fair divisions of surplus.

Cason and Sharma [4] focus on the role of information about buyers’ values.
Game theoretic analyses of durable goods monopoly pricing predict large differ-
ences in outcomes depending on whether agents are informed about buyers’values.
If all agents are informed about buyers’ values then perfect price discrimination
can emerge. This is in sharp contrast to asymmetric information environments,
which typically yield equilibrium prices below the static monopoly price. Cason
and Sharma report on infinite horizon experiments with two buyers and one seller.
In the Certain Demand treatment all agents know that one buyer has a high value
and the other buyer has a low value. In the Uncertain Demand treatment, buyers
are privately informed about values; all agents know that the most likely outcome
is that one buyer has a high value and the other has a low value, but outcomes with
two low values or two high values are also possible. Prices in both treatments were
much closer to equilibrium predictions of the incomplete information model than
to the equilibrium predictions of the complete information model.

Reynolds [19] reports on experiments with one-sided incomplete information, a
finite horizon, and either one buyer (bargaining) or five buyers (market). Bargaining
experiments were run with one, two and six trading rounds, while all market ex-
periments were run with six rounds. The demand withholding results were roughly
in line with game theoretic predictions: withholding is much lower for one round
games and for the final round of multi-round games than for earlier rounds of multi-
round games. Reynolds nevertheless finds a significant failure of the equilibrium
pricing predictions. The perfect Bayesian equilibrium predicts that opening prices
will fall as the trading horizon increases from one to two to six rounds. Instead,
opening prices in the bargaining experiments rise as the trading horizon increases,
holding subject experience constant. Güth, Kröger and Normann [14], however, find
better support for price comparative statics as the (private) discount factors change
in a two-round bargaining experiment with incomplete information regarding buyer
values.

3 Experimental design and predictions

We conducted a total of 9 sessions, employing 131 subjects. Fifteen or 13 subjects
participated in each session, as summarized in Table 1. In each session subjects
participated in a sequence of bargaining games against different anonymous op-
ponents. Each bargaining game had either one round or two rounds of bargaining
between a buyer and a seller. Subjects interacted only through a computer network
running an application written using the University of Zurich’s z-Tree program
(Fischbacher [8]). All subjects were inexperienced, in the sense that they had never
participated in a previous bargaining session that employed this design.

Our goal was to minimize repeated game incentives but allow subjects to obtain
feedback and learn from their earlier experience playing the game, so we used the
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Table 1. Summary of experimental sessions

Continuation Number of Number of
Session name probability Session site subjects periods

UA00-1 0 percent Univ. of Arizona 15 30
UA30-1 30 percent Univ. of Arizona 15 30
UA30-2 30 percent Univ. of Arizona 13 26
UA60-1 60 percent Univ. of Arizona 15 30
UA90-1 90 percent Univ. of Arizona 13 26
PU00-1 0 percent Purdue Univ. 15 30
PU30-1 30 percent Purdue Univ. 15a 30
PU60-1 60 percent Purdue Univ. 15 30
PU90-1 90 percent Purdue Univ. 15 28b

a Although this session employed 15 subjects, we discovered after the session
that one of the subjects had previously participated in session PU00-1. Data from
this experienced subject are excluded from the analysis.
bThe software crashed after period 28 in this session.

matching scheme employed by Cooper et al. [6]. In this “strangers” design all
subjects bargained exactly twice with each other subject in their session – once as
the seller and once as the buyer – and subjects never knew the identity or history
of their bargaining opponent. They never bargained against the same opponent in
consecutive periods. Subjects alternated between being seller and buyer, and one
subject sat out each period. Thus each session consisted of 30 periods, and each
of the 15 subjects bargained 14 times as a seller and 14 times as a buyer. [The
sessions with 13 subjects lasted for 26 periods.] Switching roles might have helped
the subjects learn how to backward induct in this game, but it could have also led to
some initial confusion. The ordering of the subjects and the pair assignments were
determined randomly at the start of the session, when the subjects were randomly
assigned to a computer.

The instructions (see http://www.mgmt.purdue.edu/faculty/cason/bounded
-inst.pdf) were read aloud while subjects followed along on their own paper copy.
The instructions explain the matching protocol described above. The instructions
also explain that the sellers’ cost is zero and the buyers’ value is randomly deter-
mined, independently for each buyer. With a 40 percent chance the buyers’ value
is 54 and with a 60 percent chance the buyers’ value is 18. An individual buyer’s
value is her private information. In each bargaining round the seller chooses a price
offer from the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and then the buyer either
accepts or rejects the offer. When an offer is accepted, seller profits simply equal
the price, and buyer profits equal their value minus the price. If no offer is accepted
for a particular period both the buyer and seller earn zero. The program did not
allow buyers to accept price offers that result in negative profits.

Subjects were recruited from the undergraduate population at the University
of Arizona and Purdue University. Upon arrival to the lab subjects were paid a $5
show-up fee. Including instructions, sessions required approximately 100 minutes
to complete. Payoffs were converted using an exchange rate of 12 laboratory dollars
= 1 U.S. dollar. Total earnings per subject ranged from $15 to $50, with a mean of
about $36.
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Perfect Bayesian equilibrium (PBE) predictions for risk neutral agents are
summarized as follows. The PBE for the zero percent continuation probability
is straightforward. The seller sets the highest possible price (50) and the high value
buyer accepts this price offer. The expected payoff for the seller from this price
(50 × 0.4 = 20) exceeds the payoff from setting a price that both buyer types
would accept (15). There is no demand withholding in this equilibrium.

