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Summary. We characterize strategy-proof social choice procedures when choice
sets need not be singletons. Sets are compared by leximin. For a strategy-proof
rule g, there is a positive integerk such that either (i) the choice setsg(r) for
all profiles r have the same cardinalityk and there is an individuali such that
g(r) is the set of alternatives that are thek highest ranking ini ’s preference
ordering, or (ii) all sets of cardinality 1 tok are chosen and there is a coalition
L of cardinality k such thatg(r) is the union of the tops for the individuals in
L. There do not exist any strategy-proof rules such that the choice sets are all of
cardinalityk∗ to k where 1< k∗ < k .
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1 Introduction

For resolute social choice procedures, i.e., when the choice set always contains
just a single alternative, Gibbard (1973) and Satterthwaite (1975) have shown
(subject to a range condition) that strategy-proofness implies dictatorship. Pat-
tanaik (1973, 1974), G̈ardenfors (1976), Kelly (1977), and Barberà (1977) began
the investigation of strategy-proofness of non-resolute social choice rules. Ching
and Zhou (1997), Baigent (1998), Barberà, Dutta, and Sen (1999), Duggan and
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Correspondence to: J.S. Kelly



810 D. E. Campbell and J. S. Kelly

Schwartz (2000), and Campbell and Kelly (1998, 1999, 2000) have resumed the
inquiry. Each paper employs a different assumption about the way that individual
preference over sets is generated from the primitive individual preference over
alternatives, and all of them assume an unrestricted domain of profiles of indi-
vidual preferences overX . Even though the choice set may contain more than
one alternative, Ching and Zhou (1997), Barberà, Dutta, and Sen (1999), and
Duggan and Schwartz (2000) assume that a single alternative will eventually be
selected from the choice set by some random process. Therefore, they ground
their extension principles in expected utility. In this paper, we extend results in
Campbell and Kelly (2000) to complete a characterization of non-resolute social
choice procedures.

There are two quite different reasons for relaxing resoluteness. First, even
when resoluteness is desirable, non-dictatorship is even more important; and
the Gibbard-Satterthwaite theorem tells us that resoluteness implies dictatorship
for strategy-proof procedures. We then ask a trade-off question: If we relax
resoluteness slightly, allowing small non-singleton choice sets, is there then a
way to construct strategy-proof social choice rules that are far from dictatorial?
This is the rationale treated in the earlier paper.

But sometimes we actually want to chose more than one alternative. First,
we might be interested in a social choice procedure that represents a preliminary
stage in a process that ultimately chooses a singleton outcome, but it is actually
desirable to have several alternatives selected at the preliminary stage. For early
phases of competitions, like piano competitions1, or ice skating and other athletic
contests, selecting several contestants to move on to a later stage is highly desired.
In another context, a rules committee, reporting a set of competing bills for
legislative consideration, typically has to leave some power to the legislature
and has to report more than one proposed bill.

In cases where a single alternative will ultimately be selected, it might seem
that we should have the individuals take into account the tie-breaking procedure
that will be imposed and again apply Gibbard-Satterthwaite (or Gibbard, 1977,
1978). For example, the tie-break might be a random drawing from the chosen
subset. But individuals may have no way to analyze the tie-break like this. Con-
sider the William Kapell Piano Competition for which there are two juries. The
first narrows the choice down to six finalists. Then a second jury selects a winner
from the group of six. We contend that it doesn’t make sense for the first panel
to try to build a deterministic or probabilistic model of the tie-breaking by the
second panel. They don’t know the preferences of the members of that second
jury and certainly don’t know what manipulation strategies might be adopted by
members of the second jury.

Second, even when we are modeling single-stage procedures, we may want
more than one alternative to be selected. We distinguish between two possible
situations. In the first sort, there is a some fixedk > 1 and we want the choice
set to contain exactlyk alternatives:

1 See Horowitz (1990), for expressions of concern about strategic behavior by judges in early
rounds of piano competitions.



A leximin characterization of strategy-proof and non-resolute social choice procedures 811

1. Exactlyk organs are available for transplant, and a hospital committee has
to decide which of the many waiting recipients will have transplant surgery.

2. A committee of exactlyk individuals is to be chosen from an organization’s
membership.

In the second sort of situation, the number of alternatives chosen can be a function
of the preferences of the voters.

3. The International Mathematical Society will select up to four Fields Medalists
to be announced at their next Congress.

4. In the first phase of a piano or ice skating competition, the judges are to
choose anywhere fromk∗ to k competitors (where 1< k∗ < k ) to advance
to the second round.

We will show in this paper, that if exactlyk alternatives must be selected, then
the only strategy-proof social choice rules require a “dictator” in the sense that
there must be an individual such that the rule will always pick that person’s
topmostk alternatives. Where we want strategy-proof rules such that the choice
sets contain at leastk∗, but not more thank , alternatives (and 1< k∗ < k ), we
obtain an impossibility result: no such rules exist.

Because strategy-proofness implies dictatorship when exactlyk alternatives
must be selected, it might be expected that we could modify the Gibbard-
Satterthwaite proof suitably. One approach might be to re-interpret “outcome”
as a set of alternatives and then see a social choice rule as a mapping from
profiles of orderings of sets to one chosen set. An outcome alluded to in the
Gibbard-Satterthwaite theorem is a subset of the feasible setX of alternatives.
But we cannot apply the Gibbard-Satterthwaite theorem because it has a full
domain assumption that is not appropriate here. If the members ofX include
w, x , y , and z , no reasonable hypothesis about the way an individual ordering
of small sets is related to an ordering of supersets would allow{y , z} � {w, x}
when {w} � {x} � {y} � {z}. This disqualifies many transitive relations on
(even small) subsets ofX from membership in the individual preference domain
when the outcomes are viewed as subsets ofX . (Of course, such restrictions on
set orderings become more severe as the number of alternatives inX increases.)

While the proofs of “impossibility theorems” often only use a fraction of the
full domain anyway, the fact is that there appears to be no ready conversion of an
existing proof of Gibbard-Satterthwaite to our problem. Consider, for example,
the Barber̀a (1983) proof. A crucial step establishes that if the orderingsR and
R′ have the same top-ranked alternative, then person 1’s options atR (the set of
outcomes that 1 can precipitate, given that everyone else reportsR′) are identical
to person 1’s options atR′. To prove this Barberà calls on a new orderingR′′ that
is related toR andR′ in a way that would leaveR′′ outside the set of admissible
preferences. Similar difficulties are encountered in translating other steps in the
Barber̀a proof and also in the original Gibbard and Satterthwaite proofs. We can’t
even use the domain condition from Aswal, Chatterji, and Sen (1999). That paper
has a simple domain condition on which every resolute and strategy-proof rule is
dictatorial. There are domains satisfying their condition that have only 4| X | −6
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members. Even so, their domain condition is too strong to be applicable to the
theorems of this paper.

