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MicroRNAs in bone diseases
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Abstract MicroRNAs are small, noncoding single-stranded
RNAs that have emerged as important posttranscriptional reg-
ulators of gene expression, with an essential role in vertebrate
development and different biological processes. This review
highlights the recent advances in the function of miRNAs and
their roles in bone remodeling and bone diseases. MicroRNAs
(miRNAs) are a class of small (∼22 nt), noncoding single-
stranded RNAs that have emerged as important posttranscrip-
tional regulators of gene expression. They are essential for
vertebrate development and play critical roles in different bi-
ological processes related to cell differentiation, activity, me-
tabolism, and apoptosis. A rising number of experimental re-
ports now indicate that miRNAs contribute to every step of
osteogenesis and bone homeostasis, from embryonic skeletal
development to maintenance of adult bone tissue, by regulat-
ing the growth, differentiation, and activity of different cell
systems inside and outside the skeleton. Importantly, emerg-
ing information from animal studies suggests that targeting
miRNAs might become an attractive and new therapeutic ap-
proach for osteoporosis or other skeletal diseases, even though
there are still major concerns related to potential off target
effects and the need of efficient delivery methods in vivo.
Moreover, besides their recognized effects at the cellular level,
evidence is also gathering that miRNAs are excreted and can
circulate in the blood or other body fluids with potential

paracrine or endocrine functions. Thus, they could represent
suitable candidates for becoming sensitive disease biomarkers
in different pathologic conditions, including skeletal disor-
ders. Despite these promising perspectivesmore work remains
to be done until miRNAs can serve as robust therapeutic tar-
gets or established diagnostic tools for precision medicine in
skeletal disorders.
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Introduction

The pathogenesis of many bone disorders is, at least in part,
genetically determined. Indeed, complex regulatory mecha-
nisms and transcriptional activities are necessary to support
the expression of genes that regulate the activity of bone cells
in response to different stimuli (e.g., hormones, growth fac-
tors, cytokines). Apart from monogenic bone diseases, it is
now well established that in complex, multifactorial disorders
with a recognized hereditary component, such as osteoporosis,
the associated genetic variants have a limited impact on gene
expression and explain only a small fraction of the disease risk
[1]. Moreover, a larger proportion of the variants associated to
many human traits or diseases, as indicated by the recent
genome-wide association studies, fall in loci which do not
encode proteins, suggesting that additional mechanisms other
than gene-gene and gene-environment interactions might be
involved.

Importantly, the technological progresses in genetics oc-
curred over the past decade have changed dramatically our
perspective on eukaryotic gene expression regulation. In fact,
several heritable, Bepigenetic^ changes in gene expression
have been characterized for most genes that do not imply a
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modification in nucleotide sequence. These involve DNA
methylation and histone modifications that modulate gene
transcription and noncoding RNAs (ncRNAs) that act at the
posttranscriptional level. Moreover, while only 1–2% of the
human genome is transcribed into proteins, several studies
documented pervasive transcription across 70–90% of the hu-
man genome, suggesting that ncRNAs represent most of the
human transcriptome [2, 3]. It has been recently established
that aside from around 21,000 protein coding genes and over
1,100,000 genomic repetitive elements (e.g., Alu repeat ele-
ments), the human transcriptome includes more than 11,000
pseudogenes, about 9000 small RNAs, and around 10,000–
32,000 long ncRNAs (lncRNAs) [4, 5]. The small ncRNA
class includes both housekeeping and regulatory RNAs, such
as transfer RNAs (tRNAs), ribosomal RNAs (rRNAs),
microRNAs (miRNAs), small nucleolar RNAs (snoRNAs),
small nuclear RNAs (snRNAs), PIWI-interacting RNAs
(piRNAs), and small interfering RNAs (siRNAs). More re-
cently, circular RNAs (circRNAs) have emerged as new po-
tential gene regulators [3]. They are known to sequester
miRNAs and thus modulate cellular functions and, possibly,
disease mechanisms.

The importance of this noncoding transcriptome in deter-
mining the greater complexity of higher eukaryotes and dis-
ease pathogenesis has become increasingly clear in recent
years. While the function of lncRNAs and circRNAs remains
poorly understood, an increasing number of reports have
highlighted the key role of miRNAs as important regulators
of various biological processes. Here, we provide an overview
of the function of miRNAs and their roles in bone remodeling
and bone diseases.

Biogenesis and function of microRNAs

miRNAs are a class of endogenous, evolutionary conserved,
short RNAs (generally 20–24 nucleotides long) that have es-
sential roles in regulating gene expression, with potential ma-
jor implications in several human diseases. Indeed, up to 60%
of protein-coding genes are regulated by miRNAs at the post-
transcriptional level by blocking messenger RNA (mRNA)
translation or by inducing mRNA degradation [6].

It has been estimated that miRNAs constitute around 1–5%
of the human genome [7]. Most of the miRNA genes are
transcribed as independent transcriptional units, having their
own promoter and other regulatory elements. However, one
fourth of the miRNA genes is located in intronic regions of
several coding genes [8] and hence are cotranscribed and
coregulated from a common promoter. At the cellular level,
mature miRNAs are generated by the sequential cleavage of
longer poly-adenylated transcripts (pri-miRNAs) that are tran-
scribed from the intragenic or intergenic DNA regions by
RNA polymerases II and, less frequently, III [9]. The initial

cleavage step occurs in the nucleus where pri-miRNAs are
processed by the ribonuclease II called Drosha or the
double-stranded DNA-binding protein DGCR8 (Di George
syndrome critical gene 8) giving rise to pre-miRNAs (about
70 nucleotides long). Then, pre-miRNAs are exported to the
cytoplasm by the export receptor complex exportin5-RAN/
GTP and processed by the ribonuclease III endonuclease
named Dicer and the coregulator Ago2 (an Argonaut protein)
to form small double-stranded miRNAs. Both these steps of
miRNAs biogenesis are crucial for life, since either Drosha or
Dicer deletion results in early embryonic lethality [10, 11],
and conditional deletion of these enzymes in specific cell
types affects cellular function and the development of many
tissues, including bone [12–15]. Finally, the duplex miRNAs
are converted into mature single-stranded miRNAs and inte-
grated into the RNA-induced silencing complex (RISC),
which acts on the complementary 3′-UTRs of target mRNAs
by either promoting their degradation or inhibiting their trans-
lation [16]. The two strands of each miRNA duplex are re-
spectively called miRNA-5p and miRNA-3p (formerly defined
as miRNA and star*-miRNA). It was firstly assumed that in
most species, the 5p strand acts as the guide-strand and is
incorporated into RISC, while the star 3p strand is degraded.
However, both arms of the precursor have the potential to
produce functional mature miRNAs and the dominant product
may change in relation to the species, tissues, or developmen-
tal stages [17].

Since the first report in 1993, the miRNA database has
grown exponentially, with an actual size of 35,828 mature
miRNAs from 223 species (miRBase release 21 June 2014).
The human genome is estimated to encode more than 1800
miRNAs, and nearly two thirds of human protein-coding
genes show miRNA-binding affinity that is generally con-
served across most mammalian species [6]. While the first
described miRNAs were named by the gene where they are
located (e.g., lin-4 and let-7 of Caenorhabditis elegans), a
numerical nomenclature has been now adopted for all
miRNA sequences. Moreover, similar to the proteins,
miRNAs deriving from the identical ancestor in the phyloge-
netic tree can be grouped into a family (e.g., miRNA-29, a, b,
c) based on sequence similarity in the seed regions (8 nucle-
otides, with positions 2 to 7 being 99% conserved).
Furthermore, miRNA genes are frequently expressed individ-
ually, but many exist in clusters of two to seven genes.
Generally, a miRNA cluster refers to a set of miRNAs, which
are close to each other in the genome, have the same promoter
and/or are transcribed as a single primary transcript.
Experimental results suggest that miRNA clusters may be
expressed cotranscriptionally, which indicates that they are
under control of common regulatory sequences [18]. Thus,
not only the genomic location, but if a group of miRNAs
has a similar pattern of expression, they can be considered to
be in the same cluster.
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From the functional point of view, most miRNAs are
thought to act primarily as mRNA destabilization se-
quences or as translational repressors by pairing with
specific partially complementary 3′-UTR regulatory ele-
ments on mRNAs, although target sites in the coding
region and 5 ′-UTR can also be functional [19].
However, there is also evidence indicating that, at least
in some circumstances, miRNAs can also enhance trans-
lation [20] or that positive transcriptional regulation can
be produced by certain miRNAs targeting sites in pro-
moter regions [21]. Importantly, a single gene can be
targeted by a cluster of miRNAs and each single
miRNA can regulate different protein coding genes.

The interest in the field of miRNAs has further in-
creased by the discovery that they do not only exert
their action on the intracellular level but they also exist
extracellularly and can circulate in the blood flow as
protein-bound miRNAs, free circulating RNAs (e.g., re-
leased by dead cells), or within secreted microvescicles
[22, 23], thus claiming their potential as novel diagnos-
tic and prognostic markers of many diseases. Indeed,
the pivotal role of miRNAs in regulating gene expres-
sion and disease mechanisms is now reflected by vari-
ous achievements in biomedical research and the impact
they are starting to have on patient management.
Remarkable examples include either the development
of diagnostic and prognostic miRNA expression signa-
tures for particular human pathologies or the prospect of
miRNA-based therapeutics for viral diseases and cancer,
which have entered clinical trials (e.g., hsa-miR-34a-5p
replacement therapy in liver cancer patients or antisense
agents directed against hsa-miR-122-5p for treating hep-
atitis C infection) [24, 25].

MicroRNAs and bone cells

Many reports now indicate that miRNAs contribute to
every step of osteogenesis and bone homeostasis, from
embryonic skeletal development to maintenance of adult
bone tissue, by regulating the growth, differentiation,
and activity of different cell systems inside and outside
the skeleton. While most of the identified miRNAs ap-
pears to specifically regulate cells from the osteoblast or
the osteoclast lineage, some miRNAs have been in-
volved in the regulation of bone resorption as well as
bone formation (a list of major miRNAs affecting both
osteoblast or osteoclast function is given in Table 1).
However, despite the rising number of experimental re-
ports about this issue, our understanding on the exact
mechanisms through which miRNAs regulate the inter-
play between the different cell types in the bone

remodeling unit under physiologic conditions or in bone
diseases remains limited.

