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Summary
This article reviews the manifestations and risk factors asso-
ciated with osteoporosis in childhood, the definition of osteo-
porosis and recommendations for monitoring and prevention.
As well, this article discusses when a child should be consid-
ered a candidate for osteoporosis therapy, which agents should
be prescribed, duration of therapy and side effects.

Abstract
There has been significant progress in our understanding of risk
factors and the natural history of osteoporosis in children over the
past number of years. This knowledge has fostered the develop-
ment of logical approaches to the diagnosis, monitoring, and
optimal timing of osteoporosis intervention in this setting.
Current management strategies are predicated upon monitoring
at-risk children to identify and then treat earlier rather than later
signs of osteoporosis in those with limited potential for sponta-
neous recovery. On the other hand, trials addressing the preven-
tion of the first-ever fracture are still needed for children who
have both a high likelihood of developing fractures and less
potential for recovery. This review focuses on the evidence that
shapes the current approach to diagnosis, monitoring, and treat-
ment of osteoporosis in childhood, with emphasis on the key
pediatric-specific biological principles that are pivotal to the

overall approach and on themain questionswithwhich clinicians
struggle on a daily basis. The scope of this article is to review the
manifestations of and risk factors for primary and secondary
osteoporosis in children, to discuss the definition of pediatric
osteoporosis, and to summarize recommendations formonitoring
and prevention of bone fragility. As well, this article reviews
when a child is a candidate for osteoporosis therapy, which
agents and doses should be prescribed, the duration of therapy,
how the response to therapy is adjudicated, and the short- and
long-term side effects. With this information, the bone health
clinician will be poised to diagnose osteoporosis in children
and to identify when children need osteoporosis therapy and
the clinical outcomes that gauge efficacy and safety of treatment.
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ONJ Osteonecrosis of the jaw
PINP Procollagen type I N-terminal propeptide
pQCT Peripheral quantitative computed tomography
PTH Parathyroid hormone
SD Standard deviation
SDI Spinal deformity index
VF Vertebral fracture(s)
VFA Vertebral fracture assessment (by DXA)

Introduction

Once considered a disease of the aging, osteoporosis is now
recognized as an important dimension of clinical care in chil-
dren with genetic disorders predisposing to bone fragility and
in children with serious acute and chronic illnesses. At the same
time, approaches to the management of osteoporosis during the
pediatric years have been made challenging by a number of
factors, including the impact of variable growth rates and
tempos of puberty on size-dependent bone mineral density
(BMD) testing, distinguishing pathological fractures from
those sustained during the course of normal childhood devel-
opment, and the fact that informative, well-designed interven-
tion trials are themselves a hurdle due to limitations such as
smaller sample sizes in pediatric compared to adult studies.

While many principles from the adult osteoporosis litera-
ture can be adapted to children, the development of the mature
skeleton is nevertheless a complex, multi-decade process that
gives rise to unique considerations when embarking on when
and how to treat younger patients. Some of these unique dif-
ferences have been unearthed through long-term natural his-
tory studies using standard, widely available evaluative tools,
while others have been demonstrated through more sophisti-
cated methods such as peripheral quantitative computed to-
mography (pQCT) and transiliac bone histomorphometry.
Knowledge of these pediatric-specific principles and their bi-
ological underpinnings is essential in order to make logical
management decisions in the young.

The purpose of this article is to review evidence that shapes
the current approach to diagnosis, monitoring, and manage-
ment of osteoporosis in childhood, with particular emphasis
on the key biological principles that are pivotal to the overall
approach and on the main questions with which clinicians
struggle on a daily basis. The scope of this article spans review
of the specific disorders and risk factors associated with oste-
oporosis in childhood, the clinical manifestations of osteopo-
rosis, issues in the definition and the diagnosis, and recom-
mendations for monitoring and prevention in at-risk children.
As well, this article discusses when a child is a candidate for
osteoporosis therapy, which agents and doses should be pre-
scribed, the duration of therapy, how the response to therapy
should be adjudicated and side effects. With this information,
the bone health clinician will be poised to identify which

children should be targeted for osteoporosis therapy and the
clinical outcomes that effectively gauge efficacy and safety.

Disorders and mechanisms associated
with childhood osteoporosis

As highlighted in recent reviews [1–4], childhood osteoporosis
is typically divided into primary and secondary causes, with
osteogenesis imperfecta (OI) representing the prototypical pri-
mary osteoporosis of childhood. There is a growing list of sec-
ondary pediatric osteoporoses (i.e., osteoporosis caused by un-
derlying diseases and/or their treatment), with most falling into
two broad categories: glucocorticoid (GC)-treated diseases and
disorders which compromise normal weight-bearing andmobil-
ity. A list of the most common causes of primary bone fragility
disorders (and their implicated genes, proteins, and phenotypic
features) is provided in Table 1. A list of the secondary osteo-
porotic conditions of childhood is provided in Table 2.

Primary osteoporosis

Among the most exciting recent developments in the pediatric
bone health field has been the elucidation of genes implicated in
heritable bone fragility disorders. While the phenotypic hetero-
geneity in congenital bone fragility has been known for years [5],
the spectrum of the genetic basis has only recently come to the
fore. Most cases of congenital bone fragility are still due to
mutations in the coding regions of the type I collagen genes
(COL1A1 and COL1A2, classically referred to as OI types I, II,
III, and IV based on disease severity); however, over a dozen
additional genetic causes have been described with novel patho-
biology and often discrete clinical features [6, 7] (Table 1). In
many cases, heritable bone fragility is suggested by the family
history or typical physical stigmata (blue sclerae, dentinogenesis
imperfecta). However, these findings are not universal even in
the presence of type I collagen mutations [8]. In practical terms,
the diagnosis of OI remains a possibility in any child with recur-
rent fractures once a secondary cause has been ruled out (Fig. 1).

Secondary osteoporosis

Advances in pediatric care have led to significant improve-
ments in cure rates for acute disorders such as childhood leu-
kemia [9] and in longevity for chronic disabling conditions
such as Duchenne muscular dystrophy (DMD) [10]. With im-
proved outlooks for such children, there is increasing focus on
long-term sequelae and quality of life. Despite advances in
chemotherapy and disease-modifying interventions, GC ther-
apy remains the mainstay of treatment for many serious ill-
nesses, in the first few years of the illness for disorders such as
leukemia and rheumatic conditions [11, 12] and for decades in
boys with DMD [13]. In recent years, the use of GC-sparing

2148 Osteoporos Int (2016) 27:2147–2179



T
ab

le
1

G
en
et
ic
ca
us
es

an
d
cl
in
ic
al
fe
at
ur
es

of
bo
ne

fr
ag
ili
ty

in
ch
ild

ho
od

In
he
ri
ta
nc
e
an
d
Pa
th
og
en
es
is

D
ia
gn
os
is
,G

en
e,
Pr
ot
ei
n

C
lin
ic
al
Fe
at
ur
es

A
.C

au
se
s
of

bo
ne

fr
ag
ili
ty
du
e
to

a
ty
pe

1
co
lla

ge
no
pa
th
y

A
ut
os
om

al
D
om

in
an
t

1.
N
on
se
ns
e
or

fr
am

es
hi
ft
m
ut
at
io
ns

ca
us
in
g
pr
em

at
ur
e
te
rm

in
at
io
n

of
th
e
C
O
L
1A

1
co
di
ng

se
qu
en
ce

(a
ls
o
ca
lle
d
ha
pl
oi
ns
uf
fi
ci
en
cy
;

ty
pi
ca
lly

as
so
ci
at
ed

w
ith

a
m
ild

ph
en
ot
yp
e)

2.
G
ly
ci
ne

m
is
se
ns
e
m
ut
at
io
ns

in
C
O
L
1A

1
or

C
O
L
1A

2
ca
us
in
g

ty
pe

I
co
lla
ge
n
st
ru
ct
ur
al
de
fe
ct
s
(m

ild
to

se
ve
re

ph
en
ot
yp
es
)

D
ia
gn

os
is
:O

I
G
en
es
:C

O
L1

A
,C

O
L1

A
2

P
ro
te
in
:a
lp
ha

1
an
d
2
ch
ai
ns

of
ty
pe

I
co
lla
ge
n

V
ar
ia
bl
e
se
ve
ri
ty

(m
ild

to
pe
ri
na
ta
ll
et
ha
l)
an
d
va
ri
ab
le
cl
in
ic
al

fe
at
ur
es
.T

he
fo
llo

w
in
g
m
ay

be
pr
es
en
t:
gr
ey

or
bl
ue

sc
le
ra
e,

de
nt
in
og
en
es
is
im

pe
rf
ec
ta
,s
co
lio
si
s,
tr
ia
ng
ul
ar

fa
ci
es
,l
im

b
de
fo
rm

ity
,w

or
m
ia
n
bo
ne
s

A
ut
os
om

al
R
ec
es
si
ve

1.
M
ut
at
io
ns

in
ch
ap
er
on
e
co
m
pl
ex
es

in
vo
lv
ed

in
th
e

in
iti
at
io
n
of

ty
pe

I
co
lla
ge
n
ch
ai
n
re
co
gn
iti
on

an
d
he
lic
al
fo
ld
in
g

D
ia
gn

os
is
:O

I
G
en
e:
C
R
TA

P
P
ro
te
in
:C

ar
til
ag
e-
as
so
ci
at
ed

pr
ot
ei
n

M
od
er
at
e,
se
ve
re

or
pe
ri
na
ta
ll
et
ha
l,
rh
iz
om

el
ia
,n
or
m
al
sc
le
ra
e,
co
xa

va
ra
,e
ar
ly

lo
w
er

lim
b
de
fo
rm

ity

D
ia
gn

os
is
:O

I
G
en
e:
LE

P
R
E
1

P
ro
te
in
:P

ro
ly
l-
3-
hy
dr
ox
la
se

1
(P
3H

1)

