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Abstract
Summary This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhancedMDCT
exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could
discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%.

Introduction This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine
contrast-enhanced MDCT exams using texture analysis.

Methods We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous
contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability
to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were
extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of
healthy/fracture cohort and classification was performed using support vector machine (SVM).

Results The results revealed significant correlations between texture parameters derived fromMDCT scans with and without
IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance
of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%.

Conclusions Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and
homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

Keywords Opportunistic osteoporosis screening · Spine · Texture analysis · Trabecular bone microstructure

Introduction

Osteoporosis is a skeletal disorder, leading to an increased
risk for fragility fractures [1]. Assessing risk of fracture
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using dual-energy x-ray absorptiometry (DXA) derived
bone mineral density (BMD) often fails due to lack of
underlying information on 3D structure and local bone
mass distribution [2]. MDCT-derived quantitative measures
using textural analysis and finite element analysis (FEA)
are becoming useful in identifying patients at the risk of
osteoporotic fractures. However, in routine clinical settings,
MDCT images are frequently acquired with IVCM to
enhance the image contrast. The effect of these variations
on quantitative bone microstructure parameters are not yet
clear [3–6]. Furthermore, long-term reproducibility of these
quantitative measures in MDCT images acquired during a
routine clinical procedure has not been documented.
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Texture-derived measures are highly sensitive to orien-
tation, size, and intensity of voxels. Studies have shown
that texture-derived features and structural indices including
trabecular bone score (TBS) are able to quantify trabecu-
lar bone microarchitecture and fracture risk [7]. Uniformity,
heterogeneity, and appearance of repetitive patterns in an
image are useful in characterizing morphological proper-
ties of underlying tissue using texture-derived measures
[8]. Similarly, texture features were used to analyse the
effect of radiation dose reduction and reconstruction algo-
rithms for MDCT imaging [3, 9]. Moreover, texture features
were used to study the microarchitecture characteristics
of trabecular bone from high-resolution peripheral quan-
titative computed tomography (HR-pQCT) images [10].
However, the effect of image acquisition parameters namely
IVCM, slice thickness, and long-term reproducibility of
scan-rescan [11] are not studied adequately using texture
features [12].

In this study, we systematically investigated the repro-
ducibility of MDCT images (i) with and without IVCM,
(ii) with different slice thickness (iii) scan-rescan protocols,
and (iv) discrimination ability of texture features between

subjects with and without osteoporotic fractures using
GLCM texture features.

Materials andmethods

The proposed methodology is grouped into four parts
MDCT data acquisition, image analysis, texture data analy-
sis, and classification of healthy/fracture cohort (Fig. 1). The
MDCT images were acquired with and without IVCM, dif-
ferent sagittal slice thickness (1, 2, and 3 mm), scan-rescan
within 8 weeks, and healthy/osteoporotic fracture cohort.
Vertebrae were manually delineated using open source med-
ical imaging interaction toolkit (MITK) [13]. The gray level
uniform quantization and texture analysis were performed
using MATLAB� (The MathWorks Inc., Natick, MA). The
statistical analysis was performed using Pearson correlation
coefficient and Bland-Altman analysis for with and without
IVCM, slice thickness, and scan-rescan texture data. The
independent sample t test was performed to rank the fea-
tures as per t value and SVM classifier with different kernel
functions were used to classify healthy/fracture cohort.

Fig. 1 Schematic representation of proposed methodology grouped in MDCT data acquisition, image analysis, texture data analysis, and
healthy/fracture cohort classification
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MDCT imaging and vertebrae segmentation