Functions of microRNAs on osteoclast formation
and activity

Osteoclasts are bone-specific multinucleated cells, which are
responsible for bone resorption. They derive from hematopoi-
etic stem cells and monocyte-macrophage precursors, with
receptor activator of nuclear factor κB ligand (RANKL) and
macrophage colony-stimulating factor (M-CSF) being the
most important factors for osteoclast differentiation. Notably,
the complete loss of miRNA activity in osteoclast precursors
results in a block of mature osteoclast formation. Indeed, spe-
cific deletion of crucial enzymes involved in miRNA biogen-
esis in mononuclear osteoclasts precursors and in mature mul-
tinucleated osteoclasts resulted in similar skeletal phenotype
characterized by increased bone mass due to a reduction in the
number and activity of osteoclasts [12, 14, 15]. Osteoclast
formation from hematopoietic stem cells was also affected.
The same results were obtained when siRNAs were used to
silence components of the Drosha or RISC enzyme complexes
in bone marrow precursor cells [26].

A recent mice study demonstrated that from the early to the
late differentiation stages of osteoclastogenesis, 49 miRNA
are upregulated and 44 were downregulated [27].
Computational analyses predicted mTOR, PI3 kinase/AKT,
cell-matrix interactions, actin cytoskeleton organization, focal
adhesion, and axon guidance pathways to be the main targets
of the seven miRNA clusters deriving from these 93 miRNAs.
Other studies indicated that specific miRNAs are operative
mostly at the commitment stage of osteoclastogenesis, acting
on the differentiation and recruitment of cells derived from the
hematopoietic stem line [reviewed in 28, 29].

An updated list of relevant miRNAs in osteoclast formation
and/or activity and their potential targets is reported in Table 2.
Among the different implicated miRNAs, miRNA-21 has
been the most extensively investigated [23, 24]. This
miRNA is highly expressed in osteoclast precursors and its
expression levels are strongly upregulated during osteoclasto-
genesis [15]. Transcription factors c-Fos and PU.I, which are
crucial modulators of osteoclast formation, trigger miRNA-21
transcription by acting on a specific promoter. At the same
time, miRNA-21 is able to downregulate programmed cell
death 4 (PDCD4) protein levels that exert an inhibitory effect
on c-Fos. Therefore, a positive feedback loop involves c-FOS/
miRNA-21/PDCD4 and promotes RANKL-induced osteo-
clastogenesis. Moreover, miRNA-21 has been also implicated
in mediating the inhibitory effects on osteoclastogenesis and
in promoting osteoclast apoptosis induced by estrogen [30]. In
fact, estrogen suppresses miRNA-21 biogenesis and thus in-
creases the protein levels of another miRNA-21 target, Fas
ligand (FasL) that induces osteoclast apoptosis [30].
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Different studies indicated that the miRNA-29 family
(miRNA-29a-3p, miRNA-29b-3p, miRNA-29c-3p) is a key
mediator of osteoclast differentiation. During osteoclastogen-
esis from either bone marrow monocytes (BMMs) or macro-
phage cell line RAW264.7, all miRNA-29 family members
are increased, while their knockdown inhibits the commitment
andmigration of osteoclast precursors without interfering with
mature osteoclast functions [31]. It has been suggested that the
stimulatory effect of miRNA-29 family members on osteo-
clast formation is mainly mediated by the posttranscriptional
suppression of the target protein nuclear factor I-A (NFIA),
which is a negative regulator of M-CSF receptor [32]. Indeed,
it has been also predicted that members of miRNA-29 family
may regulate the expression of more than 6000 genes [28].
Other miRNA-29 target proteins within the macrophage-
osteoclast lineages include the calcitonin receptor and
mRNAs critical for cytoskeletal organization (e.g., cell divi-
sion control protein 42 and G protein-coupled receptor 85)
[29]. However, conflicting reports were also published since
pre-miRNA-29a treatment in rats significantly reduced
glucocorticoid-induced bone loss while the suppression of
miRNA-29b increased bone resorption in vitro [28, 29].
Albeit these latter evidences indicate a more complex role of
some miRNA-29 family members on osteoclast activity and
bone remodeling, a parallel effect of miRNA-29 family mem-
bers on Wnt signaling and osteoblast activity was also de-
scribed [28, 29], suggesting that the positive effects on bone
density and strength observed in the animal model could be, at
least in part, mediated by the osteoblasts. Another relevant
miRNA in osteoclast biology is miRNA-31, that is widely
expressed by a variety of tissues with more than 200 potential
targets, most of them involved in cell mobility, polarity and
cytoskeletal dynamics [28]. Importantly, miRNA-31 is highly
upregulated during RANKL-induced osteoclastogenesis (by

up to 18-fold in murine bone marrow cells) and its inhibition
by specific antagomirs suppresses terminal osteoclast forma-
tion and bone resorption. This effect could be related to the
targeting of RhoA that plays a key role in acting ring forma-
tion in osteoclasts. Moreover, other studies have evidenced a
parallel inhibitory effect of miRNA-31 on osteogenesis and
bone formation (see BFunctions of microRNAs on osteogen-
esis and bone formation^). In a miRNA expression profile
analysis during osteoclastogenesis from human peripheral
blood mononuclear cells (PBMCs), a major effect of
miRNA-148a on osteoclast formation was evidenced, likely
mediated by a negative regulation of V-maf musculo aponeu-
rotic fibrosarcoma oncogene homolog B (MAFB) [33], which
acts on NFATc1, c-Fos, and other regulatory factors of osteo-
clast differentiation. Consistent with this observation, a sup-
pression of bone resorption together with an increase in bone
mass were observed in the ovariectomized (OVX)mice model
following the injection with miRNA-148a antagomiRs [33].

Other positive regulators of osteoclastogenesis include
miRNA-183, through inhibiting heme oxygenase 1 (HO-1)
expression, miRNA-214, that is supposed to target the phos-
phatase and tensin homolog (PTEN)/Pl3k/Akt pathway, and
miR-9718, that is preferentially expressed in bone and leads to
posttranslational suppression of protein inhibitor of activated
STAT3 (PIAS3), a known inhibitor of NFATc1 and osteoclas-
togenes is [reviewed in 29] . The impor tant pro-
osteoclastogenic role of miRNA-214 has been also recently
highlighted in vivo, in the osteoclast-specific miR-214 trans-
genic mice, that shows increased osteoclast activity and re-
duced bone density [34].

In contrast, miRNA-7-5p, miRNA-26, miRNA-34,
miRNA-124, miRNA-125a, miRNA-146a, miRNA-155,
miRNA 218-5p, and miRNA-503 demonstrated an inhibitory
function on osteoclast formation, at least in experimental

Table 1 Major miRNAs with documented in vitro effects on both osteoblast and osteoclast cell lineages

miRNA (miR) Effects on osteoblast lineages Effects on osteoclast lineages

miR-21 Promoter of osteoblast differentiation and mineralization Promoter of osteoclastogenesis and of osteoclast
bone-resorbing activity

miR-26a Suppressor of adipose tissue derived stem cells
differentiation towards osteoblast lineage

Inhibitor of mature osteoclast formation

miR-29 family Promoter of osteoblast differentiation Promoter of osteoclastogenesis and of migration
of osteoclast precursors

miR-31 Suppressor of early phases of osteogenesis Upregulated during RANKL-induced osteoclastogenesis
(promotes terminal osteoclast formation)

miR-34a Inhibitor of early commitment and late osteoblasts
differentiation of human MSCs

Suppressor of osteoclastogenesis (miR-34a knockout
mice show bone loss due to increased bone resorption)

miR-214 Suppressor of osteoblast function and bone formation Promoter of osteoclastogenesis (transgenic mice show
bone loss due to increased osteoclast activity)

miR-223 Promoter of adipogenesis and repressor of
osteogenesis of MSCs

Upregulated during osteoclastogenesis (at highest
dosages acts as suppressor of osteoclastogenesis)

MSCs mesenchymal stem cells, miR microRNA
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conditions [reviewed in 29]. While miRNA-124 and miRNA-
218-5p may act as intrinsic negative regulators of NFATc1, a
master stimulator of osteoclastogenesis, miRNA-7-5p and
miRNA-26a are supposed to act upstream NFATc1, through
the inhibition of DC-STAMP, which is also involved in the
fusion of osteoclast precursors into mature osteoclasts, either
directly (miRNA-7-5p) or indirectly (miRNA-26a), through
the suppression of the DC-STAMP inhibitor connective tissue
growth factor/CCN family 2 (CTGF/CCN2). A study by Guo
et al. demonstrated a significant downregulation of miRNA-
125a during M-CSF and RANKL-induced osteoclastogenesis
of PBMCs, while miRNA-125a overexpression inhibited os-
teoclast formation [35]. Similarly, transfection of a miRNA-
125a antagomiR into PBMCs promoted osteoclast differenti-
ation. Tumor necrosis factor receptor-associated factor 6
(TRAF6), a transduction factor for RANKL/RANK/NFATc1
signal, was confirmed to be a target of miRNA-125a. Of in-
terest, in the same in vitro experiments, NFATc1 was able to
reduce miRNA-125a transcription, thus suggesting the pres-
ence of a TRAF6/NFATc1/miRNA-125a regulatory feedback
loop within the osteoclast. Furthermore, it is known that inter-
feron β (IFN-β) may be induced during osteoclast differenti-
ation via a c-Fos-dependent mechanism downstream of the
RANKL-RANK signal transduction cascade, and that this in-
crease in IFN-β, in turn, inhibits osteoclastogenesis [36]. An
experimental in vitro study in BMMs found that miRNA-155
is an IFN-β-inducedmiRNA,mediating the suppressive effect
of IFN-β on osteoclast differentiation by targeting suppressor
of cytokine signaling 1 (SOCS1) and microphthalmia tran-
scription factor (MITF), two regulators of osteoclastogenesis
[37]. The role of miRNA-146a on osteoclastogenesis has been
investigated either in vitro and in vivo by Nakasa et al.
who demonstrated that transfection of double-stranded
miRNA-146a in PBMCs derived from healthy individ-
uals suppressed their MCS-F and RANKL-induced dif-
ferentiation in osteoclasts, while intravenous injection of
miRNA-146a prevented bone erosion in a mice model
of collagen-induced arthritis [38].