Pe
ri
na
ta
ll
et
ha
lo

r
se
ve
re
,w

hi
te
sc
le
ra
e,
bu
lb
ou
s
m
et
ap
hy
se
s,
se
ve
re

gr
ow

th
re
st
ri
ct
io
n

D
ia
gn

os
is
:O

I
G
en
e:
P
P
IB

P
ro
te
in
:C

yc
lo
ph
yl
lin

B
(C
yP

B
)

M
od
er
at
e,
se
ve
re

or
pe
ri
na
ta
ll
et
ha
l,
gr
ow

th
fa
ilu

re
,n
or
m
al
sc
le
ra
e

an
d
te
et
h

2.
M
ut
at
io
ns

in
ge
ne
s
w
hi
ch

en
co
de

pr
ot
ei
ns

in
vo
lv
ed

in
th
e
la
te

st
ag
e
of

ty
pe

I
pr
oc
ol
la
ge
n
qu
al
ity

co
nt
ro
l,
di
re
ct
in
g
fi
na
lf
ol
di
ng

an
d
tr
an
si
tf
ro
m

th
e
en
do
pl
as
m
ic
re
tic
ul
um

to
th
e
G
ol
gi

D
ia
gn

os
is
:O

I
G
en
e:
SE

R
P
IN
H
1

P
ro
te
in
:H

ea
t-
sh
oc
k
pr
ot
ei
n
47

(H
SP

47
)

S
ev
er
e,
tr
ia
ng
ul
ar

fa
ci
es
,b
lu
e
sc
le
ra
e,
ea
rl
y
le
g
de
fo
rm

ity
,

de
nt
in
og
en
es
is
im

pe
rf
ec
ta

D
ia
gn

os
is
:O

I
G
en
e:
F
K
B
P
10

P
ro
te
in
:F

K
50
6
bi
nd
in
g
pr
ot
ei
n
(F
K
B
P6

5)

M
od
er
at
e
to

se
ve
re
,v
er
te
br
al
fr
ac
tu
re
s,
va
ri
ab
le
de
nt
in
og
en
es
is

im
pe
rf
ec
ta
an
d
jo
in
tc
on
tr
ac
tu
re
s

3.
M
ut
at
io
ns

w
hi
ch

in
te
rf
er
e
w
ith

la
te
st
ag
e
ty
pe

I
co
lla
ge
n

m
od
if
ic
at
io
n
an
d
cr
os
s-
lin

k
fo
rm

at
io
n

D
ia
gn

os
is
:O

I
G
en
e:
SP
A
R
C
(o
st
eo
ne
ct
in

)
P
ro
te
in
:S

ec
re
te
d
pr
ot
ei
n,
ac
id
ic
an
d
ri
ch

in
cy
st
ei
ne

(S
PA

R
C
)

M
od
er
at
e
to

se
ve
re
,v
er
te
br
al
fr
ac
tu
re
s,
ky
ph
o-
sc
ol
io
si
s,
w
hi
te

sc
le
ra
e,
no

de
nt
in
og
en
es
is
im

pe
rf
ec
ta
,h
yp
ot
on
ia
,j
oi
nt

hy
pe
rl
ax
ity

D
ia
gn

os
is
:B

ru
ck

Sy
nd
ro
m
e

G
en
e:
P
LO

D
2

P
ro
te
in
:L

ys
yl

hy
dr
ox
yl
as
e
2
(L
H
2)

M
od
er
at
e
to

se
ve
re
,v
er
te
br
al
fr
ac
tu
re
s,
co
nt
ra
ct
ur
es
,n
or
m
al
te
et
h

4.
M
ut
at
io
ns

w
hi
ch

in
hi
bi
tt
yp
e
I
co
lla
ge
n
c-
pr
op
ep
tid

e
cl
ea
va
ge

D
ia
gn

os
is
:O

I
G
e n
e:
B
M
P
1

P
ro
te
in
:B

on
e
m
or
ph
og
en
et
ic
pr
ot
ei
n
1
(B
M
P1

)

M
od
er
at
e
to

se
ve
re
,v
er
te
br
al
,f
ra
ct
ur
es
,n
or
m
al
te
et
h,
va
ri
ab
le

sc
le
ra
e,
hy
po
to
ni
a

B
.C

au
se
s
of

bo
ne

fr
ag
ili
ty
du
e
to

m
ut
at
io
ns

in
ge
ne
s
un
lin
ke
d
to

ty
pe

I
co
lla
ge
n
(i
nv
ol
ve
d
in

bo
ne

fo
rm

at
io
n,
di
ffe
re
nt
ia
tio

n
an
d
m
in
er
al
iz
at
io
n)

1.
A
ut
os
om

al
do
m
in
an
t

D
ia
gn

os
is
:O

I
G
en
e:
IF
IT
M
5

P
ro
te
in
:B

on
e-
re
st
ri
ct
ed

If
itm

-l
ik
e
(B
R
IL
)

M
od
er
at
e
to

se
ve
re
,h
yp
er
tr
op
hi
c
ca
llu
s,
ca
lc
if
ic
at
io
n
of

th
e

in
te
ro
ss
eo
us

m
em

br
an
e
of

th
e
fo
re
ar
m

an
d
le
g,
w
hi
te
sc
le
ra
e,
la
ck

of
w
or
m
ia
n
bo
ne
s

2.
A
ut
os
om

al
re
ce
ss
iv
e

D
ia
gn

os
is
:O

I
G
en
e:
SP

7
(O

st
er
ix
)

P
ro
te
in
:T

ra
ns
cr
ip
tio
n
fa
ct
or

Sp
7
(S
P7

/O
st
er
ix
)

M
od
er
at
e
to

se
ve
re
,d
el
ay
ed

de
nt
al
er
up
tio
n,
no

de
nt
in
og
en
es
is

im
pe
rf
ec
ta
,n
or
m
al
he
ar
in
g
an
d
sc
le
ra
e

D
ia
gn

os
is
:O

I
G
en
e:
SE

R
P
IN
F
1

P
ro
te
in
:P

ig
m
en
t-
ep
ith

el
iu
m

de
ri
ve
d
fa
ct
or

(P
E
D
F)

M
od
er
at
e
to

se
ve
re
,n
or
m
al
sc
le
ra
e
an
d
te
et
h,
lim

b
de
fo
rm

ity
,

os
te
om

al
ac
ia
w
ith

lo
os
er
’s
zo
ne
s,
al
ka
lin

e
ph
os
ph
at
as
e
m
ay

be
el
ev
at
ed

Osteoporos Int (2016) 27:2147–2179 2149



T
ab

le
1

(c
on
tin

ue
d)

In
he
ri
ta
nc
e
an
d
Pa
th
og
en
es
is

D
ia
gn
os
is
,G

en
e,
Pr
ot
ei
n

C
lin
ic
al
Fe
at
ur
es

D
ia
gn

os
is
:O

I
G
en
e:
TM

E
M
38
B

P
ro
te
in
:T
ra
ns
m
em

br
an
e
pr
ot
ei
n
38
B
(T
M
E
M
38
B
)

M
od
er
at
e
to

se
ve
re
,n
or
m
al
te
et
h,
sc
le
ra
e,
an
d
he
ar
in
g.

D
ia
gn

os
is
:O

I
G
en
e:
W
N
T1

(h
et
er
oz
yg
ot
es

ha
ve

a
m
ild

ph
en
ot
yp
e)

P
ro
te
in
:W

N
T
1

M
od
er
at
e
to

se
ve
re
,v
er
te
br
al
fr
ac
tu
re
s,
sh
or
ts
ta
tu
re
,b
lu
e
sc
le
ra
e
in

so
m
e
pa
tie
nt
s,
no
rm

al
te
et
h
an
d
he
ar
in
g

D
ia
gn

os
is
:O

I
G
en
e:
C
R
E
B
3L

1
(h
et
er
oz
yg
ot
es

ha
ve

a
m
ild

ph
en
ot
yp
e)

P
ro
te
in
:O

ld
as
tr
oc
yt
e
sp
ec
if
ic
al
ly

in
du
ce
d
su
bs
ta
nc
e
(O

A
SI
S)

Pe
ri
na
ta
ll
et
ha
l,
tu
bu
la
r
bo
ne
s
w
ith

ac
co
rd
io
n-
lik

e
br
oa
de
ne
d

ap
pe
ar
an
ce
,b
ea
de
d
ri
bs
,b
lu
e
sc
le
ra
e

C
.C

au
se
s
of

bo
ne

fr
ag
ili
ty
as
so
ci
at
ed

w
ith

sp
ec
ifi
c,
na
m
ed

di
se
as
es

1.
A
ut
os
om

al
do
m
in
an
t

D
ia
gn

os
is
:C

ol
e-
C
ar
pe
nt
er

Sy
nd
ro
m
e

G
en
e:
P
4H

B
P
ro
te
in
:P

ro
te
in

di
su
lf
id
e
is
om

er
as
e
(P
D
I)