This retrospective study was approved by the local
institutional review board. Subjects were identified in
our institution’s digital image archive (PACS). Patients
with pathological bone changes like bone metastases,
hematological or metabolic bone disorders aside from
osteoporosis were excluded. Subgroup for the investigation
of different slice thickness and contrast medium effects:
seven subjects (five males, two females; mean age: 71.86 ±
7.40 years) with non-contrast-enhanced MDCT scan and
immediately followed by a contrast-enhanced MDCT scan
were included. All MDCT exams were performed with a
64-row MDCT scanner (Somatom Sensation Cardiac 64,
Siemens Medical Solutions, Erlangen, Germany). Routine
abdominal non-contrast-enhanced MDCT images were
obtained with a standard protocol. Scanning parameters
were 120 kVp tube voltage, adapted tube load of averaged
200 mAs, and minimum collimation (0.6 mm). Sagittal
reformations of the spine were reconstructed with a
slice thickness of 1, 2, and 3 mm, respectively. Sagittal
reformations of the spine with a slice thickness of
3 mm are the standard reconstruction in clinical routine
[14]. Examinations with administration of intravenous
contrast medium were performed in a standardized way:
Administration of intravenous contrast medium (Imeron
400, Bracco, Konstanz, Germany) was done using a high
pressure injector (Fresenius Pilot C, Fresenius Kabi, Bad
Homburg, Germany). The intravenous contrast medium
injection was performed with a delay of 70 s, a flow rate of
3 ml/s, and a body weight dependent dose (80 ml for body
weight up to 80 kg, 90 ml for body weight up to 100 kg, and
100 ml for body weight over 100 kg). Manual segmentations
of all depicted vertebrae (T11, T12, and L1–L3) were
performed with MITK (n = 45). Routine abdominal
contrast-enhanced MDCT images were obtained with a
standard protocol as outlined above. Sagittal reformations of
the spine were reconstructed with a slice thickness of 3 mm.

Subgroup for the investigation of long-term reproducibil-
ity: nine subjects (five males, three females; mean age:
59.56 ± 9.44 years) with two contrast-enhanced MDCT
scans within 8 weeks were identified. All MDCT exams
were performed with a 64-row MDCT scanner (Somatom
Sensation Cardiac 64, Siemens Medical Solutions, Erlan-
gen, Germany). Manual segmentations of all depicted ver-
tebrae (T1–T12 and L1–L5) were performed with MITK
(n = 130).

Subgroup with subjects with/without vertebral fractures:
Lastly, nine subjects (four males, five females; mean age:
75.44 ± 10.19 years) with contrast-enhanced MDCT and
osteoporotic vertebral fracture and age-matched controls
(four males, five females, mean age: 71.44 ± 10.05 years)
without vertebral fracture were included. MDCT scans were

acquired using a 256-row scanner (iCT, Philips Health-
care, Best, the Netherlands). Application of intravenous
contrast medium was performed as stated above. Sagittal
reformations of the spine were reconstructed with a slice
thickness of 3 mm. The presence of vertebral fractures were
determined by a radiologist. Manual segmentations of all
depicted vertebrae (L1–L4) were performed with MITK
(n = 27) (Fig. 2).

Texture analysis

The gray level quantization was performed on each
segmented vertebra using highest gray level present in
an image. The GLCM texture analysis was performed
on quantized images to extract second-order texture
features namely energy, contrast, correlation, homogeneity,
dissimilarity, entropy, variance, and sum average [15].
These aforementioned features quantify textural patterns
(fine, coarse, smooth, or irregular) in an image. GLCM is
derived from co-occurrence of voxel intensity pairs at a
given distance d = (dx, dy, dy) and direction θ = (0◦, 45◦,
90◦, and 135◦) [15, 16], where dx and dy denote the co-
occurrence matrix and dz represents voxel moved along the
z axis. Each entries in GLCM(x,y)(x, y = 0, 1, . . . Ng − 1)
denotes probability of occurrence of gray levels which were
computed from 26 neighbors. The Ng represents a number
of gray levels that can be encoded in an image. Hence, the
dimension of GLCM matrix is Ng × Ng [15, 16].

Healthy/fracture classification

SVM classifier with linear, polynomial, and radial basis func-
tion (RBF) kernels were used to discriminate healthy/osteo-
porotic fracture cohort. SVM uses hyperplane in the high-
dimensional feature space and separates the healthy/fracture
data points to obtain best possible solutions [17].

Statistical analysis

The texture analysis obtained a feature matrix of 45 × 8 for
study group contrast, 55 × 8 for slice thickness, 200 × 8
for scan-rescan, and 54 × 8 for healthy/fracture cohort. In
this study, each vertebra was considered as single specimen
and texture data analysis was performed using Pearson cor-
relation coefficient and Bland-Altman plot. The following
hypothesis testing was performed for Pearson correlation.

Null hypothesis H0: There is no significant relationship
between with and without IVCM, slice thickness (1 mm
versus 2 mm and 1 mm versus 3 mm), scan-rescan texture
features. (i.e., Pearson correlation, we are testing r = 0)

The Bland-Altman (mean-difference or limits of agree-
ment) plot is used to compare two measurements of the
same variable. It is used to understand repeatability of the
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measurement system. The limits of agreement between two
tests are expressed by a 95% confidence interval (± 1.96
SD) of a particular value of the difference [18].