Among other relevant miRNAs for osteoclast biology,
miRNA-34a is highly conserved across species and its expres-
sion is downregulated during osteoclast differentiation from
either BMMs or PBMCs [39]. Transgenic mice specifically
expressing miRNA-34a in osteoclasts showed reduced bone
resorption and higher bone density, while the opposite pheno-
type was observed in miRNA-34a knockout model [39].
Moreover, OVX-induced osteoporosis was effectively attenu-
ated by miRNA-34a nanoparticle treatment [39], further
evidencing that this miRNA could become an important target
for the suppression of osteoclast activity and bone loss. From
the molecular point of view, transforming growth factor-β-
induced factor 2 (Tgif2) was identified as an essential and
direct miRNA-34a target due to its pro-osteoclastogenic ef-
fect. Consistent with this hypothesis, Tgif2 deletion reduced

bone resorption and abolished miRNA-34a regulation. On the
other side, miRNA-503 was demonstrated to be a relevant
miRNA on osteoclast biology acting through a direct inhibi-
tion of RANK [40]. In fact, in the OVX mice model silencing
of miRNA-503 using a specific antagomiR increased RANK
protein expression, promoted bone resorption, and decreased
bone mass, whereas overexpression of miRNA-503 inhibited
bone resorption and prevented bone loss. Of interest, follow-
ing OVX, there is a decline in miRNA-503 levels while estro-
gen replacement increases its expression.

Despite miRNA-223 has been investigated in different ex-
perimental observations, there are still conflicting evidences
showing either stimulatory or inhibitory effects on osteoclast
differentiation [reviewed in 28, 29]. This miRNA is almost
exclusively expressed in the hematopoietic system, including
the myeloid cell lineages and mononuclear osteoclast precur-
sors [41]. Some in vitro evidences suggested that miRNA-223
is increased during osteoclastogenesis and is regulated by the
transcription factor PU.I that is also expressed in osteoclast
precursors as a response to M-CSF stimulation. In those stud-
ies, miRNA-223 was reported to inhibit nuclear factor I-A
(NFI-A) expression, thus enhancing osteoclast formation
[14]. Notably, a positive feedback loop between PU.I,
miRNA-223, NFI-A, and MCS-F receptor was also described
[42]. When an antisense was used to suppress miRNA-223
levels, either osteoclast differentiation or osteoclast bone re-
sorbing activity were decreased [14]. In contrast with the
above observations, other reports indicated that, in case of
miRNA-223 overexpression, osteoclastogenesis is inhibited
in either PBMCs or RAW264.7 cells [28, 29]. This effect
could be mediated by the downregulation of IKKα, a key
factor in noncanonical NFkB pathway. Thus, it is likely that
appropriate miRNA-223 expression levels should be kept dur-
ing osteoclastogenesis and that either a suppression or an ex-
cessive increase in this miRNA may have negative effects on
osteoclast formation.

Notably, in a more recent and sophisticated study, a
microarray analysis was performed to detect the expression
profiles of all ncRNAs at different stages during osteoclas-
togenesis of RAW264.7 cells, revealing a complex inter-
action among ncRNAs in osteoclast formation and activity
[43]. For pre-osteoclasts 1643 lncRNAs, 147 circRNAs
and 119 miRNAs were upregulated and 2705 lncRNAs,
109 circRNAs, and 941 miRNAs were downregulated;
for mature osteoclasts 1896 lncRNAs, 78 circRNAs and
38 miRNAs were upregulated and 2706 lncRNAs, 135
circRNAs, and 24 miRNAs were downregulated, while
for activated osteoclasts 2716 lncRNAs, 78 circRNAs
and 38 miRNAs were upregulated and 3124 lncRNAs,
45 circRNAs, and 975 miRNAs were downregulated.
However, most of the associated miRNAs were novel,
since they were not associated with osteoclast formation
and/or activity in the previous studies described above.
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Functions of microRNAs on osteogenesis and bone
formation

Osteoblasts are differentiated cells derived from the
mesenchymal stem cell (MSC) line, which is also the
precursor line common to adipocytes, chondrocytes, and
myocytes. Indeed, osteoblastogenesis is a multistep pro-
cess. After osteogenic induction, MSCs differentiate to
proliferative pre-osteoblasts before becoming mature os-
teoblasts. In the terminal step of differentiation, a small
fraction of osteoblasts further differentiate into osteo-
cytes, whereas the remaining undergoes apoptosis.
Essentially, two families of growth factors act as the
major regulators of osteoblast differentiation from
MSCs, the Wnt family and the bone morphogenetic
proteins (BMPs). Among the several downstream effec-
tors of these signaling pathways, the essential transcrip-
tion factors for osteoblastogenesis include Runx2,
Osterix (Osx), and different classes of homeodomain
proteins. To date, the effects of miRNAs on osteoblast
differentiation and bone formation have been more ex-
tensively investigated than on osteoclasts [reviewed in
44–46].

Experimental studies in animal models indicated that
alterations in miRNA processing in either chondrocytes
or osteoblasts have a negative effect on bone [13, 44].
For example, the conditional deletion of Dicer in mesen-
chymal osteoprogenitors cells (from either the osteoblastic
or chondrocyte lineages) resulted in marked skeletal defor-
mities and lethality during late gestation in mice models.
When Dicer was ablated in mature osteoblasts, the mice
were viable but exhibited a reduction in osteoblast number
together with delayed bone development and mineraliza-
tion [13]. Surprisingly, a progressive increase in cortical
bone was observed in these mice after 1 month of age,
mainly due to increased collagen deposition in the extra-
cellular matrix. A similar reduction in osteoblast number
was observed in case of conditional deletion of Dicer in
committed pre-osteoblasts, leading to decreased mineraliza-
tion, without major abnormalities in trabecular or cortical
bone volume [45]. However, the latter model also evi-
denced that deletion of Dicer in mouse osteoprogenitors,
but not in mature osteoblasts, disrupts the integrity of the
hematopoietic stem cell niche.

An increasing number of miRNAs have been identified that
exert a major impact on the regulation of osteoblast differen-
tiation from MSCs and bone formation by targeting specific
osteogenic factors or negative regulators of osteogenesis.
Indeed, miRNA expression patterns appear to differ in undif-
ferentiated MSC progenitors and the respective fully differen-
tiated cells (e.g., osteoblasts vs. adipocytes vs. chondrocytes)
suggesting that miRNAs are crucial for the commitment of
MSCs into specific lineages.

miRNAs with an inhibitory role on osteogenesis
and osteoblast function

Differential miRNA expression analyses revealed that
miRNA-335 is highly expressed in undifferentiated human
MSCs, while its levels decreases during MSCs differentiation
in osteoblasts or other cell lineages [46]. Overexpression of
miR-335 in humanMSCs also inhibited their proliferation and
migration, together with their osteogenic and adipogenic po-
tential. However, other reports evidenced variable expression
of miRNA-335-5p during osteoblast differentiation, indicat-
ing an increase in this miRNA at earlier time points following
induction of differentiation and then a progressive decrease,
particularly in late-stage osteoblasts and osteocytes [47]. By a
different approach, pivotal studies in either mice or human
bone marrow MSCs (BM-MSCs) compared the expression
of representative miRNAs in the derived osteoblasts and
chondroblasts [48, 49]. While selective upregulation of
miRNA-96 and miRNA-199b was evident during osteogene-
sis, miRNA-199a and miRNA-124a were strongly upregulat-
ed during chondrogenesis. Likewise, different miRNAs regu-
late the differentiation of mesenchymal progenitor cells and
bone marrow stromal cells (BMSCs) towards adipogenesis
while decreasing osteogenesis. Of interest, most of these
miRNAs exert a modulatory effect on components of the ca-
nonical Wnt signaling pathway, which appears to act as a
major molecular switch between adipogenesis and osteogen-
esis of MSCs. A specific high-throughput miRNA assay in
cellular models of activation and repression of Wnt signaling
evidenced 18 and 29 miRNAs that might promote or repress
adipogenesis, respectively [50]. Among these miRNAs,
miRNA-210 was shown to block at transcription level
Tcf712, a transcription factor triggering the downstream re-
sponsive genes of Wnt signaling. More recently, miRNA-188
was identified as a key regulator of the age-related switch
between osteogenesis and adipogenesis of BM-MSCs [51].
Its levels were markedly higher in BM-MSCs from aged com-
pared with young mice and humans. With aging, animal lack-
ing miRNA-188 showed a decreased fat accumulation in bone
marrow as well as reduced rates of bone loss; conversely,
transgenic overexpression of miRNA-188 determined greater
age-associated bone loss and fat accumulation in mice.
Consistent with these observations, treatment of aging mice
with antagomiR-188 via a BM-MSC-specific aptamer in-
creased bone formation, thus providing a potential strategy
for future treatment options for senile osteoporosis. From the
molecular point of view, this miRNA posttranscriptionally
inhibits hystone deacetylase 9 (HDAC9) and RPTOR-
independent companion ofMTOR complex 2 (Rictor) expres-
sion and thus upregulates PPARγ expression promoting
adipogenic differentiation of BMMSCs. Likewise, miRNA-
206a, known as key factor for muscle differentiation, is pro-
gressively downregulated during osteogenesis and its
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overexpression in different cell lines or animal models was
associated with reduced osteoblast differentiation [43].
These negative effects of miRNA-206 on osteoblast develop-
ment and bone formation have been related to the suppression
of the gap junction protein connexin-43 (Cx43) that is crucial
for the functional network among osteoblasts, osteocytes, and
osteoprogenitors cells [52].

