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Summary. In a game of imperfect recall, a sequential equilibrium may not be a
Nash equilibrium, and a perfect equilibrium may not be a sequential equilibrium.
Sufficiency conditions weaker than perfect recall are given to ensure the standard
relationships hold between perfect equilibrium, sequential equilibrium and Nash
equilibrium.
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1 Introduction

Piccione and Rubinstein [7] showed a divergence between a time-consistent strat-
egy and an optimal strategy in a one player game with imperfect recall. On the other
hand, they showed that equivalence between these different optimality concepts is
maintained if the player satisfies a memory condition known as occurrence mem-
ory (Okada [6]). All players with perfect recall have occurrence memory and some
players without perfect recall have it. Kline [2] showed that equivalence is main-
tained to a weaker memory condition known as a-loss recall (Kaneko and Kline
[1]).

In this note, I look at some implications of imperfect recall for the relation-
ships between solution concepts in n-player games. In an n-player context, optimal
strategies are replaced by the notion of a Nash equilibrium, and the notion of
a time-consistent strategy combination is an appropriate generalization of a time-
consistent strategy. Time consistent strategy combinations and sequential equilibria
are closely related in much the same way that Nash equilibria and perfect equilibra
are related. Every sequential equilibrium is a time consistent strategy combination,
and every perfect equilibrium is a Nash equilibrium. The main difference between
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the concepts is that sequential equilibrium and perfect equilibrium restrict behav-
ior at unreached information sets, while time-consistent strategy combinations and
Nash equilibria do not. Because of these close relationships, and the divergence
results for time-consistent and optimal strategies in one player games, one might
wonder how far the standard relationships between perfect equilibrium, sequen-
tial equilibrium, and Nash equilibrium can be maintained for n-player games of
imperfect recall.

We show that every perfect equilibrium is a sequential equilibrium and every
sequential equilibrium is a Nash equilibrium provided every player has occur-
rence memory (Theorem 1(a)). While the standard relationship between sequential
equilibrium and Nash equilibrium is maintained to players with a-loss recall (The-
orem 1(b)), the standard relationship between perfect and sequential equilibrium is
not (Fig. 1).

2 Extensive games and solution concepts

We follow Selten’s [8] definition of a finite extensive game Γ = ((K, P, U, C, p, h).
The chance player (nature) is player 0, and N = {1, ...., n} is the set of personal
players. K is a finite tree partitioned into the set of terminal nodes denoted by
Z and the set of decision nodes denoted by X . P is a player partition, and U =
{U0, U1, ...., Un} is the information pattern. Ui is player i′s information partition
and an element u ∈ Ui is an information set of player i. U0 is made up of singleton
sets. C is a choice partition and Cu denotes the set of alternatives at an information
set u.

For an information set u, a choice c ∈ Cu and a node x ∈ K we write u ≺c x
iff y ≺ x for some y ∈ u and c is the choice at y leading to x. For information sets
u and v, we write u ≺ v iff x ≺ y for some x ∈ u and some y ∈ v. Finally, p is a
probability assignment to chance moves and h is a payoff function assigning a real
vector (h1(z), ..., hn(z)) to each endnode z ∈ Z.

A behavior strategy of player i is a function bi that assigns to each u ∈ Ui, a
probability distribution biu over the set Cu of choices at u. We use Bi to denote
the set of behavior strategies of player i, biu is a local strategy, and Biu denotes
the set of local strategies of player i at u. An n-tuple b = (b1, ..., bn) of behavior
strategies, one for each player, is called a strategy combination. We use (b′

i, b−i) to
denote the strategy combination obtained from b by replacing the behavior strategy
bi by b′

i. We also use (b′
iu, b−iu) to denote the replacement of a local strategy in b.

For a strategy combination b, the ex ante expected payoff of player i is: Hi(b) =∑
z∈Z

p(z, b)hi(z), where p(z, b) denotes the probability of reaching terminal node

z when b is used. We say that bi is optimal against b iff Hi(b) ≥ Hi(b′
i, b−i) for

all b′
i ∈ Bi. A strategy combination b = (b1, ..., bn) is a Nash equilibrium iff bi is

optimal against b for all i ∈ N .
A system of beliefs is a function µ on X satisfying: (a) µ(x) ∈ [0, 1] for

all x ∈ X , and (b)
∑
x∈u

µ(x) = 1 for all u ∈ ⋃n
i=0 Ui. An ordered pair (b, µ)

where b is a strategy combination and µ is a system of beliefs is called an as-
sessment. Given a strategy combination b = (b1, ..., bn), a node x ∈ X , and
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a player i ∈ N , the expected payoff of player i conditional on being at x is:
Hix(b) =

