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Summary. We characterize strategy-proof social choice procedures when choice
sets need not be singletons. Sets are compared by leximin. For a strategy-proof
rule g, there is a positive integér such that either (i) the choice sej§) for

all profilesr have the same cardinality and there is an individual such that

g(r) is the set of alternatives that are tkehighest ranking ini’'s preference
ordering, or (ii) all sets of cardinality 1 th are chosen and there is a coalition

L of cardinalityk such thatg(r) is the union of the tops for the individuals in

L. There do not exist any strategy-proof rules such that the choice sets are all of
cardinalityk* to k where 1< k* < k.
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1 Introduction

For resolute social choice procedures, i.e., when the choice set always contains
just a single alternative, Gibbard (1973) and Satterthwaite (1975) have shown
(subject to a range condition) that strategy-proofness implies dictatorship. Pat-
tanaik (1973, 1974), &denfors (1976), Kelly (1977), and Barkg1977) began
the investigation of strategy-proofness of non-resolute social choice rules. Ching
and Zhou (1997), Baigent (1998), BarbgDutta, and Sen (1999), Duggan and
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Schwartz (2000), and Campbell and Kelly (1998, 1999, 2000) have resumed the
inquiry. Each paper employs a different assumption about the way that individual
preference over sets is generated from the primitive individual preference over
alternatives, and all of them assume an unrestricted domain of profiles of indi-
vidual preferences oveX. Even though the choice set may contain more than
one alternative, Ching and Zhou (1997), Baghebutta, and Sen (1999), and
Duggan and Schwartz (2000) assume that a single alternative will eventually be
selected from the choice set by some random process. Therefore, they ground
their extension principles in expected utility. In this paper, we extend results in
Campbell and Kelly (2000) to complete a characterization of non-resolute social
choice procedures.

There are two quite different reasons for relaxing resoluteness. First, even
when resoluteness is desirable, non-dictatorship is even more important; and
the Gibbard-Satterthwaite theorem tells us that resoluteness implies dictatorship
for strategy-proof procedures. We then ask a trade-off question: If we relax
resoluteness slightly, allowing small non-singleton choice sets, is there then a
way to construct strategy-proof social choice rules that are far from dictatorial?
This is the rationale treated in the earlier paper.

But sometimes we actually want to chose more than one alternative. First,
we might be interested in a social choice procedure that represents a preliminary
stage in a process that ultimately chooses a singleton outcome, but it is actually
desirable to have several alternatives selected at the preliminary stage. For early
phases of competitions, like piano competitibrar ice skating and other athletic
contests, selecting several contestants to move on to a later stage is highly desired.
In another context, a rules committee, reporting a set of competing bills for
legislative consideration, typically has to leave some power to the legislature
and has to report more than one proposed bill.

In cases where a single alternative will ultimately be selected, it might seem
that we should have the individuals take into account the tie-breaking procedure
that will be imposed and again apply Gibbard-Satterthwaite (or Gibbard, 1977,
1978). For example, the tie-break might be a random drawing from the chosen
subset. But individuals may have no way to analyze the tie-break like this. Con-
sider the William Kapell Piano Competition for which there are two juries. The
first narrows the choice down to six finalists. Then a second jury selects a winner
from the group of six. We contend that it doesn’'t make sense for the first panel
to try to build a deterministic or probabilistic model of the tie-breaking by the
second panel. They don't know the preferences of the members of that second
jury and certainly don’t know what manipulation strategies might be adopted by
members of the second jury.

Second, even when we are modeling single-stage procedures, we may want
more than one alternative to be selected. We distinguish between two possible
situations. In the first sort, there is a some fixed- 1 and we want the choice
set to contain exactli alternatives:

1 See Horowitz (1990), for expressions of concern about strategic behavior by judges in early
rounds of piano competitions.
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1. Exactlyk organs are available for transplant, and a hospital committee has
to decide which of the many waiting recipients will have transplant surgery.

2. A committee of exactlk individuals is to be chosen from an organization’s
membership.

In the second sort of situation, the number of alternatives chosen can be a function
of the preferences of the voters.

3. The International Mathematical Society will select up to four Fields Medalists
to be announced at their next Congress.

4. In the first phase of a piano or ice skating competition, the judges are to
choose anywhere frork* to k competitors (where X k* < k) to advance
to the second round.

We will show in this paper, that if exactly alternatives must be selected, then
the only strategy-proof social choice rules require a “dictator” in the sense that
there must be an individual such that the rule will always pick that person’s
topmostk alternatives. Where we want strategy-proof rules such that the choice
sets contain at leagt*, but not more thaik, alternatives (and & k* < k), we
obtain an impossibility result: no such rules exist.

Because strategy-proofness implies dictatorship when exkdlyernatives
must be selected, it might be expected that we could modify the Gibbard-
Satterthwaite proof suitably. One approach might be to re-interpret “outcome”
as a set of alternatives and then see a social choice rule as a mapping from
profiles of orderings of sets to one chosen set. An outcome alluded to in the
Gibbard-Satterthwaite theorem is a subset of the feasiblX st alternatives.

But we cannot apply the Gibbard-Satterthwaite theorem because it has a full
domain assumption that is not appropriate here. If the membeké ioclude
w,X,Y, andz, no reasonable hypothesis about the way an individual ordering
of small sets is related to an ordering of supersets would aflpyve} > {w,x}
when{w} > {x} = {y} > {z}. This disqualifies many transitive relations on
(even small) subsets &f from membership in the individual preference domain
when the outcomes are viewed as subsetX.ofOf course, such restrictions on
set orderings become more severe as the number of alternatiXesareases.)

While the proofs of “impossibility theorems” often only use a fraction of the
full domain anyway, the fact is that there appears to be no ready conversion of an
existing proof of Gibbard-Satterthwaite to our problem. Consider, for example,
the Barbea (1983) proof. A crucial step establishes that if the orderiRgmnd
R’ have the same top-ranked alternative, then person 1's optidRgthe set of
outcomes that 1 can precipitate, given that everyone else regfyrise identical
to person 1's options @&’. To prove this Barbeér calls on a new ordering” that
is related toR andR’ in a way that would leav®” outside the set of admissible
preferences. Similar difficulties are encountered in translating other steps in the
Barbe# proof and also in the original Gibbard and Satterthwaite proofs. We can't
even use the domain condition from Aswal, Chatterji, and Sen (1999). That paper
has a simple domain condition on which every resolute and strategy-proof rule is
dictatorial. There are domains satisfying their condition that have ohl¥ 4 —6
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members. Even so, their domain condition is too strong to be applicable to the
theorems of this paper.
Moreover, in some cases it is implausible that individuals evare com-
plete orderings over subsets Xf Imagine physicians asked to take part in the
process of determining the recipients of the four available kidneys. Tty
feel comfortable writing down a ranking of the say 25 patients on the transplant
list, but feel baffled by the request to rank the 12,650 quadruples of candidates.
Finally, even where individuals possess (lengthy) rankings over all sets of k
alternatives, this information might be too unwieldy to cheaply and accurately
gather and process. Cost considerations will then require us to define the social
choice ruleg so that the inputs are individual rankings of the alternatives.