Many other miRNAs were shown to act primarily as inhib-
itors of osteoblast differentiation at either early-lineage com-
mitment of MSCs or later differentiation stages of committed
pre-osteoblast cells by targeting Runx2 or additional relevant
osteogenic factors. An initial miRNA profiling during BMP2
induced differentiation of mouse C2C12 mesenchymal cells
demonstrated that 22 of 25 miRNAs, which significantly
changed in response to BMP2 were downregulated [53].
Among these miRNAs two key transducers of BMP2 osteo-
genic signal were identified, miRNA-133, which directly tar-
gets Runx2 and miRNA-135, which targets Smad5. Other
miRNAs have been implicated to the inhibition of osteo-
blastogenesis by targeting different components of the BMP
signaling pathway or directly Runx2. Known inhibitors of
BMPs include miRNA-370, which decreases the expression
of BMP2, miRNA-26a, miRNA-199a-3p that reduces osteo-
blast differentiation targeting Smad1 [reviewed in 54],
miRNA-27a repressingBMP2, BMPR1A, and Smad9 expres-
sion [55], and miRNA-100 targeting BMPR2 [56]. Members
of the miRNA-497∼195 cluster and particularly miRNA-195–
5p have been also associated to the inhibition of osteoblasto-
genesis during postnatal bone development and the differen-
tiation of primary calvaria osteoblasts, through the downreg-
ulation of multiple BMP-responsive genes [57], while the in-
hibitory effect of miRNA-30 family on BMP-induced osteo-
genesis has been related to a contemporary inhibition of
Smad1 and Runx2 [58]. Additional in vitro studies showed
that several miRNAs are implicated in the suppression of
Runx2 during chondrogenesis and osteogenesis. In particular,
a panel of 11 Runx2-targeting miRNAs (miRNA-23a,
miRNA-30c, miRNA-34c, miRNA-133a, miRNA-135a,
miRNA-137, miRNA-204, miRNA-205, miRNA-217,
miRNA-218, and miRNA-338) was shown to be expressed
in a lineage-related pattern in MSCs [59]. During both osteo-
genic and chondrogenic differentiation, these miRNAs, in
general, are inversely expressed relative to Runx2, and in ex-
perimental conditions, each of them was able to attenuate
Runx2 protein accumulation. Importantly, during the initial
steps of endochondral bone formation, these miRNAs are
generally highly expressed in pre-chondrocytes, in order to
promote chondrogenesis; subsequently, when cells differenti-
ate into hypertrophic chondrocytes within the growth plate,
they become downregulated. As a result, Runx2 increases in
order to promote bone formation. In the differentiation process
of osteoblasts, the same miRNAs are downregulated until the
late stages, when their increase is required to inhibit Runx2

and permit the final stage of osteoblast maturation. Additional
studies confirmed the direct effect of miRNA-23a and
miRNA-204 or its homolog miRNA-211 on the suppression
of Runx2 levels [reviewed in 54]. Thus, tight regulation of
Runx2 protein by miRNAs appears critical for osteoblasto-
genesis and normal bone formation. At the same time,
Runx2 negatively regulates expression of the miRNA cluster
23a∼27a∼24-2, establishing a feed-forward mechanism nec-
essary for osteoblast differentiation and activity, while an up-
regulation of miRNA-23 is relevant for the maintenance of the
osteocyte phenotype [60]. A subsequent study demonstrated
that Runx2 can also upregulate miRNA-1192, which in turn
enhances Runx2-induced osteogenic differentiation, possibly
through the downregulation of heparin-binding EGF-like
growth factor [61]. The latter is also a target of an additional
pro-osteblastogenic miRNA, miRNA-96 [62].

Further reports demonstrated that miRNA-93, miRNA-
143, miRNA-145, and miRNA-637 all act downstream of
Runx-2 and suppress osteoblast differentiation and bone min-
eralization by targeting Osx [reviewed in 54]. Notably, a study
by Chen et al. evidenced that, during the process of Osx-
controlled osteogenesis, Osx has the ability to coordinately
modulate Runx2, sclerostin, alkaline phosphatase and the
transcription factor Dlx5 at levels appropriate for optimal os-
teoblast differentiation and function, at least in part, through
regulation of specific miRNAs, including the downregulation
of miRNA-133a and miRNA-204/211 that are known repres-
sors of Runx2 [63].

More recently, miRNA-103a has been identified as the first
mechanosensitive miRNA that regulates osteoblast differenti-
ation by directly targeting Runx2 [64]. In fact, miRNA-103a
and its host gene PANK3 were both downregulated during
cyclic mechanical stretch-induced osteoblast differentiation,
whereas Runx2 protein expression was upregulated. Further,
the perturbation of this miRNA also had a significant effect on
osteoblast activity and matrix mineralization. Consistent with
these in vitro data, an inhibitory role of miRNA-103a in reg-
ulating bone formation in hind limb unloading mice was re-
ported and pretreatment with antagomiR-103a partly rescued
bone loss caused bymechanical unloading. Taken together, all
these studies demonstrate the existence of a tight and recipro-
cal interplay between the master osteogenic transcription fac-
tors like Runx2 or Osx and several miRNAs, during osteoblast
differentiation. Conversely, a suppression of osteoblastogene-
sis together with an increased apoptosis of cells of the osteo-
blastic lineages have been related to miRNA-182 and
miRNA-705, which represses FoxO1, a known antioxidant
playing a crucial role in redox balance and osteogenesis [65,
66]. By the modulation of the ERK-dependent pathway, that
also plays a key role in the transcriptional control of bone
formation, miRNA-138 was involved in the negative regula-
tion of human MSC osteogenic differentiation [67]. Indeed,
in vivo ectopic bone formation was enhanced by 60% when
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miRNA-138 was antagonized in the mice model. Target pre-
diction analysis and experimental validation by luciferase re-
porter assay confirmed focal adhesion kinase (FAK), an acti-
vator of ERKs, as a bona fide target of miRNA-138.

Interestingly, together with a suppressive effect on osteo-
clastogenesis, as described by Krzeszinski et al. [39], it has
been reported that overexpression of miRNA-34a may also
exert an inhibitory effect on early commitment and late oste-
oblast differentiation of human MSCs in vitro and in a pre-
clinical in vivo model of heterotopic bone formation, by
targeting Jagged1 (JAG1), a ligand for Notch 1 [68].
Similarly, miRNA-31 not only exerts a stimulatory effect on
osteoclast maturation but also negatively affects osteogenesis,
as demonstrated by different experimental reports. In particu-
lar, the overexpression of miRNA-31 repressed whereas its
downregulation enhanced the osteogenesis of human MSCs
[69]. These inhibitory effects of miRNA-31 on osteoblast for-
mation have been related to the inhibition of the osteogenic
factors Osx, Frizzled-3, and special AT-rich sequence-binding
protein 2 (SATB2) [69–71]. Moreover, recent reports sug-
gested that miRNA-31 is highly expressed by the senescent
endothelial cells or the human MSC-derived adipocytes and
can be released by these cells through extracellular vesicles
leading to the suppression of osteogenesis [71, 72].

Thus, several sets of miRNAs may suppress osteogenesis
and bone formation by different mechanisms and by targeting
most of the known signaling pathways involved in osteoblast
biology, at least in experimental conditions (Table 3).

miRNAs with a stimulatory role on osteogenesis
and osteoblast function

On the other side, a lower number of miRNAs has been asso-
ciated to a positive regulation of osteogenesis and osteoblast
differentiation (Table 4). Among them, miRNA-20a and
members of the miRNA-29 family have been shown to be
crucial for osteoblast differentiation. In fact, miRNA-20a pro-
motes the osteogenesis of MSCs by activating BMP/Runx2
signaling through silencing peroxisome proliferator-activated
receptors γ (PPARγ), Bambi and Crim1 [reviewed in 73].
Further analysis demonstrated that this miRNA enhances the
expression levels of several osteogenic factors, such as BMPs,
Runx2, and Osx, but also typical osteoblastic markers like
osteocalcin and osteopontin. The osteogenic effect of
miRNA-29a seems to be mediated by targeting and suppress-
ing inhibitors of theWnt-signaling pathway such as Dickkopf-
1 (DKK1), Kremen 2, and secreted frizzled related protein 2
[74]. Additional reports evidenced that this miRNA, together
with miRNA-29c, is able to suppress osteonectin production
[75]. Moreover, at least two miRNA profiling studies identi-
fied miRNA-29 and miRNA-26 families to be upregulated
through stages of osteoblast differentiation by targeting many
collagens and extracellular matrix proteins [76, 77]. In

particular, miRNA-29b was shown to be a key regulator of
development of the osteoblast phenotype by directly down-
regulating known inhibitors of osteoblast differentiation, such
as HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2
proteins [76]. Notwithstanding some discrepancies among
these studies, one key finding is that, together with their doc-
umented pro-osteoclastogenic effects, the miRNA-29 family
members also retain a positive pro-osteoblastogenic action.

Other miRNAs have been demonstrated to stimulate the
osteoblast by repressing HDACs, such as miRNA-140 (which
targets HDAC4) and miRNA-2861 (which targets HADA5)
[reviewed in 54]. Both HDAC4 and HDAC5 are well-known
enhancer of Runx2 degradation, thus explaining the positive
effects of both miRNAs on osteoblast development. Notably,
in vivo silencing of miRNA-2861 using a specific antagomir
inhibited bone formation in mice and an inactivating homo-
zygous mutation in pre-miRNA-2861 was shown to cause
primary osteoporosis in two related adolescents [78].