The form of the PBE is similar for the 30 and 60 percent continuation probability
treatments. The high-value buyer accepts the round one offer, and if the game goes
to a second round, the low-value buyer accepts the round two offer of 15. The
seller’s prices must satisfy the following incentive constraint for the high-value
buyer (with value v̄ = 54):

(IC) v̄ − p1 ≥ δ(v̄ − p2)

In this inequality, δ is the continuation probability. The price p2 is the highest
price that a low-value buyer will accept; i.e., p2 = 15. The seller chooses the highest
price in the first round that satisfies the IC. For δ = 0.3 this price is p1 = 40 and for
δ = 0.6 this price is p1 = 30. There is no demand withholding along the equilibrium
path. Demand withholding would occur only for prices off the equilibrium path
(e.g., if δ = 0.3 and the seller sets p1 = 45 then the PBE strategy for a high-value
buyer is to reject this offer even though it provides positive consumer surplus).

Note that as the continuation probability increases from zero to 30 to 60 percent,
the PBE initial price offer falls from 50 to 40 to 30. As high-value buyers become
more likely to receive an attractive second round offer after a rejected first offer,
the seller responds by lowering the initial price offer. The logic for this result is
essentially the same as the logic behind the predicted effect of an increase in the
discount factor in the infinite horizon experiments run by Rapoport, Erev and Zwick
[18].

When the continuation probability gets closer to one in a two round game,
the character of equilibrium changes. The seller will not set a price of 15 in the
second round with probability one, and therefore a high-value buyer cannot count
on receiving a low price offer if she rejects the initial price offer.2 When δ = 0.9
the PBE is as follows:3

1. p1 = 50,
2. high-value buyer uses a mixed strategy for round one decision with

Pr[accept |p1 = 50] ≈ 0.357 ,
3. seller uses a mixed strategy in round two, with p2 ∈ {15, 50} and Pr[p2 =

50] ≈ 0.988.

The PBE price predictions are summarized in Table 2.

2 When δ = 0.9 there is no initial offer that is consistent with a screening equilibrium (an equilibrium
in which the high value buyer accepts the initial offer and the low value buyer accepts the second offer).
When δ = 0.9 a high value buyer will reject any initial offer above 15, if they expect a second offer of
15. An equilibrium must involve a second offer above 15 with positive probability.

3 The derivation of this equilibrium is similar to the derivation in Fudenberg and Tirole [9]. The main
difference is that the price space is discrete in our setting, whereas Fudenberg and Tirole have prices
chosen from a continuous interval.
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4 Results: comparison with PBE predictions

Table 2 presents the mean and median offer prices in each treatment, pooled across
periods. (The rightmost column is discussed later, in Sect. 5.) Figure 1 below in-
dicates that the time trends for these prices are not substantial, and there is no
evidence for significant time trends in the second half of the sessions (periods 16–
30).4 In this table and in the subsequent analysis we pool across sites for the zero,
60 and 90 percent continuation probability treatments, since results did not differ
significantly at Arizona and Purdue for these treatments. For reasons we are unable
to explain, however, prices tended to be lower at Arizona than Purdue for the 30
percent continuation probability treatment, so to err on the side of caution we do
not pool those datasets.5

In the first round the equilibrium prices are highly sensitive to the continuation
probability, falling from 50 to 40 to 30, and then rising back to 50 as the continuation
probability rises from zero to 90 percent. Observed opening offer prices, by contrast,
do not vary much across the continuation probability treatments. Although (as
predicted) mean prices are highest in the zero percent continuation treatment, in
this treatment 47 percent of the opening offer prices are less than or equal to 30,
while only 31 percent equal the prediction of 50 (and 10 percent are 45). Even
more striking are the low opening offer prices for the 90 percent treatment. Fully
74 percent of these prices are less than or equal to 30, and only 4 percent are either
45 or 50. It is tempting to attribute the mean price level to “fairness,” since prices
in the range of 25 to 30 provide a roughly equal split of the exchange surplus
between the seller and the value=54 buyer. But as we discuss below, the subjects
in this experiment appear substantially less sensitive to fairness concerns than are
subjects in other related experiments.

The lower panel of Table 2 presents the summary statistics for the second round
of price offers. For the 30 and 60 percent continuation treatments the second round
mean prices are within 5 laboratory dollars of the prediction of 15. For the 90 percent
continuation treatment the second round mean price is greater than the mean prices
for the other treatments, but it is far below the PBE predicted price of 50.

Figure 1 displays the time series of mean opening offer prices for the four con-
tinuation probability treatments. This figure pools adjacent periods because subjects
alternated between being buyers and sellers, so each subject contributes at most one

4 To evaluate whether significant time trends exist in the data, we regressed prices on period number
(and in an alternative specification, on 1/period). The coefficient estimates on these time trend variables
are not significantly different from zero in any treatment when dropping the first 15 periods.