2 Foundations

We take as given a s& of alternatives withX| > 2 and a seN = {1,...,n}
of individuals, withn > 1. A strong order > (on X) is transitive and complete;
in this paperx > y only if x # y, and when we say that is complete we
mean that eithex > y ory = x holds if x # y. (Note that we donot have
X > X.) Wherer(i) is a strong order, we designate the set containing just its
top-most element (if it has one) byfi)[1], the set containing just its second by
r(i)[2], the set containing the top two lnyi)[1, 2], the set containing the tdp
by r(i)[1 : K], etc. Aprofiler = (r(1),r(2),...,r(n)) assigns a complete strong
orderr(i) to eachi € N. L(X)" is the collection of all possible profiles.

A social choice function g mapsL(X)" into the family of nonempty subsets
of X. ForH C N, we say that is independent of H if for any two admissible
profilesp andr

p(i)=r() forall i € N\H implies g(p) = g(r).
Therange of g is
Xy ={Y CX:Y =g(r) for somer € L(X)"}.

We let knin(g) be the cardinality of the smallest set ¥y and knax(g) is the
cardinality of the largest set iX,. A social choice functiory is regular if all
subsets oKX of cardinalityknin(g) are inX,. Regularity has three interpretations:

It is a “sufficiently large range” condition, analogous to the one for resolute rules
that requires each element to be chosen at one profile af|Ragjularity can also

be thought of as a weak non-imposition requirement. Full non-imposition would
imply that every non-empty subset &f is chosen at some profile. Regularity
imposes a minimal size constraint (e.g., “the committee must contain at least
three members”), although larger subsets may or may not be in the range of
Third, regularity is a very weak neutrality condition. Full neutrality would say

2 The original Gibbard (1973) proof made this assumption, but Satterthwaite (1975) had the general
version of the theorem.
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that if g(r) = S, then if [T| = |S| and T is a subset oX there is a profilep

(many, in fact) such thag(p) = T. In fact, full neutrality would tell us how
to find profiles likep: Let 6 be any 1—- 1 (permutation) function frong to T.

Constructp from r by changing each(i) to p(i) by replacing eacls in S by

6(s). Regularity weakens this in two ways: (i) We only requprfor the case
where S is a minimal size set in the range of (ii) For |T| = |S|, we only

require onep with f(p) = T and there need be no connection betwpeand

permutations of elements.

If kmax(g) = 1, theng is resolute and the Gibbard-Satterthwaite result tells us
there is an individual such thatg(r) = r(i)[1] for all r in L(X)". We turn our
attention then to rules whered kyux(g). There are three cases to be considered
depending on the cardinality &fin(g) relative to 1 ankmax(9):

1 = knn(9) < Kmax(9); (A)
1 < kmin(9) = Kmax(9)- (B)
1 < knin(9) < Kmax(9); ©

The first of these cases is addressed in Campbell and Kelly (2000) and the result
will be reported in Section 3 where examples will appear. Cases (B) and (C) are
taken up in Sections 4 and 5, respectively.

An individual’'s input to the social choice function is an orderingXnbut
for purposes of defining manipulability, we need an individual to use rankings
on X,. We assume that these rankings are derived from orderingX dry
means of “extension principles”. Aextension principle D associates with each
r(i) a partialstrong orderingD(r(i)) on non-empty subsets &f; eachD(r(i))
is irreflexive, antisymmetric, and transitive. (Not every extended preference is
complete.) For ang C X, and any profile we letr(i) | S denote the restriction
of r(i) to S, whiler | S represents the-tuple ((1) | S, r(2)|S, ..., r(n) | S).
Then therestriction of D to S, D|S, associates with eaaf(i) | S the restriction
of D(r(i)) to the power set 08.

Extension principleD is at least as strong as extension principleE if and
only if, for all r (i), AE(r(i))B implies AD(r (i))B. An n-tuple of extension prin-
ciplesD = (D1, Do, ..., Dy) is called acontext. The set of all contexts is denoted
by &. The restriction ofZ to S, &S, is the collection oh-tuplesD|S =
(D1]S,Dy|S, ..., Dqn|S).

Profiler* is ani-variant of profile r if r* differs fromr only in its value for
individual i. We say that for a giveilD = (D1, D»,...,Dp), ¢ is manipulable
by i atr if there exists ari-variantr* of r such thatg(r*)D;(r (i))g(r). We
say g is strategy-proof for D if for everyi andr, g is not manipulable by
at r. The designer of a social choice function must not only make it flexible
enough to deal with a large domain of profiles of preferences — because we
can not anticipate what people’s preferences will be; the function must also be
strategy-proof under many extension principles — because we can not anticipate
what people’s extension principles will bgis strategy-proof with respect to &
if it is strategy-proof for eaclb € .
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The results of this paper lean heavily on a collectignof contexts defined
in terms of the following leximin extension principle which does generate a
complete order on all non-empty subsetsXaf Leximin setsBL(r (i))C if the
least-preferred element & is preferred to the least-preferred elementCoflf
the least-preferred alternatives are identical then ignore them andramid C
by comparing the second worst alternative in each set. If they are also identical,
proceed inductively. Formally:

Leximin extension®. Givenr(i) and a subse¥ of X, definel(Y) to be the
lowest ranking member of . With 1'(Y) defined, let **1(Y) be the empty set if
Y = {IY(Y),12(Y),...,1%(Y)}, and otherwisd"™*1(Y) = I1(Y\{I1%(Y),12(Y),...,
I*(Y)}). Given distinct subset¥ andZ of X, lett be the smallest integer such
thatI'(Y) #11(2).

YL(r()Z if 1HY)r()tz) or 18Z) = 0.

We will say & supports leximin when for every individuai, every profiler,
and every paiA, B, of non-empty subsets of, if AL(r(i))B, then there exists
a D1,Dy,...,Dn) € & with AD;i(r(i))B. If & supports leximin onX, then
Z7|S supports leximin orS. As is shown in Campbell and Kelly (2000), gfis
strategy-proof with respect to@ that supports leximin, then it is strategy-proof
under the singlel( L, ..., L). Accordingly, throughout this paper, without further
comments, whenever we want to prove a characterization result that asgumes
is strategy-proof with respect to& that supports leximin, we will confine our
attention to just the single context,(,...,L).