The independent sample t test is used to compare the
means of two groups (healthy/fracture) using the following
hypothesis testing.

Null hypothesis H0: μ1 = μ2 (no significant difference
between means of texture features of trabecular bone in
healthy/fracture cohort)

Results

Investigating the effect of IVCM on trabecular bone
texture analysis

Significant correlations were obtained for energy (r = 0.88,
p < 0.0001), entropy (r = 0.88, p < 0.0001), homogeneity
(r = 0.88, p < 0.0001), and variance (r = 0.91, p <

0.0001) between with and without IVCM (Fig. 3a, e, g,
and m). The Bland-Altman plot quantifies bias and range
of agreements. Limits of agreement (LOA) were narrow
for energy (− 0.00 to 0.00), entropy (− 0.04 to 0.05),
homogeneity (− 0.00 to 0.00) and variance (− 0.00 to 0.00)
(Fig. 3b, f, h, and n). Whereas contrast (r = 0.87, p <

0.0001), correlation (r = 0.87, p < 0.0001), sum average
(r = 0.84, p < 0.0001), and dissimilarity (r = 0.86,
p < 0.0001) showed significant correlation (Fig. 3c, i,

k, and o); however, Bland-Altman plot for these features
namely contrast (− 170 to 170) and dissimilarity (− 0.29
to 0.36) obtained wider LOA and sum average (− 0.00 to
0.00) and correlation (− 0.04 to 0.05) showed narrow LOA
and larger bias (Fig. 3d, j, l, and p).

Investigating the effect of slice thickness
on trabecular bone texture analysis

The correlation of energy (r = 0.97, p < 0.0001), entropy
(r = 0.97, p < 0.0001), and homogeneity (r = 0.97,
p < 0.0001) revealed a coherent linear dependency (Fig. 4a,
e, and g) and excellent agreements were observed in Bland-
Altman plot for energy (− 0.00 to 0.00), entropy (− 0.02 to
0.03), homogeneity (− 0.00 to 0.00), correlation (− 0.11 to
0.00), sum average (− 0.00 to 0.00), and variance (− 0.00 to
0.00) (Fig. 4b, f, h, l, and n) between sagittal slice thickness
of 1and 2 mm. Whereas contrast (r = 0.92, p < 0.0001),
sum average (r = 0.93, p < 0.0001), variance (r = 0.96,
p < 0.0001), and dissimilarity (r = 0.92, p < 0.0001)
showed significant correlation in regression fits (Fig. 4c, k,
m, and o). However, correlation obtained r value of 0.81
(p < 0.0001) and moderate agreements (Fig. 4i and j).
Contrast (− 150 to 290) and dissimilarity (− 0.21 to 0.49)
showed minimal agreement in Bland-Altman plot (Fig. 4d,
and p).

The texture features namely contrast (p < 0.0001),
sum average (p < 0.0001), variance (p < 0.0001), and

Fig. 2 Sagittal reformations of
MDCT images a with and
without IVCM, b with different
slice thickness, c scan and
rescan, and d healthy/fracture
cohort (vertebral fracture of L2
marked by an red arrow)
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Fig. 3 Correlation between with and without IVCM texture features
a energy, c contrast, e entropy, g homogeneity, i correlation, k sum
average, m variance, and o dissimilarity, and Bland-Altman plots of b
energy, d contrast, f entropy, h homogeneity, j correlation, l sum aver-
age, n Variance, and p Dissimilarity depicting the mean of each with
and without IVCM versus the difference between the with and without

IVCM. In correlation, plot dotted (-.-.-) line indicates the slope of the
least squares line, solid line (–) adjacent to slope of least squares indi-
cates line of best fit and other two solid lines (–) indicate upper and
lower confidence interval (95%) limits. In Bland-Altman plots, hori-
zontal solid line (–) represents mean value, and two dotted lines (-.-.-)
indicates 95% confidence intervals at ± 1.96 SD
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Fig. 4 Correlation between 1- and 2-mm slice thickness texture fea-
tures a energy, c contrast, e entropy, g homogeneity, i correlation, k
sum average, m variance, and o dissimilarity and Bland-Altman plots
of b energy, d contrast, f entropy, h homogeneity, j correlation, l sum
average, n variance, and p dissimilarity depicting the mean of 1 and
2 mm versus the difference between 1 and 2 mm. In correlation, plot