Moreover, in some cases it is implausible that individuals evenhave com-
plete orderings over subsets ofX . Imagine physicians asked to take part in the
process of determining the recipients of the four available kidneys. Theymay
feel comfortable writing down a ranking of the say 25 patients on the transplant
list, but feel baffled by the request to rank the 12,650 quadruples of candidates.

Finally, even where individuals possess (lengthy) rankings over all sets of k
alternatives, this information might be too unwieldy to cheaply and accurately
gather and process. Cost considerations will then require us to define the social
choice ruleg so that the inputs are individual rankings of the alternatives.

2 Foundations

We take as given a setX of alternatives with|X | > 2 and a setN = {1, . . . , n}
of individuals, withn > 1. A strong order � (on X ) is transitive and complete;
in this paperx � y only if x /= y , and when we say that� is complete we
mean that eitherx � y or y � x holds if x /= y . (Note that we donot have
x � x .) Wherer(i ) is a strong order, we designate the set containing just its
top-most element (if it has one) byr(i )[1], the set containing just its second by
r(i )[2], the set containing the top two byr(i )[1, 2], the set containing the topk
by r(i )[1 : k ], etc. A profile r = (r(1), r(2), . . . , r(n)) assigns a complete strong
orderr(i ) to eachi ∈ N . L(X )n is the collection of all possible profiles.

A social choice function g mapsL(X )n into the family of nonempty subsets
of X . For H ⊆ N , we say thatg is independent of H if for any two admissible
profilesp andr

p(i ) = r(i ) for all i ∈ N \H implies g(p) = g(r).

The range of g is

Xg = {Y ⊆ X : Y = g(r) for some r ∈ L(X )n}.

We let kmin (g) be the cardinality of the smallest set inXg and kmax (g) is the
cardinality of the largest set inXg. A social choice functiong is regular if all
subsets ofX of cardinalitykmin (g) are inXg. Regularity has three interpretations:
It is a “sufficiently large range” condition, analogous to the one for resolute rules
that requires each element to be chosen at one profile at least.2 Regularity can also
be thought of as a weak non-imposition requirement. Full non-imposition would
imply that every non-empty subset ofX is chosen at some profile. Regularity
imposes a minimal size constraint (e.g., “the committee must contain at least
three members”), although larger subsets may or may not be in the range ofg.
Third, regularity is a very weak neutrality condition. Full neutrality would say

2 The original Gibbard (1973) proof made this assumption, but Satterthwaite (1975) had the general
version of the theorem.
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that if g(r) = S , then if |T | = |S | and T is a subset ofX there is a profilep
(many, in fact) such thatg(p) = T . In fact, full neutrality would tell us how
to find profiles likep: Let θ be any 1− 1 (permutation) function fromS to T .
Constructp from r by changing eachr(i ) to p(i ) by replacing eachs in S by
θ(s). Regularity weakens this in two ways: (i) We only requirep for the case
where S is a minimal size set in the range ofg; (ii) For |T | = |S |, we only
require onep with f (p) = T and there need be no connection betweenp and
permutations of elements.

If kmax (g) = 1, theng is resolute and the Gibbard-Satterthwaite result tells us
there is an individuali such thatg(r) = r(i )[1] for all r in L(X )n . We turn our
attention then to rules where 1< kmax (g). There are three cases to be considered
depending on the cardinality ofkmin (g) relative to 1 andkmax (g):

1 = kmin (g) < kmax (g); (A)

1 < kmin (g) = kmax (g). (B)

1 < kmin (g) < kmax (g); (C)

The first of these cases is addressed in Campbell and Kelly (2000) and the result
will be reported in Section 3 where examples will appear. Cases (B) and (C) are
taken up in Sections 4 and 5, respectively.

An individual’s input to the social choice function is an ordering onX ; but
for purposes of defining manipulability, we need an individual to use rankings
on Xg. We assume that these rankings are derived from orderings onX by
means of “extension principles”. Anextension principle D associates with each
r(i ) a partialstrong orderingD(r(i )) on non-empty subsets ofX ; eachD(r(i ))
is irreflexive, antisymmetric, and transitive. (Not every extended preference is
complete.) For anyS ⊆ X , and any profiler we letr(i ) | S denote the restriction
of r(i ) to S , while r | S represents then-tuple (r(1) | S , r(2) | S , . . ., r(n) | S ).
Then therestriction of D to S , D |S , associates with eachr(i ) | S the restriction
of D(r(i )) to the power set ofS .

Extension principleD is at least as strong as extension principleE if and
only if, for all r(i ), AE (r(i ))B implies AD(r(i ))B . An n-tuple of extension prin-
ciplesD = (D1, D2, . . . , Dn ) is called acontext. The set of all contexts is denoted
by D . The restriction ofD to S , D |S, is the collection ofn-tuples D |S ≡
(D1|S , D2|S , . . . , Dn |S ).

Profile r∗ is ani-variant of profile r if r∗ differs from r only in its value for
individual i . We say that for a givenD = (D1, D2, . . . , Dn ), g is manipulable
by i at r if there exists ani -variant r∗ of r such thatg(r∗)Di (r(i ))g(r). We
say g is strategy-proof for D if for every i and r , g is not manipulable byi
at r . The designer of a social choice function must not only make it flexible
enough to deal with a large domain of profiles of preferences – because we
can not anticipate what people’s preferences will be; the function must also be
strategy-proof under many extension principles – because we can not anticipate
what people’s extension principles will be.g is strategy-proof with respect to D

if it is strategy-proof for eachD ∈ D .
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The results of this paper lean heavily on a collectionD of contexts defined
in terms of the following leximin extension principleL, which does generate a
complete order on all non-empty subsets ofX . Leximin setsBL(r(i ))C if the
least-preferred element ofB is preferred to the least-preferred element ofC . If
the least-preferred alternatives are identical then ignore them and rankB andC
by comparing the second worst alternative in each set. If they are also identical,
proceed inductively. Formally:

Leximin extension3. Given r(i ) and a subsetY of X , define l1(Y ) to be the
lowest ranking member ofY . With l t (Y ) defined, letl t+1(Y ) be the empty set if
Y = {l1(Y ), l2(Y ), . . . , l t (Y )}, and otherwisel t+1(Y ) = l1(Y \{l1(Y ), l2(Y ), . . . ,
l t (Y )}). Given distinct subsetsY andZ of X , let t be the smallest integer such
that l t (Y ) /= l t (Z ).

YL(r(i ))Z if l t (Y )r(i )l t (Z ) or l t (Z ) = ∅.

We will sayD supports leximin when for every individuali , every profiler ,
and every pairA, B , of non-empty subsets ofX , if AL(r(i ))B , then there exists
a (D1, D2, . . . , Dn ) ∈ D with ADi (r(i ))B . If D supports leximin onX , then
D |S supports leximin onS . As is shown in Campbell and Kelly (2000), ifg is
strategy-proof with respect to aD that supports leximin, then it is strategy-proof
under the single (L, L, . . . , L). Accordingly, throughout this paper, without further
comments, whenever we want to prove a characterization result that assumesg
is strategy-proof with respect to aD that supports leximin, we will confine our
attention to just the single context (L, L, . . . , L).