3 Further background

In Campbell and Kelly (2000) we have shown thay ifs a regular social choice
function that is strategy-proof with respect to a contéxtthat supports leximin
and if 1 =kmin (9) < kmax(9), then there is a coalitioll (i.e., a subset oN) of
cardinality kmax (¢) such that for every admissible profite

g9(r) =Uienr ()]

For such rules all non-empty sets of cardinakfyx(g) and all subsets of inter-
mediate cardinalities will be in the range. We say thas oligarchical in this
case, andH is the oligarchy*

We next establish some notation. Given two profilesndr*, we will often
need to refer to the sequence of profiles

3 Leximin was first used extensively in the study of strategy proofness by Pattanaik. For a survey
of this work, see Pattanaik (1978).

4 Demange (1987) identifies a fairly large family of non-oligarchical social choice rules that can
not be manipulated by any individual or coalition. She employs an extension prinojgahiém)
that is strictly coarser than leximax, in the sense that when optimism Mrét®veZ then so does
leximax, but the converse is not true.
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r= ro=((),r(2),r(3),...,r(n))
ri=(r*Q),r2),r(3),...,r(n)
ro=(r*(2),r*(2),r(3),...,r(n))
- -

r = rp=(*@Q),r*2),r*@),...,r (n)).

We refer to this as thetandard sequence from r to r*. Two successive entries
in this sequence are

(r*2),r*2),...,r*( —1),r(),...,r(n)), and
(r*(1),r*2),...,r*( —21),r*(),...,r(n)

fi—1
T

in whichr; is created front;_; by replacing thgth component of;_; by r*(j)
and leaving all other components gf_; unchanged. For appropriately chosen
profilesr andr* we will show thatg is manipulable by by showing that either

g(r)L(r()g(rj—1) atrj_a; or
g(rj—)L(r*())g(rj) at r;.

In the first preliminary result we connegtvalues atr with the g values at
r* wherer* differs from r by bringing all the elements g{r) (and possibly a
few more) to the top of everyone’s ordering. Given a prafilend a subse$ of
X, r(S) denotes a new profile constructed in the following way: For egchin
r, the alternatives it are raised above all the elementsXhS. Within S and
within X\S, alternatives are ordered as they were {i); that isr(S)|S =r|S
andr (S)|X\S =r|X\S. WhenS is small, we will drop the set bracket notation,
referring tor (x) andr(x,y) instead ofr ({x}) andr ({x,y}).

Lemma 1 (The Completeness Lemma). If g is strategy-proof with respect to a
& that supports leximin and g(r) C S C X, then g(r (S)) = g(r).

We refer to this as the Completeness Lemma because of the central role played
by the completeness of leximin extension, although the membés(ofi )) may
be far from complete.

The next preliminary lemma tells us that if we bring the elements of a suffi-
ciently large proper subsat to the top of everyone’s ordering at a profile, then
the elements chosen at that profile pwvill all be in Y.

Lemma 2. Suppose g is a regular social choice function that is strategy-proof
with respect to a & that supports leximin. Let Y be a non-empty subset of X that
contains a set Z in the range of g and let r be a profile such that for all i, all
yeY andx € X\Y,yr(i)x. Theng(r) C Y.

We are going to use these lemmas later on, but they are also key in proving the
following result from Campbell and Kelly (2000):
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Theorem 3. Suppose that ¢ is a regular social choice function with 1 = kgin(9)
< kmax(g) and g is strategy-proof with respect to a & that supports leximin. Then
there exists a subset H of N such that for every admissible profile r

9(r) = Uienr (H[1].

Remark 4. There is a definition ofeximax that is analogous to that for leximin
and the ruleg(r) = Ur (i)[1] is strategy-proof with respect to @ that supports
leximax. But strategy-proofness with respect t&athat supports leximax does
not forceg(r) to be the union of the tops of the member of a (small) coalition.
In fact, g can be regular and strategy-proof but not independent of anyone’s
preferences. To see this, t= {x,y, z}. Setg(r) = {z} if everyone hag at the
top of her ordering. Otherwisg(r) C {x,y}. If fact, g(r) = {x,y} unless either
(i) everyone prefers to y, in which casey(r) = {x}, or (ii) everyone prefery
to X, in which casey(r) = {y}.

It is straightforward to show that is strategy-proof with respect to leximax.
But if even one person, say individual 1, employs the leximin extension principle
there will be an opportunity for manipulation. Suppose

1 2 3 n
X z z z
zZy'y y
y X X X

Theng(r) = {x,y}. But if person 1 reportg as her top-ranked alternative then

g will select {z}. Because leximin give$z} L(r(1)) {x,y}, g is manipulable

by 1 atr. However, we believe that the assumption that there are only three
alternatives in the feasible set is essential to the existence of a regular rule with
knin(9) = 1 < knex(g) that is strategy-proof with respect to leximax.

4 Range condition: 1 < Kmin(g) = Kmax(g)

In this section, we will show that if is a regular social choice function that is
strategy-proof with respect to & that supports leximin and if X Kgin(g) =
krnax (9), then there is an individualwho dictategy in the sense of the following

Theorem 5. Suppose g is a regular social choice function, g is strategy-proof
with respect to a & that supports leximin, and 1 < Kgin(g) = Kmax(g). Then there
isani suchthat g(r) = r(i)[1 : kmax(g)] for all r.

Proof. If kmax(g) = m = |X|, the result is obviousy(r) = X =r(i)[1 : m] for

all i. The remainder of the proof takes seven steps. Since we will do induction
on the numbem > kpax(g) Of alternatives, the first step consists of an induction
basis. From now on, denotgux(9) = knin(g) by k and the collection of all
subsets of cardinalitk by k*(X), all of which are inX,.

Sep 1. Basis m =k +1. Thek-element sets that can choose each eliminate
just a single alternative. If an individual has orderingr (i), thenr(i)[1 : K]
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is the k-element set that excludes the alternative lowest ranked(iin and
r@i)[1,2,...,k—1 k+1] is thek-element set that excludes the alternative ranked
next-to-last inr (i) and so on. Associate with orderimgi) the leximin ordering
L(r (i)) that ranks one set over another if the alternative excluded in the first is
ranked lower inr (i) than the alternative excluded in the second:

L(r(i)):

riL,2, ...,k
riL,2,....k—1k+1]

- -

ri)2,3,....kk+1]

and with profiler = (r(1), r(2), r(3),...,r(n)) the profile R = (L(r(1)),
L(r(2)), L(r(3)), ..., L(r(n))). Because this gives a2 1 correspondence be-
tween the profiles orX and the profiles ork*(X), we can associate with
g the function G on profiles onk*(X) which takesR = (L(r(1)),L(r(2)),
L(r(3)),...,L(r(n))) to g(r(2), r(2), r(3),...,r(n)), i.e., G(R) = ¢(r). Since
g is strategy-proof with respect to & that supports leximinG is strategy-
proof in the Gibbard-Satterthwaite sense on the set of alternativeskir¢x).
By Gibbard-Satterthwaites is dictatorial with dictatoi ; i.e., G(R) = L(r (i))[1].
But as we noted already in this stdd(y (i))[1] is r(i)[1,2,...,K] = r(i)[1 : K].
Combining we have,

g9(r) =G(R) = L(r(i))[1] = r ()2 : k].

