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Abstract
Summary The novel metaPGS, integrating multiple fracture–related genetic traits, surpasses traditional polygenic scores in 
predicting fracture risk. Demonstrating a robust association with incident fractures, this metaPGS offers significant potential 
for enhancing clinical fracture risk assessment and tailoring prevention strategies.
Introduction Current polygenic scores (PGS) have limited predictive power for fracture risk. To improve genetic prediction, 
we developed and evaluated a novel metaPGS combining genetic information from multiple fracture–related traits.
Methods We derived individual PGS from genome-wide association studies of 16 fracture-related traits and employed an 
elastic-net logistic regression model to examine the association between the 16 PGSs and fractures. An optimal metaPGS 
was constructed by combining 11 significant individual PGSs selected by the elastic regularized regression model. We evalu-
ated the predictive power of the metaPGS alone and in combination with clinical risk factors recommended by guidelines. 
The discrimination ability of metaPGS was assessed using the concordance index. Reclassification was assessed using net 
reclassification improvement (NRI) and integrated discrimination improvement (IDI).
Results The metaPGS had a significant association with incident fractures (HR 1.21, 95% CI 1.18–1.25 per standard deviation 
of metaPGS), which was stronger than previously developed bone mineral density (BMD)-related individual PGSs. Models 
with PGS_FNBMD, PGS_TBBMD, and metaPGS had slightly higher but statistically non-significant c-index than the base 
model (0.640, 0.644, 0.644 vs. 0.638). However, the reclassification analysis showed that compared to the base model, the 
model with metaPGS improves the reclassification of fracture.
Conclusions The metaPGS is a promising approach for stratifying fracture risk in the European population, improving 
fracture risk prediction by combining genetic information from multiple fracture–related traits.

Keywords Disease and disorders of/related to bone · Fracture risk assessment · Genetic research · Human association 
studies · Osteoporosis

Introduction

Osteoporosis is a bone disease that develops when bone min-
eral density (BMD) and bone mass decrease or when the 
structure and strength of bone change. This can increase sus-
ceptibility to fractures, especially in the hip, spine, and wrist 
[1]. Osteoporotic fractures can lead to significant morbidity, 
mortality, and healthcare expenses [2], with an estimated 2 
million cases and $19 billion in costs annually in the United 
States alone [3, 4]. Given the global aging population, the 
incidence of osteoporosis is projected to increase [5], under-
scoring the importance of early identification of individuals 
at high risk of primary fractures.

The risk of osteoporotic fracture has a high heritability, with 
genetic liability up to 46% [6]. Genetic factors substantially 
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contribute to fracture risk [7]. Genome-wide association stud-
ies (GWAS) over the past decade have identified single nucle-
otide polymorphisms (SNPs) associated with bone strength-
related traits [7]. Around 43 genomic loci and thousands of 
SNPs are robustly associated with fractures [8], and many 
more genetic associations have been reported for fracture-
related traits/risk factors [9–11].

Bone mineral density (BMD) is the most critical predictor of 
osteoporosis and fracture [12]. Polygenic score (PGS) derived 
from GWAS summary statistics for BMD has been used to 
quantify an individual’s genetic liability to fractures [13–17]. 
Previous studies have highlighted the potential of BMD-related 
PGS for risk prediction of fracture [13, 14]. Nevertheless, the 
clinical utility of PGS in fracture prediction is limited, with a 
marginal additive effect of PGS on clinical factors.

A multi-PGS extension, metaPGS, has been developed to 
improve predictive performance by combining multiple PGSs 
into one score [18]. It has been applied to many other complex 
diseases and was proven to significantly increase the predic-
tive accuracy of coronary artery disease [18], ischemic stroke 
[19], type 2 diabetes [20], and breast cancer [21]. In fracture 
prediction, an individual’s estimated genetic propensity was 
typically derived based on the GWAS summary statistics of a 
single trait, BMD. Considering that fragility fracture is a mul-
tifactorial disease influenced by various physiological factors 
beyond BMD [22], PGS depending on only one trait may not 
be sufficient to capture the genetic components of fracture. If 
a particular disease/trait is causally involved in the etiology 
of fracture, the PGS for that disease/trait as a genetic proxy 
should predict fracture occurrence, and a metaPGS may be 
particularly useful in fracture prediction. Integrating genetic 
information of multiple fracture–related traits into metaPGS 
can improve predictive accuracy.