5 In particular, according to nonparametric Wilcoxon Signed-Rank tests conducted for individual
pairs of periods (so that each subject contributes one price offer to each test), opening offer prices are
lower in UA30-1 than in PU30-1 at the 5 percent significance level in over half of the period pairs.
According to this same test, opening offer prices in the two Arizona sessions UA30-1 and UA30-2 are
not significantly different in any period pair. For the other session-site comparisons in the other three
continuation probability treatments (i.e., UA00-1 vs. PU00-1, UA60-1 vs. PU60-1, and UA90-1 vs.
PU90-1), these offer prices are significantly different at the 5 percent level in only 5 of the 43 period
pairs. Similar tests for second round prices are only possible in the 60 and 90 percent continuation
probability treatments, since few observations exist for second round prices in individual period pairs
when the continuation probability is 30 percent. For these tests in the 60 and 90 percent continuation
probability treatments, the prices are generally not significantly different across experiment sites.
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Table 2. Summary statistics for price offers for each continuation probability treatment

Actual offers
Continuation Obser- Perfect Bayesian Mean offer Median AQRE model
probability vations equilibrium offer (std. error) offer mean (median)

Panel A: Opening offer prices

0 percent 420 50 33.1 35 30.3
(0.73) (30)

30 percent 366 40 22.7 20 30.1
(Arizona) (0.53) (30)
30 percent 196 40 30.6 30 30.1
(Purdue) (0.70) (30)

60 percent 420 30 27.7 30 29.1
(0.50) (30)

90 percent 352 50 28.8 30 28.1
(0.41) (30)

Panel B: Second round offer prices

0 percent – – – – –
30 percent 36 15 15.7 15 22.0
(Arizona) (1.09) (15)
30 percent 28 15 20.0 15 22.0
(Purdue) (2.29) (15)

60 percent 156 15 19.5 15 24.3
(0.90) (20)

90 percent 245 50∗ 25.0 15 26.9
(0.89) (25)

∗ The second round price of 50 is approximate. The seller sets a price of 50 with probability
98.8 percent and a price of 15 with probability 1.2 percent.

(price offer) observation to each adjacent pair of periods. In the opening periods
the mean prices are highest in the 90 percent continuation probability treatment.
Mean prices tend to fall in the 90 percent continuation treatment, however, while
mean prices rise for the first third of the sessions in the zero percent continuation
treatment. Prices also tend to fall in the 30 percent continuation probability sessions
conducted at Arizona.

For statistical tests we cannot pool (non-independent) choices made by the same
subject, so we conduct conservative nonparametric Wilcoxon tests separately for
each pair of periods. As noted above, each subject contributes at most one price
observation to each adjacent pair of periods because they alternated between buyer
and seller roles. In the following discussion, “period pair 2” refers to periods 1 and
2, “period pair 4” refers to periods 3 and 4, and so on.

Table 2 shows that the PBE prices in round one vary substantially as the continu-
ation probability varies. Consistent with the visual impression provided by Figure 1,
however, in many period pairs the prices are not significantly different across treat-
ments. Prices in the Arizona 30 percent continuation probability treatment are often
significantly lower than prices in the zero and 90 percent continuation probability
treatments, consistent with the PBE.6 Also consistent with equilibrium, prices are

6 In particular, nonparametric Wilcoxon tests indicate that prices are significantly lower in theArizona
30 percent continuation probability treatment than in the zero percent continuation probability treatment
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Figure 1. Mean opening prices by period pair for four continuation probability treatments

higher in the zero percent continuation probability treatment than the 60 percent
continuation probability treatment in period pairs 8, 12, 14, and 22 through 30. But
contrary to the PBE, prices are also significantly lower in the Arizona 30 percent
continuation probability treatment than in the 60 percent continuation probability
treatment in period pairs 2, 12 and 16 through 30, and they are significantly lower
than the Purdue 30 percent continuation probability treatment in period pairs 6, 8,
10 20, 22, 26, 28 and 30. Prices are not significantly different at the five-percent
level for 53 of the 58 other pairwise comparisons with a price difference predicted
by the PBE (i.e., between zero and Purdue 30, zero and 60, Purdue 30 and 60,
Purdue 30 and 90, and 60 and 90 continuation probability treatments).

A series of Wilcoxon signed-rank tests also clearly rejects the PBE null hypoth-
esis for opening round prices in three of the four treatments. Figure 1 indicates that
mean prices typically range between 20 and 35, while PBE prices vary between
30 and 50. In every period pair, the data reject at the five-percent level the null
PBE hypotheses that (a) median prices equal 50 when the continuation probability
is 90 percent; (b) median prices equal 40 when the continuation probability is 30
percent; and (c) median prices equal 50 when the continuation probability is zero
percent.7 The data reject the PBE hypothesis that median prices equal 30 when the
continuation probability is 60 percent (at the five-percent significance level) only
in period pairs 8 and 28.

The second round offer prices provide better support for the equilibrium pre-
dictions, although only the 60 and 90 percent continuation probability treatments
have sufficient observations for individual period pair statistical tests. Consistent

in period pairs 6, 8, and 12 through 30; and are lower than in the 90 percent continuation probability
treatment in period pairs 2 through 12, 16 through 22, 26 and 28 (all five-percent significance level,
one-tailed tests).

7 The one exception is period pair 5 for the 30 percent continuation probability treatment at Purdue,
which is not significantly different from 40.
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with the PBE, mean second round offer prices are higher for every period pair in
the 90 percent treatment than in the 60 percent treatment, and the differences are
statistically significant in 5 of the last 8 period pairs (pairs 14, 16, 20, 24 and 28).
Moreover, second round offer prices are not significantly different from the PBE
prediction of 15 in any period pair of the 60 percent continuation probability treat-
ment. Prices are, however, significantly less than the PBE prediction of 50 in every
period pair of the 90 percent continuation probability treatment.