3 Further background

In Campbell and Kelly (2000) we have shown that ifg is a regular social choice
function that is strategy-proof with respect to a contextD that supports leximin
and if 1 =kmin (g) < kmax (g), then there is a coalitionH (i.e., a subset ofN ) of
cardinalitykmax (g) such that for every admissible profiler

g(r) = ∪i∈H r(i )[1].

For such rules all non-empty sets of cardinalitykmax (g) and all subsets of inter-
mediate cardinalities will be in the range. We say thatg is oligarchical in this
case, andH is the oligarchy.4

We next establish some notation. Given two profilesr andr∗, we will often
need to refer to the sequence of profiles

3 Leximin was first used extensively in the study of strategy proofness by Pattanaik. For a survey
of this work, see Pattanaik (1978).

4 Demange (1987) identifies a fairly large family of non-oligarchical social choice rules that can
not be manipulated by any individual or coalition. She employs an extension principal (optimism)
that is strictly coarser than leximax, in the sense that when optimism ranksY aboveZ then so does
leximax, but the converse is not true.



A leximin characterization of strategy-proof and non-resolute social choice procedures 815

r = r0 = (r(1), r(2), r(3), . . . , r(n))

r1 = (r∗(1), r(2), r(3), . . . , r(n))

r2 = (r∗(1), r∗(2), r(3), . . . , r(n))

� �
r∗ = rn = (r∗(1), r∗(2), r∗(3), . . . , r∗(n)).

We refer to this as thestandard sequence from r to r∗. Two successive entries
in this sequence are

rj−1 = (r∗(1), r∗(2), . . . , r∗(j − 1), r(j ), . . . , r(n)), and
rj = (r∗(1), r∗(2), . . . , r∗(j − 1), r∗(j ), . . . , r(n))

in which rj is created fromrj−1 by replacing thejth component ofrj−1 by r∗(j )
and leaving all other components ofrj−1 unchanged. For appropriately chosen
profilesr andr∗ we will show thatg is manipulable byj by showing that either

g(rj )L(r(j ))g(rj−1) at rj−1; or
g(rj−1)L(r∗(j ))g(rj ) at rj .

In the first preliminary result we connectg values atr with the g values at
r∗ wherer∗ differs from r by bringing all the elements ofg(r) (and possibly a
few more) to the top of everyone’s ordering. Given a profiler and a subsetS of
X , r(S ) denotes a new profile constructed in the following way: For eachr(i ) in
r , the alternatives inS are raised above all the elements inX\S . Within S and
within X\S , alternatives are ordered as they were inr(i ); that is r(S )|S = r |S
andr(S )|X\S = r |X\S . WhenS is small, we will drop the set bracket notation,
referring tor(x ) andr(x , y) instead ofr({x}) andr({x , y}).

Lemma 1 (The Completeness Lemma). If g is strategy-proof with respect to a
D that supports leximin and g(r) ⊆ S ⊆ X , then g(r(S )) = g(r).

We refer to this as the Completeness Lemma because of the central role played
by the completeness of leximin extension, although the members ofDi (r(i )) may
be far from complete.

The next preliminary lemma tells us that if we bring the elements of a suffi-
ciently large proper subsetY to the top of everyone’s ordering at a profile, then
the elements chosen at that profile byg will all be in Y .

Lemma 2. Suppose g is a regular social choice function that is strategy-proof
with respect to a D that supports leximin. Let Y be a non-empty subset of X that
contains a set Z in the range of g and let r be a profile such that for all i , all
y ∈ Y and x ∈ X\Y , yr(i )x . Then g(r) ⊆ Y .

We are going to use these lemmas later on, but they are also key in proving the
following result from Campbell and Kelly (2000):
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Theorem 3. Suppose that g is a regular social choice function with 1 = kmin (g)
< kmax (g) and g is strategy-proof with respect to a D that supports leximin. Then
there exists a subset H of N such that for every admissible profile r

g(r) = ∪i∈H r(i )[1].

Remark 4. There is a definition ofleximax that is analogous to that for leximin
and the ruleg(r) = ∪r(i )[1] is strategy-proof with respect to aD that supports
leximax. But strategy-proofness with respect to aD that supports leximax does
not forceg(r) to be the union of the tops of the member of a (small) coalition.
In fact, g can be regular and strategy-proof but not independent of anyone’s
preferences. To see this, letX = {x , y , z}. Setg(r) = {z} if everyone hasz at the
top of her ordering. Otherwiseg(r) ⊆ {x , y}. If fact, g(r) = {x , y} unless either
(i) everyone prefersx to y , in which caseg(r) = {x}, or (ii) everyone prefersy
to x , in which caseg(r) = {y}.

It is straightforward to show thatg is strategy-proof with respect to leximax.
But if even one person, say individual 1, employs the leximin extension principle
there will be an opportunity for manipulation. Suppose

1 2 3 . . . n
x z z z
z y y y
y x x x

Theng(r) = {x , y}. But if person 1 reportsz as her top-ranked alternative then
g will select {z}. Because leximin gives{z} L(r(1)) {x , y}, g is manipulable
by 1 at r . However, we believe that the assumption that there are only three
alternatives in the feasible set is essential to the existence of a regular rule with
kmin (g) = 1 < kmax (g) that is strategy-proof with respect to leximax.

4 Range condition: 1 < kmin (g) = kmax (g)

In this section, we will show that ifg is a regular social choice function that is
strategy-proof with respect to aD that supports leximin and if 1< kmin (g) =
kmax (g), then there is an individuali who dictatesg in the sense of the following

Theorem 5. Suppose g is a regular social choice function, g is strategy-proof
with respect to a D that supports leximin, and 1 < kmin (g) = kmax (g). Then there
is an i such that g(r) = r(i )[1 : kmax (g)] for all r .

Proof. If kmax (g) = m = |X |, the result is obvious;g(r) = X = r(i )[1 : m] for
all i . The remainder of the proof takes seven steps. Since we will do induction
on the numberm > kmax (g) of alternatives, the first step consists of an induction
basis. From now on, denotekmax (g) = kmin (g) by k and the collection of all
subsets of cardinalityk by k∗(X ), all of which are inXg.

