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Summary. Let F ≡ {f : f : [0, ∞) → [0, ∞), f(0) = 0, f continuous,
lim
x↓0

f(x)
x = C exists in (0, ∞), 0 < g(x) ≡ f(x)

Cx < 1 for x in (0, ∞)}. Let

{fj}j≥1 be an i.i.d. sequence from F and X0 be a nonnegative random variable
independent of {fj}j≥1. Let {Xn}n≥0 be the Markov chain generated by the itera-
tion of random maps {fj}j≥1 by Xn+1 = fn+1(Xn), n ≥ 0. Such Markov chains
arise in population ecology and growth models in economics. This paper studies
the existence of nondegenerate stationary measures for {Xn}. A set of necessary
conditions and two sets of sufficient conditions are provided. There are some con-
vergence results also. The present paper is a generalization of the work on random
logistics maps by Athreya and Dai (2000).

Keywords and Phrases: Population models, Random maps, Markov chains, Sta-
tionary measures.
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1 Introduction

Many models of time series arising in population studies in ecology and growth
models in economics are of the form

Xt+1 = ft+1(Xt), t = 0, 1, 2, · · · (1)

Here Xt, the state of the system at time t, represents the population size or density
in ecology and the total output in a one sector economy in economics. The function

� The author wishes to thank Professor Mukul Majumdar and the referees for several useful sugges-
tions.
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ft+1(·) depends on the underlying dynamics in the period [t, t + 1]. The functions
ft+1(·) are deterministic or stochastic depending on the underlying dynamics. In
the deterministic case if ft’s are the same for all t one has a discrete dynamical
system

Xt+1 = f(Xt), t = 0, 1, 2, · · · (1′)

In this case the initial value X0 = x gives rise to an orbit
{x, f(x), f (2)(x), ..., f (n)(x), ...} where for n ≥ 0, f (n+1)(x) = f(f (n)(x),
f (0)(x) ≡ x. The subject of discrete dynamical systems is concerned with the
behavior of the orbits such as the existence of fixed points, periodic orbits, nonpe-
riodic or chaotic behavior, existence of an equilibrium or stationary distribution π
such that if X0 is chosen to have distribution π then Xn will also have distribution
π.

In the stochastic case the ft’s are random reflecting certain stochastic forces in
the underlying evolutionary dynamics. In ecology these could be due to random pat-
terns in climate, food web, predator-prey interactions, environmental changes etc.
In economics these could represent stochastic shocks and or speculative behavior
of the agents of the economy.

The stochastic analog of the discrete dynamical system (1’) is the model (1)
where {ft} are random but are i.i.d. or more generally a strictly stationary sequence.

When the {ft}t≥1 are i.i.d. and X0 is chosen independently of {ft}t≥1 the
sequence {Xt}t≥0 defined by (1) becomes a Markov chain with stationary transi-
tion probabilities . The objects of interest are steady state distributions or stationary
measures, convergence to them, laws of large numbers regarding the behavior of
certain empirical averages etc.

In the present paper we focus on the case when the state space, i.e. the set of
values of Xt is R+ ≡ [0, ∞) and the sequence {ft}t≥1 is a random sequence
from a family F of maps from R+ → R+ that possess two important features:
(1) for small values of x, f(x) is approximately linear in x reflecting the fact that
ecological populations and fledgling economies grow exponentially when small
and (2) for large values of x, f(x) is sublinear reflecting the effect of density
dependence or competition as the population grows or diminishing returns in an
economy. Examples of such families include:

(i) the logistic maps (Athreya and Dai, 2000)

fc(x) ≡ cx(1 − x), 0 ≤ x ≤ 1, 0 ≤ c ≤ 4 (2a)

(ii) the Ricker maps (Ricker, 1954))

fc,d(x) = cxe−dx, 0 ≤ c, d < ∞, 0 ≤ x < ∞ (2b)

(iii) the Hassel maps (Hassel, 1974)

(x) = cx(1 + x)−d, 0 ≤ c, d < ∞, 0 ≤ x < ∞ (2c)
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(iv) the Vellekoop-Hognas maps (Vellekoop-Hognas[15])

f(x) = rx(h(x))−b, 0 < r, b < ∞
h(x) ≥ 1 for x ≥ 0, h(0) = 1,

h is continuously differentiable and

h̃(x) ≡ xh′(x)
h(x)

is strictly increasing (2d)

The main thrust of this paper is to investigate the existence of nontrivial station-
ary measures (ie, other than the delta measure at 0) for the case when the {ft}t≥1
sequence is i.i.d. with values in the set F . Our results here are generalizations of
those of Athreya and Dai (2000) for the case of random logistic maps.