Importantly, while downregulation of osteogenesis by
miRNAs appears to occur by several mechanisms and at dif-
ferent steps of osteoblast differentiation, most of the miRNAs
acting as positive regulators of osteoblastogenesis described to
date appear to modulate components of the Wnt signaling
pathway or downstream effectors such as Runx2. In fact, sim-
ilar pro-osteoblastogenic effects on the Wnt pathway to those
described above for miRNA-29 have been associated to
miRNA-335-5p (which suppresses DKK1) [47] and
miRNA-218 (which acts through the inhibition of either
DKK1 or sclerostin) [79], leading to a suppression of Wnt
inhibitors. By acting downstream of the LRp5/LRP6 receptor
complex, other positive modulators of theWnt signaling with-
in the osteoblastic cell line include Let-7f and miRNA-27,
which increaseβ-catenin stability and its accumulation within
the osteoblast [reviwed in 54]. At the same time, a study by
Tamura et al. showed that miRNA-34b-5p and miRNA-34c
are upregulated by the activation of canonical Wnt signaling
in multipotent premyoblast C2C12 cells and thereby contrib-
ute to osteoblast differentiation and activity as downstream
effectors of Wnt proteins [80]. Indeed, in a previous study,
miRNA-34c was also induced by BMP2 during osteoblast
differentiation of the same C2C12 cell line [81]. This
miRNA was shown to target multiple components of
the Notch signaling pathway, such as Notch1, Notch2,
and Jag1 in a direct manner, but also to influence oste-
oclast differentiation in a noncell autonomous fashion.
As a result, mice with osteoblast-specific gain of
miRNA-34c showed an age-dependent osteoporosis due
to defective mineralization and proliferation of osteo-
blasts and increased osteoclastogenesis [81]. This phe-
notype is consistent with the effects of loss of Notch in
osteoblasts, previously described in mice models [82].

More recently, the miRNA-17~92a cluster (miRNAs 17,
18a, 19a, 20a, 19b, and 92a) at 13q31-q32 has been confirmed
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to play a relevant role in the regulation of bone formation by
multiple in vitro and in vivo evidences [83–85]. This cluster is
essential for vertebrate development and germline deletions of
MIR17HG have been detected in patients with Feingold

syndrome, an autosomal dominant disease characterized by
microcephaly, short stature, and digital abnormalities. Most
miRNAs within this cluster are expressed at high level in bone
tissue and osteoblasts and positively affect osteoblast

Table 3 Major miRNAs associated with downregulation of osteoblast differentiation and/or activity

miRNA Validated target(s) Experimental model Effects

miR-31 OSX, RUNX2, SATB2 mBMMSCs, hMSC, hBMMSCs,
hUVEC, SaOS2 cells, MG-63 cells,
U2OS cells, MC3T3 cells, mice
bone marrow cells

Downregulated during osteogenesis; its overexpression
represses OB differentiation of hMSCs. This miR is also
highly expressed by the senescent endothelial cells or the
hMSC-derived adipocytes and can be released by these
cells through extracellular vesicles leading to the
suppression of Osteogenesis.

miR-34a JAG1, cyclin D1, CDK4,
CDK6, E2F3, CDC25A

hMSC, in vivo ectopic bone
formation in mice

Highly expressed during in vitro OB differentiation as well as
in vivo in mature OBs, its overexpression exerts an
inhibitory effect on early commitment and late osteoblast
differentiation of hMSC in vitro and in a preclinical in vivo
model of heterotopic bone formation

miR-103a RUNX2 hFOB1.19 cells, hBMSC, hind
limb unloading mice

Downregulated during cyclic mechanical stretch-induced OB
differentiation; its overexpression negatively affects OB
differentiation and activity; pretreatment with
antagomir-103a partly rescues bone loss caused by
mechanical unloading in mice

miR-133 RUNX2 C2C12, MC3T3-E1 cells Downregulated during BMP-induced osteoblastogenesis, its
expression decreases OB differentiation while promotes
MEF-2-dependent myogenesis

miR-135 SMAD5 C2C12, MC3T3-E1 cells Downregulated during BMP-induced osteoblastogenesis,
its expression decreases OB differentiation

miR-138 FAK, ERK hMSC, MC3T3-E1 calvarial
cells, in vivo ectopic bone
formation in mice

Downregulated during osteoblast differentiation, its
overexpression reduces ectopic bone formation in vivo by
85%; conversely, in vivo bone formation is enhanced by
60% when miR-138 is antagonized.

miR-188 HDAC9, RICTOR mBMMSCs, hBMMSCs KO
and transgenic mice, aging mice

Key regulator of the age-related switch between osteogenesis
and adipogenesis of BMSCs (in favor of adipogenesis);
its levels increases with age in mice and humans; KO
mice show decreased fat accumulation in bone marrow
and reduced bone loss (opposite phenotype in transgenic
mice); BMMSCs treatment with antagomiR-188
increased bone formation in aging mice.

miR-204 RUNX2, TNSALP, SOST Mouse embryo calvaria bone
fragments, C2C12 cells,
MC3T3-E1 cells

Downregulated during BMP-induced OB differentiation and
upregulated during adipogenesis

miR-206 CX43 C2C12 cells, transgenic mice Its expression decreases over the course of BMP-induced OB
differentiation, its overexpression arrests OB differentiation;
transgenic mice develop a low bone mass phenotype due to
impaired OB differentiation.

miR-210 TCF712 3T3-L1 cells Promote adipogenesis by repressing WNT signaling

miR-214 ATF4 MC3T3-E1 cells, transgenic, OVX,
or hind limb-unloaded mice

In vitro OB activity and matrix mineralization were promoted
by antagomir-214 and suppressed by agomir-214; promotes
bone formation in both OVX and hindlimb-unloaded mice;
transgenic mice have reduced OB activity and low bone mass

miR-637 OSX hMSCs, nude mice Its expression is increased during adipocyte differentiation
and decreased during OB differentiation; transfection
of miR-637 hMSCs in nude mice significantly
enhanced de novo adipogenesis

hBMSC human bone marrow stromal cells, hMSC human mesenchymal stem cells, hBMMSCs human bone marrow mesenchymal stem cells,
mBMMSCs mice bone marrow mesenchymal stem cells, hUVEC human umbilical vein endothelial cells, OVX ovariectomized, KO knockout, OB
osteoblast, miR microRNA
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differentiation from different MSC lines [83, 84]. While its
complete loss results in smaller embryos and immediate post-
natal death, miRNA-17~92 haplo-insufficiency caused low
bone mass due to impaired osteoblast activity in mice [84].
Moreover, conditional disruption of miRNA17~92 cluster in
collagen type I-producing osteoblasts resulted in reduced lon-
gitudinal growth, decreased bone size, reduced periosteal
bone formation, and impaired bone anabolic response to ex-
ercise [85]. Expression levels of Runx2 and periostin, known
targets for some of the miRNAs of this cluster, were also
significantly reduced in the periosteal tissue of conditional
knockout mice compared with the wild-type mice.

Other miRNAs with documented positive effects on oste-
oblasts include miRNA-15b, which suppresses Smurf1 (a pro-
moter of Runx2 degradation by the proteasome) [86],
miRNA-181 via repression of TGF-β signaling molecules
[87], miRNA-194 through modulating STAT1-mediated
Runx2 nuclear translocation [88], miRNA-210, that inhibits
the TGF-beta/activin signaling pathway targeting activin A
receptor type 1B (AcvR1b) [89], and miRNA-23, acting as a
potential inhibitor of TNF-induced osteoblast apoptosis by
repressing the expression of Fas, which is involved in the
extrinsic pathway of cell apoptosis [90]. In contrast, the
miRNA-126/PDGFR-α system was recently shown to regu-
late the migratory behavior of human osteoblasts, without
exerting major effects on cell survival and differentiation [91].

Interestingly, together with the known pro-osteoclastogenic
role (as described above), miRNA-21 has been also confirmed
to promote the osteoblast differentiation of MSCs by
repressing the negative regulator Spry1 [92]. Levels of this
miRNA have been described to decrease in response of in-
flammatory cytokines such as tumor necrosis factor α
(TNF-α).

Modulation of miRNAs affecting osteogenesis by hormones
and bone active agents

Some experimental evidences suggested that bone active hor-
mones such as estrogen and vitamin D might influence
miRNA expression and function in osteoblast lineage cells,
with potential therapeutic implications. While estrogen has
been shown to upregulate members of the miRNA-17-92a
cluster and reduce osteoblast apoptosis [83], some miRNAs
were differentially regulated in primary cultures of human
osteoblasts following treatment with 1,25 dihydroxy-vitamin
D [93]. These include miR-637, targeting the type 4 collagen
alpha 1 (COL4A1) and miR-1228, which suppresses bone
matrix protein 2-inducible protein kinase (BMP2K) by inhibi-
tion of protein translation. Finally, a single preliminary report
described an altered expression of different miRNAs relevant
to osteoblast differentiation and activity (e.g., miRNA-26a

Table 4 Major miRNAs associated with upregulation of osteoblast differentiation and/or activity

miRNA Validated target(s) Experimental model Effects

miR-20a PPARγ, BAMBI, CRIM1 mMSCs Promotes the differentiation of MSCs into osteoblasts
by activating BMP/Runx2 signaling

miR-21 SPRY1, SMAD7 MC3T3-E1, mMSCs Promotes OB differentiation and mineralization

miR-27a APC, MF2C hFOB1.19 cells, hMSCs,
mMSCs, BALB/c mice

Its expression is increased during OB differentiation, its
overexpression promotes OB differentiation and
activity by potentiating Wnt signaling; mice treated
with antagomir-27a have decreased bone mass and
reduced OB activity.

miR-29a DKK1, Kremen2, sFRP2,
HDAC4, SPARC

hFOB1.19 cells, human primary
OBs, MC3T3-E1 cells,
calvarial cells

Its expression gradually increases with time of OB
differentiation, highly expressed in human OB,
potentiates Wnt signaling, downregulated following
glucocorticoid excess.

miR-17∼92 clustera BIM, POSTN mESCs, MC3T3-E1 cells,
murine primary OBs, KO
mice, OB-conditional KO mice

Essential for vertebrate development, down-regulated
during OB differentiation and highly expressed in OBs.

Its haploinsufficiency causes low bone mass due to
impaired OB activity in mice, conditional KO mice
shows reduced longitudinal growth, decreased bone
size, reduced periosteal bone formation and impaired
bone anabolic response to exercise.

miR-2861 HDAC5 ST2 cells, mouse calvarial
OBs, C57BL/6 mice

Its overexpression enhances BMP2-induced
osteoblastogenesis, its silencing by antagomir in
mice inhibits bone formation and decreases bone mass

OB osteoblast, hMSC humanmesenchymal stem cells,mMSCmurine mesenchymal stem cells,KO knockout,mESCsmurine embryonic stem cells,miR
microRNA
amiR-17∼92 cluster: miR 17, 18a, 19a, 20a, 19b, and 92a
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and miRNA-133a) following ibandronate treatment of osteo-
blast-like, periodontal ligament stem cells [94].