Step 1. Basis. m = k + 1. Thek -element sets thatg can choose each eliminate
just a single alternative. If an individuali has orderingr(i ), then r(i )[1 : k ]
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is the k -element set that excludes the alternative lowest ranked inr(i ) and
r(i )[1, 2, . . . , k −1, k +1] is thek -element set that excludes the alternative ranked
next-to-last inr(i ) and so on. Associate with orderingr(i ) the leximin ordering
L(r(i )) that ranks one set over another if the alternative excluded in the first is
ranked lower inr(i ) than the alternative excluded in the second:

L(r(i)):

r(i )[1, 2, . . . , k ]
r(i )[1, 2, . . . , k − 1, k + 1]

� �
r(i )[2, 3, . . . , k , k + 1]

and with profile r = (r(1), r(2), r(3), . . . , r(n)) the profile R = (L(r(1)),
L(r(2)), L(r(3)), . . . , L(r(n))). Because this gives a 1− 1 correspondence be-
tween the profiles onX and the profiles onk∗(X ), we can associate with
g the function G on profiles onk∗(X ) which takesR = (L(r(1)), L(r(2)),
L(r(3)), . . . , L(r(n))) to g(r(1), r(2), r(3), . . . , r(n)), i.e., G(R) = g(r). Since
g is strategy-proof with respect to aD that supports leximin,G is strategy-
proof in the Gibbard-Satterthwaite sense on the set of alternatives fromk∗(X ).
By Gibbard-Satterthwaite,G is dictatorial with dictatori ; i.e., G(R) = L(r(i ))[1].
But as we noted already in this step,L(r(i ))[1] is r(i )[1, 2, . . . , k ] = r(i )[1 : k ].
Combining we have,

g(r) = G(R) = L(r(i ))[1] = r(i )[1 : k ].

Induction stage. Suppose now the conclusion is true form = M − 1; we wish
to prove that it is true forM .

Step 2. Fix an alternativeα and look at the subdomainRα that consists of all
profiles such thatα is at the bottom of everyone’s ordering. Given a profile
r on X\{α}, constructrα by addingα at the bottom of everyone’s ordering.
Define gα(r) = g(rα) so thatgα(r) ⊆ X\{α} by Lemma 2.gα is a regular
social choice function onX\{α} with kmax (g) = kmin (g) = k and is strategy-proof
with respect toD |(X\{α}) sinceg is strategy-proof with respect toD . By the
induction assumption, there is an individuali (α) such that, at eachr , gα selects
the k -highest alternatives inr(i ).

We next show that for allα, β, i (α) = i (β). This will require several steps
(3 through 5). Notice that since our Basis step was form = k + 1, we now have
m ≥ k + 2.

Step 3. We first treat the casem > k + 2. Without loss of generality, assume that
i (α) = 1. Choose distinctβ, t ∈ X\{α} setq = m − 3 and then letX\{t , α, β} =
{y1,y2, . . . , yq , yq+1}. Let r be the profile

r : 1 : y1y2 . . . yk tyk+1 . . . yqβα

2 : ty1y2 . . . yk yk+1 . . . yqβα

� �
n : ty1y2 . . . yk yk+1 . . . yqβα
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wherer(j ) = r(j ′) for j , j ′ ≥ 2. Profiler∗ is constructed fromr by interchanging
α andβ:

r∗ : 1 : y1y2 . . . yk tyk+1 . . . yqαβ

2 : ty1y2 . . . yk yk+1 . . . yqαβ

� �
n : ty1y2 . . . yk yk+1 . . . yqαβ

g(r) = {y1, y2, . . . , yk} becausei (α) = 1. Consider the standard sequence fromr
to r∗. Supposeg(rj ) = g(r). We haveg(rj+1) ⊂ {t , y1, y2, . . . , yk} by Lemma 2.
Now, g(r) = g(rj ) is the lowest rankingk -element subset of{t , y1, y2, . . . , yk}
for the leximin extension ofrj (j + 1). Therefore,g(rj+1) = g(r), or elsej + 1
would manipulate atrj . Therefore,g(r) = g(rn ) = g(r∗), by induction. Therefore,
i (α) = i (β) for all α,β.

Now we turn to the remaining case:m = k + 2. We first show that it is
sufficient to analyze the case of two individuals:

Step 4. We will show that there exists a regular social choice function that
is strategy-proof with respect to aD that supports leximin forn > 2 with
i (α) /= i (β) if and only if there is such a rule forn = 2. First suppose there is a
regular and strategy-proofg for n = 2 such thati (α) /= i (β) for someα, β. Then
define

h(r(1), r(2), . . . , r(n)) = g(r(1), r(2)).

Sinceg is regular and strategy-proof, so also ish. Clearly for thish, i (α) /= i (β).
Next suppose there is a regular and strategy-proof ruleh for n > 2 such that

i (α) /= i (β) for someα, β. Without loss of generality, leti (α) = 1 andi (β) = 2.
Then define

g(r(1), r(2)) = h(r(1), r(2), r(2), . . . r(2)).

For g, i (α) /= i (β). We show thatg is regular and strategy-proof. Regularity
follows from Lemma 2. To see thatg is strategy-proof, suppose instead thatg is
manipulable. But ifg were manipulable by 1, we would have

g(r∗(1), r(2))L(r(1))g(r(1), r(2)) or

h(r∗(1), r(2), r(2), . . . r(2))L(r(1))h(r(1), r(2), r(2), . . . r(2))

which immediately contradicts the strategy-proofness ofh. So if g is manipulable,
it must be by 2, i.e., we would have

g(r(1), r∗(2))L(r(2))g(r(1), r(2)) or

h(r(1), r∗(2), r∗(2), . . . r∗(2))L(r(2))h(r(1), r(2), r(2), . . . r(2)).

Consider the standard sequence from

(r(1), r(2), r(2), . . . r(2)) to (r(1), r∗(2), r∗(2), . . . r∗(2)).
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Suppose that there is noi such thath(ri+1)L(r(2))h(ri ). Then h(r0)L(r(2))
h(r1)L(r(2)) h(r2) . . . L(r(2)) h(rn ), and thush(r0)L(r(2)) h(rn ), becauseL(r(2))
is complete and transitive. This contradicts the fact thath(rn )L(r(2))h(r0). There-
fore, there must be ani such thath(ri+1)L(r(2))h(ri ). But since atri individual
i ’s set ranking is the same asL(r(2)), h would be manipulable byi at ri .

Step 5. Now that Step 4 allows us, withm = k + 2, to focus on the case of two
individuals, we wish to show that there do not exist two alternatives,α andβ,
such thati (α) /= i (β). We prove this by assuming there are suchα and β and
finding a contradiction. Without loss of generality,i (x ) = 1 andi (w) = 2. Since
m = k + 2 ≥ 4, one of the two individuals isi (α) for at least two alternatives;
we supposei (z ) = 1 andX = (x , z , w, y1, . . . , yk−1).

Let r1 be the profile

r1 : 1 : xzy1, . . . , yk−1w

2 : zy1, . . . , yk−1xw

Sincei (w) = 2, g(r1) = {z , y1, . . . , yk−1}. Then at profile

r2 : 1 : xzy1, . . . , yk−1w

2 : zy1, . . . , yk−1wx

we must also haveg(r2) = {z , y1, . . . , yk−1} or 2 will manipulate at r2.
Consider

r3 : 1 : xy1, . . . , yk−1wz

2 : zy1, . . . , yk−1wx

g(r3) /= {x , y1, . . . , yk−1}, otherwise person 1 would manipulate atr2, because
individual 1 prefers{x , y1, . . . , yk−1} to g(r2) = {z , y1, . . . , yk−1} at r2. We will
show that each of the other possibilities forg(r3) leads to a contradiction, so we
will be forced to conclude thati (α) = i (β).