Therefore, this study aimed to develop and validate a multi-
trait metaPGS to integrate genetic information of multiple frac-
ture–related traits to improve predictive accuracy. To evaluate 
the predictive value of metaPGS beyond the currently avail-
able fracture prediction tool, we examined the potential clinical 
use of metaPGS beyond the existing fracture risk assessment 
tool (FRAX), an algorithm predicting 10-year probabilities of 
major osteoporotic fracture (MOF) and hip fracture (HF) based 
on 12 clinical risk factors [23]. By improving the accuracy 
of genetic risk prediction for osteoporotic fractures, metaPGS 
could aid in identifying high-risk individuals and implement-
ing preventive measures.

Methods

Study cohort

The UK Biobank (UKB) is a large-scale population-based 
observational study comprising 502,617 individuals aged 

between 40 and 69 years who were recruited from the UK 
between 2006 and 2010 [24]. A standardized socio-demo-
graphic questionnaire, medical history, and other lifestyle 
factors were collected at recruitment. Individual records 
were linked to the Hospital Episode Statistics (HES) records 
and the national death and cancer registries as the underlying 
genetic models were developed and trained primarily using 
European ancestry samples, including individuals of white 
British ancestry in the current study, allowed for a better 
representation of the genetic architecture in that population, 
and resulted in more accurate predictions. Thus, the current 
study only included individuals of white British ancestry to 
examine a relatively homogeneous group.

Fracture events ascertaining

Fracture cases were identified using the baseline question-
naire of self-reported fracture incidents fractures within 
the past 5 years. Hospital Episode Statistics are linked 
through NHS Digital with a hospital-based fracture diag-
nosis irrespective of mechanism within the primary or sec-
ondary diagnosis field (Supplementary Table 1). All the 
incident fracture cases were identified through the hospital 
episode statistics. Fractures of the skull, face, hands, and 
feet, pathological fractures due to malignancy, atypical 
femoral fractures, and periprosthetic and healed fractures 
were excluded from the analysis. Based on the date of the 
ICD-10 record, fractures sustained after the initial assess-
ment visit were defined as incident cases (n = 13,623).

Data processing and quality control

A total of 488,251 participants were genotyped using Affy-
metrix arrays [25]. The genotype data were quality con-
trolled and additionally imputed using the Haplotype Ref-
erence Consortium (HRC) [26] and the UK10K haplotype 
resources, yielding a total of 96 million imputed variants. 
SNPs with minor allele frequency less than 0.1% and SNPs 
that are missing in a high fraction of subjects (> 0.01), 
Hardy–Weinberg equilibrium p value > 1 × 10−6 . Individ-
uals with a high rate of genotype missingness (> 0.01) 
were excluded from PGS construction. A total of 450,395 
individuals and 11.5 million variants passed the quality 
control standards and remained for subsequent analysis.

Individual PGS tuning

GWAS summary statistics were available for 16 complex 
traits/diseases related to fracture risk. PGSs were generated 
with the estimated effect sizes from the most recent litera-
ture on large GWAS (Supplementary Table 2). To minimize 



1419Osteoporosis International (2024) 35:1417–1429 

the risk of over-fitting due to overlapping samples between 
the GWAS discovery set and the UKB validation set, the 
selected GWAS did not include UKB samples. GWASs for 
femoral neck BMD [27], total body BMD [28], hand grip 
strength (HGS) [9], appendicular lean mass (ALM) [10], 
whole body lean mass (WBLM) [10], vitamin D (VD) [11], 
serum calcium concentration (SCC) [29], homocysteine 
(HC) [30], thyroid stimulating hormone level (TSH) [31], 
fasting glucose (FG) [32], fasting insulin (FI) [32], type 1 
diabetes (T1D) [33], type 2 diabetes (T2D) [34], rheuma-
toid arthritis (RA) [35], inflammatory bowel disease (IBD) 
[36], hip bone size (HBS) [37], and coronary artery disease 
(CAD) [38] were selected for individual PGS derivation.

We randomly selected 1000 fracture cases and 2000 non-
fracture cases for individual PGS tuning. Based on GWAS 
summary statistics of 16 fracture-related phenotypes and 
a linkage disequilibrium reference panel of 503 European 
samples from 1000 Genomes (phase 3, version 5), a set 
of candidate PGSs was derived for each phenotype/trait 
using the Pruning and Thresholding (P + T) method and the 
LDPred2 computational algorithm [39].