Induction stage. Suppose now the conclusion is true far=M — 1; we wish
to prove that it is true foM .

Sep 2. Fix an alternativer and look at the subdomaiR, that consists of all
profiles such that is at the bottom of everyone’s ordering. Given a profile
r on X\{a}, constructr,, by addinga at the bottom of everyone’s ordering.
Define g,(r) = g(ro) so thatg,(r) € X\{«a} by Lemma 2.g, is a regular
social choice function oX\{«a} with kmax(9) = kmin(g) = k and is strategy-proof
with respect toZ|(X\{«a}) sinceg is strategy-proof with respect t&’. By the
induction assumption, there is an individué) such that, at each, g,, selects
the k-highest alternatives in(i).

We next show that for alk, 3,i(«) = i(5). This will require several steps
(3 through 5). Notice that since our Basis step wasnfor k + 1, we now have
m>k+2.

Sep 3. We first treat the casem > k +2. Without loss of generality, assume that
i (@) = 1. Choose distinct, t € X\{a} setq = m— 3 and then leK\{t, «, 3} =
{y1,Y2, ...,¥q,Yq+1}. Letr be the profile
re 10 yiyo... Yilyk+1. .. YqfBa
20 ty1yz. . YiYks1- - - YoBa
- -
N tyiyz. .. YVt - - - YgBa
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wherer(j) =r(j’) forj,j’ > 2. Profiler * is constructed fromn by interchanging
« and g:

r: 1: yiyo... Vityks1...Yqa8
2. tyiyz...YiYket- - Yga8
- -
n:

tyryo ... ViVt - - - Ygou B

g(r) ={v1,¥2,..., Yk} because(a) = 1. Consider the standard sequence from
to r*. Supposey(rj) = g(r). We haveg(rj+1) C {t,y1,¥2,...,Y¥k} by Lemma 2.
Now, g(r) = g¢(r;) is the lowest ranking-element subset oft,y1,y»,... Y}
for the leximin extension of;j(j + 1). Thereforeg(rj+1) = g(r), or elsej +1
would manipulate atj. Thereforeg(r) = g(rn) = g(r*), by induction. Therefore,
i(a) =i(p) for all a,5.

Now we turn to the remaining casen = k + 2. We first show that it is
sufficient to analyze the case of two individuals:

Sep 4. We will show that there exists a regular social choice function that
is strategy-proof with respect to B that supports leximin fom > 2 with

i (@) #i(B) if and only if there is such a rule far = 2. First suppose there is a
regular and strategy-progffor n = 2 such that («) # i (3) for someq, 5. Then
define

h(r(1),r(2),...,r(n)) = g(r(1),r(2)).

Sincey is regular and strategy-proof, so alsdisClearly for thish, i (a) # i (5).

Next suppose there is a regular and strategy-prooftrdte n > 2 such that
i (@) #1(B) for somea, 5. Without loss of generality, lat(a) = 1 andi(8) = 2.
Then define

g(r(1),r(2)) =h(r(1),r(2),r(2),...r(2)).

For g,i(a) # i(8). We show thaty is regular and strategy-proof. Regularity
follows from Lemma 2. To see thatis strategy-proof, suppose instead thas
manipulable. But ifg were manipulable by 1, we would have

g(r™(1), r(2NL(r (1))g(r (1), 7 (2)) or
h(r*(1),r(2),r(2),...r )L @W)Hh(r (L), r(2),r(2),...r(2))

which immediately contradicts the strategy-proofness.@o if g is manipulable,
it must be by 2, i.e., we would have

g(r (1), r*(2NL(r (2))g(r (1), 7 (2)) or
h(r(2),r*(2),r*(),...r*@)Lr )H(r (21),r(2),r(2),...r(2)).

Consider the standard sequence from

(r(),r(2),r(2),...r(2)) to (), r*(2),r*2),...r*(2)).
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Suppose that there is nb such thath(ri.)L(r (2))h(ri). Then h(ro)L(r(2))
h(r))L(r(2)) h(r2) ... L(r (2)) h(ry), and thush(ro)L(r (2)) h(ry), becausé(r(2))
is complete and transitive. This contradicts the fact t{at)L(r (2))h(ro). There-
fore, there must be ansuch thath(ri+1)L(r (2))h(r;). But since af; individual
i’s set ranking is the same agr (2)), h would be manipulable by atr;.

Sep 5. Now that Step 4 allows us, wittn =k + 2, to focus on the case of two
individuals, we wish to show that there do not exist two alternatiueand 3,
such thati (o) # i(5). We prove this by assuming there are suckand 8 and
finding a contradiction. Without loss of generalityx) = 1 andi (w) = 2. Since
m =k + 2 > 4, one of the two individuals is(«) for at least two alternatives;
we suppose(z) =1 andX = (X, Z,w, Y1, ..., Yk_1)-

Let r! be the profile

rl: 1 Xxzyn,...,Yeew
2: D1, Yo—1XW

Sincei(w) = 2,g(rY) = {z,y1,...,Yk_1}. Then at profile

r2: 1: xayn,...,Yk_1w
2: 1, .- Yk—1WX

we must also have(r?) = {z,y,...,yk_1} or 2 will manipulate at#.
Consider

r3: 10 xyp,..., Yeeiwz
20 D, Yk—1wX

g(r®) # {X,y1,...,¥_1}, otherwise person 1 would manipulaterdf because
individual 1 prefers{x,yi,...,Yk_1} t0 g(r?) ={z,y1,...,Yk_1} atr2. We will
show that each of the other possibilities fgr %) leads to a contradiction, so we
will be forced to conclude that(a) =i (5).

First notice thatz ¢ ¢(r3). For otherwise 1 could change to

r4: 1 oy, Y wzX
2: L1, ... Yk—1wX
and getg(r¥) = {w, 1, ..., Yk_1} (sincei(x) = 1) which, under leximin, 1 prefers
atr3 to any set containing.

Sog(r?) is obtained by deleting one member frofiy{z}. Also, g(r %) doesn’t
contain bothx andw or 2 would change to

re: 1 Xxyn,. .., Yko1wZ
2 XY1, .-y Yk—1wZ
and gety(r® = {X,y1,...,Yk_1} (sincei (z) = 1) which 2 prefers at? to any sub-

set of X\ {z} that contains bottt andw. We know thaty(r3) # {x,y1,...,¥k_1}
and thusg(r®) = {w,yi,...,¥k_1}. Consider
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ré: 1: xy,...,Yk_1wz
2: Y1, Yk—1wWXZ

g(r® = {X,y1,...,¥_1} (sincei(z) = 1). But 2 would manipulate at® (to
r3). Therefore we can exclude the possibility that there exist in X with

i(a) #1(0).