In the next section, as a preparation for Section 3, there is a brief review of Feller
Markov chains and occupation measures. The main part of the paper is Section 3
where a set of necessary and two sets of sufficient conditions are provided for the
existence of nontrivial stationary measures. Some open problems are mentioned in
the last section.

2 Feller (Markov) chains, occupation
and stationary measures

Let {Xn}n≥o be a Markov chain with a metric state space (S, d) and a transition
function P (·, ·).
Definition 1. {Xn}n≥0 is called a Feller (Markov) chain (or P is called a Feller
transition function) if xn → x implies P (xn, ·) → P (x, ·) in distribution or equiv-
alently

E(k(X1)|X0 = x) ≡
∫

S

k(y)P (x, dy) ≡ (Pk)(x) (3)

is continuous in x for all functions k : S → R that are bounded and continuous.
If {Xn}n≥0 is generated by an iteration scheme as in (1) with {ft}t≥1 i.i.d. with

f1(·) being continuous with probability one (w.p. l) then it is Feller. Indeed, since
(Pk)(x) = Ek(f1(x)) and f1(·) is continuous and k is bounded and continuous
the assertion follows by the bounded convergence theorem. Note that all the four
families listed in (2) consist of continuous functions.

Definition 2. Let {Xn}n≥0 be a Markov chain with transition function P. Let for
all A ∈ S,

Ln(A) ≡ 1
n

n−1∑
0

IA(Xj) and (4)

µn,x(A) ≡ E(Ln(A)|X0 = x) =
1
n

n−1∑
0

P (Xj ∈ A|X0 = x) (5)
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Then Ln(·) is called the empirical measure and µn,x(·) the occupation measure
for the chain {Xn}.

Definition 3. A sequence {µn} of probability measures on (S, d) is said to converge
weakly or in distribution to a probability distribution µ if∫

k(x)µn(dx) →
∫

k(x)µ(dx) (6)

for all k : S → R, bounded and continuous.

Definition 4. A sequence {νn} of subprobability measures on (S, d)(i.e.νn(S) ≤
1) is said to converge vaguely to a subprobability distribution ν if (6) holds for all
k : S → R, bounded, continuous and vanishing outside a compact set. See Chung
(1974) for discussion on Definitions 3 and 4.

Definition 5. A measure µ on (S, d) is stationary for the transition function P if

µ(A) = (µP )(A) ≡
∫

P (x, A)µ(dx) for all A ∈ S (7)

One way of finding stationary measures for P is to consider all weak or vague
limits of the occupation measures {µn,x(·)}. The following is well known but the
next one is perhaps not so well known.

Proposition 1. Let {Xn} be a Feller Markov chain with transition function P .
Suppose for some intial distribution of X0, there is a subsequence {nk} such that
µnk,X0(·) converges weakly, ie, in distribution to a probability measure µ. Then µ
is stationary for P .

For a proof see Meyn and Tweedie (1993).

Proposition 2. Under the set up of Proposition 1 suppose that there is a subsequence
{nk} such that µnk,X0(·) converges vaguely to a subprobability measure µ (ie
µ(S) ≤ 1) and that there exists an “approximate identity”, ie, a sequence {gr} of
continuous functions such that for each r, gr(x) ∈ [0, 1]∀ x in S, gr(·) has compact
support and for each x in S, gr(x) increases to one as r → ∞.

Then µ = µP , ie, (7) holds.

Proof. By definition 4, for each g : S → R+ continuous and with compact support∫
g(y)µnk,X0(dy) →

∫
g(y)µ(dy) (8)

It is easy to check that if M is an upperbound for g on S then

| ∫ g(y)µnk,X0(dy) − ∫
g(y)µnk+1,X0(dy)| ≤ 2M

nk
→ 0,

and | ∫ g(y)µnx+1,X0(dy) − ∫
(Pg)(y)µnk,X0(dy)| ≤ 2M

nk
→ 0.

