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Abstract

Summary This feasibility study investigated the spatial heterogeneity of the lumbar vertebral bone marrow using chemical shift
encoding—based water-fat MRI. Acquired texture features like contrast and dissimilarity allowed for differentiation of pre- and
postmenopausal women and may serve as imaging biomarkers in the future.

Introduction While the vertebral bone marrow fat using chemical shift encoding water-fat magnetic resonance imaging
(MRI) has been extensively studied, its spatial heterogeneity has not been analyzed yet. Therefore, this feasibility study
investigated the spatial heterogeneity of the lumbar vertebral bone marrow by using texture analysis in proton density fat
fraction (PDFF) maps.

Methods Forty-one healthy pre- and postmenopausal women were recruited for this study (premenopausal (n = 15) 30 £ 7 years,
postmenopausal (n =26) 65 + 7 years). An eight-echo 3D spoiled gradient echo sequence was used for chemical shift encoding—
based water-fat separation at the lumbar spine. Vertebral bodies L1 to LS were manually segmented. Mean PDFF values and
texture features were extracted at each vertebral level, namely variance, skewness, and kurtosis, using statistical moments and
second-order features (energy, contrast, correlation, homogeneity, dissimilarity, entropy, variance, and sum average). Parameters
were compared between pre- and postmenopausal women and vertebral levels.

Results PDFF was significantly higher in post- than in premenopausal women (49.37 + 8.14% versus 27.76 + 7.30%, p < 0.05).
Furthermore, PDFF increased from L1 to L5 (L1 37.93 + 12.85%, L2 38.81 + 12.77%, L3 40.23 £ 12.72%, L4 42.80 + 13.27%, L5
45.21 = 14.55%, p <0.05). Bone marrow heterogeneity based on texture analysis was significantly (p <0.05) increased in
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postmenopausal women. Contrast and dissimilarity performed best in differentiating pre- and postmenopausal women (AUC = 0.97
and 0.96, respectively), not significantly different compared with PDFF (AUC =0.97).

Conclusion Conclusively, an increased bone marrow heterogeneity could be observed in postmenopausal women. In the future,
texture parameters might provide additional information to detect and monitor vertebral bone marrow alterations due to aging or

hormonal changes beyond conventional anatomic imaging.

Keywords Bone marrow - Magnetic resonance imaging - Osteoporosis - Spine - Texture

Introduction

The non-mineralized part of the bone consists of the red
and yellow bone marrow, which cover endocrine and he-
matopoietic functions and differ in respects of composition
and vascularization [1, 2]. The quantitative composition of
bone marrow has been assessed using single-voxel proton
magnetic resonance spectroscopy (MRS) and chemical
shift encoding-based water-fat magnetic resonance imag-
ing (MRI). This allows for calculating surrogate parameters
like proton density fat fraction (PDFF) and with MRS the
identification of the chemical structure of fatty acids and
their magnitude [3-5].

In aging and due to pathophysiological changes associ-
ated with endocrine or metabolic diseases like osteoporosis
and type 2 diabetes, vertebral bone marrow alterations with
shifts towards greater bone marrow adiposity and lower
unsaturation levels were observed [6—8]. Decreasing bone
mineral density (BMD) clinically represents an issue which
can be detected in a characteristic distribution pattern in the
elderly and people suffering from osteoporosis but also due
to neoplastic diseases [9]. To evaluate the fracture risk as-
sociated with bone mineral loss, Dual Energy X-
Absorptiometry (DXA) poses the preferred technique in a
clinical setting. However, this method has inherent limita-
tions. DXA is prone to confounding effects like local ex-
cessive fat tissue deposition and by inadequate assessment
of local density inhomogeneities [10, 11]. Moreover, it has
been shown that a high percentage of vertebral fractures
occur in individuals not classified as osteoporotic or
osteopenic according to DXA measurements [12]. MRI of-
fers the possibility to investigate on spatial changes in bone
marrow composition by detecting fat content and depicting
tissue structure quantitatively [13, 14]. Thus, it enables the
investigator to calculate subtle changes in vertebral bone
marrow composition and to stratify the potential fracture
risk [13].

