
REVIEW

Benefits and safety of dietary protein for bone health—an expert
consensus paper endorsed by the European Society for Clinical
and Economical Aspects of Osteopororosis, Osteoarthritis,
and Musculoskeletal Diseases and by the International
Osteoporosis Foundation

R. Rizzoli1 & E. Biver1 & J.-P. Bonjour1 & V. Coxam2
& D. Goltzman3

& J. A. Kanis4,5 & J. Lappe6 & L. Rejnmark7 & S. Sahni8 &

C. Weaver9 & H. Weiler10 & J.-Y. Reginster11

Received: 11 January 2018 /Accepted: 12 April 2018 /Published online: 8 May 2018
# International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Abstract
A summary of systematic reviews and meta-analyses addressing the benefits and risks of dietary protein intakes for bone health in
adults suggests that dietary protein levels even above the current RDA may be beneficial in reducing bone loss and hip fracture
risk, provided calcium intakes are adequate. Several systematic reviews and meta-analyses have addressed the benefits and risks
of dietary protein intakes for bone health in adults. This narrative review of the literature summarizes and synthesizes recent
systematic reviews and meta-analyses and highlights key messages. Adequate supplies of dietary protein are required for optimal
bone growth and maintenance of healthy bone. Variation in protein intakes within the Bnormal^ range accounts for 2–4% of
BMD variance in adults. In older people with osteoporosis, higher protein intake (≥ 0.8-g/kg body weight/day, i.e., above the
current RDA) is associated with higher BMD, a slower rate of bone loss, and reduced risk of hip fracture, provided that dietary
calcium intakes are adequate. Interventionwith dietary protein supplements attenuate age-related BMD decrease and reduce bone
turnover marker levels, together with an increase in IGF-I and a decrease in PTH. There is no evidence that diet-derived acid load
is deleterious for bone health. Thus, insufficient dietary protein intakes may be a more severe problem than protein excess in the
elderly. Long-term, well-controlled randomized trials are required to further assess the influence of dietary protein intakes on
fracture risk.
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Introduction

Adequate dietary protein intakes are necessary for optimal
growth and maintenance of structure and function of many
organs including the musculo-skeletal system [1]. In
adults, the current Recommended Dietary Allowance
(RDA) is 0.8 g of protein per kg of body weight [2]. For
the elderly, higher intakes have been proposed, i.e., 1.0–
1.2-g protein/kg body weight × day, and even 1.2–1.5 g/kg
body weight × day for preserving muscle function [3]. This
particularly concerns older subjects who are malnourished
or at risk of malnutrition because of acute or chronic illness
or injury.

Several recent extensive systematic reviews and meta-
analyses have addressed the issue as to whether high dietary
protein intakes would exert deleterious effects on bone and
thus be associated with increased fracture risk [4–7].
Indeed, based on studies in which the administration of
large amount of acid was increasing bone resorption, it
has been claimed that a diet rich in compounds whose me-
tabolism is generating acid would lead to low-grade meta-
bolic acidosis, impairing thereby osteoblast function, stim-
ulating osteoclast survival and activity, increasing bone re-
sorption, and decreasing bone mass and strength (for re-
view see [8]). This has raised numerous debates, sometimes
more emotional than based on evidence [9]. Various sys-
tematic reviews and meta-analyses have specifically
assessed dietary acid load and bone health [8, 10–13].

In light of these abundant series of data and analyses, the
aim of the present paper is to summarize and synthesize these
recent systematic reviews and meta-analyses, to complete
them by an extensive narrative review of the literature and to
highlight their take home messages. These analyses have con-
cluded that there is no adverse effect of higher protein intakes
on bone, with even benefits in attenuating age-related bone
loss and reducing hip fracture risk and that a causal link be-
tween dietary acid load and osteoporosis is not supported by
clinical evidence.