Also since 0 ≤ gr(·) ≤ 1, and g(·) ≥ 0∫
(Pg)(y)µnk,X0(dy) ≥

∫
(Pg)(y)gr(y)µnk,X0(dy).
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Now (Pg)(·) is continuous since P is Feller.
Also (Pg(y))gr(y) is continuous with compact support. So∫

(Pg)(y)gr(y)µnk,x0(dy) →
∫

(Pg)(y)gr(y)µ(dy). (9)

Thus from (8) and (9) we get∫
g(y)µ(dy) ≥

∫
(Pg)(y)gr(y)µ(dy)

Since 0 ≤ gr(·) ↑ 1, by the monotone convergence theorem∫
(Pg)(y)gr(y)µ(dy) ↑

∫
(Pg)(y)µ(dy).

Thus, for all g : S → R+ and continuous with compact support∫
g(y)µ(dy) ≥ ∫

(Pg)(y)µ(dy)

=
∫

g(y)(µP )(dy).

This implies µ(A) ≥ (µP )(A) for all A ∈ S.

But µP (S) =
∫

S

P (x, S)µ(dx) = µ(S).

Thus µ = µP.
�

Remark 1. If S is an interval in R then it has an approximate identity. For example,
if S = (0, 1) then the sequence {gr}r≥2 by

gr(x) =




1 1
r ≤ x ≤ 1 − 1

r

0 0 < x ≤ 1
r+1 or 1 > x ≥ 1 − 1

r+1

linear in
[

1
r+1 , 1

r

]
∪
[
1 − 1

r , 1 − 1
r+1

]
is an approximate identity.

Similar construction works for any interval.
A natural problem is to find a sufficient condition for {µn,X0} to have at least

one vague limit point µ that is not the trivial measure 0. This is provided by the so
called Foster-Lyaponov condition. See Meyn and Tweedie (1993).

Proposition 3. Suppose there exist a function V : S → R+, a set K ⊂ S and
constants 0 < α, M < ∞
such that

i) ∀ x /∈ K, E(V (X1)|X0 = x) − V (x) ≤ −α

ii) ∀ x ∈ S, E(V (X1)|X0 = x) − V (x) ≤ M

}
(10)

Then, lim inf µn,X0(K) ≥ α

α + M
(11)
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Proof. Let Ex stand for expectation when X0 = x.
For j ≥ 1,

ExV (Xj) − ExV (Xj−1) = Ex(PV )(Xj−1) − V (Xj−1)

≤ −αPx(Xj−1 /∈ K) + MPx(Xj−1 ∈ K)

= −α + (α + M)Px(Xj−1 ∈ K).

Adding over j = 1, 2, ..., n and dividing by n yields

1
n

(ExV (Xn) − V (x)) ≤ −α + (α + M)µn,x(K).

Since V (·) ≥ 0, letting n → ∞ yields (11). �

Remark 2. In many applications K would be a compact subset of S. From (11) it
follows that for any vague limit point µ of µn,X0 , µ(K) > 0 ensuring its nontrivi-
ality. Thus, Propositions 2 and 3 show that to establish the existence of a nontrivial
stationary distribution it is not necessary to demand the tightness of {µn}.

3 Stationary measures

Let the collection F of functions f : [0, L) → [0, L), L ≤ ∞
be such that

i) f is continuous
ii) f(0) = 0
iii) lim

x↓0

f(x)
x ≡ f ′

+(0) exists and is positive and finite

iv) g(x) ≡ 1
f ′
+(0)

f(x)
x satisfies 0 < g(x) < 1 for 0 < x < L.

Let (Ω, B, P ) be a probability space.
Let {fj(ω, x}j≥1 be a collection of random maps from Ω × [0, ∞) → [0, ∞)

that are jointly measurable, ie, that are (B ×B[0, ∞), B[0, ∞)) measurable and for
each j, fj(ω, ·) ∈ F with probability one. Consider the random dynamical system
generated by the iteration scheme:

Xt+1(ω, x) ≡ ft+1(ω, Xt(ω, x)), t ≥ 0

X0(ω, x) ≡ x.
(12)

Since fj(ω, ·) ∈ F w.p. l the model (12) reflects the two features mentioned in the
introduction, ie, for small values of Xt, Xt+1 is proportional to Xt with propor-
tionality constant f ′

t+1(0) ≡ Ct+1, say, and for large values of Xt, this is reduced
by the factor g(Xt).

The class F includes the logistic, Ricker, Hassel, Vellekoop-Hognas families
mentioned in (2a) – (2d).