C
ra
ni
os
yn
os
to
si
s,
oc
ul
ar
pr
op
to
si
s,
hy
dr
oc
ep
ha
lu
s,
di
st
in
ct
iv
e
fa
ci
al

fe
at
ur
es
,b
lu
e
sc
le
ra
e,
po
pc
or
n
ep
ip
hy
se
s
of

th
e
lo
w
er
ex
tr
em

iti
es

D
ia
gn

os
is
:E

hl
er
s-
D
an
lo
s
Sy

nd
ro
m
e

G
en
e:
C
O
L3

A
1

P
ro
te
in
:T

yp
e
II
I
pr
oc
ol
la
ge
n

Fr
ag
ili
ty

of
co
nn
ec
tiv
e
tis
su
es
,s
co
lio
si
s,
lo
os
e
jo
in
ts
an
d
sk
in
,e
as
y

br
ui
si
ng
,“
ci
ga
re
tte
-p
ap
er
”
sc
ar
s,
fr
ag
ile

bl
oo
d
ve
ss
el
s
an
d
bo
dy

tis
su
es

w
ith

ar
te
ri
al
an
d
ga
st
ro
in
te
st
in
al
ru
pt
ur
e

D
ia
gn

os
is
:M

ar
fa
n
Sy

nd
ro
m
e

G
en
e:
F
B
N
1

P
ro
te
in
:F

ib
ri
lli
n-
1

Ta
ll
st
at
ur
e,
lo
ng

lim
bs

an
d
di
gi
ts
,j
oi
nt

la
xi
ty
,s
co
lio

si
s,
oc
ul
ar

an
d

ca
rd
io
va
sc
ul
ar

ab
no
rm

al
iti
es

2.
A
ut
os
om

al
re
ce
ss
iv
e

D
ia
gn

os
is
:H

om
oc
ys
tin

ur
ia

G
en
e:
C
B
S

P
ro
te
in
:C

ys
ta
th
io
ni
ne

be
ta
-s
yn
th
as
e
(C
B
S)

M
ar
fa
n-
lik

e
fe
at
ur
es
,m

yo
pi
a,
ec
to
pi
a
le
nt
is
,t
hr
om

bo
em

bo
lic

ev
en
ts

D
ia
gn

os
is
:O

st
eo
po
ro
si
s-
Ps
eu
do
gl
io
m
a
Sy

nd
ro
m
e

G
en
e:
LR

P
5
(h
et
er
oz
yg
ot
es

ha
ve

a
m
ild

bo
ne

fr
ag
ili
ty

ph
en
ot
yp
e
w
ith

no
rm

al
vi
si
on
)

P
ro
te
in
:L

D
L
re
ce
pt
or

re
la
te
d
pr
ot
ei
n
5
(L
R
P5

)

V
er
te
br
al
fr
ac
tu
re
s,
sc
ol
io
si
s,
sh
or
ts
ta
tu
re

an
d
lim

b
de
fo
rm

iti
es
,

bl
in
dn
es
s
du
e
to

oc
ul
ar

ps
eu
do
gl
io
m
a

D
ia
gn

os
is
:S

po
nd
yl
o-
O
cu
la
r
Sy

nd
ro
m
e

G
en
e:
X
YL

T2
P
ro
te
in
:X

yl
os
yl
tr
an
sf
er
as
e
2
(X

yl
T
2)

V
er
te
br
al
fr
ac
tu
re
s
(m

ar
ke
d
pl
at
ys
po
nd
yl
y
w
ith

fi
sh

bo
ne

ap
pe
ar
an
ce
),

en
la
rg
ed

in
te
rv
er
te
br
al
sp
ac
es
,n
or
m
al
he
ig
ht

w
ith

di
sp
ro
po
rt
io
na
te

sh
or
tt
ru
nk
,t
ho
ra
ci
c
ky
ph
os
is
,a
nd

re
du
ce
d
lu
m
ba
r
lo
rd
os
is
,l
os
s

of
vi
si
on

du
e
to

re
tin

al
de
ta
ch
m
en
t,
se
ns
or
in
eu
ra
lh

ea
ri
ng

lo
ss

an
d

ca
rd
ia
c
se
pt
al
de
fe
ct
s

2150 Osteoporos Int (2016) 27:2147–2179



biological agents has led to improved health outcomes for
children with Crohn’s disease [14, 15] and juvenile arthritis
[16]; not surprisingly, evidence for a positive effect of these
agents on skeletal health has been demonstrated in a number
of contemporary studies [15, 17–19].

A recent census of our bone health clinic (housed in a
general, tertiary pediatric hospital) revealed that out of 89
patients with chronic illnesses and a history of low-trauma
fractures necessitating osteoporosis therapy, 40 % had GC-
naive neuromuscular disorders (cerebral palsy, congenital my-
opathy), 27 % had GC-treated DMD, 24 % had other GC-
treated disorders (rheumatic disorders, Crohn’s disease, myas-
thenia gravis), and 9 % held diagnoses of leukemia or other
cancers. These data provide insight into the systemic illness
groups likely to present to a pediatric bone health clinic with
low-trauma fractures requiring osteoporosis intervention.

Manifestations, frequency, and clinical predictors
of osteoporotic fractures

Manifestations of osteoporosis: vertebral fractures

A number of studies have highlighted that vertebral frac-
tures (VF) are an important yet under-recognized manifes-
tation of osteoporosis in children. This is particularly true

in children with GC-treated disorders given the predilec-
tion of GC therapy to adversely impact the trabecular-rich
spine [20, 21]. In GC-treated illnesses such as rheumatic
disorders, nephrotic syndrome, leukemia, and DMD, the
prevalence of VF ranges from 7 to 32 % [21–24] and the
12-month incidence from 6 to 16 % [25–27] depending
upon the underlying disease. The peak annual incidence
in children with GC-treated rheumatic disorders and leuke-
mia occurs at 1 year, in line with the time during which
annual GC exposure is maximal for most patients with
these conditions [11, 12]. At the same time, children with
chronic diseases who are GC naive are not exempt from
spine fragility, since vertebral collapse has been shown to
occur in 25 % of children with motor disabilities [28].

VF often go undetected in children for two main reasons.
First, VF can be asymptomatic [22–27], even in the face of
moderate to severe collapse [11, 22]. Secondly, routine surveil-
lance with a periodic spine X-ray has not historically been sig-
naled an important component of osteoporosis monitoring.
However, a recent position statement by the International
Society for Clinical Densitometry (ISCD) proposed that moni-
toring beyond BMD is needed in at-risk children, since the di-
agnosis of osteoporosis in childrenwith at least oneVFno longer
requires BMD criteria [29]; furthermore, the position statement
acknowledges that BMD Z-scores above −2 standard deviations
(SD) do not preclude increased vertebral and non-VF risk.

Manifestations of osteoporosis: non-vertebral fractures

Low-trauma non-VF in childhood are observed most fre-
quently at the femur, tibia, forearm, humerus, feet, and ankles
[21, 30, 31]. Long bone fractures are the most frequent and
disabling of the non-VF in childhood, while hip fractures
occur rarely and should prompt consideration of serious un-
derlying diseases such as childhood leukemia [32]. Looser
zones, also known as “insufficiency fractures,” may be
mistaken for osteoporotic fractures; however, they represent
the distinctly different process of osteomalacia, defined
histomorphometrically as an increase in osteoid thickness asso-
ciated with prolongation of the mineralization lag time. Looser
zones appear as incomplete cracks in the cortex at the ribs,
scapulae, medial shafts of long bones, and pubic rami. In such
cases, the patient requires an assessment for a disorder of cal-
cium and/or phosphate metabolism including a hand X-ray (to
rule out rickets if the growth plate is still active) and biochem-
ical parameters of bone and mineral ion metabolism (Fig. 1).

The frequency and clinical predictors of fractures
in at-risk children

In recent years, there has been an effort to delineate disease-
specific risk factors for osteoporosis through natural history
studies, by assessing the precise relationship between various

Table 2 Disorders linked to secondary osteoporosis in childhood

Chronic illness Iatrogens

a. Malignancy (leukemia, lymphoma)
b. Rheumatologic disorders
c. Anorexia nervosa
d. Cystic fibrosis
e. Inflammatory bowel disease
f. Renal disease
g. Transplantation
h. Other: primary biliary cirrhosis,
cyanotic congenital heart disease,
thalassemia, malabsorption syndromes,
celiac disease, epidermolysis bullosa

Neuromuscular disorders

a. Cerebral palsy
b. Rett syndrome
c. Duchenne muscular dystrophy
d. Spina bifida
e. Spinal muscular atrophy

Endocrine and reproductive disorders

a. Disorders of puberty
b. Turner syndrome
c. Growth hormone deficiency
d. Hyperthyroidism
e. Hyperprolactinemia
f. Athletic amenorrhea
g. Cushing syndrome
h. Type 1 diabetes

a. Glucocorticoids
b. Methotrexate
c. Cyclosporine
d. Heparin
e. Radiotherapy
f. GnRH agonist
g. Medroxyprogesterone
acetate (long-term use)a

h. L-Thyroxine suppressive
therapy

i. Anticonvulsants

Inborn errors of metabolism

a. Lysinuric protein intolerance
b. Glycogen storage disease
c. Galactosemia
d. Gaucher disease

a Long-term use (>10 years) has been associated with reductions in BMD
among adult women [132]
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Osteoporosis Diagnosis and Treatment Algorithm

YES NO
Does the child have

2 long bone fractures by age 10 

& BMD Z-score ≤ -2

OR

3 long bone fractures by age 19

& BMD Z-score ≤ -2

Consider Initiating Treatment* - Stabilization Phase: Start intravenous bisphosphonate therapy with 

standard, published regimens** until the patient is clinically stable*** (typically for a minimum of 2 years) 

Ongoing Treatment - Maintenance Phase: Ongoing risk factors (i.e. genetic bone fragility, 

chronic GC therapy or immobilization)?

YES
Consider continuing intravenous bisphosphonate treatment to 

the end of linear growth with titration to a lower dose (see text) 

with the goal to preserve the gains realized during the 

stabilization phase and avoid over-treatment

NO
If risk factors resolve, consider discontinuation of 

bisphosphonate treatment once the patient is clinically 

stable for at least 6 to 12 months

Children with at least one vertebral* or low-trauma long bone fracture (identified through

routine monitoring of an at-risk child or a new presentation with bone fragility)

Rule out rickets (x-ray of the wrist, biochemical parameters of bone and mineral ion 

metabolism). Treat undiagnosed calcium, phosphate, vitamin D deficiency

Does the child have an underlying systemic condition (i.e. signs, symptoms or biochemical features of 

malignancy, an inflammatory disorder, abnormal motor development etc ? see Table 2)

YES
Diagnosis = Secondary Osteoporosis

NO
Possible genetic bone fragility

Is the child likely to spontaneously 

recover from the osteoporosis (i.e. given 

resolution of risk factors, young age, mild 

bone fragility)?