MicroRNAs and bone disorders

As the evidence for the important role of miRNAs in the
regulation of bone and mineral homeostasis increased, the
investigation of the potential associations between circulating
or tissue-specific miRNAs and skeletal disorders has become
a new field of investigation. In particular, circulating miRNAs
are considered highly stable molecules even in harsh condi-
tions such as boiling, acid or alkaline pH, and freeze/thaw
cycles so that their expression levels in serum are reproducible
and consistent among individuals [23]. Thus, they could rep-
resent suitable candidates for becoming sensitive biomarkers
in different pathologic conditions.

miRNA expression profiles in osteoporosis

Despite many studies have analyzed the role of miRNAs in
other common disorders (e.g., cancer and cardiovascular dis-
eases), the data in osteoporosis are limited and in most part
inconclusive. Indeed, most of the available information has
derived from studies performed in different samples (e.g., se-
rum, circulating monocytes or human BM-MSCs, and bone
tissue specimens) and in different conditions (i.e., low BMD
or fracture and selection of control samples with or without
osteoarthritis) or ethnic groups (Table 5). A consistent varia-
tion in the number of screened miRNAs and in the employed
technology platforms also exists, making difficult to perform a
comparison across these studies [108, 109]. Moreover, the
majority of circulating miRNAs is not tissue specific and in
part derives from blood cells, so that the biological interpreta-
tion of their variation in osteoporosis is challenging. However,
notwithstanding the limitations described above and the con-
sistent differences in most of the associations reported to date,
taken all together, these studies suggest that perturbations in
either circulating or skeletal miRNA levels are present in os-
teoporosis and might be linked to altered bone metabolism
and fracture risk. Of interest, some of the circulating
miRNAs associated with osteoporosis and fractures (e.g.,
miRNA-21 and miRNA-27) have been also associated with
the regulation of muscle mass and sarcopenia in elderly indi-
viduals [110].

Circulating miRNA signatures in osteoporosis

The first evidence of a peculiar miRNA signature in patients
with discordant BMD status comes from a TaqMan miRNA
array analysis in monocytes derived from peripheral blood of
postmenopausal women with high or low BMD, as assessed
by DXA analysis [95]. Among the 365 tested miRNAs,

miRNA-133a was significantly highly expressed in the low
BMD group. Of interest, this miRNA is encoded by two dif-
ferent genes within two loci previously associated with oste-
oporosis, 18q11.2 and 20q13 [111, 112]. Since a similar anal-
ysis in isolated B-cells derived from the same subjects did not
evidence any difference in miRNA-133a expression, it was
speculated that this miRNA might be a monocyte-specific
marker for osteoporosis. Indeed, circulating monocytes are
relevant for bone metabolism since they can differentiate into
osteoclasts, and bioinformatic analysis identified three poten-
tial osteoclast-related target genes of miRNA-133a (CXCL11,
CXCR3, and SLC39A1). Moreover, further validation analysis
of four marginally upregulated miRNAs from the same cohort
evidenced miRNA-422a as an additional BMD-associated
miRNA, which may potentially target four genes involved in
the inhibition of osteoclastogenesis, CBL, CD226, PAG1, and
TOB2 [97].

In a different study, Chen et al. performed microRNA pro-
filing (721 miRNAs) in freshly isolated CD14+ PBMCs in a
sample of postmenopausal women and identifiedmiRNA-503
as the most significantly downregulated miRNA in patients
with osteoporosis [40]. Among the other relevant associations,
and consistent with the previous study, miRNA-133a was up-
regulated in osteoporotic women. In order to better investigate
the skeletal effects of miRNA-503, either cellular or animal
studies were also performed. Of interest, RANK was con-
firmed to be a target of this miRNA and miRNA-503 overex-
pression or silencing inhibited or stimulated RANKL-induced
osteoclastogenesis in the CD14+ PBMCs, respectively.
Moreover, overexpression of miRNA-503 with agomiR
inhibited bone resorption and prevented bone loss in the
OVX mice model.

By using different approaches, two studies investigated
variation in miRNA profiles in BM-MSCs of patients with
osteoporosis, as compared to age-matched controls. In the first
study, a comparative microarray analysis (covering 1040
miRNAs) was performed between BM-MSCs obtained from
premenopausal women and postmenopausal women with os-
teoporosis demonstrating a decrease in miRNA-21 levels after
menopause, which was also consistent with experimental ob-
servations in the OVX mice model [92]. Additional experi-
mental analyses revealed that a suppression of miRNA-21
might contribute to the impairment of bone formation by ele-
vated TNF-α in estrogen-deficiency-induced osteoporosis.
The positive effect of miRNA-21 on bone formation might
occur via the repression of Spry1, a negative regulator of the
FGF and ERK-MAPK signaling pathways, which are
established as being involved in promoting osteogenesis of
MSCs. In a subsequent study, a candidate miRNA approach
was employed, with the selection of miRNA-125b, because of
its role as crucial transcriptional regulator of genes that are
involved in cell proliferation or differentiation processes of
various cell lineages [98]. A significant upregulation of this
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miRNA was observed in BM-MSCs derived from patients
with senile osteoporosis than in controls. Consistent with this
observation, a miRNA-125b mimic was able to suppress the
osteogenic differentiation of these cells, mainly by a down-
regulation of Runx2.

More recent studies mainly investigated miRNA expres-
sion profiles in sera of patients with or without osteoporosis
[88–92]. Of interest, concordant associations were observed
concerning some miRNAs (e.g., miRNA-21, miRNA-125b,
and miRNA-133a) even though most of the reported associa-
tions have not been replicated among these studies or the
previous evidences in monocytes and BM-MSCs. In an inter-
esting study by Seeliger et al., either serum or bone tissue
miRNA profiling was performed [99]. In the first analysis, a
panel of 83 miRNAs was screened between two pooled sam-
ples from ten osteoportic hip fracture patients and ten controls.
Then, replication analysis of informative miRNAs was per-
formed by RT-PCR in a larger sample of sera (30 osteoporotic
and 30 nonosteoporotic patients), as well as in bone tissue
samples from 20 osteoporotic and 20 nonosteoporotic sub-
jects. Overall, after validation, nine miRNAs (miRNA-21,
miRNA-23a, miRNA-24, miRNA-93, miRNA-100,
miRNA-122a, miRNA-124a, miRNA-125b, and miRNA-
148a) were found to be significantly upregulated in the serum
of patients with osteoporosis. Of these miRNAs, five were
also upregulated in bone tissue samples of osteoporotic pa-
tients (miRNA-21, miRNA-23a, miRNA-24, miRNA-100,
and miRNA-125b). Conversely, miRNA-25 was only upreg-
ulated in osteoporotic bone.

Two additional studies specifically investigated miRNA
expression profile in serum of patients with osteoporotic frac-
tures as compared to controls, leading to completely different
outcomes [102, 103]. In the first study performed in seven
Caucasian patients suffering from recent osteoporotic frac-
tures and seven controls, a screening of 175 miRNAs led to
the identification of differentially expressed miRNAs, of
which three were upregulated (miRNA-10a-5p, miRNA-
10b-5p, and miRNA-22-3p) and three downregulated
(miRNA-133b, miRNA-328-3p, and let-7g-5p) in fractured
patients [103]. Subsequent validation in a larger sample
(n = 23) confirmed a significant effect for miRNA-22-3p,
miRNA-328-3p, and let-7g-5p. While both miRNA-22-3p
and the let-7 family have been previously associated with
osteogenesis of MSCs in vitro, miRNA-328-3p was shown
to target the expression of CD44 in macrophages [113]. The
second study analyzed a panel of 179 most expressed
miRNAs in human serum in two RNA pools from eight
Spanish women with osteoporotic hip fracture with respect
to five women with osteoarthritis also undergoing surgery
for hip prosthesis implantation [102]. Further validation in a
cohort of 15 fracture patients and 12 osteoarthritic subjects
showed that three miRNAs (miRNA-21-5p, miRNA-122-5p,
and miRNA-125-5b) were valuable upregulated biomarkers

for osteoporotic fractures. All the three associations were con-
sistent with the results previously reported by Seeliger et al.
Moreover, expression levels of miRNA-21-5p were positively
and highly correlated with CTX, a marker of bone resorption.
By a different approach, Li et al. investigated three candidate
miRNAs (miRNA-21, miRNA-133a, and miRNA-146a) in
plasma samples from 120 Chinese postmenopausal women
divided into osteoporotic, osteopenic, and normal according
to total hip BMD levels [100]. An upregulation of miRNA-
133a was observed, which is somewhat consistent with the
previous results by Wang et al. [95] in circulating monocytes.
However, a downregulation of miRNA-21 was also demon-
strated in osteoporotic women, on the opposite of what de-
scribed in the Spanish cohort of patients with osteoporotic
fractures [102]. Apart the obvious difference in ethnicity be-
tween the two studies, a likely explanation of these conflicting
results might be related to the complex role of miRNA-21 on
bone biology, acting either as a promoter of osteogenesis or as
an inducer of osteoclastogenesis, so that marked variation on
its expression profile could be expected following a fracture.
In a more recent study comparing the miRNA expression
profiles (microarray platform covering 851 human miRNAs)
of a sample of 81 postmenopausal osteoporotic women with
74 healthy premenopausal women, miRNA-27a was one of
the most strongly downregulated miRNAs in the serum of
osteoporotic patients, and thus was selected for experimental
analysis [105]. This miRNA was upregulated during osteo-
blastic differentiation of either human or mice MSCs, while
a downregulation was observed in case of adipocyte induc-
tion. Moreover, silencing of miRNA-27a decreased bone for-
mation parameters in mice without significant effects on oste-
oclasts and bone resorption. Bioinformatic analysis followed
by luciferase assay demonstrated that myocyte enhancer factor
2c (Mef2c) was the direct target of miRNA-27a. These results
were consistent with previous experimental observations [54,
114], suggesting that a reduction in miRNA-27a might be
involved in the aged-related decrease in osteogenic differenti-
ation of MSCs, thus contributing to the pathogenesis of senile
osteoporosis. On the other side, recent analyses also demon-
strated that miRNA-31 levels increases with age in serum as
well as in microvescicles derived from human senescent en-
dothelial cells and are significantly higher in plasma from
osteoporotic patients than in age-matched controls [71].
These results are consist with the in vitro evidences indicating
a pro-osteoclastogenic and anti-osteoblastogenic role of
miRNA-31 [28, 69, 70], thus suggesting that the age-related
increase in this miRNA might also be relevant for senile
osteoporosis.

