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Abstract
Substantial evidence exists that diabetes mellitus is associated with an increased risk of osteoporotic fractures. Low bone strength
as well as bone extrinsic factors are probably contributing to the increased bone fragility in diabetes. Bone density and quality are
important determinants of bone strength. Although bonemineral density (BMD) and the fracture risk assessment tool (FRAX) are
very useful clinical tools in assessing bone strength, they may underestimate the fracture risk in diabetes mellitus. Through
advances in new technologies such as trabecular bone score (TBS) and peripheral quantitative computed tomography (pQCT),
we can better assess the bone quality and fracture risk of patients with diabetes mellitus. Invasive assessments such as
microindentation and histomorphometry have been great complement to the existing bone analysis techniques. Bone turnover
markers have been found to be altered in diabetes mellitus patients and may be associated with fractures. This review will give a
brief summary of the current development and clinical uses of these assessments.
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Introduction

Diabetes mellitus is a common disease throughout the world
[1]. Diabetes-related complications, such as cardiovascular
and renal diseases, are becoming a huge health care and finan-
cial burden [1]. Osteoporosis is a common skeletal disorder
characterized by reduced bone strength predisposing to an
increased risk of fracture, which results in pain, impaired func-
tion, reduced quality of life, institutionalization, and death [2].
A number of previous studies have revealed the association
between diabetes mellitus and osteoporosis, and it is now well
established that both type 1 diabetes mellitus (T1DM) and
type 2 diabetes mellitus (T2DM) are associated with an in-
creased risk of osteoporotic fractures [3–5].

The mechanisms underlying increased bone fragility in di-
abetes mellitus are complex. Low bone turnover, accumula-
tion of advanced glycation endproducts (AGEs), micro- and
macro-architecture abnormalities, and tissue material damage

lead to abnormal biomechanical properties may contribute to
the impaired bone fragility [6]. Other factors associated with
bone fragility in patients with diabetes mellitus include in-
flammation response, oxidative stress, adipokine alterations,
WNT dysregulation, and increased marrow fat [6]. Bone ex-
trinsic factors, such as increased frequency of falls, a factor
that is closely related to diabetic complications and treatment-
induced hypoglycemia, also contribute to the increased frac-
ture risk [6–8]. However, after being adjusted for fall frequen-
cy, diabetes remains an independent risk factor of increased
fracture risk [9–11]. Therefore, low bone strength is probably
contributing to the increased bone fragility in diabetes. Both
bone density and quality are important factors in the determi-
nation of bone strength. Multiple methods have been used to
assess bone quantity and bone quality of diabetes mellitus
patients, including bone mineral density (BMD), trabecular
bone score (TBS), quantitative computed tomography
(QCT), bone histomorphometry, microindentation, and bone
turnover markers. This review will give a brief summary of
the current development and clinical uses of these
assessments.

We conducted a literature search for English language arti-
cles that was published before Mar 15th, 2018 or earlier in the
PubMed and Embase online using the following keywords in
various combinations: Bdiabetes^, Bdiabetes mellitus^, Btype 1
diabetes mellitus^, Btype 2 diabetes mellitus^, Bbone^,
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Bfracture^, Bfracture risk^, Bskeletal fragility ,̂ Bosteoporosis^,
Bbone mass^, Bstructure^, Bmicroarchitecture^, Bbone
quality ,̂ Bstrength^, Bturnover^, Bdual x-ray absorptiometry ,̂
BDXA^, Bbone mineral density ,̂ BBMD^, BFracture Risk
Assessment Tool^, BFRAX^, Btrabecular bone score^,
BTBS^, Bquantitative computed tomography ,̂ BQCT ,̂
Bperipheral quantitative computed tomography ,̂ BpQCT ,̂
Bc o r t i c a l^, Bt r a b e c u l a r^, Bh i s t omo r phome t r y ,̂
Bmicroindentation^, Bcyclic microindentation^, Bimpact
microindentat ion^, Bbone turn over^, Bturnover^,
Bmechanism^, Badvanced glycation end-products^, BAGEs^,
Binsulin^. Approximately 100 relevant articles were reviewed
to discuss the current evidence for the use of BMD, FRAX,
TBS, QCT, bone histomorphometry, and microindentation in
assessment of bone quality in patients with diabetes mellitus.
Only publications in English were included.