Sep 6. From Step 5 we know there is an individuakuch that for any profile

r such that everyone has the same bottom alternagivé=r (i)[1 : k]. Without
loss of generalityj = 1. Now suppose there is an(obviously one without a
common bottom alternative) such thgt) # r (1)[1 : k]. Construct arr* from r
which differs fromr only for individuals 2 ton : for them, set*(j) =r (j )(S) for

S =g(r). Thatis,g(r) is brought to the top without disturbing the rankings within
either g(r) or X\g(r). Theng(r*) = g(r). For if they were different, construct
the standard sequence framto r* and lett be the smallest integer such that
g(ry) # g(r). ¢ must be manipulable by at r;. Hence we will assume in the
remainder thay(r) is at the top for individuals 2 to.

Sep 7. We treat two cases.

Case 1. Suppose there is an alternatitzén X that is not inr (1)[1 : k] U g(r).
Constructr* from r by loweringt to the bottom for individuals 2 ta. It is
easy to see that(r*) = g(r). For if g(r*) # g(r), construct the standard sequence
fromr to r* and letj be the least integer such thafr;) # g(r);j > O. If

t € g(r;), g is manipulable by atr;. If t ¢ g(rj), thenL(r(j)) andL(r *(j)) order
g(rj—1)[= ¢(r)] and g(r;) the same. Henceg is manipulable by at eitherr; _; or

rj. But with g(r*) = ¢(r), we see that at*, individual 1 would manipulate by
loweringt to the bottom getting (1)[1 : k] which individual 1 prefers tg(r).

Case2. X =r(1)[1: K] U g(r). Sinceg(r) andr(1)[1,...,k] both containk
elements, the set{1)[1 : k]\g(r) = X\g(r) andg(r)\r (1)[1 : k] = X\r(1)[1 : K]
contain the same number of elements. But since- k + 1, this number must
be at least 2. Ley =r(1)[m — 1] andz =r(1)[m]. Theny,z € g(r)\r(1)[1 : k].
Choose anx € r(1)[1 : k]\g(r). Construct * fromr by loweringx to the bottom
for individuals 2 ton. Theng(r*) = g(r) by an argument that by now is quite
familiar. Now, fromr*, constructr ** by bringingx to the bottom for individual
1. The resulting choice set(r **), while it may containy, will not contain z
and hence will be preferred by individual 1 t6. Henceg is manipulable by
individual 1 atr*. O

Remark 6. To see the importance of the regularity condition, thatkadh(g)
element sets are chosen somewhere, consider the following example. There is an
odd number of individuals, each with strong preferences over the four alternatives
inX = {w, X,y,z}. g(r) is the two-element set that consists of the simple majority
winner betweenw andx together with the simple majority winner betwegn

andz. This g is strategy-proof, and there is no individual with the kind of power
described in our theorem. Biitv, x} is not in the range of, even when everyone
ranks both of those above boghandz.
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Remark 7. A collection & of contexts having the property that for every
individual i, every profiler, and every pair of setd, B, if the leximin extension
of r(i) hasAL(r((i))B, then there exists & = (D1,D5,...,Dn) € & with
AD; (r (i))B may not haveany strategy-proof social choice functions. All we are
showing is that if one exists, then it must have the form

g(r) =r ()L :K].

But if such a rule is manipulable at some other contexi4n then there don’t
existany rules strategy-proof with respect &'

Remark 8. The ruleg(r) = r(i)[1 : k] is also strategy-proof with respect to
leximax. Remark 4 of Section 3 presents a rule that is strategy-proof with respect
to leximax, and everyone’s preferences are taken into account. For tha{(rule

is either a singleton or a pair, $@in(9) = 1 =kmnux(g9) — 1. If we have a regular

rule for whichkqin(g) = kmax(9) = m—1, then the proof that we employed for this
case works for leximax as well. In fact, leximax coincides with leximin in this
case — as do other extension principles that are weaker than leximin in general,
but coincide with leximin wherkmin(g9) = kmax(9) = m — 1. Hence an example of

a regular social choice rule witkyin(g) = 2 that is strategy-proof with leximax

and that might take into account the preferences of more than one individual
would have to involve arX with more than three alternatives. We have neither
an example like this nor a proof that none exists. It is worthy of note, however,
that our earlier leximax example required three alternatives and that we have
been unable to provide a similar example with> 3.

5 Range condition: 1 < Kmin(9) < Kmax(9)

In Section 3 we described a class of strategy-proof rules with choice sets that
contain anywhere from one to three alternatives: the union of the tops for a
coalition of three individuals. In Section 4, we found a class of strategy-proof
rules with all choice sets of cardinality two: the top two alternatives for some
“dictatorial” individual. If we want to construct a social choice rule that generates
choice sets that contain just tweo three alternatives, we might consider a hybrid

of these two types of rules:

g(r) =r(D[L, 2]Ur )]

This rule is regular; its range consists of all sets of two or three alternatives.
However, g is not strategy-proof with respect to & that supports leximin.
Consider profiler with

1: abc...yz
2: zabc...y

Then g(r) = {a,b,z}. If individual 1 were to submit the same ordering as
individual 2,zabc . . .y, then the choice set would He, z}. Forr (1), the leximin
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extension rankga, z} above{a,b,z} and sog is manipulable by individual 1
atr.

Here is a second example of a social choice gulgith range consisting of
all two element sets an#. There are three alternatives and an odd number of
individuals. g(r) is the union of all the top-most ranked alternatives, unless that
set is a singleton, say; in that caseg(r) is the set consisting ofe together
with the simple majority winner between the other two alternatives. This rule is
regular; its range consists of all sets of two or three alternatives. However,
not strategy-proof with respect to @ that supports leximin. Consider profite
with

1: abc
i >1: acb

Theng(r) = {a, c}. If individual 1 were to submibac, then the choice set would
be {a,b}. Forr (1), the leximin extension ranks, b} above{a,c} and sog is
manipulable by individual 1 at. We will show in this section that there does
not exist any strategy-proof social choice rylavith range consisting of all two
element sets and at least one three element set.

In fact we have a very general impossibility result:

Theorem 9. There does not exist a regular social choice function g with 1 <
knin(9) < kmax(g) that is strategy-proof with respect to a & that supportsleximin.

Proof. We will assume there does exisyaatisfying all the requirements of the
theorem and derive a contradiction. We first show that the existence of such a
implies the existence of a rule that also has those properties but whirbas

a very simple range. FroX,, the range ofy, select a se§ of next-to-smallest
cardinality; i.e.,|S| > knin(g) and there is no set iK, of cardinality intermediate
betweenkyin(g) and |S|. Let p be a fixed ordering orX\S. We now construct

a regular and strategy-proof rukethat contains sets of only two cardinalities.
Given any profileu on S, construct profileu* on X by the rules:

) ur=ur(S)
(i) u*|S=ulS;
(i) ur [(X\S)=(p,p,-..,P).
g(u*) € S by Lemma 2, so we may define a social choice functioon S by

h(u) = g(u”).