For the logistic family fc(x) = cx(1−x), L = 1, f ′
+(0) = c, and g(x) = 1−x

for 0 ≤ x ≤ 1.
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For the Ricker family, L = ∞, fc,d(x) = cxe−dx, f ′
+(0) = c, g(x) =

e−dx, 0 ≤ x < ∞.
For the Hassel family, L = ∞, fc,d(x) = cx(1 + x)−d, f ′

+(0) = c and g(x) =
(1 + x)−d.

For the Vellekoop-Hognas family, L = ∞, f(x) = rx(h(x))−b, f ′
+(0) =

r, g(x) = (h(x))−b.
Our first result gives a necessary condition for the existence of a nondegenerate

stationary distribution π (ie, π(0, L) > 0) for the Markov chain {Xt} in (12)
generated by the case when {fj}j≥1 are i.i.d.

Theorem 1. Let {fj}j≥1 be i.i.d. Let

Cj(ω) ≡ lim
x↓0

fj(ω, x)
x

∈ (0, ∞) (13)

gj(ω, x) =




fj(ω,x)
Cj(ω)x x > 0

1 x = 0
(14)

Assume E(lnC1)+ < ∞ (15)

Suppose there exists a stationary probability measure π for the Markov chain {Xt}
defined by (12) such that π(0, ∞) > 0.

Then

i) E(lnC1)− < ∞,

∫
E|ln g1(ω, x)| π(dx) < ∞ (16)

and ii) E(lnC1) = −
∫

(E ln g1(ω, x)) π(dx) (17)

and hence is strictly positive.

Proof. Let X0 have distribution π. Then, since π is a stationary measure for
{Xn}, X1 = f1(ω, X0) also has distribution π.

Since X1 = f1(ω, X0) can be written as

X1 = C1(ω)X0g1(ω, X0) (18)

taking logarithms yields (suppressing ω)

lnX1 = lnC1 + lnX0 + lng1(X0). (19)

Let
Z ≡ (lnC1)− + (−lng1(X0)). (20)

Since 0 ≤ g1(·) ≤ 1, Z is a nonnegative random variable. From (19)

lnX0 − lnX1 + (lnC1)+ = Z. (21)

If it was known that E|lnX0| < ∞, then taking expectations in (21) and using (15)
one could conclude that (16) and (17) hold. Since it is not known that E|lnX0| <
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∞ an alternate approach is required. A truncation argument works. Let, for k =
1, 2......,

φk(x) =




x if |x| ≤ k
k if x > k

−k if x < −k

It is clear that each φk(·) is bounded and |φk(x) − φk(y)| ≤ |x − y| for all k, x, y.
It is easy to verify that if η ≥ 0 and x− y + η ≥ 0 then φk(x)−φk(y)+ η ≥ 0

(just by considering the nine possibilities arising out of x and y each being < −k,
in [−k, k] or > k).

Let
Zk = φk(lnX0) − φk(lnX1) + (lnC1)+ (22)

Since Z is ≥ 0 and (lnC1)+ ≥ 0 it follows that Zk ≥ 0.
Also Zk → Z w.p. l as k → ∞. By stationarity of π and boundedness of φk

and the hypothesis E(lnC1)+ < ∞ we get EZk = E(lnC1)+. Letting k → ∞
and using Fatou’s lemma yields

EZ ≤ limEZk = E(lnC1)+ < ∞. (23)

Since Z = (lnC1)− + (−lng1(X0) and both terms are nonnegative, (23) yields
E(lnC1)− < ∞ and E(−lng1(X0)) < ∞. Thus (16) is established. Since EZ <
∞ and by hypothesis E(lnC1)+ < ∞ we get from (21) that

E|lnX0 − lnX1| < ∞. (24)

Also |φk(lnX0) − φk(lnX1)| ≤ |lnX0 − lnX1| and 0 ≤ Zk ≤ |lnX0 −
lnX1| + (lnC1)+ ≡ Z̃, say.

From (24), EZ̃ < ∞ and so by the dominated convergence theorem we get

EZk → EZ

ie E(lnC1)+ = E(lnC1)− + E(−lng1(X0)).