In the past, PDFF has been shown to be a valid biomarker
for evaluating fatty infiltration of vertebral bone marrow with
an increase from the cervical to the lumbar spine in children
and adults [4, 15]. Baum et al. [16] reported an accelerated
fatty conversion of the vertebral bone marrow in females com-
pared with males with increasing age particularly evident after
menopause. Ruschke et al. [15] showed that detectable
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changes of vertebral fat marrow content and in this way an
increase of PDFF not only occur in the adult vertebral column,
but also can likewise be visualized during childhood. Relative
age-related PDFF changes showed an anatomical variation
with the most pronounced changes at lower lumbar vertebral
levels in both sexes [4]. Furthermore, PDFF shows specific
distribution patterns inter- and intraindividually dependent on
hormonal changes (e.g., induced by menopause) and on the
topography [3, 13, 17].

To detect structural changes qualitatively in terms of signal
loss appearing in age- or malignancy-associated bone marrow
alterations in the clinical routine, conventional anatomic im-
aging using T1- or T2-weighed sequences have been imple-
mented in standard examination protocols [18, 19]. More ad-
vanced methods which allow for a quantitative evaluation like
PDFF calculation are on the edge of being transferred into
clinical use, because of the rising evidence for serving as a
valid biomarker for muscular and skeletal fat accumulation [3,
13, 14, 20]. Still, the heterogeneity of the vertebral bone mar-
row using texture analysis based on chemical shift encoding
water-fat MRI has not been analyzed.

The texture of an image can be defined as spatial ar-
rangement of pixels with different intensities [21].
Texture measures can quantify the gray level variations
reflecting repetitive patterns and uniformity in the image
pixels, e.g., by using gray Haralick’s level co-occurrence
matrix (GLCM) [22]. These texture parameters have been
used for trabecular bone microstructure analysis in comput-
ed tomography (CT) scans and can similarly be applied on
MR-based PDFF maps [21]. Additionally, certain texture
features were shown to be of diagnostic help in identifying
soft tissue malignancies from mammograms or fracture risk
in CT [23, 24]. With that said, the methodic deduction of
the concept of using texture parameters to attain a diagnos-
tic gain and subsequent transfer to MRI as radiation-free
modality is a logical step and of high clinical significance
with implementation in risk stratification for potential frac-
tures or tumor relapse.

The purpose of this feasibility study was to investigate the
spatial heterogeneity of the lumbar vertebral bone marrow by
using texture analysis in PDFF maps derived from chemical
shift encoding—based water-fat MRI in pre- and postmeno-
pausal women and to compare the performance of the differ-
ent parameters in differentiating the two groups.
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Materials and methods
Subjects

The study was approved by the local institutional committee
for human research. All subjects gave written informed con-
sent before participation in the study.

Healthy pre- and postmenopausal women were included in
this study. Exclusion criteria were history of pathological bone
changes such as hematological or metabolic bone disorders
aside from osteoporosis, history of diabetes, and contraindica-
tions for MR imaging. In total, 15 pre- and 26 postmenopausal
women were recruited. Subjects included in this study re-
ceived no antiresorptive medication like bisphosphonates
and denosumab. According to medically indicated DXA mea-
surements, 17 postmenopausal women had normal BMD
values, five were in the osteopenic range, and four were clas-
sified as osteoporotic.