Then h is strategy-proof with respect t&/|S since g is strategy-proof with
respect toZ. Let T be any subset df of cardinalitykqin(g). By the regularity
assumption, there exists a profilsuch thayy(r) = T. By Lemma 14(r(S)) = T.
Let r* be constructed so that

@) r*=r*(S);
(i r*|S=r|sS;
@iy r*[(X\S)=(p,p,....p)
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By a standard sequence argumey(t,*) = T. But then if u isr* restricted to
S,h(u) = T. A similar argument show$ to be in the range oh. Thus for
Theorem 9, it is sufficient to prove the following lemma.

Lemma 10. There does not exist a regular social choice function g with 1 <

knmin(g) < kmax(g) such that either g(r) = X or |g(r)| = knin(g) wWhere g is strategy-
proof with respect to a & that supports leximin.

Proof.

Sep 1. We are first going to establish that some individual has substantial power
on a subdomain of. For eachx € X, considergy, the restriction ofy to those
profiles in which everyone has at their bottom. By Lemma 25, (r) C X\{x}
and so by our range assumptiog(r)| = knin(g) for all r. g« is regular because
for every setV C X\{x} with |V| = kmin(g), there is a profiler with x at
everyone's bottom and(V) =r. Thengx(r) = V. D|(X\{x}) supports leximin
on X\{x} since & supports leximin onX. gy is strategy-proof with respect
to Z|(X\{x}) sincey is strategy-proof with respect t&/. By Theorem 5 of
the previous sectioryy, has a dictatorj(x). Observe that ikyin(g) = m — 1,
everyone is a dictator forgy. Accordingly we will defer until Step 5 the case
wherekyin(g) = m— 1; through Step 4m > kyin(g) + 1. In this case, the dictator
for g« is unique and is labeleix).

Sep 2. We now show that the same individual dictates eggh.e., for allx,y
in X,i(x) =i(y). It is useful to break our analysis into two cases:

(1) kmax(9) > kmin(9) +2;
(1) Kmax(9) = kmin(g) +2

We start with (1) first and treat (ll) in Step 3. To shak) =i(y), we suppose
i(x) #£i(y) and seek a contradiction. Without loss of generalifx) = 1 and
i(y) = 2. Sincem > knin(g) + 2, we can find a se$ of cardinalitykyin(g) + 1 in
X\{x,y}. Letp be a strong order 08, letq be a strong order oX\({x,y}US),
and construct profiles

r: 1: poxy r=: 1: poxy
2: p~lgyx 2: p~layx
i >2: pgyx i >2: poxy

wherep~1! is p reversed. Nowy(r) = p[1 : kmin(g)] since individual 1 could
force that by switchingk andy. Consider the standard sequence frono r*.

We haver =rg =r1 = rp. Supposey(rj) = g(r). Theng(rj+1) = g(r): If j < 2
thenrj.y = 1. If j > 2 theng(rj+1) = g(rj), orj + 1 would manipulate af;.;.
Therefore,g(r*) = g(rn) = g(r) by induction. Buti(y) = 2, so person 2 can get
P11 : Kmin(g)] at r* just by modifyingr *(2) by slidingy to the bottom of his
reported preference ordering. Therefdrg) =i (y) for all x,y.

Sep 3. Now we turn to Case (I)kmnax(9) = kmin(g) + 2. We first establish the
result forn = 2 and then extend it to the general case. So for the moment, the
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collection of individuals is just{1,2}. Supposei(x) # i(y) sayi(x) = 1 and
i(y) = 2; whereX = {a,b,c,d,...,j,k,x,y}. Without loss of generality, also
i(a) = 1. Consider
rt: 1:abc...jkxy
2:bc...jkxay

g(rY)={b,c,....j,k,x} becausei(y) = 2.

r2: 1:bc...jkayx
2 :bc...jkxay

y ¢ g(r?) or individual 2 bringsx to bottom and get$a, b, c,...,j,k} because
i(x)=1,and{a,b,c,...,j,k} is better for individual 2 than anything containing
y. At rl, the leximin extension of individual 1's ordering ranks the set chosen
there {b,c,...,j,k,x}, lowest among all th&,(g) element sets not containing
y. Hence, ifg(r?) # {b,c,...,j,k,x}, individual 1 would manipulate from?*

to r2. Thereforeg(r?) = {b,c,...,j,k,x}.

r3: 1:bc...jkayx
2:bc...jkxya

Atr3 {b,c,...,j,k,x} = g(r? is individual 2's highest ranked set (under lex-
imin) of cardinality kyn(g); if that weren’t the choice set at®, individual 2
would manipulate ta2; sog(r3) = {b,c,...,j,k,x}.

ré: 1:bc...jkyxa
2:bc...jkxya

g(rY ={b,c,....j,k,y} byi(a)=1. Atr3, individual 1 preferg(r4) to g(r3) =
{b,c,...,j,k,x}; henceg is manipulable by individual 1 at®. Hencei (x) =i (y)
for all x,y.

We now use this result fon = 2 to extend the conclusion to general
So suppose that for n individuals there exists a regular strategy-grodgth
Kmax(9) = Knin(g) + 2 such thai (x) # i(y); sayi(x) = 1 andi(y) = 2. Define a
rule h for two individuals based op:

h(p,q) = ¢(p,q,q,...,q).

Then clearlykmn(h) = kyin(g) and h is regular (just put an arbitrary set of
cardinalityknin(g) at the top of bottp andq). Forh,i(x) = 1 andi (y) = 2, since
that is true forg. Supposen is manipulable. If it is manipulable by individual
1, g is immediately seen to be manipulable by individual 1. So we asduise
manipulable by individual 2; i.e., there goeq, andq™* with individual 2 ranking

h(p,a*) =g(p,a*,q",...,q%).
above

h(p,a) = g(p,q,q,...,q).
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in the leximin extension ofy. But then in the standard sequence from=

(p,0,9,...,q) tor* =(p,q*,q%,...,0"), there must b a j such thay(rj+1) is

ranked aboveg(r;) in the leximin extension off which meansg; is manipulable
by j atr;. Hence strategy-proofness gfimplies strategy-proofness &if which

we have shown is impossibleiifx) # i (y). Hencei (x) =i (y) for all x, y; without

loss of generality, we assunié) =i (y) = individual 1.

Sep 4. Now we show that individual 1's power extends beyond the profiles on
which everyone has the same last element; individual 1 dictates at every profile:
That is, we will show thay(r) = r(1)[1 : krin(g)] at arbitrary profiler.