Using the P + T method, 24 candidate PGSs were calcu-
lated with combinations of p value (1.0, 0.5, 0.05, 5 ×  10−4, 
5 ×  10−6, and 5 ×  10−8) and r2 (0.2, 0.4, 0.6, and 0.8) thresh-
olds for each trait. The LDPred2 computational algorithm 
grid mode was used to generate seven candidate PGSs based 
on seven hyper-parameter values of ρ (1, 0.3, 0.1, 0.03, 0.01, 
0.003, and 0.001). The PGS construction was restricted to 
the HapMap3 variants only, as LDpred2 suggested [29].

For each of the 16 phenotypes, 31 candidate PGS were 
derived for each individual in the UKB tuning set. The risk 
of fractures increases with age due to the weakening of 
bones. Women are at higher risk for osteoporosis-related 
fractures than men; the association between each PGS and 
the fracture was further evaluated in terms of odds ratios 
(OR) per standard deviation of PGS using logistic regression 
adjusted for age, sex, and BiLEVE/UKB genotyping array 
and the first four principal components (PCs). The most opti-
mal model for the largest magnitude odds ratio was selected 
as the one representative PGS for each trait and carried for-
ward into subsequent analyses.

Derivation of the metaPGS

Each representative PGS determined from the previous step 
was standardized to have a zero mean and unit standard devi-
ation. We then split the remaining UKB European ancestry 
dataset into a training set (n = 135, 119) and a testing set 
(n = 315,276). Using the UKB training set, we employed 
elastic-net logistic regression [40] to model the association 
between the 16 PGSs and fracture, adjusting for age, sex, and 
the first four PCs. A range of models with different penal-
ties was evaluated using tenfold cross-validation. Regarding 

the highest area under the receiving-operating characteris-
tic curve (AUC), the best model was selected as the final 
model to generate metaPGS and held fixed for validation in 
the UKB testing set. The metaPGS was calculated using a 
weighted average of the standardized individual PGSs:

where PGSi1,…,PGSi16 are the 16 zero mean and unit vari-
ance standardized PGSs for the i th individual; �1,…,�19 are 
the coefficients (log odds ratio) for each of the 16 PGSs 
(Fig. 1).

Statistical analyses

The demographic and clinical characteristics of the UKB 
testing set were described using mean and standard deviation 
(SD) for continuous variables and the frequency and percent 
for categorical variables. The primary outcome of this study 
was incident fractures. All PGSs in the UKB testing set 
were standardized to facilitate interpretability to have unit 
variance. To illustrate the different cumulative incidences 
of fracture in individuals with distinct genetic predisposi-
tions, we grouped individuals according to different quantile 
ranges of metaPGS: ≤ 1%, 1–5%, 5–20%, 20–40%, 40–60%, 
60–80%, 80–95%, 95–99%, and > 99%. The cumulative inci-
dence of fracture by metaPGS groups was then derived using 
the cumulative incidence function (CIF), with the competing 
mortality risk accounted for.

The separate prediction of each of the 16 trait-specific 
PGSs was examined by fitting a series of simple logistic 
regression models. To account for multiple testing across the 
individual PGSs tested in separate logistic regression models 
(single-PGS models), we used 10,000 permutations to find 
the significance threshold to control the false discovery rate 
p values. Using the UKB training set, we employed elastic-
net logistic regression [40] to model the association between 
the 16 PGSs and fracture, adjusting for age, sex, and the 
first four PCs. Based on significant individual PGSs selected 
from the elastic regularized regression model, metaPGS was 
derived for each individual in the UKB testing set. Two pre-
viously developed BMD-related PGSs (PGS_FNBMD [13] 
and PGS_TBBMD [16]) were also included in the subse-
quent analysis for comparison purposes.

All scores (PGS_FNBMD, PGS_TBBMD, and 
metaPGS) were evaluated using logistic regression and 
Cox proportional hazard regression. The performance of 
models with and without PGSs in identifying individu-
als at risk of sustaining a fracture was evaluated using 
the AUC and tested for statistical significance using the 
Delong test. Additionally, we examined the fracture inci-
dence according to the PGS category in the UKB testing 

PGS
meta

i
=

�1PGSi1 +⋯ + �16PGSi16

�1 +⋯ + �16
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set. We compared the effect of top percentiles (1%, 5%, 
10%, and 20%) with the remaining percentiles (99%, 95%, 
90%, and 80%) of each PGS using Cox proportional haz-
ard models. All regression models were controlled for age, 
sex, and the first four PCs.