MR imaging

All subjects underwent 3T MRI (Ingenia, Philips
Healthcare, Best, The Netherlands). An eight-echo 3D
spoiled gradient echo sequence was used for chemical shift
encoding—based water-fat separation at the lumbar spine
using the built-in-the-table posterior coil elements (12-
channel array). The sequence acquired the eight echoes in
a single TR using non-flyback (bipolar) readout gradients
and the following imaging parameters: TR/TEI/ATE =11/
1.4/1.1 ms, FOV =220 %220 x 80 mm3, acquisition matrix
size =124 x 121, acquisition voxel size=1.8 x 1.8 x
4.0 mm’, receiver bandwidth = 1527 Hz/pixel, frequency
direction = A/P (to minimize breathing artifacts), 1 average,
and scan time = 1 min and 17 s. A flip angle of 3° was used
to minimize T1-bias effects.

Vertebral bone marrow fat quantification

The gradient echo imaging data were processed online using
the fat quantification routine of the MR vendor. The routine
procedure first performs a phase error correction and then a
complex-based water-fat decomposition using a pre-calibrated
seven-peak fat spectrum and a single T,* to model the signal
variation with echo time. The imaging-based proton density
fat fraction (PDFF) map was computed as the ratio of the fat
signal over the sum of fat and water signals. The vertebral
bodies L1 to LS were included in the analysis and manually
segmented by a radiologist (Fig. 1). The posterior elements
and sclerotic changes of the endplates were excluded.
Segmentation was performed on the PDFF maps by using
the free open-source software Medical Imaging Interaction
Toolkit (MITK, developed by the Division of Medical and

Fig. 1 Representative segmentation of lumbar vertebral bodies 1 to 5 in
the PDFF map of a 22 year old woman

Biological Informatics, German Cancer Research Center,
Heidelberg, Germany; www.mitk.org).

Texture analysis

Texture analysis was performed on vertebral bodies (L1
to L5) using GLCM [13]. Initially, gray level quantiza-
tion was performed to prevent sparseness by normalizing
the image intensities using the maximum gray level pres-
ent in an image. The GCLM metrics were obtained from
16-bit images [25-27]. The statistical moments (variance,
skewness, and kurtosis) and second-order GLCM fea-
tures (energy, entropy, contrast, homogeneity, correlation,
sum average, variance, and dissimilarity) were deter-
mined. The features quantify smoothness, roughness,
and heterogeneity in an image. GLCM computes the
joint probability of two adjacent voxel intensities at a
given offset d=(dx, dy, dz) and angular directions
0=(0",45",90", and 135") [21, 22]. Where dx and dy
denotes the displacement along x and y axis; dz denotes
the displacement along z axis to compute the co-
occurrence of voxel intensities at a given offset d and a
specific angular direction 6 [28]. The co-occurrence
probabilities of voxel intensities were computed from
26 neighbors, aligned in 13 directions. The mean value
of the features computed from the 13 directions ensures
the rotation invariance [28]. The gray level uniform
quantization and texture analysis were performed using
MATLAB 2017 (MathWorks Inc., Natick, MA, USA).

@ Springer


http://www.mitk.org

1268

Osteoporos Int (2019) 30:1265-1274

Statistical analysis

The statistical analyses were performed with SPSS (SPSS
Inc., Chicago, IL, USA). All tests were done using a two-
sided 0.05 level of significance.

The Kolmogorov-Smirnov test indicated no normally dis-
tributed data for the majority of parameters. Mean and stan-
dard deviation (SD) of PDFF and texture parameters averaged
over L1 to LS were computed for pre- and postmenopausal
women and compared using the Mann-Whitney tests.
Furthermore, receiver operating characteristics (ROC) were
performed to assess the performance of PDFF and texture
parameters averaged over L1 to L5 to differentiate pre- and
postmenopausal women and reported as area under the curve
(AUC) values. AUC values were comparted by the method
proposed by Hanley and Mc Neil [29]. The Friedmann tests
for PDFF/texture parameters and entering L1 to L5 as group
variable were preformed testing whether any significant dif-
ferences between all five vertebral levels exist. This was done
in pre- and postmenopausal women separately.