Let z = r(1)[m], individual 1's bottom alternative, and let = r(X\{z}),

i.e., bring z to the bottom of everyone’s ordering, whegér*) = r*(1)[1 :
krin(9)] = r(DI[1 : knin(9)], and consider the standard sequence fronto r.
z ¢ g(ro) = g(r*). If z ¢ g(ri), thenz ¢ ¢(ri+1) or g would be manipulable
by i +1 atri+;. Sincer(i)|(X\{z}) = r*(@i)|(X\{z}), the leximin extensions of
r(i) andr*(i) orderg(r;) and g(ri+1) the same way. So i§(ri) # g(ri+1), g IS
manipulable. Therefore(r;) = g(ri+1) for all i. But theng(r) = g(rn) = g(ro) =
g(r*) = r (1 : Knin(g)]-

Sep 5. Having completed all three steps for the case wimere kqyin(g) +1, we
must deal with the possibility tha = Kyin(9)+1. SOKmax(9) =M, Knin(g) = m—1,
and the range af consists oiX and all subsets of of cardinalitym—1. We first
establish that ifg is strategy-proof with respect to @ that supports leximin,
theng(r) = X only if for everyx € X there exists am such thatr (i)[1] = {x}.

Supposey(r) = X, but that there is an alternativesuch thatr (i)[1] # {x}
for any individuali. Let r* be the profiler (X\{x}) that looks liker except that
X is brought to the bottom of everyone’s orderiggr *) C X\{x} by Lemma 2
and sog(r*) = X\{x} sincekmn(g) = m — 1. Construct the standard sequence
fromr to r* and letj be the largest integer such thgf;) = X. Almost every
subset ofX of cardinalitym— 1 is preferred at by j +1 to X. If any such subset
were ¢(rj+1), theng would be manipulable by j+1 at. The only exception,
the only subset of cardinalityn — 1 that isnot preferred toX by j + 1 atr; is
r¢ +1)[2 : m]. Henceg(rj+1) = r(j + 1)[2 : m]. But since{x} # r(j + 1)[1],

r*G +1)[2 :m] =r( +1)[2 : m]. But with g(rj+1) = r*( +1)[2 : m], g is
manipulable atj+1 by j +1 who prefersX = g(rj) to g(rj+1).

As an easy corollary to this step we have confirmed Lemma 10 for the case
n<m:

If n < m = kpax(g), there does not exist a regular social choice function g
with kmin(g) = m — 1 that is strategy-proof with respect to a & that supports
leximin,

Sep 6. We now extend this non-existence claim to cases with m. Our proof
will be by induction onn and in this step we carry out the basis argument for
the induction:

With m = n = knax(g), there does not exist a regular social choice function
g With knin(g) = m — 1 that is strategy proof with respect to a &/ that supports
leximin.
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Letr be a profile withg(r) =X = {x1, X2, ..., Xm}. By Step 5, every alterna-
tive must be at someone’s top. Without loss of generality (we can just re-label
alternatives), we assurme } = r(i)[1].

Letr* be the same asexcept (possibly) that, for each individual, alternatives
ranked second through last are ordered by subscript:

Fe@i) s XiXaXe . oo Xi—1%+1 - - - Xm—1Xm-

If g(r*) # X then|g(r*)] =m — 1. In that case, construct the standard sequence

fromr tor*. Letj be the largest integer such thgt;) = X. Then| g(rj+1) |=
m— 1. But atr, individualj +1 prefers all but one of thar(— 1)-element subsets

to X. Sog(rj+1) must ber(j + 1)[2

'm]. Butr*( +1)[2:m]=r( +1)[2:m],

$0 g must be manipulable by+ 1 atrj.1. Sog(r*) = X.
Now construct’ fromr* by loweringx,, in individualm’s ordering to second

place:
r': 1: XiXoX3...Xm—1Xm
2 XoX1X3. .. Xm—1%m
- =
M—1:. Xn_1X1X2...Xm—2Xm
m:i XgXmX2 ... Xm—2Xm—1

By Step 5,| g(r’) |= m — 1. But the onlyk-element set individuain doesn’t
prefer toX atr* to X is r*(m)[2 : m]. Thereforeg(r’) = r*(m)[2 : m] =

{X1,%X2,X3, . . ., Xm—2, Xm—1}

Since atr’, individual m — 1 is getting his most preferrddelement set, any
rearrangement within his tok alternatives must leave the choice unchanged.

Hence alsq(r”) = {xa, %2, X3, - . .

, Xm—2, Xm—1} at

r': 1: XiXoX3...Xm—1Xm
2 XoX1X3. .. Xm—1%m
- =
m—1: XiX...Xn—2Xm—1Xm
m: XgXmXoX3...Xm—2Xm—1

Now go back tor* and construct ** by lowering Xn_1 in individual m — 1's

ordering to next-to-last place:

r** . 1: X XX3...Xm—1Xm
2 XoX1X3. .. Xm—1Xm
- >
m—1: XiX...Xm—2Xm—1Xm
m: XmX1X2...Xm—2Xm—1

By Step 5,| ¢g(r**) |= m — 1. But the only (h — 1)-element set individual

m — 1 doesn’t prefer ar* to X is r*(m — 1)[2 :

{X1,%2, X3, . . ., Xm—2, Xm -

m]. Therefore g(r**) =
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Now notice thatr** and r” differ only in the ordering for individual
m. At r”, individual m prefersg(r**) = {x,%, X3, ..., Xm—2,Xn} t0 g(r"’) =
{X1, X2, X3, - - . , Xm—2, Xm—1}. Therefore,g is manipulable by m at”.
Sep 7. This is the induction stage of our argument. Suppose Lemma 10 is true
for n = n* and we wish to prove it fon*+1. Letr be a profile at whicly(r) = X.
By Step 5, every alternative must be at someone’s top. Siteel > m, some
alternative must be at the top for two individuals. Without loss of generality,
assume (n*)[1] = r(n* + 1)[1]. Constructr * as follows:

Q) r*@i)=r() for i <n*
(2) r*(n*+1)=r*(n*)=r(n*).

Theng(r*) = X or g will be manipulable at* if g(r*) = r(n* + 1)[2 : m], and
atr otherwise.

Consider the restrictionp* of ¢ to profiles where the orderings for individuals
n* andn* + 1 are identical. By the first paragraph,is in the range ofy* and
by Lemma 2, all sets of cardinalitm — 1 = kyn(g*) are in the range of*. g*
is strategy-proof with respect @ if g is. Now define a social choice function
for n* individuals: at profileu = (u(1),u(2),...,u(n)),

h(u) = g*(u(1),u(2),...,u(n*),u(n™)).