All the terms involved being finite, this yields

E(lnC1) = −E(lng1(X0))

= − ∫ Elng1(x)π(dx)

establishing (17). Since π(0, L) > 0 and w.p. 1 (15) holds, it follows that
ElnC1 > 0. �

Corollary 1. In the set up of Theorem 1 if ElnC1 ≤ 0 then

i) the only stationary probability measure on [0, L] is the delta measure at 0.
ii) For any initial distribution X0, the occupation measure µn,X0(A) ≡

1
n

n−1∑
0

P (Xj ∈ A) converges to zero for all A such that its closure is ⊂ (0, ∞)

and hence for such A the empirical measure Ln(A) = 1
n

n−1∑
0

I(Xj ∈ A) → 0

in probability.
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Proof.

i) Suppose there is a stationary measure µ with µ(0, ∞) > 0.
Let µ̃(A) ≡ µ(A∩(0,∞))

µ(0,∞) for A ∈ B(0, ∞). Then µ̃ is a probability measure on
(0, ∞). Also µ = µ{0}δ0 + (1 − µ{0})µ̃. Since δ0 and µ are both stationary
for P so is µ̃. By Theorem 6 this implies ElnC1 > 0.

ii) Since fj(ω, ·) are continuous w.p. l the Markov chain is Feller. Also S = [0, ∞)
admits an approximate identify in the sense of Theorem 4. So, if µ is any vague
limit point of the occupation measures {µn,X0(·)} then µ is stationary for P .
By (i), µ(0, ∞) must be zero.
Finally, since ELn(A) = µn,X0(A), and µn,X0(A) → 0 for all A ⊂ A ⊂
(0, ∞), Ln(A) → 0 in probability. �

Next we present two sets of sufficient conditions for the existence of a stationary
measure π with π(0, ∞) > 0 for the Markov chain {Xt} in (12).

Theorem 2. Let {fj}{Cj}, {gj} be as in Theorem 1. Let Dj(ω) ≡ sup
x≥0

fj(ω, x).

Assume

i) k(x) = −Elng1(x) < ∞ for all 0 < x < L and bounded on every (a, b) ⊂
(0, L).

ii) lim
x↓0

k(x) = 0

iii) k(·) be nondecreasing in (T, L) for some T < L.
iv) E|lnC1| < ∞, ElnC1 > 0
v) E(lnD1)+ < ∞
vi) E|k(D1)| < ∞
Then, there exists a stationary distribution π for the Markov chain {Xt} defined
by (12) such that π(0, L) = 1.

Proof. Suppressing ω, (12) becomes

Xj+1 = Cj+1Xjgj+1(Xj) (25)

and so lnXj+1 − lnXj = lnCj+1 + lngj+1(Xj)
Adding this over j = 0, 1, ..., n − 1

lnXn − lnX0 =
n∑
1

lnCj +
n∑
1

lngj(Xj−1) (26)

Since Xj = fj(Xj−1) ≤ Dj ,

lnXn ≤ lnDn .

Also E|lngj(Xj−1)| = −Elngj(Xj−1) = Ek(Xj−1)
(by independence of gj and Xj−1).

For j ≥ 1, by (iii) and (vi)

Ek(Xj) = E(k(Xj) : Xj < T ) + E(k(Xj) : Xj ≥ T )

≤ K0,T + Ek(Dj) < ∞
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where Ka,b = sup{k(x) : a < x < b}.

Also E|lnC1| < ∞ by (iv).

So the rightside of (26) has a finite expectation. Now choose X0 such that
E|lnX0| < ∞, for eg, deterministic X0 �= 0.

Dividing (26) by n and taking expectations yields

1
n

ElnXn − 1
n

ElnX0 = ElnC1 − 1
n

n∑
1

Ek(Xj−1) . (27)

But 1
nElnXn ≤ 1

nE(lnDn)+ → 0 by (v)

and 1
nElnX0 → 0.

By hypothesis (iv) ElnC1 > 0.
Let (H) be the condition that {µn,X0(·)} has no vague limit point µ with

µ(0, L) > 0. We shall show that if (H) holds then

1
n

n∑
1

Ek(Xj−1) → 0 . (28)

Thus in (27) the leftside is bounded above by a sequence that goes to zero but the
rightside goes to a positive quantity. This contradiction shows that there is a vague
limit point µ of {µn,X0(·)} with µ(0, ∞) > 0. Here we use the fact that given any
sequence of subprobability measures and therefore for any sequence of probability
measures there is always a subsequence that converges vaguely to a subprobability
measure (see Chung, 1974, p. 83). Then µ̃(A) ≡ (µ(0, ∞))−1µ(A ∩ (0, ∞)) will
be a stationary probability measure for P with µ̃(0, ∞) = 1. It remains to establish
(28).