dotted (-.-.-) line indicates the slope of the least squares line, solid
line (–) adjacent to slope of least squares indicates line of best fit and
other two solid lines (–) indicate upper and lower confidence interval
(95%) limits. In Bland-Altman plots, the horizontal solid line (–) repre-
sents mean value, and two dotted lines (-.-.-) indicates 95% confidence
intervals at ± 1.96 SD
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dissimilarity (p < 0.0001) showed high correlation (r value
range, 0.91 to 0.97, Fig. 5c, k, m, and o) and good agreement
(Fig. 5d, l, n, and p) except contrast (LOA: − 66 to 460)
between slice thickness of 1 and 3 mm. Similarly, energy
(p < 0.0001), entropy (p < 0.0001), homogeneity (p <

0.0001), and correlation (p < 0.0001) showed significant
correlation and good agreement (LOA of energy (− 0.01
to 0.00), entropy (− 0.03 to 0.07), homogeneity (− 0.00 to
0.00), correlation (− 0.16 to 0.07), sum average (− 0.00 to
0.00), variance (− 0.00 to 0.00), and dissimilarity (− 0.05 to
0.85) in Bland-Altman plot (Fig. 5a and b, e and f, g and h,
and i and j), r value ranged from 0.88 to 0.89. However, the
line of best fit was not following the slope of least squares
line.

Investigating the long-term reproducibility
of trabecular bone texture analysis

The scan-rescan texture features showed significant corre-
lation (p < 0.05) with r values ranged from 0.47 to 0.59
(Fig. 6). The Bland-Altman plot showed wider limits of
agreement as compared to the effect of IVCM and different
slice thickness (Fig. 6).

Investigating the discrimination ability of trabecular
bone texture analysis for healthy/fracture cohort

The box plot of texture features shows the distinct discrim-
ination between the healthy/fracture cohort. The box plots
are available in supplementary material Fig. S1. The tex-
ture features of trabecular bone in healthy/fracture cohort
ranked using t test and sequentially fed to SVM classifier.
The entire data was divided into roughly ten equal parts,
where nine parts were used for classifier development and
the one part was used to evaluate the classifier performance.
This process was repeated 10 times and average perfor-
mance measures such as sensitivity, specificity and accuracy
were calculated. The RBF kernel obtained highest sensitiv-
ity of 93.33%, specificity of 79.33%, and accuracy of 83%
among different kernel functions. The detailed results are
available in supplementary material Table S2.

Discussion

In this study, we have studied the reproducibility of
MDCT images with and without IVCM, different slice
thickness (1, 2, and 3 mm slice thickness), investigated long-
term reproducibility (scan-rescan), and demonstrated the
classification of healthy/osteoporotic fracture cohort using
texture features.

The energy, entropy, homogeneity, and variance showed
significant correlation (p < 0.0001) and narrow limits of

agreement between with and without IVCM (Fig. 3). Energy
quantifies orderliness, entropy measures the presence of
heterogeneity in the GLCM elements, homogeneity calcu-
lates the closeness of distribution in the GLCM diagonal
elements, and variance is similar to entropy, it measures
dispersion of the difference between the reference and the
neighbour voxels [15, 19]. Significant correlation of afore-
mentioned features revealed that IVCM does not affect
the orderliness, randomness, and distribution of voxels in
an image. Thus, these texture parameters can be used for
opportunistic osteoporosis screening in contrast-enhanced
routine MDCT. Contrast, correlation, sum average, and dis-
similarity obtained significant correlation (p < 0.0001).
However, these features showed wider limits of agree-
ment and larger bias in the Bland-Altman plot due to the
IVCM-based increased attenuation values. Contrast reflects
the sharpness of images and the depth of texture grooves.
High contrast led to better visual sharpness and deeper
texture grooves [15, 19]. Large number of voxels with
high difference in gray scale led to higher value of
contrast. Whereas dissimilarity measures the texture het-
erogeneity [15, 19]. Hence, wider limits of agreement
for contrast and dissimilarity revealed that the IVCM
enhances the image contrast. The large bias for correla-
tion and sum average in the Bland-Altman plot shows
the minimal change of consistency in image texture
with IVCM. Thus, these parameters are less suitable for
opportunistic osteoporosis screening in contrast-enhanced
MDCT.