Thenkyex(h) = m andkqin(h) = m — 1 andh is regular. We shovh is strategy-
proof. For supposé were manipulable by individugl atr; if j’ < n* there is
anj’-variantr* = (r(1),...,r(j’ = 1),r(§’),r*¢’ +1),...,r(n*)) of r with

h(r(L),...,r(i" = 2),r*(),rG’+2),...,r ()L Nh(r(),...,
r(jlf1)ar(j/+1),r(j/)a"'ar(n*))'

That is,

g, r@),....r( =0, r G, r("+1),...,r (0", r(NNLE ()
g (r@),r@2),....r¢" = 1,rG"),rG’ +2),...,r(n*),r(n*)

but that meang* is manipulable contrary to our assumption. So it would have
to bej’ = n* so

h(r(1),r(2),...,r*(n*)Lr(n*)h(r(1),r(2),...,r(n*)).

That is,g(r(1),r(2),...,r(G' = 21),r(G"),r(’+2),...,r*(n*),r*(n*)) is preferred
under the leximin extension af(n*) to g(r(1),r(2),...,r(’ —1),r(’),r(’ +
1),...,r(n*),r(n*)). For this to be true, eitheg(r (1),r(2),..., r(j’ — 1), r(j’),
r(g’+21),...,r*(n*),r*(n*)) is preferred tay(r (1), r 2),...,r(’'=2),r ("), r(’+
1),..., r(n*),r*(n*)) or gr(1),r(2),....r(G’ — 1),r("),r(’ + 1),..., r(n*),
r*(n*)) is preferred tay(r (1), r(2),...,r(’ = 2),r("),r(’+2),...,r(n*),r(n*))
In either casey is manipulable; since that violates our strategy-proof assump-
tion on g, h must not be manipulable. But this violates our induction hypothesis.
O
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Remark 11. As was true with Theorem 3, this result does not assume that
the range ofg contains any sets of cardinality for knin(9) < k < kmax(9),
or even more than one set of cardinalky.x(g). Actually, we did not require
full regularity. It will be sufficient that for some s& in the range ofg, with
IS| > kmin(g), all the subsets o8 of cardinality kqyin(g) are in the range of.
But we do need some degree of regularity. Consider the rule

g(r) ={a,b}Ur(1)[1].

The range ofy consists of{a, b} and all three element supersets{af b}. g is
strategy-proof with respect to leximin. Of course, this rule still represents a poor
trade-off since it is independent of the preferences of all but one individual. It is
possible to construct non-regular rules that select just sets of cardinality two or
three that are strategy-proof with respect to leximin but for wiaadryone has

a say. As an example, suppage) = {a,b} unless atr everyone has as their
top-most alternative, then(r) = {a, b, c}. Of course this rule has an extremely
constrained set of outcomes.

Remark 12. Theorem 9 is much stronger in its conclusion than most Gibbard-
Satterthwaite type results; there isn’t even a “dictatorial” exception.

Remark 13. As with Theorem 3, Theorem 9 will not work if we modify it by
replacing leximin by leximax. Consider the following ruje If, at r, everyone
has the same top two elements, tly€n) is the set containing those two elements;
otherwiseg(r) = X. This rule is manipulable with respect to@ that supports
leximin. But, if everyone uses leximax, this rule is strategyproof.

Remark 14. Although it has nothing to do with “social” choice, even with= 1,
there does not exist any regular social choice funcgowith 1 < Kqin(g) <
krnax(g) that is strategy-proof with respect to @& that supports leximin. For
suppose is a “profile”, r(1), at whichg(r) has cardinalitykqux(g). Let r*(1)
be a “profile” at whichg(r*) = r(1)[1 : kmin(g)]- Then atr, individual 1 would
manipulate by submitting*(1).

6 Conclusion

We say that a rule is oligarchical if there is a coalitiorH C N such that for

every profiler we haveg(r) = Uicn {Y € X;: no member ofX, ranks abovey

in the leximin extension of (i)}. Theorems 3, 5 and 9 together establish that if

g is regular and strategy-proof with respect t&zathat supports leximin then

is oligarchical. The converse is not true, because strategy-proofness puts severe
restrictions on the range @f We know that if the range of does not contain

all singleton subsets of, but it is strategy-proof and regular, then there is an
individual i and a positive integek such thatg(r) =r(i)[1 : K] at every profile

r.



A leximin characterization of strategy-proof and non-resolute social choice procedures 829

References

Aswal, N., Chatterji, S., Sen, A.: Dictatorial domains. Indian Statistical Institute Working Paper
(1999)

Baigent, N.: Strategy-proofness of social choice correspondences with restricted domains. University
of Graz (1998)

Barbeg, S.: The manipulation of social choice mechanisms that do not leave too much to chance.
Econometricad5, 1573-1588 (1977)

Barbeg, S.: Strategy-proofness and pivotal voters: a direct proof of the Gibbard-Satterthwaite theo-
rem. International Economic RevieiM, 413-418 (1983)

Barbeg, S., Dutta, B., Sen, A.: Strategyproof social choice correspondences, Indian Statistical Institute
(1999)

Campbell, D. E., Kelly, J.S.: The incompatibility of strategy-proofness and the Condorcet condition.
Social Choice and Welfar#5s, 583-592 (1998)

Campbell, D. E., Kelly, J. S.: Trade-offs for democratic preference revelation. Journal of Public Eco-
nomic Theoryl, 465-473 (1999)

Campbell, D.E., Kelly, J.S.: A trade-off result for preference revelation. Journal of Mathematical
Economics34, 129-142 (2000)

Ching, S., Zhou, L.: Multi-valued strategy-proof social choice rules. Duke University (1997)

Demange, G.: Nonmanipulable cores. Econometsisal057-1074 (1987)

Duggan, J., Schwartz, T.: Strategic manipulation without resoluteness or shared beliefs: Gibbard-
Satterthwaite generalized. Wallis Institute of Political Economy, University of Rochester (1997)

Gardenfors, P.: Manipulation of social choice functions. Journal of Economic THeHrg17-228
(1976)

Gibbard, A.: Manipulation of voting schemes: a general result. Economeitica37—601 (1973)

Gibbard, A.: Manipulation of schemes that mix voting with chance. Econometrié&5-681 (1977)

Gibbard, A.: Straightforwardness of game forms with lotteries as outcomes. Econordétreas—
614 (1978)

Horowitz, J.: The ivory trade. New York: Summit Books 1990

Kelly, J. S.: Strategy-proofness and social choice functions without single-valuedness. Econometrica
45, 439-446 (1977)

Pattanaik, P. K.: On the stability of sincere voting situations. Journal of Economic TBebBp—-574
(1973)

Pattanaik, P.K.: Stability of sincere voting under some classes of non-binary group decision proce-
dures. Journal of Economic Theo8y 206—-224 (1974)

Pattanaik, P.K.: Strategy and group choice. Amsterdam: North Holland 1978

Satterthwaite, M. A.: Strategy-proofness and Arrow’s conditions: existence and correspondence the-
orems for voting procedures and social welfare functions. Journal of Economic Thépry
187-217 (1975)