The Spearman correlations coefficients » were computed to
investigate the association of PDFF and texture parameters
with age and BMI. Linear regression models were used to
adjust the differences in textural parameters between pre-
and postmenopausal women for mean PDFF and age.

Results
Study population

Our study population consisted of 15 premenopausal and 26
postmenopausal women. Subjects in the premenopausal
group were aged 30 + 7 years and those in the postmenopausal
group 65=+7 years. Both groups did not significantly
(p>0.05) differ in BMI (Table 1).

PDFF measurements

Mean PDFF values averaged over L1 to L5 showed statisti-
cally significant differences between pre- to postmenopausal
women (27.76 +7.31% versus 49.37+8.14%; p<0.001;
AUC=0.97; Table 1). PDFF significantly (p <0.001) in-
creased from L1 to L5 in both groups (Table 2).

Texture analysis

Eleven texture features were computed in pre- and postmen-
opausal women as shown in Table 1. Contrast and dissimilar-
ity differentiated the pre- and postmenopausal best with AUC
0f0.97 and 0.96, respectively (Fig. 2). Kurtosisgjopai, correla-
tion, and sum,yerage Showed no significant difference between
pre- and postmenopausal women (p > 0.05). In contrast to
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PDFF, all texture features except for correlation showed no
statistically significant anatomical variations from L1 to L5
(p>0.05; Table 2). However, correlation showed no consis-
tent trend from L1 to L5 (Table 2). No significant (p > 0.05)
differences between the AUCs based on mean PDFF values
and AUCs based on texture features contrast and dissimilarity
could be detected.

Correlations

Significant correlations were detected between age and PDFF
(r=0.703, p<0.0001), contrast (r=0.626, p<0.0001), and
dissimilarity (r=0.470, p <0.0001), respectively (Table 3
and Fig. 3). BMI showed no significant correlations with
age, PDFF, and texture parameters (p > 0.05; Table 3 and
Fig. 3).

Linear regression

Adjusting for PDFF as a control variable, contrast, (p =0.011)
and dissimilarity (p =0.009) showed significant differences
between pre- and postmenopausal women. Adjusting for age
resulted in no significant differences in PDFF, dissimilarity,
and contrast between the two groups (p > 0.05).

Discussion

This study demonstrated that postmenopausal women had not
only an increased lumbar vertebral bone marrow PDFF, but
also a greater bone marrow heterogeneity as assessed by tex-
ture analysis in PDFF maps compared with premenopausal
women.

Texture analysis was firstly described by Haralick in the
1970s as a tool for classification of imaging features in general
like photographic or satellite images, introducing 28 parame-
ters like contrast, correlation, and entropy among others [22].
Since then, a large and increasing number of researchers have
used these texture features for medical imaging analysis, e.g.,
in CT, MRI, FDG-PET, and ultrasound [28, 30-32]. Besides
its recent multifold use in oncological imaging in terms of
tissue entity discrimination, characterization, and treatment
response monitoring, texture analysis also was described as
a reproducible tool to quantitatively assess paraspinal fatty
infiltration in MRI [33-36]. In these and other studies, texture
heterogeneity was described to be associated with therapy
response and clinical outcome [35]. Besides MRI, the use of
texture analysis was investigated on using mammography and
in CT in the past to analyze its capability to contribute to
computer-aided cancer diagnosis or bone quality measure-
ments [23, 24].