BMD and FRAX

BMD measured by dual x-ray absorptiometry (DXA) is cur-
rently the gold standard for both osteoporosis diagnosis and
the monitoring of treatment efficacy.

Research indicates that BMD is lower in patients with
T1DM [12–36]. A recent meta-analysis that includes 23
cross-sectional studies and 2 cohort studies shows a signifi-
cant association between T1DM and decreased BMD values
of total body with pooled mean differences of − 0.06 g/cm2

(95% CI − 0.11, − 0.01) [37].
However, patients with T2DM usually show BMD values

above average [10, 33, 38–50]. A meta-analysis which is
based on 15 observational studies (3437 T2DM patients and
19,139 control) shows that BMD in patients with T2DM is
significantly higher with pooled mean differences of 0.04 g/
cm2 (95% CI: 0.02, 0.05) at the femoral neck [51]. Therefore,
T2DM may be associated with a reduction of bone quality,
which cannot be reflected by BMD measurement.

Fracture risk assessment tool (FRAX) is widely used in
estimating individualized 10-year probability of hip and major
osteoporotic fracture. The FRAX algorithm consists of femo-
ral neck BMD T-score, age, sex, weight, height, previous his-
tory of hip fracture, current smoking, recent use of corticoste-
roids, presence of rheumatoid arthritis, and ≥ 3 alcoholic bev-
erages per day. FRAX is currently widely used for the estima-
tion of fracture risk in patients with diabetes mellitus. In older
patients with T2DM, both femoral neck BMD T-score and
FRAX score are significantly related to hip and non-spine
fracture risk [52].

Although BMD and FRAX are important in assessment of
fracture risk, they are limited in application in patients with
diabetes mellitus. As parameters related to diabetes mellitus
are not included in FRAX, it may underestimate the fracture
risk in specific population. In 2011, using data from three

prospective observational studies, the Study of Osteoporotic
Fractures, the Osteoporotic Fractures in Men study, and the
Health, Aging and Body Composition Study, Schwartz et al.
demonstrated that among older adults with T2DM, fracture
risk was higher than those without diabetes even with similar
BMD T-score and age or FRAX score [52]. For a given hip
fracture risk, patients with T2DM have a 0.59 (95% CI, 0.31–
0.87) higher T-score for women and 0.38 (95%CI, 0.09–0.66)
for men [52]. Therefore, it is suggested that fragility fractures
in diabetes mellitus may also be associated with diabetes-
related changes in bone quality, which are not reflected in
BMD. Although BMD and FRAX are very useful tools for
the assessment of fracture risk in older adults, interpretation of
T-score of FRAX score in patients with diabetes mellitus
should be careful enough to take into account the higher frac-
ture risk associated with diabetes [52].

TBS

TBS is a new texture parameter that analyzes pixel gray-level
var ia t ions in the DXA image and ref lec ts bone
microarchitecture. As TBS is based on DXA, it can be widely
accessible without introducing new equipment. A meta-
analysis which includes individual-level data from 17,809
subjects in 14 prospective population-based cohorts shows
that TBS can serve as a significant predictor of fracture risk
independent of FRAX [53]. The gradient of risk (GR; hazard
ratio per 1 SD change in risk variable in direction of increased
risk) of TBS for major osteoporotic fracture is 1.44 (95% CI
1.35–1.53). When adjusted for FRAX 10-year probability of
major osteoporotic fracture, TBS is still an independent pre-
dictor of fracture risk (GR = 1.32, 95% CI 1.24–1.41).
Moreover, when the FRAX probability is adjusted for TBS,
there is a slight increase in the GR (1.76, 95% 1.65–1.87 vs
1.70, 95% CI 1.60–1.81) [53]. The Manitoba BMD Cohort
also demonstrated a small but significant improvement in
overall net reclassification improvement (NRI) for all individ-
ual FRAX interventional criteria (range 0.007 to 0.018) and all
three national clinical practice guidelines (CPGs) (range 0.008
to 0.011) [54]. Almost all of the improvement was found in
individuals close to the intervention threshold [54].