Methods

This commentary reflects the discussion of a working
group that reviewed the current evidence linking bone
health and dietary protein intakes up to 2017. It is based
on an extensive narrative literature review, focusing on
the most robust evidence such as a series of recent
meta-analyses of bone outcomes, i.e., fracture and bone
mineral density, in relation with dietary protein intakes,
which formed the search criteria in PubMed. A special
emphasis was given to the safety, in particular to acid-
base homeostasis.

Dietary protein and fracture risk

No randomized controlled trial has examined the effect of
dietary protein on fracture risk, irrespective of the fracture site.
Rather, evidence is derived from prospective cohort studies.
Four systematic reviews and meta-analyses have assessed this
issue since 2009 (Table 1). Darling et al. found no significant
reduction in hip fracture risk comparing the highest with the
lowest quartile/quintile of dietary protein intakes in four co-
hort studies (RR 0.75; 95% CI 0.47–1.20) [4]. Separating
animal and vegetable protein in these studies did not modify
the conclusion (RR 0.83 [0.54–1.30] and 1.21 [0.82–1.79], for
animal and vegetable proteins, respectively).

Wu et al. included 12 longitudinal cohort studies in their
analysis, representing more than 400,000 subjects [5]. Pooling
six cohorts with data on hip fracture risk, they found a relative
risk of 0.89 [0.82–0.97] comparing the highest to the lowest
quartile/quintile of dietary protein intakes. There was no effect
on all fractures (four studies) or on limb fractures (two studies)
of total protein intakes. For animal protein consumption, rel-
ative risk of all fractures and hip fracture was 0.79 [0.32–1.96]
and 1.04 [0.70–1.54], respectively; for vegetable protein con-
sumption, the corresponding values were 0.77 [0.52–1.12]
and 1.00 [0.53–1.91]. The conclusion was that total dietary
protein consumption could slightly decrease the risk of hip
fracture.

In a 2017 systematic review, Shams-White et al. assessed
the effects on bone health outcomes of dietary protein intakes
with and without calcium in adults [6]. The systematic review
included 16 randomized controlled intervention trials and 20
prospective cohort studies. Regarding fracture risk and dietary
protein, the authors reviewed 12 cohort studies, five in post-
menopausal women, two in men, and five in both men and
women. Among the nine studies with data on hip fracture, six
were interpreted as showing no association with dietary pro-
tein intakes and three with some inverse relationship between
hip fracture risk and protein intakes. For overall fracture, there
was no association in three studies, while a fourth study de-
tected an inverse relation in the highest versus the lowest
quintile of soy protein intakes [14]. The conclusion was that
higher protein intakes had no adverse effects on bone.

In the systematic review and meta-analysis by Wallace and
Frankenfeld [7], 60 randomized controlled trials and 13 pro-
spective cohort studies conducted in healthy individuals older
than 18 years and with dietary protein intakes at or above the
RDA of 0.8-g/kg BW× day (or 10–15% of total caloric in-
take) were analyzed. To illustrate the magnitude of the differ-
ence between controls and higher protein intakes in the anal-
ysis of RCTs, mean protein intakes were 65.5 ± 19.6 and
113.0 ± 38.2 g/day, respectively. Meta-analysis of the cohort
studies showed that high vs low dietary protein intakes were
associated with a reduction of 16% of hip fracture risk, with a
relative risk of 0.84 [0.73–0.95]. This refers to five studies out
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of the 13, which included men (one), women (two), or both
sexes (two) [15]. There was no difference in hip fracture out-
come between animal and vegetable proteins. The conclusion
was that dietary proteins at or above the current RDA could be
beneficial for reducing hip fracture risk.

To further address the possible discrepancies between the
meta-analyses results, an extensive narrative review of the
various cohort studies (and two case-control studies) with
fracture as outcome in relation to dietary protein intakes is
presented in Table 2. Not all were included in the various
meta-analyses. Three studies reported an increase in fracture
risk in relation with dietary protein intakes over a follow-up of
7 to 12 years. In the large Nurses’Health Study, an increase of
forearm fracture risk in the subjects with the highest protein
intake of animal origin was found [16]. In the Framingham
Offspring Study, higher hip fracture risk was detected in those
with higher protein intake and a calcium intake in the lowest
quartile [17]. In the Study of Osteoporotic Fractures (SOF),
higher animal protein intake increased the risk of hip fractures
(RR 2.84), while higher vegetable protein intake was protec-
tive (RR 0.30) [18].