Finally, two more recent and complex studies investigated
whether miRNAs or combinations of miRNAs can discrimi-
nate best fracture status in different conditions of bone fragil-
ity. In the first of these reports, Heilmeier et al. performed a
miRNA expression analysis in two different cohorts of
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fractured women with postmenopausal osteoporosis or diabet-
ic bone disease [106]. While postmenopausal osteoporosis is
generally associated with bone loss and enhanced bone turn-
over, diabetes is characterized by increased bone fragility in
the presence of normal BMD levels and depressed bone turn-
over [115]. Overall, 20 diabetic women with and 20 without
fragility fractures were enrolled in the diabetic group, while a
similar sample of 20 postmenopausal women with and 20
without osteoporotic fractures was tested in the nondiabetic
group. All the four groups had similar BMD levels at the
femoral neck, mostly within the osteopenic range.
Remarkably, 48 out of 375 tested miRNAs were identified
to be differentially expressed between type 2 diabetic women
with or without fractures and 23 miRNAs between nondiabet-
ic women with and without fractures. Of these, 18 miRNAs
showed the same patterns of regulation in either diabetic or
nondiabetic patients with fractures. Further analyses with mul-
tivariate classification models led to the identification of po-
tential candidate miRNA signatures that could best differenti-
ate fracture status in patients with or without diabetes. Among
the most overrepresented miRNAs, one (miRNA-382-3p,
which was downregulated) was common between diabetic
and nondiabetic fractured patients while three (miRNA-96-
5p, miRNA-181-5p, and miRNA-550a-5p, all upregulated)
were specific among the diabetic signatures and two
(miRNA-188-3p and miRNA-942, both downregulated)
among the osteoporotic signatures. While either miRNA-96
or miRNA-188 was previously related with osteogenesis (as
described above), the other miRNAs were not previously as-
sociated with osteoporosis nor with specific alterations in
bone cell homeostasis, even though most of them have been
involved in oxidative stress response and mitochondrial dys-
function. Preliminary in vitro analyses in human-adipose-
tissue-derived MSCs suggested an inhibitory effect of
miRNA-550a-5p or a stimulatory effect of miRNA-382-3p
on osteogenesis, respectively [106]. In a subsequent analysis,
Kocijan et al. assessed circulating miRNA signatures in male
and female subjects with idiopathic or postmenopausal osteo-
porotic fractures [107]. Based on the results from previous
published studies, 187 miRNAs were selected for analysis.
Importantly, to avoid the potential influence of fracture
healing on miRNA profiles, all samples were collected after
at least 6 months from the occurrence of the last fracture.
Overall, a common set of 3 (miRNA-152-3p, miRNA-335-
5p, and miRNA-320a) and 16 (let-7b-5p, miRNA-7-5p,
miRNA-16-5p, miRNA-19a-3p, miRNA-19b-3p, miRNA-
29b-3p, miRNA-30e-5p, miRNA-93-5p, miRNA-140-5p,
miRNA-215-5p, miRNA-186-5p, miRNA-324-3p, miRNA-
365a-3p, miRNA-378a-5p, miRNA-532-5p, and miRNA-
550a-3p) miRNAs were, respectively, upregulated and down-
regulated in fracture groups of men, premenopausal and post-
menopausal women than in the respective age- and sex-
matched controls. Among these miRNAs, eight (miRNA-

152-3p, miRNA-335-5p, miRNA-19a-3p, miRNA-19b-3p,
miRNA-30e-5p, miRNA-140-5p, miRNA-324-3p, and
miRNA-550a-3p) were confirmed to be excellent discrimina-
tors of fractures regardless of age and gender, with a higher
predictive power than BMD or bone turnover markers. While
miR324-3p, miRNA19a-3p, and miRNA-19b-3p have not yet
been associated with bone remodeling, most of the other
miRNAs were previously related with osteogenesis. The re-
sults from this important study provided for the first time
specific evidence for the robustness of a diagnostic signature
for osteoporosis based on microRNAs.

Bone-specific miRNA signatures of patients with osteoporotic
fractures

In an initial analysis of bone specimens from 40 aged patients
with fractures, Wang et al. evidenced a positive correlation
between expression levels of miRNA-214, but not the other
33 examined miRNAs, with the bone formation markers
osteocalcin and alkaline phosphatase [96]. In keeping with
this observation, in vitro osteoblast activity and matrix miner-
alization were promoted by antagomiR-214 and suppressed
by agomiR-214, and further analysis suggested that activating
transcription factor 4 (ATF4, encoding for a relevant transcrip-
tion factor required for osteoblast function) could be a func-
tional target of miRNA-214 and may mediate its effects in
bone formation. Moreover, osteoblast-specific manipulation
of miRNA-214 levels by miRNA-214 antagomiR treatment
in miRNA-214 transgenic, OVX, or hind limb-unloaded mice
confirmed the inhibitory role of miRNA-214 in regulating
bone formation.

Following this report and that of Seeliger et al. [99], other
evidences demonstrated peculiar miRNA signatures within
the bone tissue specimens of patients undergoing hip replace-
ment for osteoporotic fractures, even though with different
results [101, 104]. Given the practical and ethical difficulties
to obtain bone samples from nonosteoporotic subjects, in both
studies, nonfractured patients with hip osteoarthritis were se-
lected as controls. In the first study, tissue levels of 760
miRNAs were analyzed in bone specimens of eight hip frac-
ture patients and eight osteoarthritis controls [101]. Five
miRNAs with statistically significant differences in expres-
sion in the discovery stage (miRNA-187, miRNA-193a-3p,
miRNA-214, miRNA-518f, and miRNA-636) were selected
for the replication stage (sample of 19 hip fracture patients and
19 controls) and two of them, miRNA-187 and miRNA-518f,
were confirmed to be significantly downregulated or upregu-
lated in patients with osteoporotic fractures, respectively. In a
second study, fresh trabecular bone samples from 12 postmen-
opausal women undergoing hip replacement due to either os-
teoporotic fracture (n = 6) or osteoarthritis in the absence of
osteoporosis (n = 6) were tested with a miRNA array targeting
all human, mouse, or rat miRNAs registered in the miRBASE
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18.0 [104]. In addition, a complementary array was made
from human primary osteoblasts obtained from postmeno-
pausal women after knee replacement due to osteoarthritis.
Overall, 790 and 315 different miRNAs were detected in fresh
bone samples and in primary osteoblasts, respectively, 293 of
which were common to both groups. The eight miRNAs with
the lowest p values (miRNA-675-5p, miRNA-30c-1-3p,
miRNA-483-5p, miRNA-542-5p, miRNA-142-3p, miRNA-
223-3p, miRNA-32-3p, and miRNA-320a) were then assayed
in a validation cohort, and two (miRNA-320a and miRNA-
483-5p) were confirmed to be upregulated in the osteoporotic
samples. Both these miRNAs were expressed in primary os-
teoblasts suggesting a possible role in the regulation of bone
formation; miRNA-320a has already known to target β-
catenin [116], while miRNA-483-5p appeared to downregu-
late IGF2 levels in osteoblast cultures.

miRNA variants as genetic determinants of osteoporosis

There are increasing reports of genetic variants that can affect
or interfere with miRNAs function in different conditions,
including bone disorders [117, 118]. In 2009, Li et al. provid-
ed the first and unique evidence that a mutation in a miRNA
precursor is associated with early onset osteoporosis [78].
Following experimental analyses that lead to the identification
ofmiRNA-2861 as a specific miRNA of the osteoblast lineage
that promotes osteogenesis, they screened miRNA-2861
levels in bone from patients with osteoporosis and fractures
and found undetectable levels of this miRNA in a 15-year-old
boy and in his 17-year-old sister. Both individuals had a his-
tory of repeated fragility fractures. Mutational screening iden-
tified a common homozygous C-G mutation in the stem of
pre-miRNA-2861, blocking the expression of mature
miRNA-2861 in vitro. Levels of HDAC5, a target of
miRNA-2861, were elevated and Runx2 protein expression
was decreased in both mutated patients in comparison with
controls. Further mutational screening in 357 normal children,
396 healthy adults, and 369 adult patients with osteoporosis
did not evidence any other mutation in pre-miRNA-2861.

More commonly, either single-nucleotide polymorphisms
(SNPs) or alternative poly-adenylation can affect miRNA
binding of a given transcript from different individuals and
tissues, thus emerging as major factors that potentially con-
tribute to variations in miRNA-mRNA interplay. To date, a
single study analyzed the skeletal effects of a SNP in pri-
miRNA-34b/c (rs4938723) [119], which had been previously
shown to significantly affect promoter transcriptional efficien-
cy, leading to aberrant expression of miRNA-34b/c [120]. In a
sample of 310 Chinese osteoporotic patients and 371 controls,
the presence of the CC and CT/CC pri-miRNA-34b/c geno-
types were associated with a significantly reduced risk of os-
teoporosis compared with the TT genotype. Indeed, as recent-
ly reviewed by Dole et al. [118], functional SNPs have been

already identified for manymiRNAs associated with bone cell
activity and/or osteoporosis (e.g., miRNA-27a, miRNA-124,
miRNA-125a, miRNA-125b, miRNA-146, miRNA-186a)
and were demonstrated to affect the respective miRNA levels
with potential implications on different disorders. However,
their role on bone biology remains to be investigated.