Now fix ε > 0, η > 0. Then

Ek(Xj) ≤ E(k(Xj) : Xj ≤ ε) + E(k(Xj) : ε < Xj < T )

+ E(k(Dj) : Xj ≥ T, |k(Dj)| ≤ Mη)

+ E(k(Dj) : |k(Dj)| > Mη)

where Mη is chosen so that

E(|k(Dj)| : |k(Dj)| > Mη) < η

(using hypothesis (vi)).
Thus,

1
n

n∑
1

Ek(Xj−1) ≤ sup
x≤ε

k(x) + (Mη + K(ε,L))µn,X0(ε, L) + η

implying that if (H) holds then

lim
n

1
n

n∑
1

Ek(Xj−1)
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≤ sup
x≤∈

k(x) + η

since, if (H) holds, lim
n

µn,X0(ε, L) = 0 ∀ ∈> 0. By (ii) sup
x≤∈

k(x) → 0 as

epsilon → 0. Also η > 0 is arbitrary. Thus (28) is established and hence the
theorem is proved. �

Remark 3. (Special cases).
1. If f(ω, x) = C(ω)x(1 − x), 0 ≤ x ≤ 1 is a logistic map then D(ω) ≡

sup
x

f(ω, x) = C(ω)
4 and g(ω, x) = (1−x)I[0,1](x). Thus, k(D) = −ln(1−D) =

−ln(1 − C
4 ). So if fj is logistic w.p. l then the hypothesis i) - vi) of Theorem 2

reduce to E − lnC1 > 0 and −Eln(1 − C
4 ) < ∞ (see Athreya and Dai, 2000).

2. If f(ω, x) = C(ω)xe−d(ω)x, 0 ≤ x < ∞ is a Ricker map then D(ω) =
C(ω)/d(ω), g(ω, x) = e−d(ω)x, k(x) = E(d(ω))x. So if fj is Ricker w.p. l the
hypothesis i) - vi) of Theorem 2 reduce to

Ed(ω) < ∞, E C(ω)
d(ω) < ∞ ,

E|lnd(ω)|E|lnC(ω)| < ∞, ElnC(ω) > 0.

Similar reductions can be made in the other two cases, ie Hassel maps and
Vellekoop-Hognas maps.

Now we give a second set of sufficient conditions.

Theorem 3. Let {fj}, {Cj}, {gj} be as in Theorem 1. Suppose

i) lim
x→0

ElnC1g1(x) ≡ β1 exists and is > 0

ii) lim
x→0

E(lnC1xg1(x))+ = 0

iii) lim
x→L

ElnC1g1(x) ≡ β2 exists and is < 0

iv) lim
x→L

E(lnC1xg1(x))− = 0

v) k̃(x) ≡ E|lnC1g1(x)| is bounded on [a, b] for all 0 < a < b < L. Then there
exists a stationary measure π for P satisfying π(0, L) = 1.

Proof. Since P is Feller we can apply Propositions 2 and 3. Let V (x) ≡ |lnx|.
We shall now show that there exists α, M, a, b ∈ (0, ∞) such that

E(V (X1)|X0 = x) − V (x) ≤ −α for all x /∈ [a, b] (29)

≤ M for all x ∈ [0, L] (30)

Again suppressing ω and noting that

X1 = C1X0g(X0)

we see that

a) for x < 1
Ex|lnX1| − |lnx|
= −ElnC1g1(x) + 2E(lnC1xg1(x))+
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and for x > 1
Ex|lnX1| − lnx|
= ElnC1g1(x) + 2E(lnC1xg1(x))−

By hypothesis (i) - (iv)

lim
x→0

Ex|lnX1| − |lnx| = −β1 < 0,

lim
x→L

Ex|lnX1| − |lnx| = β2 < 0

Choose 0 < a < b < ∞ such that

for x ≤ a, Ex|lnX1| − |lnx| ≤ −β1
2 ,

for x ≥ b, Ex|lnX1| − |lnx| ≤ β2
2 .

Next for a < x < b

|Ex|lnX1| − |lnx|| ≤ Ex|lnX1 − lnx|
= Ex|lnC1g1(x)| = k̃(x)

which is bounded in [a, b] by hypothesis (v).
Thus (29) and (30) are verified and so by Propositions 2 and 3 there exists a

stationary measure π̃ for P such that π̃(0, L) > 0. Normalizing π̃ by π̃(0, L) yields
the desired measure π. �

Remark 4. In all the four special cases (logistic, Ricker, etc) the function

gj(x) ≡ fj(x)
Cjx

→ 0 as x → ∞

This says that for large x the growth is sublinear. But in some ecological context
such as arising in resource management procedures it is more realistic to keep gj(x)
bounded away from zero as x → L. Similarly in some growth models in economics
the possibility of fj(x) → ∞ as x → L is not unrealistic.