In 13 cohort and one case-control studies, relative fracture
risks or odds ratios were lower with higher dietary protein
intakes [14, 15, 17, 19–29]. For 12 of these, a statistically
significant lower value was reported and numerically lower,
but not significant for two [22, 27] (Table 2). In the pooled
Health Professionals Follow-up and Nurses’ Health Study, the
lower hazard ratio for hip fracture was similar in magnitude for
total, animal, vegetable, and dairy proteins [21]. In two cohort
studies, one for hip and one for all fragility fracture, a lower
fracture risk was found in women but not in men [23, 24]. In
contrast, in the Osteoporotic Fractures in Men Study (MrOS)
cohort, hazard ratio was 0.84, 0.80, and 0.84 for total, dairy,
and non-dairy animal proteins, respectively, while it was 0.99
for vegetable protein [25]. In a prospective study carried out on
more than 40,000 women in Iowa, higher protein intake was
associated with a reduced risk of hip fracture [26]. The protec-
tive effect was mostly observed with dietary protein of animal
origin. In the Framingham Offspring Study, lower relative hip
fracture risk (0.15) was detected in those with higher protein
intakes and a calcium intake above 800mg/day [17]. In a case-
control study, increasing protein intake was associated with a
lower hip fracture risk of 65% in the highest quartile in the 50-
to 69-year-old age class [29]. Relative risk of all types of frac-
tures was lower in those with a higher consumption of soy
protein in the Shanghai Women’s Health Study [14].

In five prospective cohort studies [16, 19, 30–32], there
was no association between hip or all fragility fractures and
dietary protein intakes, except a relative risk of 1.51 in the first
quartile of calcium intake in one study [30].

Based on 4 systematic reviews with meta-analyses for 3
and a review of additional observational studies, it

appears that hip fracture risk is modestly decreased with
higher dietary protein intakes, provided calcium intakes
are adequate.

Dietary protein and bone mineral density

The operational definition of osteoporosis is based on the
value of areal bone mineral density (BMD), which is an im-
portant determinant of bone strength, hence of fracture risk
[33]. The association between BMD and dietary protein in-
takes has been investigated in three recent systematic reviews
and meta-analyses [4, 6, 7]. In Darling’s review, 15 cross-
sectional studies reported a significant positive association
between BMD and dietary intakes at at least one skeletal site,
whereas 18 studies did not show any association. Variations in
protein intakes between approximately 0.8 and 1.2 g/kg body
weight/day, thus above the RDA, accounted for 2 to 4% of
BMD variance in adults [4]. In two out of five cohort studies,
femoral neck bone loss was lower with higher dietary protein
intakes. Among 18 intervention studies with various supple-
ments, populations, and durations, nine had BMD as outcome.
Three reported a significant difference with protein supple-
ments as compared with controls at at least one skeletal site.
Pooling three studies in a meta-analysis, a significant effect of
protein supplements was observed at the lumbar spine level.
There was no difference when looking at soy protein (three
studies) or milk basic protein (two studies).

In an extensive analysis, Shams-White et al. [6] extracted
data from 20 prospective cohort studies and 16 randomized
controlled trials. Regarding cohort studies conducted for an up
to 4.6-year follow-up period, six out of seven for lumbar spine
and three out five for femoral neck did not show any signifi-
cant association between BMD changes and dietary protein
intakes. For one with lumbar spine and two with femoral neck,
BMD decrease over time was less in those in the highest
category of dietary protein intakes. In a meta-analysis of five
RCT with lumbar spine BMD as outcome, higher protein in-
take was associated with + 0.52% change difference (95% CI
0.06–0.97). For femoral neck, six studies were pooled, with-
out any difference between high protein intakes and controls.