POSITIVE
Diagnosis = 

Osteogenesis Imperfecta

NEGATIVE
Genetic analyses for a mutation in 

one of the other bone fragility genes 

outlined in Table 1

YES
Monitor bone health to document 

spontaneous recovery, including 

increases in BMD Z-scores 

appropriate for height, reshaping of 

vertebral fractures, absence of new 

non-vertebral fractures

NO
POSITIVE

Diagnosis = 

Genetic Bone Fragility

NEGATIVE
Does the patient have a low-

trauma vertebral fracture?

NO
Does not meet current 

criteria for the diagnosis 

of osteoporosis.

Consider bone biopsy 

(see adjacent left) and 

ongoing bone health 

monitoring with

re-assessment of genetic 

status if novel genes are 

identified in the future

YES
Diagnosis = Possible 

osteoporosis. Consider bone 

biopsy for signs of OI 

(hyperosteocytosis) or JO 

(thin osteoid seams, low 

bone turnover), if available

Appropriate work-up and 

treatment for the underlying 

Type I collagen mutation 

analyses

* Typical treatment indications: Low-trauma long bone or vertebral fractures. Additional treatment considerations include the impact of the

fractures on quality of life and lack of potential for spontaneous (i.e. medication-unassisted) recovery due to persistent osteoporosis risk factors

** IV bisphosphonate starting doses (see text and Table 4 for details): Pamidronate maximum 9 mg/kg/year in divided doses, Zoledronic acid

maximum 0.1 mg/kg/year in divided doses, or Neridronate maximum 6 mg/kg/year in divided doses. See text for use of and titration to lower doses

*** Clinically stable includes:

Absence of new VF in previously normal vertebral bodies and absence of further loss of vertebral height at sites of previous fractures 

Reshaping of vertebral fractures

Absence of new non-vertebral fractures, bone and back pain

Improved mobility, increases in spine BMD Z-score appropriate for height

Abbreviations: BMD = bone mineral density; GC = glucocorticoid; OI = osteogenesis imperfecta; JO = juvenile osteoporosis, VF = vertebral

fractures; non-VF = non-vertebral fractures

≤

≤

Fig. 1 Algorithm of the approach to the diagnosis and treatment of children with fractures due to osteoporosis
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illness-related factors and fractures, as well as the relationship
between measurable indicators of bone health and fractures
(such as BMD and back pain, see Table 3). These studies have
provided robust results that fine-tune the clinician’s ability to
identify the at-risk child.

Vertebral fractures

As shown in Table 3, a number of studies have been sufficiently
powered to assess clinical predictors of prevalent or incident
(new) VF in univariate or multivariable models. Studies which
show significant differences in relevant clinical parameters be-
tween those with and without VF have also been included in
Table 3. Most studies have been retrospective or cross-sectional;
relatively few studies have assessed the frequency of new VF in
relation to the evolving (longitudinal) clinical course of the child.

From these studies, a number of clinically useful themes
have emerged. First, GC exposure is a consistent predictor of
both prevalent and incident VF, an observation that is not sur-
prising given clinical experience and the known osteotoxicity of
GC therapy. Both cumulative and average daily dose predict VF
in a number of different diseases as outlined in Table 3, as well
as GC dose intensity (“pulse therapy”) in children with leuke-
mia [11]. Secondly, leukemia studies have shown that prevalent
VF around the time of GC initiation are highly predictive of
future fractures, a phenomenon referred to in adults as “the VF
cascade” [11, 25]. In fact, even mild (grade 1) VF independent-
ly predict future fractures, highlighting the importance of iden-
tifying early signs of vertebral collapse [11, 25]. While back
pain predicted prevalent VF in two studies of children with
GC-treated leukemia and rheumatic disorders [22, 24], pain
did not predict newVF [11, 12]. Themessage arising from these
data is that a lack of back pain does not rule out the presence of
VF in at-risk children.

The fact that prevalent VF around the time of GC initiation
predict future VF draws attention to the clinical importance of
understanding the skeletal phenotype early in the child’s dis-
ease course. In children with GC-treated rheumatic disorders,
discrete clinical features in the first year were also independent
predictors of future VF, including increases in disease activity
scores in the first 12months of GC therapy aswell as increases
in body mass index and decreases in lumbar spine (LS) BMD
Z-scores, both in the first 6 months of GC therapy [12]. In
children with solid organ transplantation, older age was also a
consistent predictor of increased VF risk [33–36].

Non-vertebral fractures

Predictors of non-VF fractures in children with chronic ill-
nesses are also outlined in Table 3, most of which are cross-
sectional or retrospective. Loss of ambulation, anticonvulsant
medication, and reductions in BMD at various skeletal sites
are among the most consistent predictors of non-VF in this

setting. An important observation making use of lateral distal
femur BMD, a frequent site of fracture in children with neu-
romuscular disorders, is that every 1 SD reduction in BMD Z-
score at this site was associated with a 15 % increase in lower
extremity fractures [37].

Spontaneous recovery from osteoporosis
in the absence of osteoporosis therapy

The pediatric skeleton is a dynamic structure with the distinct
capability not only to reclaim BMD lost during transient bone
health insults but to reshape fractured vertebral bodies through
the process of skeletal modeling. Both indices are important
measures of recovery in children, either spontaneously or fol-
lowing osteoporosis therapy (i.e., bisphosphonate treatment).
Vertebral body reshaping appears to be growth-mediated,
since it has never been unequivocally reported in adults [38].
We hypothesize that bisphosphonate therapy does not directly
bring about reshaping but rather has a permissive effect by
optimizing BMD in order to prevent further collapse [39].

The disease that has been best-studied for signs of recovery
from skeletal insult in the absence of osteoporosis therapy is
acute lymphoblastic leukemia (ALL). This is not surprising,
since ALL represents a transient threat to bone health in the
majority of patients undergoing contemporary treatment strat-
egies. Mostoufi-Moab et al. [40] assessed children by tibia
pQCT and found that trabecular and cortical BMD Z-scores
were significantly reduced compared to healthy controls with-
in 2 years postchemotherapy cessation but that significant
improvements (on average 0.5 SD) were evident a year later.
Cortical dimensions also increased, followed by increases in
cortical BMD. Other studies have also shown recovery in
bone mass and density in the years following chemotherapy
[41, 42]. Lack of BMD restitution is predicted by cranial and
spinal radiation, particularly at doses ≥24 Gy [42], although it
should be noted that the lower spine BMD among those with
radiation exposure appears to arise in part from hormone
deficiency-related short stature. Other recognized risk factors
for incomplete BMD restitution in ALL include untreated
hypogonadism, vitamin D deficiency, hypophosphatemia,
low IGF-binding protein-3, and reduced physical activity [43].

The fact that reshaping can occur during leukemia chemo-
therapy (i.e., during high-dose GC therapy) is hypothesized to
result from the saltatory pattern of GC exposure with current
treatment protocols (Fig. 2a). Vertebral body reshaping has
also been observed in our clinic among children with rheu-
matic disorders post-GC cessation, though not previously re-
ported (Fig. 2b). On the other hand, older children who have
insufficient residual growth potential can be left with perma-
nent vertebral deformity after vertebral collapse (Fig. 2c). The
long-term consequences of permanent deformity remain un-
studied; however, reports in adults indicate compromised
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quality of life due to pain and functional limitation [44, 45].
Whether the same is true later in life following permanent
vertebral deformity after childhood VF merits further study.

To understand the vertebral body reshaping phenomenon
further, the Canadian STeroid-Induced Osteoporosis in the
Pediatric Population (STOPP) Consortium has explored
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c I II IIII II

LS aBMD Z-Score
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a

b

Fig. 2 a I Lateral spine radiographs in a 7.7-year-old girl at diagnosis
with pre-B acute lymphoblastic leukemia showing a normal spine
radiograph. II Vertebral fractures after 1 year of chemotherapy, as
follows: grade 3 (severe) wedge fractures at T12 and L1; grade 2
(moderate) biconcave fracture at L2; grade 3 (severe) biconcave
vertebral fractures at L3 and L4. III–V These panels show stages in
vertebral body reshaping with a “bone within bone” appearance during
and after chemotherapy, in the absence of bone-specific (bisphosphonate)
therapy. b I Lateral spine radiographs showing vertebral fractures in a
toddler with systemic-onset juvenile idiopathic arthritis. Grade 2
vertebral fractures at T12 and L1 on GC therapy at 1.4 years of age. II

At 4.9 years of age, she has almost complete recovery of vertebral height
ratios with the typical “bone within bone” appearance, in the absence of
bone-specific (bisphosphonate) therapy. c I Lateral spine radiographs
showing a grade 3 (severe) fracture at L3 in a 15.3-year-old girl with
pre-B acute lymphoblastic leukemia 3 months after diagnosis. At
diagnosis, she had already attained final adult height. II, III Lack of
reshaping due to fused epiphyses and absence of endochondral bone
formation. vBMD = volumetric BMD; aBMD = areal BMD. Solid
arrows indicate vertebral bodies that have been fractured. Hatched
arrows indicate vertebral bodies undergoing reshaping
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determinants of complete versus incomplete reshaping in
bisphosphonate-naive ALL (quantified by a decrease in a pos-
itive spinal deformity index (SDI) [46] by 100% in the 6 years
following diagnosis). Preliminary analyses suggest that many
children reshape following VF in ALL but those with moder-
ate or severe vertebral collapse and those who are older at
diagnosis may reshape less frequently. The next question is
whether children with VF and persistent bone health threats in
the context of other diseases such as GC-treated DMD can
undergo vertebral body reshaping without bisphosphonate
therapy. At the present time, there are no published reports
to suggest that they do, a fact that is corroborated by our
own clinical experience.