The next corollary is easy to verify.

Corollary 2. In the set up of Theorem 3 assume:

i) E|lnC1| < ∞, ElnC1 > 0.
ii) With probability one lim

x↓0
g1(x) = 1, lim

x↑L
g1(x) = η > 0 and there exists

0 < a such that and a ≤ inf
x

g1(x) ≤ sup
x

g1(x) ≤ 1

iii) ElnC1 + Elnη < 0

Then there exists a stationary π for P satisfying π(0, L) = 1.

Remark 5. We now comment briefly on a comparison of the two sets of sufficient
conditions in Theorem 2 and Theorem 3. Two key hypothesis in Theorem 2 are that
D1 ≡ sup

x≥0
f1(ω, x) is not only a finite random variable but satisfies the moment

conditions v) and vi) and f1 has to have a finite positive derivative at 0. This rules
out growth functions f , such as f(x) = xα, α > 0. On the otherhand, Theorem 3,



Stationary measures for some Markov chain models in ecology and economics 119

allows for unbounded functions but with bounded linear growth rate such as when
lim
x→L

g(x) exists and is positive. It still needs f1 to have a finite positive derivative

at 0. As mentioned in Remark 4 in some resource management problems arising
in ecology the harvest policy may dictate that g1(x) not go to zero as x ↑ L but
reach a factor η satisfying conditions (ii) and (iii) of Corollary 2. A rough guideline
is that if lim

x→L
f1(ω, x) < ∞ then use Theorem 2 while if lim

n→L
f1(ω, x) = ∞ but

lim
n→L

f1(ω,x)
x < ∞ then use Theorem 3. Both require f1 to be in F and in particular

f1 to have a finite positive derivative at 0.

Remark 6. Growth models in economics where f(x) is not approximately linear
near zero do not belong to the class F . An example is f(x) = Cxα, 0 < α < 1. For
such cases both Theorems 2 and 3 are not useful. But in many cases other methods
are available. Here is one such example of some importance in economics. Let
{Xn} be defined by the iteration scheme

Xn+1 = Cn+1X
αn+1
n (31)

where {(Cn, αn)} are i.i.d. rv in (0, ∞) and Xn ∈ (0, ∞) with X0 independent
of {(Cn, αn)}. This can be put in the framework of (12) if P (αn+1 ≥ 1) = 1.
But in this case both Theorem 2 and 3 are not applicable because the function is
unbounded violating (v) and (vi) of Theorem 2 and (iii) of Theorem 3. The special
case of (31) with αn deterministic equal to an α ∈ (0, 1) is treated in Bhattacharya
and Majumdar (1980). See also Majumdar and Mitra (1982).

Taking logarithms in (31) leads to

lnXn+1 = lnCn+1 + αn+1lnXn

=⇒ Yn+1

Pn+1
=

dn+1

Pn+1
+

Yn

Pn

where Yn = lnXn, dn = lnCn, Pn =
n∏
1

αj

=⇒ Yn

Pn
=

n∑
j=1

dj

Pj
+ lnX0 (32)

Case 1. Assume Elnα1 < 0, and E(ln|lnC1|)+ < ∞. Then, (32)

=⇒ Yn =
n∑

j=1

(dj)


 n∏

j+1

αi


+ (lnX0)Pn (33)

By the strong law, Pn → 0 w.p. 1.

Since {(Ci, αi)}n, are i.i.d. Yn ≡
n∑

j=1
dj

(
n∏

j+1
αi

)
has the same distribution

as Ỹn ≡
n∑

j=1
dj

(j−1)∏
i=1

αi.
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By the strong law, since Elnα1 < 0, Pn =
n∏

i=1
αi = 0(λn) w.p. 1 for any

eElnα1 < λ < 1.
Next, E(ln|lnC1|)+ = E(ln|d1|)+ < ∞ =⇒ ∑

n
P (lndn > γn) < ∞ for

any 0 < γ < ∞ and hence by Borel Cantelli, w.p. 1.
dj ≤ eγj for all large j. Thus, choosing γ > 0 such that λeγ < 1, we see that

Ỹn ≡
n∑

j=1
dj

j=1∏
i=1

αi converges w.p. 1 to Ỹ , say.