In this feasibility study, we showed that bone marrow
heterogeneity, analogously to PDFF, increases significantly
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Table 1 Subject characteristics
(age and BMI), PDFF values, and Status n Mean SD AUC p
texture features averaged over L1
to L5 in pre- and postmenopausal ~ Age 0 15 30 7 <0.001
women. Parameters were com- 1 26 65 7
pgred between the th0 groups BMI 0 15 25.8 14 0.464
with the Mann-Whitney tests (p-
values) and receiver operator 1 26 254 4.3
characteristics (area under curve PDFF (L1-5) 0 15 27.76 7.31 0.97 <0.001
(AUQ)). Status: 0 premenopausal, 1 26 49.37 814
I postmenopausal Variance obai 0 15 17.97 1.97 071 0.042
1 26 19.49 2.53
Skewnessgiobal 0 15 2.18 0.25 0.30 0.032
1 26 1.99 0.25
Kurtosisgjobal 0 15 292 1.15 0.32 0.062
1 26 2.186 1.015
Energy 0 15 0.694 0.039 0.26 0.012
1 26 0.657 0.043
Contrast 0 15 116,340 16,788 0.97 <0.001
1 26 172,652 23,811
Entropy 0 15 3.227 0.443 0.79 0.002
1 26 3.750 0.505
Homogeneity 0 15 0.838 0.023 0.24 0.007
1 26 0.815 0.026
Correlation 0 15 0.845 0.010 0.60 0.317
1 26 0.847 0.010
SuM,yerage 0 15 0.000046 0.000006 0.44 0.534
1 26 0.000043 0.000012
Variance 0 15 0.068 0.008 0.71 0.026
1 26 0.075 0.010
Dissimilarity 0 15 77.48 9.65 0.96 <0.001
1 26 101.91 12.18

in postmenopausal women. In contrast to increasing PDFF
from L1-5 however, bone marrow heterogeneity remained
constant from L1 to L5. One possible hypothesis for this
finding from a pathophysiologic point of view might be due
to the transformation pattern from red to yellow bone mar-
row starting from solitary foci [1, 37]. The temporal dis-
crepancy regarding the starting point of vertebral bone mar-
row fatty conversion beginning from L5 and visualized by
increasing PDFF values from the cervical to the lumbar
spine has been reported previously [15]. The results of tex-
ture analysis presented in this study imply a rather homog-
enous spatial fatty bone marrow conversion at different
vertebral levels despite the differing time of the initial onset
the structural changes are taking place. Although experi-
mental preclinical studies have been conducted repetitively
proving the negative correlation of increasing bone marrow
fat and trabecular structure in animal models, the spatial
replacement pattern in humans still remains unclear in this
study giving us a hint towards anatomical homogeneous
bone marrow changes [1, 38].

Dissimilarity and contrast outperformed the other Haralick
texture features calculated from GLCM and showed compa-
rable discrimination power to PDFF in differentiating between
pre- and postmenopausal women (AUC =0.97 for contrast,
AUC =0.96 for dissimilarity, and AUC =0.97 for PDFF, re-
spectively). Neither the AUC values for dissimilarity and
PDFF nor the AUC values for contrast and PDFF showed
significant differences regarding the differentiation of the
two groups.

To our knowledge, this study is the first to verify an in-
creased bone marrow heterogeneity in postmenopausal wom-
en by use of texture analysis. Structural musculoskeletal
changes like increasing bone marrow adiposity due to aging,
hormonal changes, and endocrine or metabolic diseases have
been described extensively in the past [5, 6]. Baum et al. [3, 4]
visualized these changes in the lumbar spine using chemical
shift encoding—based water-fat MRI and showed an increasing
bone marrow adiposity from L1 to L5 as well as in postmen-
opausal period. Texture parameters (except correlation)
showed no significant difference concerning anatomical

@ Springer



1270

Osteoporos Int (2019) 30:1265-1274

Table 2  PDFF values and texture features in L1 to L5 in pre- and postmenopausal women. Differences between vertebral levels L1 to L5 were
evaluated using the Friedmann tests in pre- and postmenopausal women, separately