Bone health monitoring in at-risk children

Monitoring goals and candidates

The ultimate goal of monitoring is to identify high-risk pa-
tients for intervention that will prevent the first fracture.
However, lack of available data to support such primary pre-
vention has instead led to monitoring that identifies early rath-
er than late signs of osteoporosis, followed by bone-active
treatment in those with limited potential for spontaneous re-
covery (including vertebral body reshaping). This is in line
with a secondary prevention approach, which seeks to miti-
gate the progression of the osteoporosis following identifica-
tion in its earlier stages.

Two important observations have shifted monitoring
away from a BMD-centric to a more functional approach:
(1) The use of a BMD Z-score threshold to identify a child
is problematic due to variability in the Z-scores generated
by the different available normative databases [47–49], and
(2) asymptomatic VF can occur at BMD Z-scores >−2,
thereby requiring imaging surveillance for VF detection.
Other functional outcomes should also be tracked during
monitoring including history of non-VF, growth, pubertal
status, pain, mobility, muscle strength, and the potential for
spontaneous recovery (vertebral body reshaping and bone
density restitution). BMD remains a vital part of the bone
health monitoring approach but as an adjuvant tool to chart
the child’s BMD trajectory, thereby signaling a child who
is losing ground and therefore at increased risk for frac-
tures, or who is showing signs of recovery following a
transient bone health threat (potentially obviating the need
for osteoporosis treatment).

Patients expected to be GC-treated for ≥3 months should
be considered for a baseline spine radiograph (or high
quality dual energy X-ray absorptiometry (DXA)-based
VF assessment (VFA), if available) at the time of GC ini-
tiation. Three months or more is the recommended cut-off
since the earliest incident VF reported after GC initiation in

children is at 4 months [27]. Children meeting the criteria
for baseline spine imaging should also undergo a follow-up
radiograph at 12 months, since this is the time point with
the highest annual incidence of VF in many GC-treated
children [11, 27]. Annual to biannual imaging for VF is
advised thereafter for those with ongoing GC exposure.
The predictors of VF outlined in Table 3 can facilitate the
decision around the frequency of VF follow-up assess-
ments beyond 12 months.

Among children with other risk factors for bone fragility
apart from GC exposure (Tables 1, 2, and 3), the same
principles apply; that is, the patient should be assessed
for both non-VF and VF since GC-naive children with
mobility issues and genetic bone fragility can also develop
VF [6, 28]. In youth with impaired mobility due to cerebral
palsy and congenital myopathies, a spine radiograph is rec-
ommended at the latest by about 6 to 8 years of age and
then at intervals thereafter until the end of growth, or soon-
er in the presence of back pain. Monitoring is recommend-
ed to start by this time since treatment should be initiated
before there is insufficient residual growth potential for
vertebral body reshaping.

Since BMD is useful as a serial measurement to assist
the clinician in understanding the child’s overall bone
health trajectory and in making logical decisions about
the need for ongoing monitoring, discharge from bone
health care or intervention, it is recommended that a
BMD is carried out at least as frequently as spine radio-
graphs according to the above guidelines, with assessments
every 6 months in those children at greatest risk [4, 29].

Axial skeletal health: vertebral fracture detectionmethods
and imaging modalities

The most widely used tool for the assessment of VF in
both children and adults is the Genant semiquantitative
method [50, 51]. According to the Genant method, the
definition of a VF is ≥20 % loss in vertebral height ratio
regardless of the VF morphology. VF are subjectively
graded by trained readers according to the magnitude of
the reduction in vertebral body height ratios, without direct
measurement. Vertebral height ratios are generated when
the anterior vertebral height is compared with the posterior
height (for an anterior wedge fracture), middle height to the
posterior height (biconcave fracture), and posterior height
to the posterior height of adjacent vertebral bodies (crush
fracture). The Genant scores correspond to the following
reductions in height ratios: grade 0 (normal), <20 %; grade
1 fracture (mild), ≥20 to 25 %; grade 2 fracture (moderate),
>25 to 40 %; and grade 3 fracture (severe), >40 %.
Overall, the Genant semiquantitative method is preferred
over quantitative (six-point) vertebral morphometry [52],
since it is faster and takes into consideration the expertise
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of an experienced reader. In addition, it quantifies the se-
verity of VF (an important predictor of the lack of potential
for spontaneous vertebral body reshaping following VF in
children). Furthermore, the Genant scoring system permits
calculation of the SDI, the sum of the Genant grades along
the length of the spine [46]. The SDI is a global index of
spine morbidity that is useful clinically and can be used as
a continuous outcome variable in research studies [53]. The
kappa statistics for intra- and interobserver agreement are
similar for children compared to adults using the Genant
semiquantitative method [50, 54, 55].

A number of recent studies have provided validity for
the Genant approach in children. First, Genant-defined VF
show a bimodal distribution from T4 to L4 similar to the
known distribution in adults [56–59], with a predilection
for the mid-thoracic region (T5 to T8, the site of the natural
kyphosis) and the thoracolumbar junction (the site of tran-
sition to the natural lordosis) [22, 59]. Secondly, biologi-
cally relevant clinical predictors of Genant-defined VF
have been identified including back pain, low LS BMD
Z-scores, longitudinal declines in LS BMD Z-scores and
GC exposure [12, 22, 25]. One of the most important ob-
servations to assert the validity in children is that both mild
and moderate-severe Genant-defined VF at leukemia diag-
nosis are robust clinical predictors of new VF over the next
3 years [11, 25].

To date, the most common imaging tool for VF detec-
tion in childhood is lateral thoracolumbar spine radio-
graphs. In view of the high radiation exposure from spine
radiographs but nevertheless critical need for VF assess-
ments as part of bone health evaluations, nonradiographic
imaging techniques have been developed which use the
scoring methods described above. The use of DXA to di-
agnose VF is called VFA (vertebral fracture assessment)
with images captured on a lateral spine view. VFA is at-
tractive as an assessment tool given its minimal radiation
and the fact that fan-beam technology facilitates the cap-
ture of the entire spine on a single image without divergent
beam issues due to parallax. Newer DXA machines have a
rotating “c-arm” which obviates the need to reposition the
patient from the supine to lateral position. Image quality
varies significantly depending on the densitometer [60].
Using a Hologic Discovery A machine, Mayranpaa et al.
[61] showed low diagnostic accuracy for VFA compared to
lateral spine radiographs and poor visibility in children.
Pediatric studies on newer DXA machines are presently
underway.

Axial skeletal health: transiliac bone biopsies

Iliac crest bone biopsies with tetracycline labeling provide
unique diagnostic information about static and dynamic bone
properties that cannot be obtained by any other means (i.e.,

osteoid thickness, bone formation rate, mineralization lag
time, and other bone formation and resorption indices) [62].
In practical terms, biopsies are useful in establishing the cause
of osteoporosis in special cases such as a child with unex-
plained bone fragility and negative genetic studies.
Idiopathic juvenile osteoporosis has a characteristic
histomorphometric appearance—low bone turnover and thin
osteoid seams—but clinically may be difficult to distinguish
from other forms of osteoporosis such as nondeforming OI
without blue sclerae, wormian bones, or a family history
[63, 64]. Similarly, patients with OI typically have a histolog-
ical hallmark (hyperosteocytosis) that is helpful diagnostically
in rare cases when studies are falsely negative [63, 64]. At the
same time, few clinicians are trained in this technique and so
overall, it is a rarely used tool aside from highly specialized
clinics.

Axial and appendicular skeletal health: dual energy X-ray
absorptiometry

DXA is the most commonly used and widely available tech-
nique to measure bone mass and density in children, since it is
highly reproducible, inexpensive and confers low radiation
exposure. LS and total body less head are the preferred mea-
suring sites [65]; recently, lateral distal femur BMD Z-scores
have also been useful in children with neuromuscular disor-
ders who prefer to position on their side [37, 66] (Table 3).
BMD raw values are converted to age- and sex-specific SD
scores (Z-scores) and require additional interpretation in view
of body size, ethnicity, and pubertal staging or skeletal matu-
rity (the latter, by bone age) [67]. Since BMD can be
underestimated in children with familial short stature, and
children with chronic illnesses may be transiently or perma-
nently short due to the effects of the disease/treatment on
linear growth and puberty, adjustment for bone size using a
technique such as bone mineral apparent density (BMAD or
volumetric BMD, in g/cm3) [68] or height Z-score-corrected
BMD Z-scores [69] is required to avoid underestimation of
BMD parameters. BMAD has the advantage that it has been
tested for its ability to accurately predict VF [70], whereas
height Z-score-corrected BMD Z-scores have not. Lateral dis-
tal femur BMD Z-scores predicted non-VF in children with
neuromuscular disorders [37]; and furthermore, this assess-
ment method is taken at a clinically relevant site, since chil-
dren with neuromuscular disorders often fracture at this loca-
tion. Despite challenges in BMD interpretation due to variable
growth rates and timing and tempos of puberty, numerous
studies (Table 3) confirm an inverse relationship between
BMD and fracture rates, and serial measurements provide ad-
ditional information about the child’s overall bone health tra-
jectory that can inform whether there is a need for ongoing
bone health monitoring.
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Appendicular skeletal health: peripheral quantitative
computed tomography

pQCT at the radius and tibia provides information that cannot
be obtained by DXA about musculoskeletal geometry as well
as “true” (volumetric) cortical and trabecular BMD. For exam-
ple, in children with cerebral palsy, it has been shown that
smaller bone and cortical cross-sectional area are the main
structural defect rather than lower cortical BMD [71]; pQCT
studies have also shown that cortical thickness and not density
is the main parameter impacted by growth hormone deficiency
and treatment [72]. pQCT is particularly useful when DXA
studies are precluded due to spine deformity, hip and knee
contractures, or metallic hardware. The newest technique,
high-resolution pQCT, has the spatial resolution to measure
trabecular geometry and microarchitecture. At the moment,
pQCT and high-resolution pQCT are research tools in most
centers.