∑
z∈Zx

p(z | x, b)hi(z) where Zx = {z ∈ Z : x ≺ z} and p(z | x, b)

is the probability of reaching endnode z when currently at node x and b is used
in the continuation of the game. For an assessment (b, µ) and an information set
u belonging to player i, the expected payoff of player i conditional on being at u
is denoted by Hiu(b, µ) =

∑
x∈u

µ(x)Hix(b). An assessment (b, µ) is sequentially

rational at information set u of personal player i iff Hiu(b, µ) ≥ Hiu((b′
i, b−i), µ)

for all b′
i ∈ Bi. An assessment (b, µ) is called sequentially rational iff (b, µ) is

sequentially rational at each information set belonging to a personal player. An
assessment (b, µ) is consistent iff there is a sequence of completely mixed strategy
combinations {bk}∞

k=1 satisfying both lim
k→∞

bk = b, and for each u belonging to a

personal player and each x ∈ u, µ(x) = lim
k→∞

p(x,bk)∑

y∈u
p(y,bk) .

An assessment (b, µ) is a sequential equilibrium iff (b, µ) is sequentially rational
and consistent[3].

We give an n-person version of Piccione and Rubinstein’s time-consistency
in order to compare it to sequential equilibrium and Nash equilibrium. A strategy
combination b = (b1, ..., bn) is time-consistent iff for all i ∈ N , if u ∈ Ui and
p(x, b) > 0 for some x ∈ u, then Hiu(b, µ) ≥ Hiu((b′

i, b−i), µ) for all b′
i ∈ Bi,

where µ is any system of beliefs that satisfies µ(x) = p(x,b)∑

y∈u
p(y,b) for all x ∈ u.

A perturbed game Γε = (Γ, ε) is a pair such that Γ is a finite extensive game
and ε is a function assigning a minimum probability εc > 0 to each choice c at
each personal information set u, and ε must satisfy the further restriction that for all
personal information sets u,

∑
c∈Cu

εc < 1.A behavior strategy bi ∈ Bi is permissible

in the perturbed game Γε iff at each u ∈ Ui, biu(c) ≥ εc for each c ∈ Cu. We let
Biε denote the set of permissible strategies of player i in the perturbed game Γε. A
strategy combination b = (b1, ..., bn) is a Nash equilibrium of the perturbed game
Γε iff for all i ∈ N , Hi(b) ≥ Hi(b′

i, b−i) for all b′
i ∈ Biε.

A strategy combination b is a perfect equilibrium in Γ iff there is a sequence of
perturbed games {Γ k}∞

k=1 of Γ , and a sequence of strategy combinations {bk}∞
k=1

such that (i) for each k, bk is a Nash equilibrium of the perturbed game Γ k, and (ii)
Γ k → Γ and bk → b as k → ∞.

3 Extending results

It is well known that for a game of perfect recall, every perfect equilibrium is a
sequential equilibrium and every sequential equilibrium is a Nash equilibrium. We
show in Theorem 1 that these standard relationships can be extended to some region
of imperfect recall.

The regions of imperfect recall we will extend the results to are already known
in the literature. The first region is due to Okada[6].
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Occurrence Memory: The information partition Ui of a player i satisfies occur-
rence memory iff for all u, v ∈ Ui, and all x, y ∈ u, if v ≺ x then v ≺ y.

This condition is interpreted as requiring a player to recall everything he ob-
served, though he might forget what he did. His imperfect recall can only be about
his own actions.

The second condition is due to Kaneko and Kline [1].

A-loss Recall: The information partition Ui satisfies a-loss recall iff for all u, v ∈
Ui, all x, y ∈ u, and all c ∈ Cv , if v ≺c x, then either: (1) v ≺c y or (2) there exists
w ∈ Ui and distinct d, e ∈ Cw satisfying w ≺d x and w ≺e y.

This condition is a weakening of occurence memory since it allows a player to
forget both things he observed in addition to forgetting his past actions. However, it
is still restrictive in that any forgetfulness of what he learned must be accompanied
by some forgetfulness of his past actions.

We will say that a game Γ has occurrence memory or a-loss recall when the
conditions hold for each player i ∈ N .

Theorem 1.