We also investigated the predictive value of metaPGS 
beyond the existing fracture assessment tool and compared 
its performance with two previously developed BMD-related 
PGSs (PGS_FNBMD [13] and PGS_TBBMD [16]). The 
association between each PGS with fracture risk, adjusted 

a) Deriva�on of individual PGSs

b) Deriva�on of metaPGS for fracture

c) Valida�on of the metaPGS

GWAS summary statistics for 
individual traits

UKB training set 
Genotypes +Phenotypes

Best performing PGS algorithm selected from Aim 1

Individual PGSs for each trait

PGS_FNBMD

PGS_HBS

PGS_IBDPGS_RAPGS_T2DPGS_T1D

PGS_FIPGS_FGPGS_TSHPGS_HCPGS_SCC

PGS_VDPGS_WBLMPGS_ALMPGS_HGSPGS_TBBMD

PGS_CAD

Elastic-net cross validation

metaPGS UKB testing set 
Genotypes +Phenotypes

Survival analysis

Fig. 1  Study design and workflow. a Derivation of individual PRSs in 
the UKB training set (n = 135,119) using GWAS summary statistics 
for individual traits. b The metaPGS for fracture was then derived by 
integrating individual PGSs using the elastic-net cross-validation. c 
Validation of the metaPGS for fracture will be performed in the UKB 
validation set (n = 315,276). PGS, polygenic score; FNBMD, femoral 
neck bone mineral density; TBBMD, total body bone mineral density; 

HGS, hand grip strength; ALM, appendicular lean mass; WBLM, 
whole body lean mass; VD, vitamin D; SCC, serum calcium concen-
tration; HC, homocysteine; TSH, thyroid stimulating hormone level; 
FG, fasting glucose; FI, fasting insulin; T1D, type 1 diabetes; T2D, 
type 2 diabetes; RA, rheumatoid arthritis; IBD, inflammatory bowel 
disease; HBS, hip bone size; CAD, coronary artery disease
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for the FRAX risk factors, including age, BMI, previous 
fracture, current smoking, glucocorticoids, and rheumatoid 
arthritis, was assessed using Cox proportional hazard mod-
els. The model with only FRAX risk factors was set as the 
base model. Four models were formulated: (1) Model 1—
base model; (2) Model 2—base model + PGS_FNBMD ; (3) 
Model 3—base model + PGS_TBBMD ; and (4) Model 4—
base model + metaPGS . The magnitude of the association 
between each PGS and fracture risk was assessed by the 
hazard ratio and its corresponding 95% confidence intervals. 
Model comparison was performed using the bootstraps.

In addition, net reclassification improvement (NRI) was 
adopted to compare the reclassification ability of the models 
with PGSs to those without PGS. We designated “high risk” 
as the predicted MOF risk ≥ 20% and “low risk” as the pre-
dicted MOF risk < 20%, based on the National Osteoporosis 
Foundation’s recommended fixed intervention cutoff [41]. 
The integrated discrimination improvement (IDI) was also 
calculated to incorporate both the direction of change in the 
calculated risk and the extent of change.

The estimated BMD (eBMD) calculated based on the 
quantitative ultrasound index through the calcaneus is 
available for the majority of the subjects in the UKB. Given 
that eBMD is recognized as a predictor of fracture risk, we 
sought to enhance our analysis by conducting a sensitivity 
analysis. This additional investigation aimed to provide a 
more comprehensive understanding of the impact of PGSs 
in a model that incorporates both FRAX risk factors and 
eBMD. Furthermore, we extended our sensitivity analysis to 
evaluate the predictive ability of the developed metaPGS in 
the context of non-vertebral fractures. All statistical analyses 

were conducted using R version 4.0.3 software and SAS 9.4 
(SAS Institute, Inc., Cary, NC, USA).

Results

The characteristics of the UKB testing set are shown in Sup-
plementary Table 3. The overall UKB testing set consists of 
315,276 individuals, of which 8787 were incident fracture 
cases and 306,489 were non-fracture cases. Supplementary 
Fig. 1 shows correlations between 16 individual PGSs, with 
strong correlations observed between HC and SCC, SCC 
and CAD, CAD and IBD, ALM and WBLM, T1D and TSH, 
TSH and TBBMD, TBBMD, and RA. The metaPGS was 
derived based on 11 significant individual PGSs selected 
from the elastic regularized regression model (model 
weights are shown in Fig. 2).