In five cohort studies extracted from the 13 included in
their review, Wallace and Frankenfeld reported a higher lum-
bar spine BMD in relation to dietary protein intakes in two
studies [7]. For femoral neck, three out of five studies did
show some improvement in BMD in the highest versus the
lowest category of dietary protein, with a follow-up duration
of 1 and 4 years. Regarding intervention trials, three assessed
protein supplements on lumbar spine, with one showing an
improvement in BMD with protein intakes at 163% of RDA
for 26 weeks. For femoral neck, one out of two trials having

1936 Osteoporos Int (2018) 29:1933–1948
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assessed BMD changes showed an improvement with protein
at 150% of RDA after 104 weeks.

In a randomized placebo controlled trial, conducted in vita-
min D and calcium replete patients with a recent hip fracture, a
protein supplement of 20 g per day for 6 months led to a 50%
reduction in proximal BMDdecrease at 1 year [34]. In terms of
mechanisms involved, an estimation of bone strength of pe-
ripheral skeleton sites, using finite element analysis, showed a
dose-dependent positive association between predicted failure
load and total, animal, and dairy protein intakes [35].

BMD, which is an important determinant of bone
strength, appears to be positively associated with die-
tary protein intakes.

Dietary protein-calcium interaction

When assessing fracture risk, three studies found some inter-
action between protein and calcium intakes for fracture risk
[17, 30, 32], and one did not for forearm fracture [19]. Two
studies detected higher hip fracture risk in subjects with a
calcium intake in the lowest quartile or lower than 800 mg/
day [17, 32]. In another study, higher fracture risk in relation
with higher protein intakes was observed in the lowest quartile
of calcium intake but not in the higher calcium quartiles [30].
In their systematic review, Shams-White et al. reported four
cohort studies in which an interaction between protein and
calcium-vitamin D on BMD at various sites was assessed
[6]. A significant interaction was found in a calcium-vitamin
D intervention trial [36]. Only in the calcium-vitamin D sup-
plemented group, higher protein intake was associated with
better femoral neck and total body BMD outcomes. Thus, a
negative, respectively positive association between fracture
risk or BMD and dietary proteins seems to require adequate
calcium intakes. Conversely, in the same trial, the positive
effects of calcium-vitamin D supplementation on femoral
neck BMD was more evident in the highest dietary protein
tertile [36]. There was an estimated + 2.8% points difference
in femoral neck BMD between the higher and lower dietary
protein tertiles.

Dairy products are a source of both proteins and calcium,
since 1 l of milk provides 32 g of proteins and 1200 mg of
calcium. In certain countries, yogurts are enriched in milk
powder, leading to an up to 50% increased content of these
nutrients as compared with yoghurt prepared from plain milk.
For Swiss cheese, protein and calcium contents are 26 g/100 g
and 890 mg/100 g, respectively [37]. Numerous studies have
addressed the hypothesis of a favorable influence of both pro-
tein and calcium supplementation on bone health variables,
through dairy products administration, in randomized con-
trolled trials [38–68] (Table 3). These trials were relatively

small, including between 11 and 408 subjects, precluding thus
the assessment of fracture risk. The length of follow-up was
between 1 week and 2.5 years, with a large variety of studied
populations and outcomes. Altogether, dairy products, some
being fortified with calcium or vitamin D, were consistently
associated with a decrease in circulating PTH, an increase in
IGF-I, and a decrease in bone resorption markers. In 13 stud-
ies, BMD changes were assessed. In 10 of them, a blunted
decrease and even an increase in BMD were observed in re-
sponse to dairy products, depending on the age of the subjects.
The effects of dairy products specifically attributable to
fermented compounds have been recently reviewed [69] and
are in agreement with those of other dairies. It remains to be
established whether pre- and probiotics contained in
fermented dairy products provide additional benefits.