Bone turnover markers

Bone turnover markers (BTM) are often measured in children
undergoing a bone health assessment or while on osteoporosis
therapy. Recently, two markers have been recommended by
the International Osteoporosis Foundation and the
International Federation of Clinical Chemistry and
Laboratory Medicine [73]: serum procollagen type I N-
terminal propeptide (PINP, a marker of bone formation) and
serum collagen type I cross-linked C-telopeptide (CTx, a
marker of bone resorption), both of which have been studied
in healthy children in order to generate reference data [74–77].
These analytes were chosen because of their specificity to
bone and relationship to relevant outcomes in adult clinical
studies as well as their stability, wide availability, and ease of
analysis and procurement.

BTM are influenced by several factors that lead to high
intra- and interindividual variability, including age/pubertal
stage, gender, time of day, food intake, physical activity, re-
cent fractures, serum 25-hydroxyvitamin D status, assay
methods, and sample transport and storage conditions. One
of the main factors that have limited their use in children,
particularly for those with chronic illness and growth delay,
is that BTM are largely a reflection of linear growth and not
bone turnover per se. In children, the only available method to
determine bone turnover status with certainty is to directly
measure bone formation and resorption on trabecular surfaces
via transiliac bone biopsy; however, this tool is not in wide-
spread clinical use.

In a recent adult review, BTM were not recommended to
diagnose osteoporosis because of weak and inconsistent cor-
relations with BMD and lack of evidence that they indepen-
dently predict fracture risk [78], a view supported by the ISCD
[79]. For adults undergoing monitoring during osteoporosis

therapy, fracture risk reduction is independent of pretreatment
BTM [80–82]; therefore, pretreatment values should not direct
the choice of osteoporosis therapy. During therapy, the evi-
dence from adult clinical trials is still emerging around the
definition of a marker response that identifies optimal fracture
risk reduction. In women treated with risedronate, the non-VF
incidence was 50 % lower in patients with a 30 % or more
reduction in urinary collagen type I cross-linked N-
telopeptides (NTx) [83]; the relationship between the bone
turnover response and fracture risk reduction with other agents
in adults remains under study.

In children, BTM provide some insight into general diag-
nostic categories; for example, urinary NTx levels are high
prebisphosphonate treatment in children over 3 years of age
with OI [84] and correlate with an increased trabecular bone
formation rate on transiliac biopsies [85]. Low BTM and tra-
becular bone formation are frequently observed in chronic
illness osteoporosis both before [39, 86] and after years [39]
of GC therapy. LRP5mutations causing juvenile osteoporosis
are also characterized by low BTM and trabecular bone for-
mation [87, 88]. On the other hand, brisk increases in BTM
can signal recovery from growth failure and bone mass defi-
cits as observed in children undergoing effective treatment for
Crohn’s disease [15]. A low alkaline phosphatase can separate
patients with OI from those with hypophosphatasia—an im-
portant distinction since bisphosphonates are contraindicated
in hypophosphatasia, and furthermore, a life-saving medical
therapy is now available to treat the severe infantile form [89].

BTM have been measured in children undergoing osteopo-
rosis treatment. Urinary NTx levels were suppressed during
intravenous (IV) bisphosphonate therapy for OI [39, 84], in-
cluding in a controlled trial [90], and remained low up to
2 years following treatment discontinuation [84]. The effect
of oral bisphosphonate therapy on resorption markers has
been inconsistent, with no effect in one controlled study [91]
and suppression in others [92, 93]. To date, there are no stud-
ies in childhood which have assessed the fracture risk reduc-
tion or frequency of adverse effects according to thresholds of
bone turnover reduction with bisphosphonate therapy. At the
present time, BTM during pediatric osteoporosis therapy serve
to document that the drug is exerting the anticipated biological
effect and provide an index of compliance.

The definition and diagnosis of osteoporosis
in children

The definition and diagnosis of osteoporosis in children has
been fraught with challenges and controversy over the years,
following the widespread availability of BMD by DXA that
led to zealous testing in myriad pediatric populations. The
initial approach in the 1990s was to adapt the adult strategy
at the time and thereby diagnose a child with osteoporosis
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based on a BMD Z-score ≤−2 SD. This led to an outcry of
publications which highlighted the underestimation of BMD
Z-scores in some because of permanent or transient short stat-
ure and/or delayed skeletal maturation relative to age- and
gender-matched peers, along with recommendations for vari-
ous size-correction methods in order to prevent inappropriate
diagnoses of osteoporosis in short or skeletally delayed chil-
dren [68, 69, 94, 95]. Subsequently, concern was raised that in
the absence of large, natural history studies to understand the
fracture risk associated with a given BMD Z-score, a BMD-
only definition of osteoporosis in children still ran the risk of
overdiagnosis even with BMD size correction. This line of
thinking culminated in the ISCD convening a task force in
2007 which recommended that the definition of osteoporosis
be reserved for children with both a clinically significant frac-
ture history and a BMD Z-score ≤−2 SD [96]. This approach
was viewed as a positive step forward by the pediatric bone
health community, as it placed the evaluation of bone fragility
in equipoise with DXA-based BMD assessments. However,
the unresolved fact remained that children could have clini-
cally significant fractures despite BMD Z-score parameters
above the proposed, critical Z-score threshold of −2 SD [39,
49]. With these observations, concern was raised that the pen-
dulum had swung the other way and that the 2007 ISCD
criteria might lead to an appropriate diagnosis of osteoporosis
being withheld from a child with overt bone fragility in the
presence of a statistically “normal” BMD Z-score.

Around the same time, the clinical relevance of BMD test-
ing was affirmed by numerous studies showing a clear, inverse
relationship between BMD Z-scores and low-trauma fractures
in children (Table 3). However, the proportion of children
assigned a BMD Z-score ≤−2.0 varied considerably depend-
ing on the BMD normative database that was used to generate
the Z-scores [47–49], once again calling into question the
utility of a BMD Z-score threshold as part of the definition
of osteoporosis in children. To explore the issue further, the
Canadian STOPP Consortium reported the magnitude of the
disparity in LS BMD Z-scores generated by normative data-
bases from both Hologic and Lunar machines in children with
ALL at diagnosis [49], highlighting a difference as much as
2.0 SD depending upon which database was used to generate
the Z-scores. Secondly, this study showed that 48 % of chil-
dren with VF at the time of leukemia diagnosis had BMD Z-
scores >−2.0.

These disparate results in BMD Z-scores depending on the
reference data that is used plus the fact that VF can occur
above the −2 threshold suggested that the use of a LS BMD
Z-score cut-off as part of the definition of osteoporosis in
children with VF was not valid [49]. This view has been
underscored by the ISCD in an updated (2013) position state-
ment [29] which notes that a BMD Z-score threshold of ≤−2.0
is no longer required to diagnose osteoporosis in a child with a
VF; in fact, there are no longer BMD Z-score requirements at

all in the setting of a low-trauma VF. In the 2013 ISCD rec-
ommendation, the use of a BMD Z-score threshold (−2.0 or
worse) has been retained to denote osteoporosis in children
with long bone fractures, provided such children also have a
clinically significant fracture history defined as ≥2 long bone
fractures by age 10 and ≥3 long bone fractures by age 18 [29].
At the same time, the 2013 ISCD position statement notes that
a BMD (or bone mineral content) Z-score >−2.0 does not
preclude an increased fracture risk of long bone fractures.
This caveat is affirmed by the report of Henderson et al. that
up to about 15 % of children with neuromuscular disorders
and lower limb fractures had lateral distal femur BMD Z-
scores >−2.0 [37].

Despite the disparity in LS BMD Z-score generated by
different normative databases, Ma et al. [49] showed in chil-
dren with ALL at diagnosis that the relationships between LS
BMD Z-scores and VF are consistent regardless of the refer-
ence databases that are used to generate the Z-scores. This is
not surprising, since the available reference databases are all
highly correlated with one another (with r value ranges from
0.85 to 0.99) [49]. These findings suggest that while the use of
a LS BMD Z-score threshold is not valid for the diagnosis of
osteoporosis in children with VF and that this is likely also
true in relation to other BMD sites in children with extremity
fractures [37], the use of LS BMD Z-scores as a continuous
variable risk factor for VF in clinical research studies never-
theless remains valid.

Where does this leave the clinician in the pivotal decision
to label a child with osteoporosis? On balance, current evi-
dence puts the weight of the diagnosis on the fracture history.
Among children with risk factors for osteoporosis, a low-
trauma fracture is usually apparent (falling from a wheelchair,
sustaining a fracture during a seizure); in such cases, a size-
corrected BMD Z-score >−2.0 should not deter the clinician
from the osteoporosis diagnostic label.

On the other hand, in the case of an otherwise healthy child
with recurrent fractures but absence of risk factors, stigmata of
OI, or a genetically confirmed family history of osteoporosis,
it is incumbent upon the clinician to find evidence of addition-
al features to support the diagnosis of osteoporosis (Fig. 1).
VF without a history of trauma are highly suggestive of an
underlying bone fragility condition, and the lower the BMD,
the more likely an osteoporotic phenotype (although a normal
BMD does not categorically rule out osteoporosis as
discussed). Genetic testing is indicated in such children,
since even children with type I collagen mutations can lack
typical stigmata. Overall, about 7 % of patients with a
mutation in the type I collagen genes will be without either
blue sclerae or dentinogenesis imperfecta (Frank Rauch,
personal communication).