We assessed the crude 10-year cumulative fracture 
incidence by nine PGS groups (Fig. 3). With competing 
mortality risk accounted for, significant differences in the 
10-year fracture risk were observed across metaPGS deciles 
(p < 0.0001). The top and bottom 1% of the metaPGS showed 
a substantial difference in the cumulative fracture incidence. 
A comparison of the metaPGS with its individual compo-
nents (PGS_FNBMD and PGS_TBBMD) is shown in Fig. 4. 
Results show that metaPGS had a greater association with 
fracture risk than the two individual PGSs. All three PGSs 
were strongly associated with incident fracture (p < 0.0001), 
with an odds ratio (OR) ranging from 1.15 to 1.35. In 
comparison to the baseline model, which incorporated 
only age and sex, models augmented with PGS_FNBMD, 

Fig. 2  Associations of 16 
trait-specific PGSs with the 
fracture outcome in the UKB 
derivation set. Estimates per 
standard deviation increase of 
each individual PRS evaluated 
in logistic regression (uni-
variate) and elastic-net logistic 
regression adjusted for age and 
sex. “inactive” indicates that the 
elastic-net estimated odds ratio 
was negligible (between 0.999 
and 1.001, shown as a blue dot). 
CI, confidence interval
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PGS_TBBMD, and metaPGS demonstrated marginal 
improvements in the AUC from 0.643 to 0.647, 0.654, and 
0.654, respectively. However, these improvements were not 
deemed statistically significant. The metaPGS was associ-
ated with an incident fracture with a hazard ratio (HR) of 
1.22 (95% CI 1.19–1.27) per standard deviation of metaPGS, 
which was stronger than PGS_FNBMD (HR = 1.10, 95% 
CI 1.08–1.12) and PGS_TBBMD (HR = 1.15, 95% CI 
1.12–1.18) (Fig. 4). Using Cox proportional hazard models, 
we also assessed the HRs for the top 1%, 5%, 10%, and 20% 

decile vs. the remaining percentiles of the PGSs. The results 
showed that the bottom 1% of the population had a 1.36-fold 
(95% CI 1.15–1.61) increased fracture risk than the remain-
ing population (Supplementary Table 4).

The clinical utility of a PGS depends on its performance 
in combination with established risk factors and genetic risk 
models. Next, we evaluated the predictive value of metaPGS 
while adjusting for established risk factors. We examined 
seven FRAX risk factors available in the UKB data. As 
expected, established risk factors were positively associated 
with incident fracture, current smoking, and sex being the 
strongest risk factors (Table 1). Adjusting for these risk fac-
tors only modestly attenuated the association of the metaPGS 
with incident fracture. The metaPGS had the strongest associa-
tion with incident fracture. The HRs of PGS_FNBMD, PGS_
TBBMD, and metaPGS for incident fracture were 1.09 (95% 
CI, 1.07–1.12), 1.15 (95% CI, 1.12–1.18), and 1.21 (95% CI, 
1.18–1.25), respectively. Models with PGS_FNBMD, PGS_
TBBMD, and metaPGS had slightly higher but statistically 
non-significant c-index than the base model (0.640, 0.644, 
0.644 vs. 0.638) (Supplementary Table 5). Compared to the 
base model, the association between clinical risk factors and 
incident fracture risk did not attenuate in all four PGS models. 
The sensitivity analysis showed similar but attenuated results. 
The effect size of PGSs was attenuated in the sensitivity analy-
sis but remained statistically significant. PGS_FNBMD (HR 
1.06; 95% CI 1.03–1.09, p < 0.0001), PGS_TBBMD (HR 1.09; 
95% CI 1.05–1.11, p < 0.0001), and metaPGS (HR 1.13, 95% 
CI 1.09–1.18, p < 0.0001) were significantly associated with an 
incident fracture, with FRAX risk factors and estimated BMD 

Fig. 3  Cumulative incident function plot for fracture according to 
decile of the metaPGS in UKB testing set. Shaded regions denote 
95% confidence intervals

Fig. 4  Relative performance of 
PGS_FNBMD, PGS_TBBMD, 
and metaPGS for fracture. 
A Cox proportional hazard 
models; B multivariate logistic 
regression models. Separated 
logistic/Cox proportional hazard 
regression was conducted for 
each PGS; each estimate was 
adjusted for age, sex, and the 
first four principal components