Premenopausal women

Postmenopausal women

Mean SD p value Mean SD p value
L1 PDFF 25.20 6.71 45.58 8.94
L2 PDFF 26.43 6.54 46.25 9.30
L3 PDFF 27.71 7.71 <0.001 47.74 8.45 <0.001
L4 PDFF 29.14 7.77 50.99 8.03
L5 PDFF 30.32 8.11 54.14 9.16
L1 variancegjobal 18.07 4.89 17.43 5.57
L2 variancegobal 17.33 2.51 19.04 397
L3 variancegjobal 17.54 0.86 0.765 20.60 3.89 0319
L4 variancegobal 17.70 1.35 18.97 2.46
L5 variancegjobal 17.91 373 17.71 493
L1 skewnessgjobal 2.33 0.47 2.16 0.44
L2 skewnessgjobal 2.21 0.38 2.07 0.35
L3 skewnessgiopal 2.29 0.21 0.837 1.89 0.25 0.112
L4 skewnessgjobal 2.14 0.29 2.09 0.31
L5 skewnessgiobal 2.22 0.44 2.13 0.46
L1 kurtosisgjobal 3.68 230 2.93 1.93
L2 kurtosisgjobal 3.05 1.70 2.50 1.44
L3 kurtosisgjobal 333 0.96 0.823 1.70 0.93 0.128
L4 kurtosisgjobal 2.72 1.17 2.57 1.23
L5 kurtosisgjobal 3.16 2.09 2.85 1.84
L1 energy 0.713 0.065 0.683 0.074
L2 energy 0.699 0.061 0.672 0.062
L3 energy 0.716 0.031 0.837 0.643 0.052 0.188
L4 energy 0.691 0.051 0.678 0.055
L5 energy 0.697 0.067 0.678 0.084
L1 contrast 110,669 26,399 164,307 42,933
L2 contrast 110,146 23,269 157,725 29,226
L3 contrast 102,093 8253 0.374 171,344 40,098 0.349
L4 contrast 115,915 21,989 159,131 25,425
L35 contrast 128,277 28,704 187,539 49912
L1 entropy 2.984 0.670 3.397 0.809
L2 entropy 3.167 0.654 3.556 0.686
L3 entropy 3.000 0.349 0.736 3.901 0.608 0.099
L4 entropy 3.259 0.541 3.539 0.659
L5 entropy 3.146 0.694 3.520 0.988
L1 homogeneity 0.849 0.037 0.830 0.044
L2 homogeneity 0.841 0.036 0.824 0.037
L3 homogeneity 0.851 0.018 0.765 0.807 0.032 0.188
L4 homogeneity 0.837 0.030 0.828 0.033
L5 homogeneity 0.840 0.038 0.827 0.051
L1 correlation 0.833 0.014 0.837 0.011
L2 correlation 0.847 0.010 0.848 0.012
L3 correlation 0.852 0.010 <0.001 0.851 0.026 <0.001
L4 correlation 0.848 0.013 0.856 0.009
L5 correlation 0.830 0.013 0.839 0.010
L1 sumgyerage 0.000048 0.000016 0.000040 0.000014
L2 sumgyerage 0.000045 0.000010 0.000044 0.000012
L3 sumgyerage 0.000043 0.000004 0.878 0.000048 0.000012 0.057
L4 sumgyerage 0.000045 0.000006 0.000041 0.000007
L5 sumgyerage 0.000046 0.000014 0.000038 0.000012
L1 variance 0.069 0.021 0.068 0.022
L2 variance 0.066 0.012 0.073 0.016
L3 variance 0.064 0.005 0.765 0.080 0.015 0.231
L4 variance 0.067 0.007 0.071 0.010
L5 variance 0.069 0.016 0.069 0.019
L1 dissimilarity 74.30 17.48 96.93 24.33
L2 dissimilarity 74.75 15.50 96.30 18.55
L3 dissimilarity 69.70 547 0.780 104.07 20.95 0.493
L4 dissimilarity 77.24 14.16 93.57 15.26
L5 dissimilarity 81.60 18.44 103.27 26.67
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Fig. 2 Representative color-coded PDFF maps of the lumbar vertebral bone marrow of a premenopausal woman (age 22 years; mean PDFF 26.6%;
contrast 125,518, dissimilarity 82.97) (a) and a postmenopausal woman (age 71 years; mean PDFF 42.7%; contrast 183,113, dissimilarity 108.75) (b)

variation through all scanned subjects. However, besides dis-
similarity and contrast, other texture metrics like skewness,
kurtosis, energy, and entropy proved to be risen after meno-
pause with the latter showing the best result in differentiating
post- from premenopausal women (AUC =0.79). With that
said, it stands to reason that texture analysis for water-fat
MRI may allow for similar diagnostic capabilities in the clinic,
with additional benefit of being radiation free.