(a) Let Γ be an extensive game with occurence memory. If b is a perfect equilibrium,
then (b, µ) is a sequential equilibrium for some system of beliefs µ.

(b) Let Γ be an extensive game with a-loss recall. If (b, µ) is a sequential equilib-
rium, then b is a Nash equilibrium.

The standard results from the literature on extensive games of perfect recall
are extended in this theorem to some games of imperfect recall. The converses of
parts (a) and (b) do not hold in games of perfect recall, and do not hold in games
of imperfect recall either.

Part (a) of this theorem states that the standard relationship between perfect
equilibrium and sequential equilibrium holds for games of imperfect recall that
satisfy occurence memory.

The one player game of Figure 1 shows that this result cannot be extended
to games with A-loss recall. Here all moves are by player 1 with the information
partition U1 = {w, v, u} and the game satisfies A-loss recall. The only perfect
equilibrium is b1w(b) = b1v(c) = b1u(R) = 1. This strategy combination is not
part of a sequential equilibrium, however, since it is not sequentially rational at v
for any beliefs.

Part (b) of this theorem states that the standard relationship between sequential
equilibrium and Nash equilibrium can be extended to games of imperfect recall
that satisfy A-loss recall.

When we move beyond A-loss recall, however, a sequential equilibrium may
not be a Nash equilibrium. Consider an altered version of the game of Figure 1
where the root information set w belongs to a chance player who takes each action
with probability 1/2, and the right-most payoff is reduced from 4 to 2. The only
sequential equilibrium in this altered game is: b1v(c) = b1u(R) = 0, µ(x′) = 1, and
µ(x) = 1/2. This is not a Nash equilibrium, since it gives an expected payoff of 3/2,
while the alternative strategy b′

1v(c) = 1, b′
1u(R) = 1 yields an expected payoff
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Figure 1

of 2. This example points out, or reminds us, that while a sequential equilibrium
requires a player to maximize for the remainder of the game, there is no requirement
that he maximize for the whole game.

Because of this finding, one might wonder if the relationship that every perfect
equilibrium is a Nash equilibrium ever fails. Fortunately, Selten’s proof ([8], first
Lemma 3) that every perfect equilibrium is a Nash equilibrium did not use perfect
recall, and thus every perfect equilibrium is a Nash equilibrium with or without
perfect recall.

The one player game of Figure 1 is actually an example where a sequential
equilibrium does not exist in a one-player game. Are there also one player games
where a perfect equilibrium or a Nash equilibrium does not exist? The answer is
no. Selten’s [8] proof of the existence of a perfect equilibrium only used perfect
recall to show existence of a Nash equilibrium in every perturbed game. Since a
Nash equilibrium exists in every perturbed one player game, a perfect equilibrium
exists in every one player game. By the above remark that every perfect equilbrium
is a Nash equilibrium, we also have the existence of a Nash equilibrium in every
one-player game.

We end this section with the proof of Theorem 1. Part (b) of the theorem is
proved by the combination of the following two lemmas.

Lemma 1. If (b, µ) is a sequential equilibrium, then b is time-consistent.

Proof. Suppose that (b, µ) is a sequential equilibrium. Let u be an arbitrary in-
formation set of a personal player i. Suppose that p(x, b) > 0 for some x ∈ u.
Consistency of (b, µ) implies that µ(x) = p(x,b)∑

y∈u
p(y,b) . Sequential rationality of (b, µ)

implies that at u, Hiu((b), µ) ≥ Hiu((b′
i, b−i), µ) for all b′

i ∈ Bi. Since u was
chosen arbitrarily, b is time-consistent. ��
Lemma 2. Let Γ be a game with a-loss recall. If b is time-consistent, then b is a
Nash equilibrium.

Lemma 2 is proved by simply applying one side of Kline’s Theorem 1 [2] to
each player.
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Proof of Theorem 1. (a) Suppose that Γ satisfies occurence memory and b is a
perfect equilibrium. There is a sequence of perturbed games {Γ k} of Γ , and a
sequence of strategy combinations {bk} such that: (i) for each k, bk is a Nash
equilibrium of the perturbed game Γ k, and (ii) Γ k → Γ and bk → b as k → ∞.

For each x ∈ X , the sequence

{
p(x,bk)∑

y∈u
p(y,bk)

}
, where u is the information set

contatining x, is bounded since each element of the sequence lies between zero and
one. Thus, we can find a subsequence {bkn} of {bk} such that for each x ∈ X ,

the belief µ(x) = lim
kn→∞

p(x,bkn )∑

y∈u
p(y,bkn ) exists. We focus on this subsequence in the

remainder of the proof. By the definition of µ, the pair (b, µ) is consistent. It suffices
now to show that (b, µ) is sequentially rational.