*Separated logis�c/Cox propor�onal hazard regression was conducted for each PGS; each es�mate was
adjusted for age, sex, and the first four principal components.
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adjusted for (Supplementary Table 6). When further limited 
to non-vertebral incident fractures, the HR of PRS_FNBMD, 
PRS_TBBMD, and metaPGS were 1.05 (95% CI, 1.01–1.09), 
1.08 (95% CI, 1.04–1.12), and 1.12 (95% CI, 1.06–1.16), 
respectively (Supplementary Table 7).

In the reclassification analysis, compared to the base 
model, the models with PGS_FNBMD, PGS_TBBMD, 
and metaPGS improved the reclassification of fracture by 
0.9% (95% CI, 0.04 to 1.58%), 1.36% (95% CI, 0.52 to 
2.19%), and 1.41% (95% CI, 0.58 to 2.24%), respectively 
(Table 2). Moreover, the metaPGS showed the most remark-
able improvement in terms of reclassification. For the model 
that included metaPGS, 13,799 (6.9%) individuals were 
correctly reclassified up to the high-risk group, and 13,530 
(4.3%) individuals who did not experience a fracture were 
correctly reclassified from the high-risk group to the low-
risk group. The continuous NRI showed that improvement 
in fracture reclassification contributed by PGS_FNBMD, 
PGS_TBBMD, and metaPGS were 10.1%, 15.9%, and 
16.8%, respectively.

Discussion

The present study developed and evaluated a novel metaPGS 
for fracture risk prediction by combining genetic informa-
tion from multiple fracture–related traits. The ability of the 
metaPGS to predict fracture risk was evaluated alone and in 
combination with the clinical risk score recommended by 
guidelines. The metaPGS demonstrated a significant asso-
ciation with incident fractures, with a hazard ratio of 1.22 
per standard deviation of metaPGS, which was significantly 

more potent than previously established BMD-related indi-
vidual PGSs. The predictive power of the metaPGS was 
comparable to established risk factors such as age, body 
weight, and early menopause. Adding the metaPGS to the 
existing FRAX clinical risk factors improved the discrimi-
nation of fractures from non-fracture cases, suggesting that 
the metaPGS can help stratify fracture risk in the European 
population and develop personalized prevention strategies.

Our study contributes to using genomic information to 
stratify individuals for fracture risk. Pleiotropy, a phenom-
enon in which a single gene or genetic variant influences 
multiple traits or diseases, has been well-documented in pre-
vious research [42]. Since genetic variants can affect mul-
tiple traits simultaneously, independent PGSs for fracture 
risk are expected to overlap significantly. To overcome this 
challenge, we employed elastic net regularized regression to 
combine multiple PGSs and estimate their contributions to 
fracture risk prediction while minimizing collinearity. The 
resulting metaPGS combines genetic information from 11 
of 16 bone-related traits and disorders, resulting in a robust 
and strongly associated predictor of fracture risk.

Compared to existing individual PGSs, the new metaPGS 
showed a more significant association with fracture and a 
more remarkable risk discrimination ability. Moreover, the 
metaPGS has comparable predictive power to some estab-
lished risk factors. By combining metaPGS with the cur-
rent fracture risk assessment tool, our findings suggested 
the added value of metaPGS beyond established clinical risk 
factors. The predictive ability of metaPGS was largely inde-
pendent of established risk factors for fracture, implying that 
the metaPGS captured residual risk that was not quantified 
by the established risk factors. In addition, the results of 

Table 1  Hazard ratio for the hazard function for significant predictive variables for incident fractures in the base model and models with PGS_
FNBMD, PGS_TBBMD, and metaPGS (n = 315,279)

Separated Cox proportional hazard regression was conducted for each model; Model 1, FRAX base model contains FRAX risk factors; Model 2, 
FRAX base model + PGS_FNBMD ; Model 3, FRAX base model + PGS_TBBMD ; Model 4, FRAX base model+ metaPGS. Significant results 
are in boldface

Variable Model 1 
Base model
HR per 1 unit (95% CI)

Model 2 
Base model + PGS_FNBMD
HR per 1 unit (95% CI)

Model 3 
Base model + PGS_
TBBMD
HR per 1 unit (95% 
CI)