Thus, Yn
d→ Ỹ for any initial x0 > 0.

Case 2. Elnα1 > 0 and E(ln|C1|)+ < ∞. In this case, 1
Pn

→ 0 w.p. 1 at a
geometric rate and arguing as in Case 1, one can show that

∞∑
1

∣∣∣∣ dj

Pj

∣∣∣∣ < ∞, w.p. 1

and so Yn

Pn
→

∞∑
1

dj

Pj
w.p. 1. and in particular, |Yn| → ∞ w.p. 1.

Case 3. Elnα1 = 0 is open.

Remark 7. The main thrust of this paper and this section has been to seek condi-
tions for the existence of a stationary probability measure π for the Markov chain
{Xn} defined by (12) satisfying π(0, L) = 1. The questions of convergence of
the distribution of Xn to this π, uniqueness or smoothness of π etc have not been
addressed here. We now indicate briefly an approach to these questions.

Definition 6. A Markov chain {Xn} with state space (S, S) is said to be Harris
irreducible with reference measure φ if A ∈ S, φ(A) > 0 =⇒ P (Xn ∈ A for
some n ≥ 1|X0 = x) > 0 for all x ∈ S.

The following is known (Meyn and Tweedie, 1993).

Proposition 4. Let{Xn}be Harris irreducible. Supposeπ is a stationary probability
measure for {Xn}. Then:

a) π is unique,
b) for all x in S, the occupation measure sequence,

µn,x(·) ≡ 1
n

n−1∑
0

P (Xj ∈ ·|X0 = x)

converges to π in total variation for all x in S

c) for all A in S, Ln(A) ≡ 1
n

n−1∑
0

IA(Xj) → π(A) w.p. 1.

Applying this to our set up we get the following.

Theorem 4. Let {Xn} be as in (12). Suppose:

i) it is Harris irreducible in S = (0, L).
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ii) it admits a stationary probability measure π(·) such that π(0, L) = 1.
iii) the distribution of C1 has a positive absolutely continuous component in (0, K)
iv) the random function g1(·) is such that if X is an absolutely continuous random

variable with values in (0, L) then Xg1(X) is also absolutely continuous.
v) C1 and g1(·) are independent.

Then, in addition to a), b) and c) of Proposition 4, the following also holds.

d) π is absolutely continuous.

Proof. That (i) and (ii) imply (a) (b) and (c) follows from Proposition 4. It remains
to prove (d).

Let X0 have distribution π. Then X1 also has distribution π. By (v), C1 and
X0g1(X0) are independent. If r and sdenote the weight of the absolutely continuous
component of π and the distribution of C1 (see definition below) then (iii) and (iv)
and the relation X1 = C1X0g1(X0) imply that

(1 − r) = (1 − s)(1 − r).

Since s > 0, it follows that r = 1.
�

By the Lebesgue decomposition theorem (Chung, 1974) every probability mea-
sureπ onR can be written asπ = απa+(1−α)πs whereπa is absolutely continuous
and πs is singular w.r.t. Lebesgue measure and 0 ≤ α ≤ 1.

Definition 7. The weight of the absolutely continuous component of π is α.
For some special cases of (12), in Theorem 4 the condition (iii) with some

mild additional conditions imply (i), ie Harris irreducibility (see Athreya, 2002, for
details).

5 Some open problems

The case of iteration of random logistic maps has been well studied by a number of
authors (see Athreya and Bhattacharya, 2000, for a review). Many of those results
have been extended to the general class F of Section 3 but many more remain. A
few of them are outlined below.

i) Harris irreducibility: Find appropriate conditions on the distribution of f1(ω, ·)
and in particular (C1(ω), g1(ω, ·)) to ensure that {Xn} is Harris irreducible (for
some recent results see Athreya, 2002).

ii) Nonuniqueness: There are examples (see Athreya and Dai, 2002) in the ran-
dom logistic case when C1 takes only two values there are two nondegenerate
stationary measures. It should be possible to extend that construction to the
present more general setting.

iii) Statistical inference: Suppose the sequence {Xn} has been observed for 0 ≤
n ≤ N . Using this data one should be able to do statistical inference on the
distribution of (C1, g1(·)).
Also if it is known that it is supercritical and admits a unique stationary measure
π then estimating π from the data {Xn = 0 ≤ n ≤ N} would be very useful
(see Athreya and Majumdar, 2001).
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