Diabetes mellitus is significantly associated with lower
TBS in unadjusted and adjusted models [55]. Moreover,
TBS is negatively related to levels of HbA1c, fasting plasma
glucose, and fasting insulin [56]. Recent studies show the
potential of TBS in predicting the fracture risk in diabetes
mellitus patients [53–57]. Studies that assess bone quality in
DM with TBS are summarized in Table 1. In a recent cross-
sectional study in which 119 T1DM patients (mean age 43.4
± 8.9 years) and 68 gender, age, and BMImatched controls are
included, TBS values are significantly lower in T1DM pa-
tients with prevalent fractures (1.309 ± 0.125 versus 1.370 ±
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0.127, p = 0.04) [57]. In this set-up, a TBS cutoff < 1.42 dis-
criminates the existence of fractures with a sensitivity of
91.7% and a specificity of 43.2% [57]. Another retrospective
study which includes 169 postmenopausal women with
T2DM evaluates the distinguishing performance of TBS,
BMD, original and TBS-adjusted FRAX scores [63]. The re-
sult shows that TBS (p = 0.008) are significantly lower and
TBS-adjusted FRAX score (OR = 2.0, 95% CI 1.1–2.7) is
significantly higher in the group with vertebral fractures com-
pared with the group without vertebral fractures [63].
Moreover, the AUCs of TBS-adjusted major FRAX for over-
all vertebral fracture risk stratification are significantly higher
than that of major FRAX (0.717 versus 0.687; p = 0.043) [63].
There is a lack of clinical study directly comparing differences
in TBS between T1DM and T2DM.

Multiple interventional studies have been done to investi-
gate the response of TBS to osteoporosis treatment, though the
study population is not limited to patients with DM (reviewed
in [74, 75]). To summarize, current studies suggest that TBS
tends to increase after treatment in parallel with the change of
BMD, but the magnitude of increase of TBS is smaller than
that of BMD [74, 75]. There is a lack of evidence in to what
extent TBS increase after treatment predicts a reduction of
fracture risk. The effect of diabetes treatment on TBS is still
not fully known, though some studies demonstrate that
HbA1c, fasting glucose, fasting insulin, and homeostasis
model assessment for insulin resistance are negatively associ-
ated with TBS [56, 62, 66].

QCT

QCT is a noninvasive assessment of bone microarchitecture at
the distal radius and tibia [76]. The high resolution of three-
dimensional bone images generated by high-resolution pe-
ripheral quantitative computed tomography (HRpQCT) al-
lows the measurement of volumetric BMD (vBMD) and other
parameters. Mechanical properties of the bone can also be
estimated from QCT images using microstructural finite ele-
ment analysis (μFEA) [77].

QCT has been used in a number of studies to investigate the
microarchitecture of bone in patients with diabetes mellitus
[78–82]. Studies that assess bone quantity and quality in
DM with QCT are summarized in Table 2. A cross-sectional
study that includes 17 male T1DM patients aged from 18 to
49 years and 18 sex-matched healthy controls shows that
T1DM patients have significant lower cortical vBMD in the
femoral neck and significant lower vBMD, cortical thickness,
and cortical area in the intertrochanter [78]. The bone strength
estimated by pQCT was also lower in T1DM group [78].
Another cross-sectional study that includes 48 adolescents
with T1DM also shows that T1DM is associated with reduced
bone mineral content and small bone cross-sectional area and

cortical strength [79]. In 2015, a cross-sectional study that
includes 55 T1DM patients finds that diabetic microvascular
disease is associated with deficits in cortical and trabecular
vBMD and microarchitecture, while T1DM patients without
diabetic microvascular disease show similar HR-pQCT pa-
rameters with controls [80]. Further investigation is needed
to determine if this relationship between the presence of
MVD and bone deficits is causal and impacts fracture risk,
and whether diabetic bone disease is an extension of the spec-
trum of diabetic microvascular diseases.