Finally, consider the demand withholding (price rejection) choices by buyers.
As we show in the next section, prices do not vary significantly over time in the
second half of the sessions. Table 3 therefore presents the frequency distribution
of opening price offers and acceptances for these later periods. Recall that we did
not allow buyers to accept price offers that result in negative profits, which is why
the acceptance rate for the value=18 buyer is uniformly zero for all prices greater
than 15. The value=18 buyers usually accept offers less than or equal to 15 in the
zero percent and Arizona 30 percent continuation probability treatments, but in
the other treatments they accept offers of 15 less frequently. The value=54 buyers
accept most price offers in the zero percent and Arizona 30 percent continuation
probability treatments, but in the other treatments they often reject high price offers.
These rejections for both types of buyers are contrary to the PBE. Such demand
withholding is less common in the second round (not shown); in the second round
buyers reject only 22 out of 165 acceptable offers (13 percent).

Although the opening round offer rejections are not consistent with the PBE,
they are also not consistent with the social “fairness” norms that have been modeled
and calibrated to related games. For example, the zero percent continuation proba-
bility results at the top of Table 3 indicate how results from this game are strikingly
different from the typical rejection behavior in the well-known ultimatum game. In
the ultimatum game buyers frequently reject offers that give them less than half of
the exchange surplus. By contrast, our buyers accept offers of less than 17 percent
of the surplus over 80 percent of the time (e.g., price offers of 15 to a value=18
buyer, and price offers of 45 to a value=54 buyer). High value buyers accept an offer
of 7.4 percent of the surplus (i.e., a price of 50) two-thirds of the time, whereas in
the ultimatum game such “unfair” offers are almost always rejected.

Fehr and Schmidt [7] provide a summary of ultimatum game results and model
the fairness concerns that lead to equitable outcomes in that and other games.
It is straightforward to show that their approach does a poor job describing the
buyer choices in this experiment. In Fehr and Schmidt’s [7] model preferences
include “inequity aversion,” so that subjects prefer higher earnings for themselves
but also more equal earnings across players. Utility is equal to monetary payoffs
less inequity costs that rise as the difference between a subject’s own and the other’s
monetary payoff increases.8 Fehr and Schmidt also derive parameter distributions
for the relative tradeoff of monetary gains and inequity aversion that describes
behavior across a variety of games, which we can use to assess the effectiveness
of this approach in describing the rejection rate data reported here. Applying their

8 In particular, for a two-person game player i’s utility is Ui(x) = xi − αi max{xj − xi, 0} −
βi max{xi−xj , 0}, i �= j, where xk denotes monetary earnings (k = i, j), αi ≥ βj , and 1 > βi ≥ 0.
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distribution of preferences to our subjects, it is straightforward to show that in the
0 percent continuation treatment, 70 percent of the value=18 buyers should reject
a price of 15.9 Table 3, however, indicates that these buyers only reject 15 percent
of these offers. Likewise, in this treatment the Fehr-Schmidt model and parameters
indicate a 70 percent rejection rate for the value=54 buyers when prices are 45 or
50; but the observed rejection rate is only 29 percent.

Why don’t we see the pronounced fairness effects that others often observe? We
conjecture that there are two main reasons. First, we have uncertainty about buyer
type, which could have weakened the perceived fairness norm. For example, a par-
ticular price might be fair to one type of buyer but not to the other type (Rapoport
et al. [18]; Güth et al. [14]). Second, in this experiment subjects alternated be-
tween buyer and seller roles, which could also reduce the importance of fairness
concerns – particularly the “unfairness” of highly asymmetric distributions of ex-
change surplus in different rounds. Subjects essentially were able to “take turns”
taking advantage of the privileged (seller) position (Thaler [22]). Future experi-
ments can systematically vary the role alternation and the incomplete information
about buyer types in order to test these conjectures.

We close this section with a few remarks about the implications of risk aversion.
The PBE predictions shown in Tables 2 and 3 are based on an assumption of risk
neutrality. In the next section we estimate a model of boundedly rational, risk
averse agents, so it is useful to first check whether risk aversion of subjects alone
can account for deviations of observed play from PBE predictions. We show below
that the estimated value of the Constant Relative Risk Aversion (CRRA) index
is 0.2 for these data. If we recompute PBE predictions using this estimated risk
aversion index, then PBE predictions change very little. Equilibrium predictions
for 0 and 60 percent continuation probabilities do not change, and the structure of
the equilibrium for the 90 percent continuation probability treatment remains the
same, with only small changes in equilibrium mixing probabilities.10 The initial
price prediction for the 30 percent continuation probability treatment rises from 40
to 45. Thus, overall a change from risk neutrality to CRRA with a modest level of
risk aversion results in fairly small changes in PBE predictions, and what change
there is tends to be in a direction away from what we observe.

There are qualitative changes in PBE predictions for higher levels of risk aver-
sion. For example, in the 0 percent continuation treatment, if the CRRA risk aver-
sion index is above 0.24 then the initial equilibrium price offer drops from 50 to 15.
There are similarly large changes in PBE predictions for high indices of risk aver-
sion for the other continuation treatments. However, these changes in predictions
are generally not in the direction toward what we observe in the experiments.

9 For this calculation one only needs the distribution of players’ disutility from disadvantageous
inequality (i.e., the α parameter in the previous footnote), because the buyer’s earnings are lower than
the seller’s earnings. We use Fehr and Schmidt’s distribution of α = {0, 0.5, 1, 4} in proportions of
{0.3, 0.3, 0.3, 0.1}.