First notice thatz /∈ g(r3). For otherwise 1 could change to

r4 : 1 : y1, . . . , yk−1wzx

2 : zy1, . . . , yk−1wx

and getg(r4) = {w, y1, . . . , yk−1} (sincei (x ) = 1) which, under leximin, 1 prefers
at r3 to any set containingz .

Sog(r3) is obtained by deleting one member fromX\{z}. Also,g(r3) doesn’t
contain bothx andw or 2 would change to

r5 : 1 : xy1, . . . , yk−1wz

2 : xy1, . . . , yk−1wz

and getg(r5) = {x , y1, . . . , yk−1} (sincei (z ) = 1) which 2 prefers atr3 to any sub-
set ofX\{z} that contains bothx andw. We know thatg(r3) /= {x , y1, . . . , yk−1},
and thusg(r3) = {w, y1, . . . , yk−1}. Consider
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r6 : 1 : xy1, . . . , yk−1wz

2 : y1, . . . , yk−1wxz

g(r6) = {x , y1, . . . , yk−1} (since i (z ) = 1). But 2 would manipulate atr6 (to
r3). Therefore we can exclude the possibility that there existα, β in X with
i (α) /= i (β).

Step 6. From Step 5 we know there is an individuali such that for any profile
r such that everyone has the same bottom alternative,g(r) = r(i )[1 : k ]. Without
loss of generality,i = 1. Now suppose there is anr (obviously one without a
common bottom alternative) such thatg(r) /= r(1)[1 : k ]. Construct anr∗ from r
which differs fromr only for individuals 2 ton : for them, setr∗(j ) = r(j )(S ) for
S = g(r). That is,g(r) is brought to the top without disturbing the rankings within
either g(r) or X\g(r). Then g(r∗) = g(r). For if they were different, construct
the standard sequence fromr to r∗ and let t be the smallest integer such that
g(rt ) /= g(r). g must be manipulable byt at rt . Hence we will assume in the
remainder thatg(r) is at the top for individuals 2 ton.

Step 7. We treat two cases.

Case 1. Suppose there is an alternativet in X that is not inr(1)[1 : k ] ∪ g(r).
Constructr∗ from r by lowering t to the bottom for individuals 2 ton. It is
easy to see thatg(r∗) = g(r). For if g(r∗) /= g(r), construct the standard sequence
from r to r∗ and let j be the least integer such thatg(rj ) /= g(r); j > 0. If
t ∈ g(rj ), g is manipulable byj at rj . If t /∈ g(rj ), thenL(r(j )) andL(r∗(j )) order
g(rj−1)[= g(r)] andg(rj ) the same. Henceg is manipulable byj at eitherrj−1 or
rj . But with g(r∗) = g(r), we see that atr∗, individual 1 would manipulate by
lowering t to the bottom gettingr(1)[1 : k ] which individual 1 prefers tog(r).

Case 2. X = r(1)[1 : k ] ∪ g(r). Sinceg(r) and r(1)[1, . . . , k ] both containk
elements, the setsr(1)[1 : k ]\g(r) = X\g(r) andg(r)\r(1)[1 : k ] = X\r(1)[1 : k ]
contain the same number of elements. But sincem > k + 1, this number must
be at least 2. Lety = r(1)[m − 1] andz = r(1)[m]. Theny , z ∈ g(r)\r(1)[1 : k ].
Choose anyx ∈ r(1)[1 : k ]\g(r). Constructr∗ from r by loweringx to the bottom
for individuals 2 ton. Theng(r∗) = g(r) by an argument that by now is quite
familiar. Now, fromr∗, constructr∗∗ by bringingx to the bottom for individual
1. The resulting choice setg(r∗∗), while it may containy , will not contain z
and hence will be preferred by individual 1 tor∗. Henceg is manipulable by
individual 1 atr∗. ��
Remark 6. To see the importance of the regularity condition, that allkmin (g)
element sets are chosen somewhere, consider the following example. There is an
odd number of individuals, each with strong preferences over the four alternatives
in X = {w, x , y , z}. g(r) is the two-element set that consists of the simple majority
winner betweenw and x together with the simple majority winner betweeny
andz . This g is strategy-proof, and there is no individual with the kind of power
described in our theorem. But{w, x} is not in the range ofg, even when everyone
ranks both of those above bothy andz .
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Remark 7. A collection D of contexts having the property that for every
individual i , every profiler , and every pair of setsA, B , if the leximin extension
of r(i ) has AL(r((i ))B , then there exists aD = (D1, D2, . . . , Dn ) ∈ D with
ADi (r(i ))B may not haveany strategy-proof social choice functions. All we are
showing is that if one exists, then it must have the form

g(r) = r(i )[1 : k ].

But if such a rule is manipulable at some other context inD , then there don’t
exist any rules strategy-proof with respect toD .

Remark 8. The ruleg(r) = r(i )[1 : k ] is also strategy-proof with respect to
leximax. Remark 4 of Section 3 presents a rule that is strategy-proof with respect
to leximax, and everyone’s preferences are taken into account. For that ruleg(r)
is either a singleton or a pair, sokmin (g) = 1 = kmax (g) − 1. If we have a regular
rule for whichkmin (g) = kmax (g) = m −1, then the proof that we employed for this
case works for leximax as well. In fact, leximax coincides with leximin in this
case – as do other extension principles that are weaker than leximin in general,
but coincide with leximin whenkmin (g) = kmax (g) = m − 1. Hence an example of
a regular social choice rule withkmin (g) = 2 that is strategy-proof with leximax
and that might take into account the preferences of more than one individual
would have to involve anX with more than three alternatives. We have neither
an example like this nor a proof that none exists. It is worthy of note, however,
that our earlier leximax example required three alternatives and that we have
been unable to provide a similar example withm > 3.

5 Range condition: 1 < kmin (g) < kmax (g)

In Section 3 we described a class of strategy-proof rules with choice sets that
contain anywhere from one to three alternatives: the union of the tops for a
coalition of three individuals. In Section 4, we found a class of strategy-proof
rules with all choice sets of cardinality two: the top two alternatives for some
“dictatorial” individual. If we want to construct a social choice rule that generates
choice sets that contain just twoor three alternatives, we might consider a hybrid
of these two types of rules:

g(r) = r(1)[1, 2] ∪ r(2)[1].

This rule is regular; its range consists of all sets of two or three alternatives.
However, g is not strategy-proof with respect to aD that supports leximin.
Consider profiler with

1 : abc . . . yz

2 : zabc . . . y

Then g(r) = {a, b, z}. If individual 1 were to submit the same ordering as
individual 2,zabc . . . y , then the choice set would be{a, z}. Forr(1), the leximin
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extension ranks{a, z} above{a, b, z} and sog is manipulable by individual 1
at r .