Likewise, SNPs present at or near miRNA binding sites in
protein coding genes could also affect miRNA function, cre-
ating or eliminating mRNA binding sites and thus potentially
leading to differential protein expression of target genes. In a
first analysis by Lei et al., 568 known SNPs within 3′-UTRs of
target mRNAs were screened in relation to osteoporosis in a
sample of 997 white Caucasian individuals [121]. After repli-
cation analyses in a larger cohort of 1728 subjects, three SNPs
(rs6854081, rs1048201, and rs7683093) in the fibroblast
growth factor 2 (FGF-2) gene were significantly associated
with femoral neck BMD. These SNPs reside within nine pre-
dicted miRNA target sites (miRNA-25, miRNA-32, miRNA-
92, miRNA-92b, miRNA-146a, miRNA-146b, miRNA-363,
miRNA-367, and miRNA-545). Subsequent gene expression
analyses in monocytes or B-cells from selected individuals
consistently demonstrated depressed expression of the FGF2
gene in subjects with high BMD compared with subjects with
low BMD. Since most of the 3′-UTRs SNPs of target mRNAs
regions are not covered by the available commercial SNPs
arrays, it is likely that other relevant associations remain to
be discovered.

In another study, Dole et al. showed that a SNP in the 3′-
UTR of the osteonectin gene (rs1054204, 1599C/G), previ-
ously associated with male idiopathic osteoporosis, creates a
target site for miRNA-433 [122]. The presence of the less
common 1599G allele related with osteoporotic risk, re-
pressed osteonectin posttranslational regulation by creating
the new target site. Osteonectin is known to suppress
adipogenic differentiation of MSCs and osteonectin null mice
develop low turnover osteoporosis. In keeping with these ob-
servations, knock-in mice with the protective allele 1599C
displayed higher osteopontin levels in bone, associated with
higher bone formation rate, higher trabecular bone volume
and greater increases in cortical bone volume in response to
teriparatide, compared with mice carrying the 1599G allele
[110].

Given the multifactorial and polygenic nature of osteopo-
rosis it is likely that in the future an extended analysis of
genetic variations associated withmiRNAs and their predicted
binding sites could improve our knowledge about the genetics
of this disorder, as well as the accuracy of fracture prediction
tools.

miRNA expression profiles in other bone disorders

To date, the role of miRNAs in disorders of bone metabolism
other than osteoporosis has been poorly investigated. A
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preliminary screening of more than 100 bone-related miRNAs
was performed in serum of 22 patients with osteogenesis
imperfecta (OI) compared with 10 healthy controls, with the
identification of 11 differently expressed miRNAs [123]. Of
them, three (miRNA-26a, miRNA-30e, and miRNA-21) were
upregulated and eight (miRNA-34c, miRNA-29a, miRNA-
29b, miRNA-489, miRNA-133a, miRNA-145, miRNA-210,
and miRNA-1297) downregulated in OI cases. As is evident,
several of the OI-associated miRNAs were also described in
serum from patients with osteoporosis. A more recent analysis
investigated whether expression levels of miRNA-29b may
affect the phenotype of OI patients with collagen type 1 mu-
tations [124]. The selection of this miRNA was due to its
documented role on bone metabolism and particularly for its
COL1A1-dependent regulation of collagen protein accumula-
tion duringmineralization, as observed in vitro [76]. However,
either COL1A1 or miRNA-29b expression was severely re-
duced in both type I and type III OI patients. Thus, it was
speculated that reduced COL1A1 levels observed in OI are
not sufficient for the induction of miRNA-29b.

To identify potential microRNA-target pairs associated
with osteopetrosis, Ou et al. applied a combined approach
including deep sequencing, quantitative proteomics, and bio-
informatics analyses in PBMCs from six affected patients with
mutations in CLCN7 and nine age- and sex-matched healthy
donors [125]. Overall, 123 differently expressed microRNAs,
173 differently expressed proteins, and 117 computationally
predicted miRNA-target pairs with reciprocally expressed lev-
el in PBMCs were found in the two sample groups. Among
the miRNAs with significantly increased expression level,
miRNA-23a was the most abundant, while miRNA-29b-3p
was among the most significantly downregulated miRNA in
osteopetrosis cohort. Both miRNAs have been previously in-
volved in repressing or stimulating osteoblast differentiation,
respectively [54, 73, 126]. Moreover, one of the predicted
BmiRNA-target pairs,^ miRNA-320a and ADP-ribosylation
factor 1 (Arf1), was chosen to be further tested in vitro.
Notably, Arfs are a family of ubiquitously expressed Ras-
like GTPases that have key roles in vesicular transport pro-
cesses and osteoclast function [127]. The use of miRNA-320a
mimics in cell cultures suppressed Arf1 expression, demon-
strating that Arf1 is a target of miRNA-320a. Thus, it was
speculated that in CLCN7-related osteopetrosis, downregula-
tion of miRNA-320a might occur as a response to a defective
chloride channel in order to increase Arf1 levels and improve
osteoclast functions. Based on these results, it could be possi-
ble that variable expression levels of miRNA-320a or other
miRNAs among patients with osteopetrosis might account for
differences in their clinical phenotype.

Furthermore, at least three reports evidenced an altered
miRNA expression pattern in parathyroid tumors or parathy-
roid hyperplasia with respect to normal parathyroid tissue
[128–130]. Despite some overlaps in the differentially

expressed miRNAs between the different parathyroid diseases
as compared with normal parathyroid samples, somemiRNAs
were unique to parathyroid carcinoma or parathyroid adeno-
ma, and a limited number to parathyroid hyperplasia.
Generally, up to 60% of miRNAs were downregulated in
parathyroid tumors, while in parathyroid hyperplasia, most
miRNAs were upregulated [129]. Importantly, in most in-
stances, miRNA profiling showed distinct differentially
expressed miRNAs by tumor type, whichmight result as help-
ful adjunct to distinguish parathyroid adenoma from carcino-
ma. In an extended analysis, 91 miRNAs were differentially
expressed between adenoma and carcinoma, and the most
informative in this respect were miRNA-26b, miRNA-30b,
and miRNA-126* [129]. In the two other reports, different
associations were provided, with three relevant miRNAs
(miRNA-296, miRNA-503, and miRNA-222) or two
miRNA clusters in chromosome 19 being the most differen-
tially expressed in parathyroid cancer [128, 130].

In order to further characterize the potential implication of
miRNAs on the parathyroid gland, a parathyroid-specific
Dicer1 knockout mouse, where parathyroid miRNA matura-
tion is blocked, was recently generated [131]. Despite these
mice showed normal calcium and PTH levels under physio-
logic conditions, they did not respond to acute hypocalcemia
by increasing their PTH levels. Moreover, they also had a
blunted response to chronic hypocalcemia with a fourfold di-
minished increase in PTH and absent parathyroid cell prolif-
eration compared to control mice. Similarly, a blunted in-
crease in either PTH or FGF-23 levels was observed in these
mice than in controls after induction of uremia. Overall, these
results suggest that the response of the parathyroid to both
acute or chronic hypocalcemia and uremia is dependent upon
parathyroid Dicer and thus intact miRNA function, further
indicating a potential role of miRNAs in parathyroid diseases
and, possibly, in other disorders of calcium and phosphate
metabolism.

The role of miRNAs in other common disorders of bone
and mineral metabolism such as Paget’s disease of bone or
osteomalacia remains to be investigated. Indeed, a recent ab-
stract presentation evidenced major changes in the expression
profile of several miRNAs in either PBMCs or serum from
patients with Paget’s disease of bone, as compared to osteo-
porotic patients or healthy controls, particularly in the pres-
ence of mutation in SQSTM1 gene [132].

Taken together, all the above evidences suggest a relevant
involvement of miRNAs in many disorders of bone metabo-
lism. While their role as specific disease biomarkers could be
of limited relevance for most of these conditions, it is likely
that an extended characterization of miRNA profiles among
different skeletal disorders might reveal useful for the identi-
fication of new therapeutic targets as well as for a better un-
derstanding of the variable phenotype characteristics frequent-
ly observed even in patients with the same genetic defect.
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Importantly, a more consistent deregulation of miRNAs
profiles has been widely described in skeletal neoplasia such
as osteosarcoma or bone metastases, and in myeloma bone
disease, with the identification of several relevant miRNAs.
This issue has been revised in many previous articles [133,
134] and is beyond the scope of this review.

Conclusions and future directions

miRNAs have a huge potential either for the diagnosis or
treatment of several disorders. In fact, they are increasingly
recognized as important regulatorymodulators of a large num-
ber of biological functions and their expression profile often
differs under diverse pathologic conditions. However, the
broad and important functions of these regulators for skeletal
biology are only now becoming apparent.

Despite additional information is certainly required to have
a more clear picture about the in vivo effects of miRNAs on
skeletal biology, cumulative evidence from experimental stud-
ies has highlighted their crucial role in the commitment of
osteogenesis from MSCs precursors as well as in the modula-
tion of either osteoblast or osteoclast formation and activity,
thus providing new perspectives on the regulation of skeletal
homeostasis. In this respect, compelling future steps will nec-
essary include the improving of our knowledge on how the
numerous miRNAs integrate each other within the skeleton to
regulate bone homeostasis.

Importantly, available information from some studies
in mice with the use of miRNA mimics or antagomiRs
also indicates that targeting miRNAs might become an
attractive and new therapeutic approach for osteoporosis
or other skeletal diseases as well as for tissue engineer-
ing application in bone regeneration and repair.
However, there are a number of hurdles that greatly
hamper the therapeutic use of miRNAs at this stage,
mainly concerning the way of efficient miRNA delivery
to bone in vivo and the off target effects, since each
single miRNA can regulate many target genes within
common relevant pathways to extraskeletal tissues.
Indeed, some of the miRNAs with potential skeletal
benefits (e.g., miRNA-29a) have been also demonstrated
to have a crucial role in tumorigenesis acting as
protooncogenes, making unlikely their use for therapeu-
tic purposes in bone diseases.

At the same time, it will be essential to improve our knowl-
edge about the potential application of circulating miRNAs
(e.g., in serum, PBMCs, or exosomes) as biomarkers for os-
teoporosis or other skeletal disorders through large-scale pro-
spective studies, with the inclusion of fractures as endpoints,
and taking into account that lifestyle, physical activity, diet,
and in some instances, circadian rhythm may all influence the
expression profile of circulating miRNAs [109].
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