Since over a dozen genes have now been implicated in OI
or “OI-like” bone fragility (Table 1), questions have been
raised about the best way to describe the various forms of
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mild, moderate, and severe genetic forms of osteoporosis.
While some reports retain the original OI subtype nomencla-
ture [97] (i.e., types I to XVI, expanding on the initial classi-
fication proposed by Sillence and Rimoin [98]), recently, it
has been proposed that congenital bone fragility should be
described according to the implicated gene and that the term
OI should be reserved for genetic forms which involve type I
collagen pathobiology [99]. This approaches simplifies the
diagnosis of genetic bone fragility for the clinician, clustering
diagnoses into broad categories based on known genetic un-
derpinnings (see Table 1 for phenotypic characteristics asso-
ciated with each). Figure 1 provides an overview of the ap-
proach to the diagnosis of osteoporosis in children. It should
be remembered that a young child with unexplained fractures,
lack of evidence for a secondary cause of osteoporosis, and
normal genetic studies may be the victim of nonaccidental
trauma.

Treatment

General measures for optimization of bone health

First-line measures to optimize bone health fall into three main
categories: nutrition, physical activity, and treatment of the
underlying condition and associated comorbidities; these have
also been recently reviewed elsewhere [1, 2, 100–106]. The
most well-described nutritional factors for bone health are
vitamin D and calcium; however, a number of other nutrients
also play a role in bone metabolism, including protein, potas-
sium, magnesium, copper, iron, fluoride, zinc, and vitamins A,
C, and K. Children with chronic illnesses are at particular risk
for vitamin D deficiency due to limited sun exposure, malab-
sorption, and dietary restrictions. Youth with eating disorders
(such as anorexia nervosa) or malabsorption (short gut syn-
dromes, celiac disease, Crohn’s and exocrine pancreatic dis-
orders) can present with extensive nutritional compromise in-
cluding lack of essential dietary proteins, fats, fat-soluble vi-
tamins, and mineral ions requiring the expertise of dieticians
and gastroenterologists specializing in the underlying disease
and childhood nutrition [107]. Secular trends in dietary habits
also appear to have an adverse effect on bone health, with high
intake of sugar-sweetened drinks associated with an increased
fracture risk [105].

The recommended intake of vitamin D is a minimum of
600 IU/day [107], although higher doses are often required to
meet target levels, particularly in those with malabsorption,
obesity, and darker skin [107]. Adequate total body vitamin
D stores have been defined at a serum 25-hydroxyvitamin D
level ≥50 nmol/L (20 ng/mL) [107, 108] or ≥75 nmol/L
(30 ng/mL) [109], mostly based on adult studies. In children,
the optimal serum 25OHD threshold remains under debate. A
meta-analysis showed a lack of significant effect of vitamin D

supplementation and 25OHD levels ≥50 nmol/L on BMD in
healthy youth [110], a bone histomorphometric study in chil-
dren with OI failed to show an association between serum
25OHD levels and bone mineralization or bone mass [111],
and calcium plus vitamin D supplementation had no effect on
spine BMD in children with inflammatory bowel disease
[112] and leukemia [113]. Overall, the optimal serum
25OHD threshold associated with health benefits across the
life cycle remains controversial as discussed in a large con-
temporary “umbrella” assessment of published systematic re-
views andmeta-analyses [114]. From a practical perspective, a
minimum 25-hydroxyvitamin D level of 50 nmol/L (20 ng/
mL) is recommended in youth through diet and/or supplemen-
tation, with measurement of 25-hydroxyvitamin D in high-
risk populations ideally at the end of winter in order to deter-
mine compliance with and efficacy of prescribed doses at the
time of the nadir.

The Institute of Medicine [107] recommends age-specific
dietary reference intakes for calcium for all life stages. The
recommended dietary allowance of calcium to fulfill the needs
of 97.5% of the healthy population is 700 mg/day for children
1 to 3 years, 1000 mg/day between 4 and 8 years, and
1300 mg/day for children 9 to 18 years [107]. Higher daily
supplementation may be required in children with malabsorp-
tion ormedications that impair calcium retention or absorption
(diuretics or GC therapy). Optimizing calcium intake through
diet is preferred because of questions raised following reports
of adverse cardiovascular outcomes in adults following sup-
plementation [115]. The role of routine calcium supplementa-
tion in childhood has been queried by a meta-analysis show-
ing only a small effect on BMD unlikely to alter fracture risk
[116]. On balance, calcium is a key nutrient for adequate skel-
etal mineralization with recommended intakes best achieved
through a healthy diet.

High impact activity has an anabolic effect on the growing
skeleton and has been shown to increase bone mass in healthy
children, particularly those prepubertal and in early puberty
[106, 117]. The impact of physical activity in children with
chronic illnesses remains virtually unchartered; a pilot study
in children after cancer therapy showed an increase in total
body and femoral neck BMD compared to controls after
6 months of group-based aerobic and strength training exer-
cises [118]. Modified exercise (i.e., activities with a low risk
of falls and bodily contact) should be encouraged within the
limits of the underlying condition in ambulatory children with
osteoporosis. Among youth with more severe physical impair-
ment, modest increases in BMD have been reported following
standing regimes as well as physical and high-frequency vi-
bration therapy [119]; the impact of such interventions on
fracture risk requires further testing in larger, longer-term stud-
ies. The benefits of exercise appear maximal under conditions
of adequate calcium intake [104], underscoring the impor-
tance of implementing these general measures in tandem.
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For children with chronic illnesses, adequate treatment of
the underlying illness is the mainstay of osteoporosis preven-
tion and treatment. The situation is complicated by the fact
that some of the standard therapies are osteotoxic, including
GC, high-dose methotrexate in the cancer setting [120], cal-
cineurin inhibitors [121], hepatic microsomal enzyme-
inducing antiepileptics increasing catabolism of 25-
hydroxyvitamin D, and long-term use of anticoagulants
[122] and medroxyprogesterone [123]. Wherever possible,
these agents should be used sparingly in children with risk
factors for osteoporosis, a principle that is not always practical
given, for example, the need for GC therapy to treat systemic
inflammatory diseases and leukemia and to slow the progres-
sion of the myopathy in DMD. Identification of endocrine
comorbidities is also appropriate, including treatment of de-
layed puberty, growth hormone deficiency, hyperthyroidism,
and diabetes. Growth hormone therapy increases areal BMD
even after final adult height attainment and should be contin-
ued through adulthood in those with low size-adjusted BMD
or fractures [124]. As a word of caution in the use of growth
hormone to treat GC-induced growth failure in DMD—in
addition to a paucity of data to support the safety and efficacy
of this approach, one of the current hypotheses is that short
stature may be beneficial to muscle strength in DMD since
stresses on the sarcolemma are higher with increases in the
size of the muscle fiber [125].

Drug therapy: candidates for medical intervention
and timing of treatment initiation

When to initiate medical treatment is a frequently posed ques-
tion by clinicians. To date, intervention studies in children
have largely been limited to case series and small observation-
al or case-control studies, given the relative paucity of patients
with various diseases at any one medical center and the chal-
lenges in securing funding for large, multicenter drug trials in
the young. The absence of treatment trials targeting the pre-
vention of first-ever fractures in children has led to a conser-
vative approach overall, with therapy typically reserved for
children with overt bone fragility. Among those with chronic
illness osteoporosis, there is an additional consideration—not
every child with symptomatic osteoporotic fractures and
chronic illness requires osteoporosis therapy given the poten-
tial for spontaneous (medication-unassisted) recovery if risk
factors are transient, including reshaping of previously frac-
tured vertebral bodies. The potential for spontaneous recovery
in children with transient risk factors demands controlled trials
in this setting.

Where primary prevention with drug therapy prior to the
first fracture is concerned, at the present time, there is insuffi-
cient data to recommend osteoporosis therapy other than the
general measures discussed previously. In the future, primary
prevention drug trials should target priority disease groups

including the progressive neuromuscular disorders like GC-
treated DMD. Here, there is an urgent need for well-designed
trials on sufficient numbers of patients to effectively assess
functional outcomes including fractures, pain, and mobility
when treatment is started before the first fracture.

Since there are insufficient data to recommend drug thera-
py for the primary prevention of osteoporotic fractures in chil-
dren with any condition at the present time careful monitoring
in at-risk children to identify those with early signs of bone
fragility, particularly in those with limited potential for spon-
taneous recovery, is indicated. Such an approach follows the
principles of secondary prevention—to mitigate osteoporosis
progression and foster recovery in those with earlier (rather
than later) signs of osteoporosis. Given the knowledge that has
emerged about the clinical populations at risk for osteoporosis
and the disease-specific predictors of fractures, it is no longer
appropriate for children to present to medical attention with,
for example, back pain due to advanced vertebral collapse
necessitating “rescue therapy.” Rather, pediatric programs
should be established to effectively monitor at-risk children
in order to identify earlier stages of vertebral collapse, follow-
ed by an assessment of the child’s potential for medication-
unassisted recovery versus need for osteoporosis treatment. A
monitoring program also provides the clinician with an oppor-
tunity to identify and treat vitamin D, mineral, and hormonal
deficiencies, to encourage a healthy weight, to promote phys-
ical activity within the limits of the child’s underlying condi-
tion and to encourage compliance with treatment of the un-
derlying condition [15, 126].

Bisphosphonate therapy is typically reserved for children
with a history of low-trauma fractures but also limited poten-
tial for spontaneous (i.e., medication-unassisted) recovery due
to permanent or persistent osteoporosis risk factors (Fig. 1).
Low-trauma long bone fractures and symptomatic VF (or
asymptomatic VF that are moderate or severe) are the most
frequent indications for treatment. Extremity fractures at sites
other than long bones (such as the hands and feet) do not
usually warrant treatment. Studies are currently underway to
evaluate the safety and efficacy of treating mild (Genant grade
1) asymptomatic or minimally symptomatic VF in pediatric
osteoporosis; for now, it is recommended that such fractures
be closely monitored for symptomatology and/or progressive
vertebral height loss that would prompt treatment.