Here is a second example of a social choice ruleg with range consisting of
all two element sets andX . There are three alternatives and an odd number of
individuals.g(r) is the union of all the top-most ranked alternatives, unless that
set is a singleton, sayα; in that case,g(r) is the set consisting ofα together
with the simple majority winner between the other two alternatives. This rule is
regular; its range consists of all sets of two or three alternatives. However,g is
not strategy-proof with respect to aD that supports leximin. Consider profiler
with

1 : abc

i > 1 : acb

Theng(r) = {a, c}. If individual 1 were to submitbac, then the choice set would
be{a, b}. For r(1), the leximin extension ranks{a, b} above{a, c} and sog is
manipulable by individual 1 atr . We will show in this section that there does
not exist any strategy-proof social choice ruleg with range consisting of all two
element sets and at least one three element set.

In fact we have a very general impossibility result:

Theorem 9. There does not exist a regular social choice function g with 1 <
kmin (g) < kmax (g) that is strategy-proof with respect to a D that supports leximin.

Proof. We will assume there does exist ag satisfying all the requirements of the
theorem and derive a contradiction. We first show that the existence of such ag
implies the existence of a ruleh that also has those properties but whereh has
a very simple range. FromXg, the range ofg, select a setS of next-to-smallest
cardinality; i.e.,|S | > kmin (g) and there is no set inXg of cardinality intermediate
betweenkmin (g) and |S |. Let p be a fixed ordering onX\S. We now construct
a regular and strategy-proof ruleh that contains sets of only two cardinalities.
Given any profileu on S , construct profileu∗ on X by the rules:

(i) u∗ = u∗(S );
(ii) u∗ | S = u | S ;
(iii) u∗ | (X\S ) = (p, p, . . . , p).

g(u∗) ⊆ S by Lemma 2, so we may define a social choice functionh on S by

h(u) = g(u∗).

Then h is strategy-proof with respect toD |S since g is strategy-proof with
respect toD . Let T be any subset ofS of cardinalitykmin (g). By the regularity
assumption, there exists a profiler such thatg(r) = T . By Lemma 1,g(r(S )) = T .
Let r∗ be constructed so that

(i) r∗ = r∗(S );
(ii) r∗ | S = r | S ;
(iii) r∗ | (X\S ) = (p, p, . . . , p).
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By a standard sequence argument,g(r∗) = T . But then if u isr∗ restricted to
S , h(u) = T . A similar argument showsS to be in the range ofh. Thus for
Theorem 9, it is sufficient to prove the following lemma.

Lemma 10. There does not exist a regular social choice function g with 1 <
kmin (g) < kmax (g) such that either g(r) = X or |g(r)| = kmin (g) where g is strategy-
proof with respect to a D that supports leximin.

Proof.
Step 1. We are first going to establish that some individual has substantial power
on a subdomain ofg. For eachx ∈ X , considergx , the restriction ofg to those
profiles in which everyone hasx at their bottom. By Lemma 2,gx (r) ⊆ X\{x}
and so by our range assumption,|gx (r)| = kmin (g) for all r . gx is regular because
for every setV ⊆ X\{x} with |V | = kmin (g), there is a profiler with x at
everyone’s bottom andr(V ) = r . Thengx (r) = V . D |(X\{x}) supports leximin
on X\{x} since D supports leximin onX . gx is strategy-proof with respect
to D |(X\{x}) sinceg is strategy-proof with respect toD . By Theorem 5 of
the previous section,gx has a dictator,i (x ). Observe that ifkmin (g) = m − 1,
everyone is a dictator forgx . Accordingly we will defer until Step 5 the case
wherekmin (g) = m − 1; through Step 4,m > kmin (g) + 1. In this case, the dictator
for gx is unique and is labeledi (x ).

Step 2. We now show that the same individual dictates eachgx ; i.e., for all x , y
in X , i (x ) = i (y). It is useful to break our analysis into two cases:

(I) kmax (g) > kmin (g) + 2;
(II) kmax (g) = kmin (g) + 2

We start with (I) first and treat (II) in Step 3. To showi (x ) = i (y), we suppose
i (x ) /= i (y) and seek a contradiction. Without loss of generality,i (x ) = 1 and
i (y) = 2. Sincem > kmin (g) + 2, we can find a setS of cardinalitykmin (g) + 1 in
X\{x , y}. Let p be a strong order onS , let q be a strong order onX\({x , y}∪S ),
and construct profiles

r : 1 : pqxy r∗ : 1 : pqxy
2 : p−1qyx 2 : p−1qyx

i > 2 : pqyx i > 2 : pqxy

where p−1 is p reversed. Nowg(r) = p[1 : kmin (g)] since individual 1 could
force that by switchingx and y . Consider the standard sequence fromr to r∗.
We haver = r0 = r1 = r2. Supposeg(rj ) = g(r). Theng(rj+1) = g(r): If j < 2
then rj+1 = rj . If j ≥ 2 theng(rj+1) = g(rj ), or j + 1 would manipulate atrj+1.
Therefore,g(r∗) = g(rn ) = g(r) by induction. Buti (y) = 2, so person 2 can get
p−1[1 : kmin (g)] at r∗ just by modifyingr∗(2) by slidingy to the bottom of his
reported preference ordering. Therefore,i (x ) = i (y) for all x , y .

Step 3. Now we turn to Case (II):kmax (g) = kmin (g) + 2. We first establish the
result for n = 2 and then extend it to the general case. So for the moment, the
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collection of individuals is just{1, 2}. Supposei (x ) /= i (y) say i (x ) = 1 and
i (y) = 2; whereX = {a, b, c, d , . . . , j , k , x , y}. Without loss of generality, also
i (a) = 1. Consider

r1 : 1 : abc . . . jkxy
2 : bc . . . jkxay

g(r1) = {b, c, . . . , j , k , x} becausei (y) = 2.

r2 : 1 : bc . . . jkayx
2 : bc . . . jkxay

y /∈ g(r2) or individual 2 bringsx to bottom and gets{a, b, c, . . . , j , k} because
i (x ) = 1, and{a, b, c, . . . , j , k} is better for individual 2 than anything containing
y . At r1, the leximin extension of individual 1’s ordering ranks the set chosen
there,{b, c, . . . , j , k , x}, lowest among all thekmin (g) element sets not containing
y . Hence, ifg(r2) /= {b, c, . . . , j , k , x}, individual 1 would manipulate fromr1

to r2. Therefore,g(r2) = {b, c, . . . , j , k , x}.

r3 : 1 : bc . . . jkayx
2 : bc . . . jkxya

At r3, {b, c, . . . , j , k , x} = g(r2) is individual 2’s highest ranked set (under lex-
imin) of cardinality kmin (g); if that weren’t the choice set atr3, individual 2
would manipulate tor2; so g(r3) = {b, c, . . . , j , k , x}.

r4 : 1 : bc . . . jkyxa
2 : bc . . . jkxya

g(r4) = {b, c, . . . , j , k , y} by i (a) = 1. At r3, individual 1 prefersg(r4) to g(r3) =
{b, c, . . . , j , k , x}; henceg is manipulable by individual 1 atr3. Hencei (x ) = i (y)
for all x , y .