QCT is also used to assess bone quality in patients with
T2DM, but the study results are inconsistent among different
studies. In the Framingham HR-pQCT Study which includes
1069 subjects (129 with T2DM, 940 without T2DM) with a
mean age of 64 ± 8 years, researchers compare cortical and
trabecular microarchitecture, bone density, bone area, and
bone strength in T2DM and non-T2DM subjects [81]. After
adjusting for age, sex, weight, and height, T2DM group has
significantly lower cortical vBMD (p < 0.01), higher cortical
porosity (p = 0.02), and smaller cross-sectional area (p = 0.04)
at the tibia [81]. Moreover, lower cortical vBMD at the tibia
and cortical thickness at the radius is seen in T2DM only
among those with a prior fracture [81]. However, in the
cross-sectional Gothenburg Study which includes 1053 wom-
en (99 with T2DM, 954 without T2DM) aged from 75 to
80 years, ultradistal tibial and radial trabecular volume frac-
tion, distal cortical volumetric BMD, cortical area, and failure
load are higher in patients with diabetes than in controls [82].
The different results between two studies may partly be due to
the differences in characteristics of subjects and differences in
study design [81]. It is also not fully known how well pQCT
parameters could predict the fracture risk in T2DM patients.

Microindentation

Microindentation is a technique that can directly assess the
mechanical characteristics of cortical bone in vivo. By
inserting a probe assembly into a cortical bone’s surface at
the anterior tibia and inducing microscopic fractures,
microindentation measures bone mechanical strength at the
tissue level. There are two approaches of microindentation,
cyclic microindentation, and impact microindentation. In cy-
clic microindentation, relatively low forces (2–10 N) are ap-
plied over several seconds, and parameters such as first inden-
tation distance (ID), total indentation distance (TID), indenta-
tion distance increase (IDI), creep ID, unloading slope (US)
(ave of 3-last cycle), energy (ave of 3-last cycle) are output
(reviewed in [104]). Impact microindentation is a single im-
pulse indentation to a higher force within up to 0.25 ms
(reviewed in [104]). Using the technique of impact
microindentation, a ratio called bone material strength index
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(BMSi) can be derived, and a lower BMSi indicates lower
fracture resistance [105]. The details of the two techniques
are reviewed by Allen et al. [104].

Impact microindentation has been used in several clinical
studies to investigate the bone quality in DM patients [11, 82,
106]. The Gothenburg Study finds that BMSi is lower in
T2DM (74.6 ± 7.6 versus 78.2 ± 7.5, p < 0.01) [82]. In a series
of cases and control study, 60 postmenopausal women includ-
ing 30 patients with a T2DM history for more than 10 years
and 30 age-matched non-diabetic controls received impact
microindentation. Compared to controls, T2DM patients had
significantly lower BMSi while their BMD were similar to
controls [11]. This study also finds that the level of glycated
hemoglobin over the past 10 years is negatively associated
with BMSi (r = − 0.41; p = 0.026) [11]. In another cross-
sectional study, BMSi is also found to be negatively associat-
ed with T2DM status [106]. Moreover, advanced glycation
end product accumulation is negatively related to BMSi
[106]. Though the invasive procedure restricts its wide use
as a clinical tool, microindentation helps to shed light upon
bone quality change in diabetes mellitus population.