10 In particular, the probability that a high-value buyer accepts an initial price offer above 15 drops
from 0.357 to 0.292. The probability that the seller sets a low price in period 2 (p2 = 15) rises slightly,
from 1.3% to 2.1%.
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5 Bounded rationality

For this bargaining game the perfect Bayesian equilibrium predictions perform
poorly in both quantitative and qualitative dimensions. Are game theoretic predic-
tions essentially useless for predicting behavior in settings such as these bargaining
experiments, or can game theoretic predictions be modified in some fruitful way?

In this section we examine the predictions of two models of bounded rational-
ity, as alternatives to standard equilibrium models. The first model is the Noisy
Nash Model (NNM), which is described in McKelvey and Palfrey [17]. The NNM
posits that each agent plays their equilibrium (PBE, for our analysis) strategy with
probability γ and randomizes (uniformly) over all strategies with probability 1-γ.
The NNM allows for mistakes and suboptimal play on the part of subjects; the
NNM generalizes the equilibrium model in a way that allows for variation in the
data around the equilibrium point predictions. Of course, the PBE is a special case
of the NNM, with γ = 1. Since this model puts equal weight on all nonequilib-
rium strategies, it cannot explain why certain deviations from equilibrium are more
common and more plausible than others.

The second model is the quantal response equilibrium (QRE) model, and it
is much more intuitively appealing because it can potentially explain the pattern
of deviations from equilibrium (McKelvey and Palfrey [16]). Agents in the QRE
model do not always select a strategy that maximizes their expected utility, but
they choose actions that yield higher expected payoffs with higher probability. In
contrast to the NNM, the probabilities of (non-Nash) choices in a QRE are sensitive
to the expected payoffs for these choices. The QRE is related to an earlier analysis by
Rosenthal [20] that examined the implications of probabilistic choice by boundedly
rational players in games. It can capture the notion that strategies which are nearly
optimal might be chosen almost as frequently as the optimal strategy. For example,
as shown at the top of Table 3, buyers accepted the equilibrium price offer of 50 in
22 out of the 69 times a seller offered it in the later periods, resulting in an average
seller payoff of 15.9. In these same later periods buyers accepted the price offer of
15 in 60 out of the 66 times sellers offered it, resulting in an average seller payoff
of 13.6. This similarity in average payoffs might explain the similar frequency of
these two, very different, price choices.

McKelvey and Palfrey’s [16] paper develops the idea of QRE for normal form
games with finite strategy sets. A quantal response is a smoothed-out best response,
in the sense that a player chooses actions that yield higher expected payoffs with
higher probability but does not choose a best response with probability one. The
QRE is calculated as a fixed point in probability space. Each agent’s expected
payoffs determine the agent’s choice probabilities. These expected payoffs are based
on the choice probabilities of the other agents. This choice framework may be
modeled by specifying the payoff associated with a choice as the sum of two
terms. One term is the expected utility of a choice, given the choice probabilities
of other players. The second term is a random variable that reflects idiosyncratic
aspects of payoffs that are not modeled formally. The logit-QRE is derived by
assuming that these random variables are independent and follow an extreme value
distribution. In a logit-QRE each agent’s choice probabilities follow a multinomial
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Table 4. Maximum likelihood estimates for NNM and AQRE models∗ (data after period 15)

δ : Continuation 30 percent 30 percent 30 percent 60 90 Pooled
probability zero Arizona Purdue Pooled percent percent data

Noisy Nash Model
γ 0.34 0.0 0.04 0.02 0.28 0.0 0.12

S.E. (0.03) (0.02) (0.04) (0.03) (0.02) (0.0) (0.02)
L∗ −514.4 −550.7 −364.7 −915.5 −724.8 −731.7 −3873.4

AQRE Model
λ 2.8 1.5 2.0 1.7 1.9 2.1 1.9

S.E. (0.35) (0.07) (0.15) (0.08) (0.12) (0.11) (0.06)
L∗ −504.6 −494.9 −326.5 −824.0 −684.2 −651.8 −2671.8

# observations 210 171 105 276 210 157 853

∗ Standard errors are in parentheses. Standard errors were computed using the bootstrap method. The
sample size for the bootstrap was equal to the sample size of the data (see the last row in the table).
150 iterations were run to create a sample of bootstrap estimators.

logit distribution with parameter λ. As λ increases each agent puts less weight
on choices that yield sub-optimal expected payoffs. As λ approaches zero, each
agent’s strategy converges to a mixed strategy with equal choice probabilities for
each possible action.

This concept is extended to extensive form games (which allow for asymmetric
information) in McKelvey and Palfrey [17]. The equilibrium concept in this setting
is termed an agent quantal response equilibrium (AQRE). At each information set a
player decides on the probabilities of different actions that he/she can take. A logit-
AQRE may be derived in which choice probabilities at each information set follow a
multinomial logit distribution. The appendix presents the application of McKelvey
and Palfrey’s logit-AQRE model to our experimental environment, which provides
the basis for maximum likelihood estimation reported below.

There are features of both buyer behavior and seller behavior that suggest that
bounded rationality might be a useful way to interpret the experimental results.
Buyers are observed to withhold sometimes in the last round even though the
payoff would have been higher if a purchase was made. In addition, buyers do not
use the kind fixed “cut-off” rule for making purchases that is prescribed by the
PBE (e.g., when the continuation probability is 60 percent, the PBE strategy for
a high value buyer is to purchase with probability one if p1 ≤ 30 and purchase
with probability zero if p1 > 30). Instead, as Table 3 indicates buyers appear to
use decision rules in which the probability of purchase rises gradually as consumer
surplus rises. A smooth response such as a probit or logit distribution describes
buyers’ decision rules better than a cut-off rule. Seller behavior also appears to be
“noisy.” Substantial variation in price choices exists both within and across subjects,
even in a relatively simple environment such as the zero continuation probability
treatment.