Protein and calcium combined in dairy products have
beneficial effects on calciotropic hormones, bone turn-
over markers and BMD. The benefit of dietary proteins
on bone outcomes seems to require adequate calcium
intakes.

Effects of dietary protein on acid-base status
and bone

There has been much debate on the Bacid-ash hypothesis,^
which theorizes that metabolism of high protein intake (par-
ticularly of animal origin with sulfur containing amino acids)
leads to increased acid production and increased bone resorp-
tion, in turn producing hypercalciuria, bone loss, and osteopo-
rosis (for review see [8]). However, transient changes from
steady state experimental data should be distinguished. The
hypothesis that bone contributes to acid-base homeostasis was
supported by experiments in healthy subjects or in patients
with chronic renal failure indicating that the administration
of large doses of ammonium chloride led to a marked decrease
in serum bicarbonate, an increase in urinary calcium excre-
tion, and a negative calcium balance [70], which was attribut-
ed to the mobilization of calcium carbonate from bonemineral
to buffer the acid load. Conversely, the administration of po-
tassium bicarbonate to healthy postmenopausal women [71]
or to patients with chronic renal failure and metabolic acidosis
[72] was associated with an improvement in calcium balance.
Several studies have assessed the effects of potassium bicar-
bonate or potassium citrate on urinary calcium excretion, bone
turnover markers, and a few on BMD [73–76]. In a dose-
finding study evaluating the effect of potassium bicarbonate
supplementation on bone turnover, calcium excretion, and ni-
trogen excretion, daily doses of 1 (median dose 81 mmol/day)
and 1.5 mmol/kg (median dose 122 mmol/day) of potassium
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bicarbonate were compared to placebo [76]. A reduction in
24-h urinary N-telopeptides (NTX) was observed for the low
dose group (p = 0.012). Both treatment groups had lower uri-
nary calcium excretion, while no effect was observed on uri-
nary nitrogen excretion for either dose group. Reviewed in a
meta-analysis [77], results of these various studies can be
summarized as follows. Alkali administration is associated
with a reduction in net acid excretion, in urinary calcium ex-
cretion, in urinary NTX, but with no change in bone formation
markers. These data were interpreted as an increase in calcium
balance. In a previous study, potassium bicarbonate adminis-
tration has been shown to increase intestinal calcium absorp-
tion [78].

Regarding changes in BMD evaluated over a 2-year period,
two randomized placebo-controlled intervention trials have
addressed this question. In a 2-year randomized controlled
trial, including 276 healthy postmenopausal women, aged 55
to 65 years, Macdonald et al. did not find any difference with
postassium citrate supplementation on spine or hip BMD nor
on bone turnover markers [73]. In contrast, a similar dose of
potassium citrate (60 vs 55 mEq/day) in 201 healthy men and
women, older than 65 years, was associated with a higher 1.7
and 1.6% change vs placebo, for spine and femoral neck areal
BMD, respectively, over 2 years [74]. Distal radius and tibia
volumetric trabecular density was increased as well by this
intervention. Pooling the BMD values of these two trials in a
meta-analysis did not allow the difference to reach a level of
statistical significance [77].

While the administration of substantial amounts of acid
or alkali is able to slightly influence blood pH and possibly
bone metabolism [79, 80], the question is whether diet-
derived acid load is able to modify even slightly extracel-
lular pH [81]. Furthermore, it has been claimed that the
source of proteins, animal versus vegetable, would differ-
entially affect calcium metabolism. This is based on the
hypothesis that animal proteins would generate more sul-
furic acid from sulfur-containing amino acids than a strict
vegetarian diet. A strict vegetarian diet with protein de-
rived from grains and legumes may deliver as many milli-
moles of sulfur per gram proteins as would a purely meat-
based diet [82]. It is unlikely that the bone is exposed to
marked changes in extracellular pH in relation to animal
protein or grains consumption within the limits of a bal-
anced diet. A diet low in fruits and vegetables appears to be
associated with a higher fracture risk [83–87]. This may be
the reflection of other deficiencies or life style habits. In an
intervention randomized controlled trial, BMD did not
change in subjects receiving a diet-rich in fruits and vege-
tables, hence presumably rich in alkali [73]. The issue is
further complicated by the fact that vegetable intake-
induced decrease in bone resorption has been shown to
be independent from acid-base changes [88] and that po-
tassium but not sodium bicarbonate (i.e., the same anion)