We now use this result forn = 2 to extend the conclusion to generaln.
So suppose that for n individuals there exists a regular strategy-proofg with
kmax (g) = kmin (g) + 2 such thati (x ) /= i (y); say i (x ) = 1 andi (y) = 2. Define a
rule h for two individuals based ong:

h(p, q) = g(p, q , q , . . . , q).

Then clearlykmin (h) = kmin (g) and h is regular (just put an arbitrary set of
cardinalitykmin (g) at the top of bothp andq). For h, i (x ) = 1 andi (y) = 2, since
that is true forg. Supposeh is manipulable. If it is manipulable by individual
1, g is immediately seen to be manipulable by individual 1. So we assumeh is
manipulable by individual 2; i.e., there arep, q , andq∗ with individual 2 ranking

h(p, q∗) = g(p, q∗, q∗, . . . , q∗).

above

h(p, q) = g(p, q , q , . . . , q).
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in the leximin extension ofq . But then in the standard sequence fromr =
(p, q , q , . . . , q) to r∗ = (p, q∗, q∗, . . . , q∗), there must be a j such thatg(rj+1) is
ranked aboveg(rj ) in the leximin extension ofq which meansg is manipulable
by j at rj . Hence strategy-proofness ofg implies strategy-proofness ofh which
we have shown is impossible ifi (x ) /= i (y). Hencei (x ) = i (y) for all x , y ; without
loss of generality, we assumei (x ) = i (y) = individual 1.

Step 4. Now we show that individual 1’s power extends beyond the profiles on
which everyone has the same last element; individual 1 dictates at every profile:
That is, we will show thatg(r) = r(1)[1 : kmin (g)] at arbitrary profiler .

Let z = r(1)[m], individual 1’s bottom alternative, and letr∗ = r(X\{z}),
i.e., bring z to the bottom of everyone’s ordering, whereg(r∗) = r∗(1)[1 :
kmin (g)] = r(1)[1 : kmin (g)], and consider the standard sequence fromr∗ to r .
z /∈ g(r0) = g(r∗). If z /∈ g(ri ), then z /∈ g(ri+1) or g would be manipulable
by i + 1 at ri+1. Sincer(i )|(X\{z}) = r∗(i )|(X\{z}), the leximin extensions of
r(i ) and r∗(i ) order g(ri ) and g(ri+1) the same way. So ifg(ri ) /= g(ri+1), g is
manipulable. Thereforeg(ri ) = g(ri+1) for all i . But theng(r) = g(rn ) = g(r0) =
g(r∗) = r(1)[1 : kmin (g)].

Step 5. Having completed all three steps for the case wherem > kmin (g) + 1, we
must deal with the possibility thatm = kmin (g)+1. Sokmax (g) = m, kmin (g) = m−1,
and the range ofg consists ofX and all subsets ofX of cardinalitym −1. We first
establish that ifg is strategy-proof with respect to aD that supports leximin,
theng(r) = X only if for every x ∈ X there exists ani such thatr(i )[1] = {x}.

Supposeg(r) = X , but that there is an alternativex such thatr(i )[1] /= {x}
for any individuali . Let r∗ be the profiler(X\{x}) that looks liker except that
x is brought to the bottom of everyone’s ordering.g(r∗) ⊆ X\{x} by Lemma 2
and sog(r∗) = X\{x} sincekmin (g) = m − 1. Construct the standard sequence
from r to r∗ and let j be the largest integer such thatg(rj ) = X . Almost every
subset ofX of cardinalitym −1 is preferred atr by j +1 to X . If any such subset
were g(rj+1), then g would be manipulable by j+1 atrj . The only exception,
the only subset of cardinalitym − 1 that isnot preferred toX by j + 1 at rj is
r(j + 1)[2 : m]. Henceg(rj+1) = r(j + 1)[2 : m]. But since{x} /= r(j + 1)[1],
r∗(j + 1)[2 : m] = r(j + 1)[2 : m]. But with g(rj+1) = r∗(j + 1)[2 : m], g is
manipulable atrj+1 by j + 1 who prefersX = g(rj ) to g(rj+1).

As an easy corollary to this step we have confirmed Lemma 10 for the case
n < m:

If n < m = kmax (g), there does not exist a regular social choice function g
with kmin (g) = m − 1 that is strategy-proof with respect to a D that supports
leximin.

Step 6. We now extend this non-existence claim to cases withn ≥ m. Our proof
will be by induction onn and in this step we carry out the basis argument for
the induction:

With m = n = kmax (g), there does not exist a regular social choice function
g with kmin (g) = m − 1 that is strategy proof with respect to a D that supports
leximin.
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Let r be a profile withg(r) = X = {x1, x2, . . . , xm}. By Step 5, every alterna-
tive must be at someone’s top. Without loss of generality (we can just re-label
alternatives), we assume{xi } = r(i )[1].

Let r∗ be the same asr except (possibly) that, for each individual, alternatives
ranked second through last are ordered by subscript:

r∗(i ) : xi x1x2 . . . xi−1xi+1 . . . xm−1xm .

If g(r∗) /= X then |g(r∗)| = m − 1. In that case, construct the standard sequence
from r to r∗. Let j be the largest integer such thatg(rj ) = X . Then | g(rj+1) |=
m −1. But atr , individual j +1 prefers all but one of the (m −1)-element subsets
to X . So g(rj+1) must ber(j + 1)[2 : m]. But r∗(j + 1)[2 : m] = r(j + 1)[2 : m],
so g must be manipulable byj + 1 at rj+1. Sog(r∗) = X .

Now constructr ′ from r∗ by loweringxm in individualm ’s ordering to second
place:

r ′ : 1 : x1x2x3 . . . xm−1xm

2 : x2x1x3 . . . xm−1xm

� �
m − 1 : xm−1x1x2 . . . xm−2xm

m : x1xmx2 . . . xm−2xm−1

By Step 5,| g(r ′) |= m − 1. But the onlyk -element set individualm doesn’t
prefer to X at r∗ to X is r∗(m)[2 : m]. Thereforeg(r ′) = r∗(m)[2 : m] =
{x1, x2, x3, . . . , xm−2, xm−1}.