Table 4 reports maximum likelihood estimates for the NNM and AQRE models
of bounded rationality. A single parameter is estimated for each model: γ for the
NNM and λ for the AQRE. Below each parameter estimate we report the standard
error and the log likelihood (L∗) for the model. Following the standard practice for
laboratory analyses using the QRE model, for these estimates we only include data
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from the later part of the sessions (e.g., see Goeree et al. [11] or Capra et al. [3]).
In particular, we exclude data from periods 1–15. During the early periods of an
experiment subjects are likely to be learning about how their rivals play the game
and adjusting their own choices in response to what they learn. For some treatments
there are trends in opening prices during the early periods. But as noted at the start
of Section 4, there do not appear to be any trends in prices after period 15 in any of
the experiments. Parameter estimates are reported for each treatment individually
and also for pooled data. The hypothesis that the site for the experiment (Arizona
or Purdue) yields different results was rejected for all values of δ except δ = 30
percent. We therefore report parameter estimates for 30 percentArizona and Purdue
datasets separately.

The estimated value of γ for the NNM is well below 1/2 for all treatments,
and is essentially zero for the 30 percent and 90 percent continuation probability
treatments. For the pooled data the estimated γ is 0.12. This means that under the
hypothesis that the NNM is the correct model, only 12 percent of choices correspond
to Nash (perfect Bayesian) equilibrium choices with the remaining 88 percent of
choices best characterized as random.

The frequency of these apparently random choices does appear to be related to
their expected payoffs, however. The lower half of Table 4 indicates that the AQRE
model performs better than the NNM in the sense that the log likelihood is higher
for the AQRE for every treatment. The estimated values of the noise parameter
λ appear reasonable compared to other estimates for experimental games in the
literature. For example, in most of the games they study McKelvey and Palfrey
[17] estimate λ coefficients that range between one and two.11 The estimated λ
for the zero percent continuation treatment is somewhat higher than in the other
treatments. This implies less noise in subjects’ best response behavior for the one-
round bargaining game, which is not surprising since this game is less complex
than the two-round games.

In order to improve the predictive power of the AQRE we allow for the possi-
bility of subject risk aversion. Prices in the zero probability continuation treatment
were much lower than the risk neutral equilibrium prediction of 50; indeed, 47
percent of the prices in this treatment were 15 or less. Risk aversion on the part
of seller subjects could account for such low prices.12 In our computation of the
AQRE we posit a constant relative risk averse utility function for each subject of

11 Comparisons of λ across experiments are of limited value, however, because λ is sensitive to the
scale of payoffs, and the scale often varies across studies. For example, in a similar specification but with
a power functional form of µ = 1/λ, Capra et al. [2] and [3] estimate µ = 8.3 and µ = 6.7, respectively,
in the Traveler’s Dilemma and a Bertrand price competition game. The implied λ of 1/8.3 = 0.12
and 1/6.7 = 0.15 are an order of magnitude lower than our estimates, but this is due partly to the
differences in payoff scales. Capra et al. express payoffs in cents while we express payoffs in dollars,
and the per-period earnings differ across these experiments anyway, even in real terms.

12 Risk aversion was also advanced as an explanation of prices for the one-shot pricing experiments
reported by Reynolds [19].An alternative strategy is to introduce other-regarding preference parameters,
as in Goeree and Holt [10]. As noted in the previous section, however, fairness considerations appear
less important in our data compared to other studies. Moreover, Goeree and Holt need to introduce
three new parameters to extend the QRE model for Fehr-Schmidt [7] inequality aversion utility, so this
strategy is less parsimonious than the one pursued here.
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Table 5. Maximum likelihood estimates for AQRE model with risk aversion∗ (data after period 15)

δ : Continuation 30 percent 30 percent 30 percent 60 90 Pooled
probability zero Arizona Purdue Pooled percent percent data

AQRE Model
λ 4.4 1.0 2.0 1.4 1.9 2.0 1.7

S.E. (0.38) (0.10) (0.15) (0.08) (0.18) (0.11) (0.08)
α 0.25 0.6 0.0 0.35 0.0 0.1 0.2

S.E. (0.02) (0.06) (0.0 ) (0.06) (0.08) (0.06) (0.04)
L∗ −459.4 −468.6 −326.5 −814.4 −684.2 −651.0 −2660.8

# observations 210 171 105 276 210 157 853

∗ Standard errors are in parentheses. Standard errors were computed using the bootstrap method. The
sample size for the bootstrap was equal to the sample size of the data (see the last row in the table).
150 iterations were run to create a sample of bootstrap estimators.

the form, u(c) = c1−α/(1 − α), where c is the dollar payoff for the (one round or
two round) game and α is the index of relative risk aversion.

Table 5 reports estimates for the AQRE model with risk aversion. The estimated
values of the risk aversion index α vary from a risk neutral level of zero for the 60
percent continuation treatment to moderately risk averse (α̂ = 0.25) for the zero
percent continuation treatment, to highly risk averse (α̂ = 0.6) for the 30 percent
continuation treatment conducted at Arizona. Using the same functional form for
the utility function, Goeree et al. [11] estimate α̂ = 0.52 in QRE estimates for
independent private value first-price auction experiments. The variation in the risk
aversion index is an indication that this model and utility function are too simple
and are mispecified, but the variation arises largely from one or two anomalous
treatments. A likelihood ratio test for our estimates strongly rejects the null hypoth-
esis of risk neutrality in the zero and the Arizona 30 percent continuation treatments
(χ2

1 d.f. = 90.4 and 52.6, respectively), but the estimates are consistent with risk
neutrality in the other datasets.