The texture feature “contrast” gives elements with similar
gray level values a low weight. Elements with differing gray
levels are given a high figure [22]. Texture “dissimilarity” is
evaluated with the Kullback-Leibler divergence and can
roughly be described as a measure of how different gray levels
of two elements appear. “Entropy” accounts for a measure of
randomness in pixel distribution and may depict clinically
relevant changes in vertebral micro-architectural alterations.
Other groups also investigated on the reliability of different

texture parameters and proved that features like kurtosis,
skewness, and uniformity showed good results in diagnostic
and monitoring quality in cancer imaging [34, 35]. The de-
scribed arbitrarily detected texture features are inherently de-
pendent on imaging properties like resolution, noise, and scan
parameters (repetition time, echo time, and receiver band-
width) [39]. To ensure comparable signal-to-noise ratios
throughout the scans, similar scan parameters and MRI proto-
cols therefore should be used.

There are several limitations to this conducted study. First,
to start with the methodical aspects confining the presented
work, only 11 texture features were investigated on. Further
parameters which showed good and reproducible results in
other studies, ¢.g., uniformity, could be added to texture fea-
ture pool. Second, the heterogeneous distribution of healthy,
osteopenic, and osteoporotic classified women can be men-
tioned. In a following study, postmenopausal women

Table 3 Correlation between

subject characteristics (age and Age BMI PDFF Contrast Dissimilarity
BMI), PDFF values, and texture
parameters (Contrast and Age Spearman’s rho 1 0.703 0.626 0.470
dissimilarity) in pre- and post- [years] p - n.s <0.0001 <0.0001 <0.0001
menopausal women. Parameters BMI Spearman’s tho 1
were compared with Spearman’s 5
tho test [kg/m~] p n.s. - ns. n.s. n.s.
PDFF Spearman’s tho 0.703 0.796 0.599
[%] p <0.0001 n.s. - <0.0001 <0.0001
Contrast Spearman’s rho 0.626 0.796 1 0.948
)4 <0.0001 n.s. <0.0001 - <0.0001
Dissimilarity Spearman’s rho 0.470 0.599 0.948 1
p <0.0001 n.s. <0.0001 <0.0001 -
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Fig. 3 PDFF, contrast, and dissimilarity are plotted against BMI (a, ¢, e) and age (b, d, f). PDFF, contrast, and dissimilarity correlate significantly with age

homogenously distributed into the three mentioned subgroups
according to DXA measurements could be scanned and tex-
tural features within and across the groups could be
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adequately compared. This would be an important issue in
diagnostic imaging and a step towards acquiring benchmark
and threshold values for disease entity differentiation in MRI.
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In a further step, other diseases proven to be associated with
structural changes in vertebral bone marrow composition and
increasing PDFF values like type 2 diabetes mellitus could be
in the focus of attention following the hints the presented
study gave us concerning the connection between texture fea-
tures, morphology, and pathophysiology [3, 14, 16].

In conclusion, this study shows that texture features namely
dissimilarity and contrast acquired by chemical shift
encoding—based water-fat MRI can be used to describe spatial
heterogeneity of vertebral bone marrow in pre- and postmen-
opausal women. These parameters might offer additional in-
sight into vertebral bone marrow alterations due to aging or
hormonal changes compared with established parameters like
PDFF and enlighten osseous pathologic processes.
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