Since atr ′, individual m − 1 is getting his most preferredk -element set, any
rearrangement within his topk alternatives must leave the choice unchanged.
Hence alsog(r ′′) = {x1, x2, x3, . . . , xm−2, xm−1} at

r ′′ : 1 : x1x2x3 . . . xm−1xm

2 : x2x1x3 . . . xm−1xm

� �
m − 1 : x1x2 . . . xm−2xm−1xm

m : x1xmx2x3 . . . xm−2xm−1

Now go back tor∗ and constructr∗∗ by lowering xm−1 in individual m − 1’s
ordering to next-to-last place:

r∗∗ : 1 : x1x2x3 . . . xm−1xm

2 : x2x1x3 . . . xm−1xm

� �
m − 1 : x1x2 . . . xm−2xm−1xm

m : xmx1x2 . . . xm−2xm−1

By Step 5, | g(r∗∗) |= m − 1. But the only (m − 1)-element set individual
m − 1 doesn’t prefer atr∗ to X is r∗(m − 1)[2 : m]. Therefore g(r∗∗) =
{x1, x2, x3, . . . , xm−2, xm}.
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Now notice that r∗∗ and r ′′ differ only in the ordering for individual
m. At r ′′, individual m prefersg(r∗∗) = {x1, x2, x3, . . . , xm−2, xm} to g(r ′′) =
{x1, x2, x3, . . . , xm−2, xm−1}. Therefore,g is manipulable by m atr ′′.

Step 7. This is the induction stage of our argument. Suppose Lemma 10 is true
for n = n∗ and we wish to prove it forn∗+1. Letr be a profile at whichg(r) = X .
By Step 5, every alternative must be at someone’s top. Sincen∗ + 1 > m, some
alternative must be at the top for two individuals. Without loss of generality,
assumer(n∗)[1] = r(n∗ + 1)[1]. Constructr∗ as follows:

(1) r∗(i ) = r(i ) for i � n∗;
(2) r∗(n∗ + 1) = r∗(n∗) = r(n∗).

Theng(r∗) = X or g will be manipulable atr∗ if g(r∗) = r(n∗ + 1)[2 : m], and
at r otherwise.

Consider the restrictiong∗ of g to profiles where the orderings for individuals
n∗ andn∗ + 1 are identical. By the first paragraph,X is in the range ofg∗ and
by Lemma 2, all sets of cardinalitym − 1 = kmin (g∗) are in the range ofg∗. g∗

is strategy-proof with respect toD if g is. Now define a social choice function
for n∗ individuals: at profileu = (u(1), u(2), . . . , u(n)),

h(u) = g∗(u(1), u(2), . . . , u(n∗), u(n∗)).

Thenkmax (h) = m andkmin (h) = m − 1 andh is regular. We showh is strategy-
proof. For supposeh were manipulable by individualj ′ at r ; if j ′ < n∗ there is
an j ′-variantr∗ = (r(1), . . . , r(j ′ − 1), r(j ′), r∗(j ′ + 1), . . . , r(n∗)) of r with

h(r(1), . . . , r(j ′ − 1), r∗(j ′), r(j ′ + 1), . . . , r(n∗))L(r(j ′))h(r(1), . . . ,

r(j ′ − 1), r(j ′ + 1), r(j ′), . . . , r(n∗)).

That is,

g∗(r(1), r(2), . . . , r(j ′ − 1), r∗(j ′), r(j ′ + 1), . . . , r(n∗), r(n∗))L(r(j ′))

g∗(r(1), r(2), . . . , r(j ′ − 1), r(j ′), r(j ′ + 1), . . . , r(n∗), r(n∗))

but that meansg∗ is manipulable contrary to our assumption. So it would have
to be j ′ = n∗ so

h(r(1), r(2), . . . , r∗(n∗))L(r(n∗))h(r(1), r(2), . . . , r(n∗)).

That is,g(r(1), r(2), . . . , r(j ′ − 1), r(j ′), r(j ′ + 1), . . . , r∗(n∗), r∗(n∗)) is preferred
under the leximin extension ofr(n∗) to g(r(1), r(2), . . . , r(j ′ − 1), r(j ′), r(j ′ +
1), . . . , r(n∗), r(n∗)). For this to be true, eitherg(r(1), r(2), . . ., r(j ′ − 1), r(j ′),
r(j ′ +1), . . ., r∗(n∗), r∗(n∗)) is preferred tog(r(1), r(2), . . . , r(j ′ −1), r(j ′), r(j ′ +
1), . . ., r(n∗), r∗(n∗)) or g(r(1), r(2), . . . , r(j ′ − 1), r(j ′), r(j ′ + 1), . . ., r(n∗),
r∗(n∗)) is preferred tog(r(1), r(2), . . . , r(j ′ −1), r(j ′), r(j ′ + 1), . . . , r(n∗), r(n∗))

In either case,g is manipulable; since that violates our strategy-proof assump-
tion ong, h must not be manipulable. But this violates our induction hypothesis.

��
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Remark 11. As was true with Theorem 3, this result does not assume that
the range ofg contains any sets of cardinalityk for kmin (g) < k < kmax (g),
or even more than one set of cardinalitykmax (g). Actually, we did not require
full regularity. It will be sufficient that for some setS in the range ofg, with
|S | > kmin (g), all the subsets ofS of cardinalitykmin (g) are in the range ofg.

But we do need some degree of regularity. Consider the rule

g(r) = {a, b} ∪ r(1)[1].

The range ofg consists of{a, b} and all three element supersets of{a, b}. g is
strategy-proof with respect to leximin. Of course, this rule still represents a poor
trade-off since it is independent of the preferences of all but one individual. It is
possible to construct non-regular rules that select just sets of cardinality two or
three that are strategy-proof with respect to leximin but for whicheveryone has
a say. As an example, supposeg(r) = {a, b} unless atr everyone hasc as their
top-most alternative, theng(r) = {a, b, c}. Of course this rule has an extremely
constrained set of outcomes.

Remark 12. Theorem 9 is much stronger in its conclusion than most Gibbard-
Satterthwaite type results; there isn’t even a “dictatorial” exception.

Remark 13. As with Theorem 3, Theorem 9 will not work if we modify it by
replacing leximin by leximax. Consider the following ruleg: If, at r , everyone
has the same top two elements, theng(r) is the set containing those two elements;
otherwiseg(r) = X . This rule is manipulable with respect to aD that supports
leximin. But, if everyone uses leximax, this rule is strategyproof.

Remark 14. Although it has nothing to do with “social” choice, even withn = 1,
there does not exist any regular social choice functiong with 1 < kmin (g) <
kmax (g) that is strategy-proof with respect to aD that supports leximin. For
supposer is a “profile”, r(1), at whichg(r) has cardinalitykmax (g). Let r∗(1)
be a “profile” at whichg(r∗) = r(1)[1 : kmin (g)]. Then atr , individual 1 would
manipulate by submittingr∗(1).

6 Conclusion

We say that a ruleg is oligarchical if there is a coalitionH ⊆ N such that for
every profiler we haveg(r) = ∪i∈H {Y ∈ Xg: no member ofXg ranks aboveY
in the leximin extension ofr(i )}. Theorems 3, 5 and 9 together establish that if
g is regular and strategy-proof with respect to aD that supports leximin theng
is oligarchical. The converse is not true, because strategy-proofness puts severe
restrictions on the range ofg. We know that if the range ofg does not contain
all singleton subsets ofX , but it is strategy-proof and regular, then there is an
individual i and a positive integerk such thatg(r) = r(i )[1 : k ] at every profile
r .
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