Histomorphometry

Bone histomorphometric analysis of bone biopsies provides a
direct approach to assess bone remodeling rates at tissue level
[107]. Moreover, bone microarchitecture can also be evaluated
using micro-computed tomography (micro-CT) [107]. A num-
ber of studies in rodent models have shown reduced bone turn-
over rate, worse microstructure, and lower strength in rodent
models of T1DM and T2DM [108–111]. However, as bone
biopsy is an invasive test, only a few clinical studies have
investigated the bone quality of diabetes mellitus patients using
bone histomorphometry. A cross-sectional case-controlled
study which includes 23 T1DM subjects (8 males and 15 fe-
males) and 23 age- and sex-matched controls does not find
deterioration in bone histomorphometric or micro-CT variables
in those patients without manifesting complications of T1DM
[107]. However, T1DMpatients with fracture history may have
defects in bone microarchitecture [107]. A histomorphometric
study published in 1964 finds an increase of cortical area of ribs
in T2DM [112]. Another more recent study obtains iliac crest
bone samples from 26 patients (13 male and 13 female) with an
average age of 67.42 ± 2.74 years [113]. The control group
consists of 20 non-diabetic subjects (11 male and 9 female)
with a mean age of 57.95 ± 3.96 years that have suffered sud-
den or violent death [113]. As a result, significant lower bone
volume (p < 0.0001), osteoid volume (p < 0.005), osteoid
thickness (p < 0.0001), cortical thickness (p < 0.05), and osteo-
blast surface (p < 0.05) volume are found in the diabetic group
[113]. The discrepancy of different studies may come from the
relative low subject volume, the disease course, and

complications. More high-quality clinical studies are needed
to determine the histologic changes of diabetic bone.

Bone turnover markers

In patients with DM, the levels of multiple bone turnover
markers are altered. A meta-analysis that includes 22 studies
shows that osteocalcin (OC) and C-terminal telopeptide of
type 1 collagen (CTX-1) are significantly lower in people with
DM, while alkaline phosphatase (ALP), N-telopeptide of type
I collagen (NTX), and hydroxyproline (HYP) do not differ
[114]. The meta-analysis also reports decreased OC levels in
T1DM compared to controls [114]. Some studies indicate that
bone turnover markers are lower in children T1DM or at the
onset of the disease [25, 115], but do not differ between
T1DM adults and controls [116].

Levels of parathyroid hormone (PTH) tend to be 20–50%
lower in T2D subjects than in controls [117–119] (reviewed in
[120]). Most studies support that bone turnover markers, such
as CTX, OC, P1NP, TRAP, and NTX, are reduced in patients
with T2DM [11, 118, 119, 121–123]. Moreover, low P1NP
andOC levels and high CTX, NTX, and sclerostin levels seem
to be associated with increased fracture risks in T2DM, while
are associated with [118, 121, 124, 125]. Further studies are
needed to uncover whether bone turnover markers could pre-
dict alterations in bone quality and fracture risk.

Discussion

As is discussed in the introduction, multiple mechanisms con-
tribute to the increased fracture risk in patients with DM.
Some of these mechanisms have adverse effects on bone me-
tabolism thus lead to declined bone quantity and quality.