Energy, entropy, and homogeneity showed high corre-
lation (p < 0.0001) and excellent agreement between 1-
and 2-mm slice thickness. Whereas, contrast, sum average,
variance, and dissimilarity showed significant correlation,
however contrast, and dissimilarity showed wider agree-
ment and larger bias (Fig. 4). It revealed that the increase
in slice thickness does not affect the uniformity of vox-
els. Further, the texture features between 1- and 3-mm slice
thickness showed high correlation (p < 0.0001) and good
agreement for contrast, sum average, variance, and dis-
similarity. Energy, entropy, homogeneity, and correlation
showed significant correlation (p < 0.0001), but wider
agreement and bias (Fig. 5). The correlation coefficient (r)
value was lower compared to 1 versus 2 mm slice thickness.
Thus, energy, entropy, and homogeneity can be used for
opportunistic osteoporosis screening in sagittal reforma-
tions of routine MDCT with a slice thickness up to
3 mm.

The long-term reproducibility of scan-rescan MDCT
images were evaluated using texture features. The results
showed that all extracted features showed significant
correlation (p < 0.0001). The Bland-Altman plot showed
wider limits of agreement as compared to the effect of
IVCM and different slice thickness (Fig. 6). The bias could
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Fig. 5 Correlation between 1- and 3-mm sagittal slice thickness tex-
ture features a energy, c contrast, e entropy, g homogeneity, i correla-
tion, k sum average,m variance, and o dissimilarity, and Bland-Altman
plots of b energy, d contrast, f entropy, h homogeneity, j correlation, l
sum average, n variance, and p dissimilarity depicting the mean of 1
and 3 mm versus the difference between 1 and 3 mm. In correlation,

the plot dotted (-.-.-) line indicates the slope of the least squares line,
the solid line (–) adjacent to slope of least squares indicates line of best
fit, and other two solid lines (–) indicate upper and lower confidence
interval (95%) limits. In Bland-Altman plots, the horizontal solid line
(–) represents mean value, and two dotted lines (-.-.-) indicate 95%
confidence intervals at ± 1.96 SD
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Fig. 6 Correlation between scan and rescan texture features a energy,
c contrast, e entropy, g homogeneity, i correlation, k sum average, m
variance, and o dissimilarity, and Bland-Altman plots of b energy, d
contrast, f entropy, h homogeneity, j correlation, l sum average, n vari-
ance, and p dissimilarity depicting the mean of scan and rescan versus
the difference between scan and rescan. In correlation, the plot dotted

(-.-.-) line indicates the slope of the least squares line, solid line (–)
adjacent to slope of least squares indicates line of best fit and other two
solid lines (–) indicate upper and lower confidence interval (95%) lim-
its. In Bland-Altman plots, the horizontal solid line (–) representsmean
value, and two dotted lines (-.-.-) indicates 95% confidence intervals at
± 1.96 SD

be due to change in field of view resulting in different slice
thickness [11]. Thus, opportunistic osteoporosis screening is
feasible in contrast-enhanced routine MDCT, but accidental

changes of the field of view have to be taken into account
for longitudinal osteoporosis assessment, e.g. therapy
monitoring.
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The necessity of classifiers in disease screening is
increasing gradually, since large amount of data is gen-
erated in routine clinical examinations and research stud-
ies. The pattern recognition techniques helps to under-
stand the disease patterns and to make useful predictions
[20]. Among various classification techniques SVM pro-
vides optimum results in noisy and complex domains [20].
This statistical learning method works in the principle of
structural risk minimization. SVM uses hyperplane in the
high-dimensional feature space and separates the data to
obtain best possible solutions [17]. Texture-based quantita-
tive features are used to characterise uniformity, randomness
and repetitive patterns in an image [21] and have been
used in detecting pathologies and malignancies [22–24].
GLCM features were widely used texture quantification
methods [16, 25, 26]. In this work, we used SVM classifier
with linear, polynomial, and RBF kernels to discriminate
healthy/osteoporotic fracture cohort using GLCM features
and obtained an average classification accuracy of 83%. The
quantitative measurements could adequately discriminate
subjects with and without vertebral fractures. The limita-
tion of our study is the correlation between texture features
and BMD was not evaluated. Since, DXA and quantitative
computed tomography (QCT) data were not obtained for the
study subjects.

In summary, this study proved that specific texture fea-
tures could be reliably extracted from sagittal reformations
up to 3 mm slice thickness in routine MDCT scans with
IVCM. Moreover, long-term reproducibility of scan-rescan
may be clinically acceptable. Lastly, routine MDCT images
with IVCM can be used for down stream applications such
as fracture risk prediction using SVM.
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