reduces urinary calcium excretion. On the other hand, a
prospective cohort study (EPIC) with 7947 men and
26,749 women, aged 20–89 years, found that fracture risk
was higher in vegans with low (< 525 mg/day) calcium
intakes but was not different between meat eaters, fish
eaters, and lactoovovegetarians [89].

To characterize dietary acid load, i.e., endogenous acid
production, various calculations have been used. Potential re-
nal acid load (PRAL) [82] is proportional to protein and phos-
phorus intakes and inversely related to potassium, calcium,
and magnesium intakes. Estimated net endogenous acid pro-
duction (renal net acid excretion) (NEAP) [90] is based on the
ratio of protein over potassium intakes.

The associations between bone health outcomes and
measured net acid excretion (NAE) have been assessed in
several meta-analyses (Table 4). In 25 analyzed studies,
diet-derived acid load was manipulated by dietary intakes,
such as sulfur-containing amino acids, protein, meat, grain
or fruits and vegetables, or acidic or alkaline salts, such as
ammonium chloride, potassium bicarbonate, or potassium
citrate [10]. A positive linear relationship was found be-
tween changes in urinary calcium excretion and changes in
net acid excretion in urine, over a wide range of acidic or
alkaline urine. It should be noted that food-related varia-
tion in urinary acid excretion represents a physiological
and homeostatic response to dietary acid load. However,
an association between urinary calcium and acid excretion
does not imply that the source of calcium is primarily an
increased bone resorption, thereby contributing to the de-
velopment of osteoporosis. Another possibility is that aci-
dosis or alkalosis alters renal tubular reabsorption of calci-
um. Under these conditions, acidosis-mediated hypercalci-
uria may be a compensatory mechanism to maintain
calcemia in the presence of a renal calcium leak [91].
Alternatively, higher protein intakes have been shown to
be associated with higher intestinal calcium absorption. Of
note is the fact that aromatic amino acids are stimulating
the hepatic synthesis of IGF-I, which in turn increases
calcitriol synthesis and intestinal calcium absorption [92].
The resulting hypercalciuria represents thereby more an
increase in the calcium throughput than a mobilization of
bone mineral [93, 94]. In another meta-analysis, changes in
calcium balance or bone resorption marker NTX were
assessed in relation with changes of NAE, induced by
varying the intakes of meat, soy, and lentils [12]. There
was no evidence from balance studies that increasing the
diet-derived acid load promotes changes in bone turnover,
skeletal bone mineral loss, or osteoporosis.

Phosphate is considered an acid-producing nutrient [95].
The role of dietary phosphate supplements, under various
forms, on bone health variables was addressed in a meta-
analysis [11]. Analyzing 12 studies including 30 interven-
tion arms manipulating phosphate intakes, it was shown
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that higher phosphate intakes were associated with de-
creased rather than increased urinary calcium excretion
and with increased calcium balance. This was observed
under both high and low calcium intakes. In three studies,
changes in net acid excretion in response to dietary phos-
phate supplements were measured. In all three, net acid
excretion was increased. Two studies have reported BMD
measurement in relation to dietary phosphate intakes. In a
12-month randomized controlled trial, 1800 mg of calcium
either as tricalcium phosphate or calcium carbonate, togeth-
er with teriparatide and vitamin D, similarly increased spine
and hip BMD irrespective of the calcium salt anion [96]. In
a cross-sectional study performed in premenopausal wom-
en and in men, phosphate intake was slightly positively
associated with tibia bone mineral content and cross-
sectional cortical bone area in men. In women, this associ-
ation disappeared with the inclusion of calcium in the mod-
el, and phosphate intake was negatively associated with the
bone formation marker P1NP [97]. However, a diet rich in
phosphate and low in calcium is likely to induce a second-
ary hyperparathyroidism, which may be deleterious for the
skeleton.