High glucose levels in DM can lead to the accumulation of
AGE collagen crosslinks in bone, which leads to biomechan-
ically fragile bone [6]. AGEs can also be specifically recog-
nized by AGE receptors (RAGE), which express in multiple
bone-derived cells [126]. The AGE-RAGE interaction in-
duces activation of nuclear factor kB (NF-kB) in RAGE-
expressing cells [126]. As a result, the production of proin-
flammatory cytokines and reactive oxygen species (ROS) are
increased in these cells which activate osteoclastogenesis and
suppress osteoblast differentiation [127, 128]. Pentosidine is
one of the best studied AGEs. Pentosidine levels were signif-
icantly higher in DM patients with fractures than those with-
out fractures [129–131]. In patients with T2DM, urinary
pentosidine levels negatively associate with trabecular bone
scores [129]. This indicates that AGEs may play a role in the
deterioration in bone microstructure, and this microstructure
change can be estimated by methods like TBS.
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Although T1DM and T2DM share many mechanisms in
inducing osteoporosis and osteoporotic fractures, these mech-
anisms may affect bone metabolism differently in two dis-
eases, and the two diseases may each have its special mecha-
nisms. As is reviewed, compared those with T1DM, patients
with T2DM have higher BMD [132, 133]. Young patients
with T1DM, even only a few years after the onset of diabetes
mellitus, have a lower BMD score [134–136], though de-
creased BMD are more frequent in patients with longer dis-
ease courses [16, 34]. Decreased BMD observed in T1DM is
found to be associated with the presence of microvascular
complications such as diabetic nephropathy, retinopathy, neu-
ropathy [133]. Also as is reviewed in the main text, the pres-
ence of microvascular disease is associated with deficits in
bone microstructure. These results indicate that microvascular
disease, which may lead to inadequate blood flow in bone
tissue, adversely affects bone formation in young T1DM pa-
tients and causes the deterioration in both bone quantity and
quality. BMI has been found to be significantly greater in
patients with T2DM compared to T1DM. BMI is positively
associated with BMD and negatively associated with fracture
risk [137, 138]. Therefore, high BMI may partly explain the
relatively high BMD and low fracture risk in T2DM patients
compared with T1DM patients.

Recent studies indicate that T1DM and T2DM differ in
levels of bone turnover markers. Recently, Starup-Linde
et al. find that compared to T2DM, T1DM has lower levels
of P1NP, osteocalcin (OC), and s-receptor activator of nuclear
factor kappa beta ligand (RANKL) [139]. The differences
between T1DM and T2DM in biomarkers may be interpreted
with insulin resistance status in T2DM [139]. How these dif-
ferences affect bone health has not been fully known.

Patients with T1DM suffer from low levels of insulin and
IGF1 since the stage of onset, while T2DM is characterized by
insulin resistance, though in the advanced stage of T2DM,
there is a relative insulin deficiency. Low levels of insulin
and IGF1 have an adverse effect on osteoblasts during growth
and can result in low peak bone mass at an early age [124,
140–142]. Though insulin mainly plays an anabolic role in the
bone formation in physiological concentration, the relation-
ship between hyperinsulinaemia and insulin resistance and
bonemetabolism is complex, and current clinical studies show
conflicting results [45, 143–147]. Moreover, studies also sug-
gest that hyperinsulinaemia and insulin resistance may con-
tribute to reduced bone turnover even in the absence of
hyperglycaemia [148].

Conclusion

In summary, diabetes mellitus is closely associated with in-
creased risk of fracture. Therefore, assessment of bone quantity
and bone quality may benefit DM patients, especially those

with other factors of fractures. Although BMD and FRAX are
very useful clinical tools in assessing bone quantity, they may
not accurately account for extra fracture risk in diabetes
mellitus. Through advances in new technologies, physicians
can better assess the bone quality of patients with diabetes
mellitus. Apart from BMD and FRAX, recent clinical evidence
demonstrates that incorporating TBS brought a moderate im-
provement to currently used FRAX tool. Therefore, TBS can
serve as a useful method in assessing bone quality in patients
with DM.As TBS is based onDXA, it can be widely accessible
without introducing new equipment. HR-pQCT is also a useful
noninvasive method to discriminate bone quality change in
DM patients but its association with fracture risk is far from
being illustrated. Although the invasive procedures restrict the
clinical use of microindentation and bone histomorphometry,
they are useful in the research of bone quality in diabetes
mellitus. Bone turnover markers have been found to be altered
in diabetes mellitus and may be associated with fractures, but
more studies are needed. In addition, fracture risk of DM pa-
tients is also associated with complications of DM. Further
large-scale prospective studies about risk factors of fractures
in DM may be needed to bring a special tool for fracture risk
assessment in DM patients and identify high-risk population.
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