Model 4 
Base model + metaPGS
HR per 1 unit (95% CI)

Age 1.03 (1.02–1.03) 1.03 (1.02–1.03) 1.03 (1.02–1.03) 1.03 (1.02–1.03)
Sex (women vs. men) 1.79 (1.71–1.88) 1.79 (1.71–1.88) 1.78 (1.70–1.87) 1.79 (1.71–1.87)
BMI 0.96 (0.95–0.96) 0.96 (0.95–0.96) 0.96 (0.95–0.96) 0.96 (0.95–0.96)
Oral glucocorticoid 0.93 (0.70–1.24) 0.93 (0.70–1.24) 0.92 (0.69–1.23) 0.92 (0.69–1.23)
Type 1 diabetes 1.61 (1.35–1.89) 1.61 (1.35–1.89) 1.59 (1.33–1.89) 1.58 (1.35–1.85)
Early menopause 1.24 (1.16–1.32) 1.24 (1.16– 1.31) 1.23 (1.16–1.31) 1.23 (1.16–1.31)
Rheumatoid arthritis 0.98 (0.89–1.09) 0.98 (0.89–1.09) 0.98 (0.89–1.09) 0.99 (0.89–1.09)
Current smoking 1.65 (1.54–1.76) 1.65 (1.54–1.76) 1.65 (1.54–1.75) 1.65 (1.54–1.75)
PGS NA 1.09 (1.07–1.12) 1.15 (1.12–1.18) 1.21 (1.18–1.25)
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reclassification analyses indicated that combining metaPGS 
with the FRAX risk factors improved discriminating frac-
tures and non-fracture cases. Its fracture risk reclassification 
is better than the two previously developed BMD-related 
PGSs [43].

There are several limitations worth mentioning. Notably, 
the predictive performance of the metaPGS for fracture is 
limited when compared with certain diseases, such as CAD 
[18]. The reasons could be that fragility fracture is more 
heterogeneous than other diseases and that the GWAS sam-
ple size for mechanistically defined fracture is also limited. 
Also, our investigation focused on fractures reported by 
participants and the electronic health records, potentially 
leading to an underrepresentation of asymptomatic verte-
bral fractures. This limitation is noteworthy and likely plays 
a role in the comparatively lower predictive performance 
of the metaPGS for fractures. Furthermore, the sample size 
of older individuals (> 75 years) in the UKB is relatively 
small, limiting our ability to model fracture risk in the age 
strata where most events occur. Furthermore, the duration 
of follow-up in UKB is relatively limited. Because of the 
limited covariates available in the UKB, we could not assess 
the predictive value of the metaPGS beyond the full FRAX 
model. Moreover, as the metaPGS was derived and tested 
primarily in individuals of European ancestry, it may not 
have equivalent predictive power for other ethnic groups 
due to variations in allele frequencies, linkage disequilib-
rium patterns, and effect sizes of common polymorphisms 
across different ancestries. The absence of a family history 
of fracture in the UKB precluded an examination of whether 
the association of the metaPGS with fracture risk is influ-
enced by familial factors. Finally, we only used a partial of 
the risk factors included in FRAX and did not calculate the 
FRAX estimate. Therefore, the effect of metaPGS beyond 
the FRAX may not be sufficiently adjusted.

Our study developed and evaluated a novel approach 
for fracture risk prediction, the metaPGS, which combines 
genetic information from multiple fracture–related traits. 
Despite challenges in phenotypic heterogeneity and GWAS 
power, our study presents a powerful fracture genomic risk 
score to date. It assesses its potential for risk stratification 
in the context of established risk factors and clinical guide-
lines. The metaPGS provides added value to established 
clinical risk factors and has potential clinical utility for per-
sonalized prevention strategies. However, it is imperative 
to acknowledge the possibility of cases falling outside the 
predictive scope of our model. Predictive models, including 
the metaPGS, inherently have limitations, and our findings 
suggest that not all fracture cases were accurately predicted. 
Future research endeavors could focus on incorporating 
additional variables, refining genetic markers, or explor-
ing alternative methodologies to address these limitations. 
Future studies should also validate the metaPGS in other Ta
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populations and evaluate its clinical utility. The metaPGS 
is a promising approach for fracture risk prediction that 
overcomes the limitations of single PGSs and represents a 
significant step towards using genomic information to help 
stratify individuals for fracture risk.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00198- 024- 07105-5.
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