A systematic review and meta-analysis studied 22 ran-
domized controlled trials, two meta-analyses, and 12 pro-
spective longitudinal observational studies on bone health

outcomes in healthy adults, in whom acid or alkali intakes
were modified by supplements or observed through food
intakes record [13]. None of the intervention studies pro-
vided direct evidence of osteoporosis progression (fragility
fractures or altered bone strength). Neither did they show
adverse effects of phosphate, milk, and grain foods on
bone. In this study, Hill’s criteria for evaluating causation
were applied to the potential associations between bone
health outcomes and diet acid load in prospective cohort
studies, i.e., temporality, strength of the evidence, biologi-
cal gradient, plausibility, consistency of the data, and ex-
perimental confirmation. The authors failed to detect argu-
ments in favor of the hypothesis that a diet-derived acid
load would be deleterious on bone.

In a cross-sectional study in community-dwelling women
andmen older than 70 years, there was no association between
osteoporosis diagnosis nor fracture history with NEAP or
PRAL, irrespective of the presence of chronic kidney disease
[98], again not supporting the hypothesis of dietary acid load
increasing fracture risk. However, additional data in advanced
renal failure would be required.

There appears to be no direct evidence of osteoporosis
progression, fragility fractures or altered bone strength,
with the acid load from a balanced diet origin.

Table 4 Summary of the systematic reviews and meta-analyses investigating the acid ash hypothesis in relation with bone outcomes

Reference Objective N studies Conclusion

Fenton et al.
2008 [10]

- To estimate the quantity of NAE and
calciuria associated with the modern diet

- To assess the association between NAE
and calcium excretion

25 studies - Linear association between changes
in calcium excretion in response to
experimental changes in NAE.

- This finding is not evidence that
the source of the excreted calcium
is bone or that this hypercalciuria
contributes to the development of
osteoporosis.

Fenton et al.
2009 [11]

- To assess the effect of supplemental dietary
phosphate on urine calcium, calcium
balance, and markers of bone metabolism

- To assess whether these affects are altered
by the level of calcium intake AND the
degree of protonation of the phosphate.

12 studies - Contrary to the acid ash hypothesis, higher
phosphate intakes were associated with
decreased urine calcium and increased
calcium retention.

- There is no evidence that higher phosphate
intakes are detrimental for bone health

Fenton et al.
2009 [12]

- To assess the effect of changes in NAE,
by manipulation of healthy adult subjects’
acid-base intakes, on urine calcium,
calcium balance, and a marker of bone
metabolism, N-telopeptides.

5 studies - Despite a significant linear relationship between
an increase in NAE and urinary calcium, no
relationship between a change of NAE and a
change of calcium balance or N-telopeptides.

- This meta-analysis does not support the concept
that the calciuria associated with higher NAE
reflects a net loss of whole body calcium.

Fenton et al.
2011 [13]

-Systematic review to evaluate causal
relationships between dietary acid load
and osteoporosis using Hill’s criteria.

- 36 studies with bone health outcomes
in healthy adults.

- 19 in vitro cell studies which
examined the hypothesized
mechanism.

- A causal association between dietary acid load
and osteoporotic bone disease is not supported
by evidence

- No evidence that an alkaline diet is protective
of bone health.

NAE, net acid excretion
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Conclusions

Although acid loading or a high protein diet is associated with
increased urinary calcium excretion, which may be related to
higher intestinal calcium absorption, higher protein intakes,
whatever their origin (animal or vegetable), do not appear to
contribute to the development of osteoporosis or to increase
fracture risk. With intakes above the current RDA, dietary
protein is rather beneficial in reducing bone loss and fracture
risk, especially at the hip, provided calcium intakes are ade-
quate. Insufficient dietary protein intakes may be a muchmore
severe problem than protein excess.
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