Parameter estimates for the pooled data shown on the right of Table 5 indi-
cate a relatively small amount of risk aversion and a moderate value for the noise
parameter. Although this pooling “averages out” the significant differences across
treatments discussed above, we use these pooled estimates to summarize the impli-
cations of this AQRE model with risk aversion. The rightmost column of Table 2
lists mean and median opening offer prices for the AQRE based on ML parameter
estimates for the pooled data in Table 5. These predicted mean and median prices are
hardly sensitive to changes in the continuation probability. In fact, median opening
offer prices for the AQRE are equal to 30 for each continuation probability. This is
consistent with our result (Sect. 4) that these prices are typically not significantly
different across continuation probability treatments.13

13 Median opening offer prices are also 30 for all treatments according to the fitted Noisy Nash Model
with the pooled estimate of γ̂ = 0.12. But the NNM does not fit the bimodal distribution of offers as
well as the AQRE model does, and the NNM provides an inferior fit for the second round offer prices.
In particular, the fitted second round NNM mean and median prices range between 25 and 30, and are
always further than the AQRE model from the observed second round offers.
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Figure 2. Actual opening prices and AQRE price distribution using pooled ML estimates: 0% continu-
ation, data after period 15

Figure 3. Actual opening prices amd AQRE price distribution using pooled ML estimates: 30% contin-
uation, data after period 15

Figures 2 and 3 illustrate that the AQRE model with risk aversion is also con-
sistent with the wide range of offer prices we observe. These figures show that the
frequency distribution of opening offer prices typically varies between 10 and 50,
and that the AQRE distribution based on the parameter estimates from the pooled
data also varies widely. The AQRE has a significant fraction of offers at 15 (the
highest price that both buyer types can profitably accept), but the mode of 15 for the
observed offer prices is significantly stronger in all but the 90 percent continuation
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treatment (not shown).14 The AQRE also implies more offers of 45 and 50 than
observed, except in the one-round game (Fig. 2), and it also implies a smoother
and more uniform distribution of prices than we observe. Overall, however, these
AQRE distributions are consistent with many of the qualitative properties of the
results – particularly when compared to the perfect Bayesian equilibrium.

6 Conclusion

This experiment explores the predictive power of a relatively standard but rather
sophisticated game theoretic equilibrium concept – perfect Bayesian equilibrium –
in multi-round pricing games. The results reveal significant failures of this theory
in terms of levels of prices, comparative statics predictions, and buyer purchasing
behavior. These prediction failures occur in spite of an experimental design that
specifies a relatively simple decision-making environment.

We find that the agent quantal response equilibrium model of noisy decision-
making in games captures important features of the results. In particular, this model
correctly predicts two features of the experimental data: (1) variations in the con-
tinuation probability have relatively little impact on opening prices and (2) a wide
(and in some cases bimodal) distribution of opening prices. Our implementation
of this model also includes the possibility of subject risk aversion, and subjects
appear to behave as if risk averse in some treatments. Other-regarding preferences
have become a popular explanation of deviations from the standard equilibrium
in settings like this two-person bargaining environment (e.g., Fehr and Schmidt
[7]). But an implication of our results is that an appeal to fairness considerations is
not the only way to explain these deviations, and that bounded rationality and risk
aversion alone are consistent with a reasonably large proportion of the deviations
from equilibrium observed in this game.

Appendix
Agent quantal response equilibrium

This section shows how the logit-AQRE may be computed for one and two round
bargaining games. The following notation is used (numerical values used for the
experiments are also indicated):

v is buyer value; v ∈ {v, v̄} (v = 18, v̄ = 54)
T is maximum number of trading rounds (T ∈ {1, 2})
δ is continuation probability (δ ∈ {0.3, 0.6, 0.9} for T = 2)
pt is price in round t (pt ∈ P ≡ { 5, 10, ..., 45, 50 })
θ is probability that v = v̄ (θ = 0.4)
u(·) is utility function, with dollar payoff as argument

14 The fit displayed in these figures is improved substantially if we use the treatment-specific rather
than the pooled parameter estimates. As Haile, Hortaçsu and Kosenock [15] have recently emphasized,
however, it is important to leave the estimated value of the QRE parameter unchanged across treatments
to make comparative statics exercises informative.
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Buyer decision in final round T

This decision depends on the buyer’s value, v, and the seller’s price, pT . If v < pT

then the buyer is not permitted to purchase (according to rules of the experiments).
If v ≥ pT then the buyer’s expected utility is as follows:

Eπb
T (1; v, pT ) = u(v − pT ), if buyer accepts offer (1a)

Eπb
T (0; v, pT ) = u(0) = 0, if buyer refuses offer (1b)

The first argument in the buyer’s payoff function represents the decision; a one
indicates acceptance of the price offer, a zero indicates rejection.