Let u be an arbitrary information set of personal player i. For any perturbed
game Γ kn , since bkn is a Nash equilibrium in Γ kn , it follows that:

Hi(bkn) ≥ Hi(b′
i, b

kn
−i) for all b′

i ∈ Bkn
i . (3.1)

Here, Bkn
i denotes the set of permissible strategies of player i in Γ kn . If we let

Zu = {z ∈ Z : u ≺ z} and Z−u = Z − Zu, then we can rewrite (3.1) as follows:∑
z∈Z−u

p(z, bkn)hi(z) +
∑
x∈u

p(x, bkn)Hix(bkn) ≥

∑
z∈Z−u

p(z, (b′
i, b

kn
−i))hi(z) +

∑
x∈u

p(x, (b′
i, b

kn
−i))Hix(b′

i, b
kn
−i),

for all b′
i ∈ Bkn

i . (3.2)

Consider any strategy b′
i ∈ Bkn

i that coincides with bkn
i everywhere except possibly

at u and on S(u) = {v ∈ Ui : u ≺ v}. Let Bkn
i (u, S(u)) denote the set of all

such strategies. By occurrence memory, it follows that for any b′
i ∈ Bkn

i (u, S(u)),
we have

∑
z∈Z−u

p(z, (b′
i, b

kn
−i))hi(z) =

∑
z∈Z−u

p(z, bkn)hi(z), and p(x, (b′
i, b

kn
−i)) =

p(x, bkn) for all x ∈ u. By this we obtain from (3.2) that:∑
x∈u

p(x, bkn)Hix(bkn) ≥
∑
x∈u

p(x, bkn)Hix(b′
i, b

kn
−i) for all b′

i ∈ Bkn
i (u, S(u)).

(3.3)

Now if we define µ(x, bkn) = p(x,bkn )∑

y∈u
p(y,bkn ) at each x ∈ u, and use the fact that∑

y∈u
p(y, bkn) > 0 since this is a perturbed game, then we find that (3.3) is equivalent

to:∑
x∈u

µ(x, bkn)Hix(bkn) ≥
∑
x∈u

µ(x, bkn)Hix(b′
i, b

kn
−i) for all b′

i ∈ Bkn
i (u, S(u)).

(3.4)
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Now take the limit as kn → ∞ to obtain from (3.4) by continuity of the payoff
function Hix(·), and the definition of µ(x) that:∑

x∈u

µ(x)Hix(b) ≥
∑
x∈u

µ(x)Hix(b′
i, b−i) for all b′

i ∈ Bi(u, S(u)). (3.5)

Observe that for any node x ∈ u, Hix(b′
i, b−i) = Hix(b′′

i , b−i) for any two strate-
gies b′

i and b′′
i that agree on u and S(u). Hence, from (3.5) we obtain:∑
x∈u

µ(x)Hix(b) ≥
∑
x∈u

µ(x)Hix(b′
i, b−i) for all b′

i ∈ Bi. (3.6)

Since u was chosen arbitrarily, (b, µ) is sequentially rational.

(b) Suppose that Γ satisfies A-loss recall and (b, µ) is a sequential equilibrium.
By Lemma 1, b is time-consistent. Since the game satisfies A-loss recall, b is also
a Nash equilibrium by Lemma 2. ��

4 Conclusion

We looked at the implications of imperfect recall for the standard relationships
between solution concepts in an n-player extensive game. The motivation was the
divergence results of Piccione and Rubinstein[7] for time-consistent and optimal
strategies in one-player games of imperfect recall. On the positive side, we found
in Theorem 1 that for games of imperfect recall with occurence memory, all the
standard relationships between perfect equilibrium, sequential equilibrium, and
Nash equilibrium hold. The relationship between sequential equilibrium and Nash
equilibrium was extended even further to all games that satisfy A-loss recall. On the
negative side, however, if the forgetfulness of a player does not satisfy A-loss recall,
then a perfect equilibrium might not be a sequential equlibrium, and a sequential
equilibrium might not be a Nash equilbrium. The main source of the divergence
between these solution concepts seems to be that sequential equilibrium is based
on maximizing for the remainder of the game, while perfect equilibrium and Nash
equilibrium are based on maximizing for the entire game.
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