In a perfect Bayesian equilibrium (PBE) the buyer makes a purchase with
probability one as long as v > pT ; there is no withholding in the final trading
round in equilibrium. In an AQRE payoffs are adjusted by adding a zero-mean
random term to the payoff associated with each decision. If these random terms
are independent draws from an extreme value distribution with parameter λ > 0
then we have a logit-AQRE model. The buyer’s probability of purchase in the final
round in a logit-AQRE is given by,

qb
T (v, pT )≡ exp(λEπb

T (1; v, pT ))
exp(λEπb

T (0; v, pT ))+ exp(λEπb
T (1; v, pT ))

=
exp(λu(v − pT ))

1+ exp(λu(v−pT ))
(2)

if v > pT . If v < pT then the probability of purchase is, qb
T (v, pT ) = 0. Note that

the purchase probability depends on the buyer’s value and the seller’s price, but is
independent of any other market activity that might have preceded the final round.

Seller decision in single round model (T = 1)

The expected utility for a seller who sets a price p ∈ P is,

Eπs
1(p) = (1 − θ)qb

1(v, p)u(p) + θqb
1(v̄, p)u(p). (3)

Note that this expected utility depends on the buyer’s purchase probabilities. In a
logit-AQRE the seller chooses price p with probability,

qs
1(p) ≡ exp(λEπs

1(p))∑
p′∈P

exp(λEπs
1(p′))

. (4)

Equations (2) and (4) define choice probabilities for the logit-AQRE of the single
round model. Given a value for the parameter λ and a specification of the utility
function u( ), the purchase probabilities in (2) may be calculated, and then the
seller’s expected utility and choice probabilities in (3) and (4) may be calculated.
It is not necessary to solve a fixed point problem for the single round model.
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The two-round model

The choice probabilities for the buyer in the final round were derived in Eq. (2)
above. The choice probabilities for a buyer in round two may be computed inde-
pendently of other choice probabilities.

Let qs
2(p2; p1) be the probability that a seller sets p2 ∈ P after the buyer rejects

p1 ∈ P . The expected utility for a buyer with v > p1 in round one is15:

Eπb
1(1; v, p1) = u(v − p1), if buyer accepts offer (5a)

Eπb
1(0; v, p1) =

∑
p2∈P

δqs
2(p2; p1)qb

2(v, p2)u(v − p2), if buyer refuses offer

(5b)

The expected utility for a buyer who rejects an offer in round one depends on the
continuation probability, the probabilities of various round two prices, acceptance
probabilities for the buyer in round two, and the utility for the buyer for an accepted
offer.

The expected utilities for the buyer determine the probability of purchase for
the buyer in round one:

qb
1(v, p1) ≡ exp(λEπb

1(1; v, p1))
exp(λEπb

1(0; v, p1)) + exp(λEπb
1(1; v, p1))

(6)

if v ≥ p1. If v < p1 then the probability of purchase is, qb
1(v, p1) = 0. There are

13 non-zero probabilities defined by Eq. (6); 3 for a low-value buyer and 10 for a
high-value buyer.

Now consider the seller’s price decision in round two, following a rejected offer
in the first round. A key consideration is the way in which a rejected offer influences
the seller’s beliefs about the buyer’s value. Using Bayes’ Rule, the probability
assessments of a buyer’s value after p1 is rejected are as follows:

Pr[v| p1 rejected] =
(1 − θ)(1 − qb

1(v, p1))
(1 − θ)(1 − qb

1(v, p1)) + θ(1 − qb
1(v̄, p1))

Pr[ v̄| p1 rejected] =
θ(1 − qb

1(v̄, p1))
(1 − θ)(1 − qb

1(v, p1)) + θ(1 − qb
1(v̄, p1))

The seller’s expected utility in round two following a rejected offer is,

Eπs
2(p2; p1) = Pr[v| p1 rejected] qb

2(v, p2)u(p2)
+ Pr[v̄

∣∣p1 rejected] qb
2(v̄, p2)u(p2) . (7)

15 If the buyer’s value is less than the round one price, then the buyer does not make a decision. The
experiment does not permit the buyer to purchase when value is less than price.
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Note that the expected utility associated with price p2 depends upon the particular
round one price that was rejected. The round two price probabilities for the seller
are given by,

qs
2(p2; p1) ≡ exp(λEπs

2(p2; p1))∑
p′
2∈P

exp(λEπs
2(p

′
2; p1))

. (8)

There are 100 of these probabilities since there are 100 possible combinations of
p2 and p1.

Buyer purchase probabilities in round one (qb
1(·) defined in Eq. (6)) and seller

price probabilities in round two (qs
2(·) defined in Eq. (8)) are interdependent. A

solution of the system defined by Eqs. (6) and (8) is a fixed point of a vector-valued
function with 113 variables.

Once the probabilities in (6) and (8) are found, the seller’s expected utilities
and choice probabilities for round one may be derived. Expected seller utility as a
function of round one price is:

Eπs
1(p1) = (1 − θ)

[
qb
1(v, p1)u(p1)

+δ(1 − qb
1(v, p1))

∑
p2∈P

qs
2(p2; p1)qb

2(v, p2)u(p2)

]
(9)

+θ[qb
1(v̄, p1)u(p1) + δ(1 − qb

1(v̄, p1))
∑

p2∈P

qs
2(p2; p1)qb

2(v̄, p2)u(p2)]

Choice probabilities for round one prices are,

qs
1(p1) ≡ exp(λEπs

1(p1))∑
p′
1∈P

exp(λEπs
1(p

′
1))

. (10)

Summary of computational steps for two-round logit-AQRE

a) Choose a positive λ parameter and a utility function, u( ).
b) Calculate the probabilities for buyer purchase in round two, using Eq. (2).
c) Solve the fixed point problem for round one buyer purchase probabilities and

round two seller price probabilities, using Eqs. (6) and (8).
d) Calculate seller price probabilities for round one, using Eq. (10).
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