After determining the child’s vertebral and long bone frac-
tures status, the clinician assesses the potential for medication-
unassisted recovery in view of the osteoporosis severity (in-
cluding degree of vertebral collapse), residual growth poten-
tial, and whether risk factors are persistent or resolving. In the
face of resolving risk factors at a young age (such as with-
drawal of GC therapy in a prepubertal child), a conservative
approach can often be taken that involves monitoring to doc-
ument the child’s anticipated recovery. In contrast, children
who are peripubertal or older as well as younger children with
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ongoing risk factors or heritable forms of osteoporosis will
have less potential for spontaneous reshaping of vertebral bod-
ies and reclamation of BMD—such children are optimal can-
didates for osteoporosis therapy. Of course, symptomatic os-
teoporosis (such as pain fromVF limiting the child’s quality of
life) is itself an indication for treatment; in such cases, osteo-
porosis therapy is recommended to relieve pain and allow the
child to regain quality of life regardless of the child’s potential
for spontaneous recovery in the future.

Following these steps facilitates the decision to start treat-
ment in a child with a clear diagnosis of primary or secondary
osteoporosis. As shown in Fig. 1, a frequent conundrum is
whether to start treatment without a specific underlying diag-
nosis—a scenario referred to as “low-trauma, recurrent (usu-
ally extremity) fractures in otherwise healthy children.” In
such cases, the clinician needs to make every effort to unearth
a known cause, including the now expanded etiologies of
heritable bone fragility outlined in Table 1 or chronic illnesses
with insidious onset (such as Crohn’s or rheumatic diseases)
outlined in Table 2. A low-trauma VF in this setting is highly
suggestive of a bone fragility condition. When genetic and
chronic illness evaluations are negative, a transiliac bone bi-
opsy can also provide important clues although it is less read-
ily available. When no specific diagnosis is forthcoming de-
spite a comprehensive evaluation, the criteria to label a child
with osteoporosis provided in the most recent ISCD position
statement supports the decision to initiate osteoporosis treat-
ment: ≥2 long bone fractures by age 10 or ≥3 or more long
bone fractures by age 18 and a size-corrected BMD or bone
mineral content Z-score of −2 [29]. Low-trauma VF may also
prompt treatment in these cases.

Bisphosphonate treatment of primary and secondary
osteoporosis in childhood

Bisphosphonates, synthetic analogs of pyrophosphate, are the
most extensively published agents to treat osteoporosis in
childhood [127, 128], despite the fact that they remain off-
label in most countries. The vast majority of publications de-
scribing the effect of bisphosphonate therapy in children are
observational, pre-post studies; there are relatively few con-
trolled studies of bisphosphonate therapy in children and even
fewer studies have been sufficiently powered to assess fracture
outcomes. The paucity of fracture outcome data in controlled
trials reflects a number of considerations when studying chil-
dren: the relatively small numbers of patients available for
study, the historically adult focus of industry-sponsored trials,
and the logistical and philosophical challenges of enrolling
younger patients. The latter issue includes pressure from fam-
ilies and health-care providers alike to treat individual pediat-
ric patients despite insufficient evidence, instead of enrolling
children in controlled trials that address uniquely pediatric
safety and efficacy issues. Nevertheless, the few controlled

studies available in addition to a number of key observational
studies provide important and useful information about pedi-
atric patients’ responses to bisphosphonate therapy.

Oral versus intravenous bisphosphonate therapy

The use of oral versus IV bisphosphonate therapy for pediatric
osteoporosis has long been debated [129]. Overall, IV
pamidronate is the mostly extensively reported agent in children
following the inaugural observational study in the late 1990s
which showed improved pain, mobility, and reshaping of verte-
bral bodies following pamidronate therapy in children with
moderate to severe OI [130]. Children were treated with cycli-
cal, IV pamidronate at a dose of 9mg/kg/year divided every 2 to
4 months up to 5 years’ duration [130]. In recent years, IV
zoledronic acid has been introduced given the advantage that
it can be given over a shorter period of time and less frequently
[39, 131]; zoledronic acid is 100 times more potent than
pamidronate [132]. Both agents are nitrogen-containing
bisphosphonates that inhibit farnesyl diphosphate synthase and
thereby protein prenylation, a process crucial for osteoclast sur-
vival. A randomized study comparing the two agents in OI
showed that zoledronic acid had similar effects on LS BMD
Z-scores and fracture rates over 12 months [131]. Of the oral
agents, alendronate and risedronate have been the most exten-
sively studied, with one report confirming that the oral bioavail-
ability of alendronate in children is <1%, similar to adults [133].

Figure 3 shows the mean difference in LS areal BMD Z-
score change in published, controlled trials of bisphosphonate
therapy for the treatment of childhood osteoporosis, with com-
parison of results in the treatment versus placebo/untreated
control groups. As shown in Fig. 3, increases in spine BMD
Z-scores were a consistent finding in all of the available con-
trolled studies using oral alendronate or risedronate in children
with OI; one report showed no effect of oral alendronate in a
study of girls with anorexia nervosa (AN) (see section on
Special Treatment Considerations) [134]. In addition, a con-
trolled study by Gatti et al. in pediatric OI (Table 4) showed a
significant effect of IV neridronate on the percent change in
spine and hip BMD compared to controls after 1 year. Overall,
it appears that IV and oral bisphosphonates consistently in-
crease BMD parameters in children, as confirmed in recent
Cochrane reviews on the use of bisphosphonates in pediatric
secondary osteoporosis [128] and OI [127].

On the other hand, the effects of IV versus oral
bisphosphonates on fracture outcomes are less homogeneous,
an observation that is evident in Fig. 4 (describing the relative
risk of fractures in controlled bisphosphonate trials from data on
the number of patients with fractures in the two groups) and
Fig. 5 (showing the incidence rate of fractures in controlled trials
from data on the number of fracture events in each group). Of
the nine studies which permitted calculation of the relative risk
of non-VF, only one by Bishop et al. [135] using risedronate in
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pediatric OI showed a decrease in non-VF risk. The other stud-
ies in Fig. 4 [91, 93, 134–139] found no significant differences
compared to placebo or untreated controls in the relative risks of
non-VF after oral alendronate, oral olpadronate, and IV
neridronate. At the same time, Fig. 4 highlights that the direction
of effects for non-VF risks in the nonsignificant studies was
favorable for treatment in all but one study [134]. Figure 5
shows the incidence rate ratio of fractures using the number of
fracture events in the two groups (a more powerful calculation
since there are typically more fracture events than patients with
at least one fracture). Two studies with nonsignificant results for
the relative risk of non-VF had positive results when the inci-
dence rate ratio was calculated [91, 138]. Most of the nonsig-
nificant estimates in Figs. 4 and 5 had extremely wide confi-
dence intervals but directions of effect in favor of treatment,
suggesting that sample sizes were likely inadequate to show
differences in fracture rates between the two groups.

So how do we adjudicate whether oral or IV bisphos-
phonate therapy is more efficacious in the presence of such
little controlled data and inadequate sample sizes to deter-
mine the effects on fractures? The answer appears to lie in
the VF and vertebral body reshaping data. Based on obser-
vational studies, it is expected that fractured vertebral bod-
ies will undergo reshaping with bisphosphonate therapy
[39, 53, 140, 141], thereby providing a key index of ben-
efit. The controlled trials to date which quantified vertebral
body height clearly showed increases in those receiving IV
bisphosphonate therapy [90, 138, 142], whereas none of

the controlled oral bisphosphonate studies in which it was
measured showed a positive effect on vertebral height
[91–93]. Furthermore, in a large randomized trial of daily
oral alendronate for moderate and severe pediatric OI
[139], there was no effect of alendronate on the cortical
width of transiliac specimens. In contrast, this is a key
structural index derived from a precise measurement which
has shown a positive response in OI to IV bisphosphonate
therapy [85]. Another compelling observation that sup-
ports IV over oral therapy is from a controlled OI trial
[93], where risedronate did not lead to an increase in the
trabecular volumetric BMD at the distal radius compared
to placebo; on the other hand, IV therapy caused signifi-
cant increases in BMD at this site [143]. Overall, these data
support the use of IV instead of oral bisphosphonate ther-
apy first-line. At the same time, Figs. 4 and 5 underscore
the need for controlled trials of osteoporosis therapies, es-
pecially in the secondary osteoporosis where there are only
three controlled trials published to date and none suffi-
ciently powered to address any fracture outcomes.

Monitoring the efficacy of bisphosphonate treatment

Gauging the efficacy of bisphosphonate therapy rests on a
number of clinical parameters, most of which are focused
on the functional musculoskeletal health of the child. One
of the main goals of therapy is remittance of back and bone
pain which typically occurs within 2 to 6 weeks following
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Table 4 Bisphosphonate therapy in children: results of prospective controlled trials with at least 10 patients per group

Publication, study design, and
diagnosis

Number of patients,
age (years)

Agent, dose, and
route

Main efficacy outcomes Side effects

•Bishop et al. [135]
•RCT, double-blind
•OI (mild to severe)
•Duration with comparison to

control group: 1 year

Treatment group
•N= 94
•Age: mean

(SD) = 8.9 (3.4)
Placebo group
•N= 49
•Age: mean

(SD) = 8.6 (3.1)

•Oral risedronate
•2.5 mg/day if

weight 10–
30 kg; 5 mg/
day if weight
>30 kg

•See BMD and fracture outcomes in Figs. 3
and 4

•↓ Urinary NTx/creatinine with risedronate
versus placebo

•Similar between treatment
and placebo groups

•Ward et al. [139]
•RCT, double-blind
•OI (mild to severe)
•Duration: 2 years

Treatment group
•N= 109
•Age: mean

(SD) = 11.0 (3.6)
Placebo group
•N= 30
•Age: mean

(SD) = 11.1 (4.0)

•Oral alendronate
•5 mg/day if

weight <40 kg;
10 mg/day if
weight ≥40 kg

•See BMD and fracture outcomes in Figs. 3
and 4

•↓ In urinary NTx with risedronate versus
placebo

•No differences: average midline vertebral
height, iliac cortical width, bone pain,
physical activity

•Similar between treatment
and placebo groups

•Gatti et al. [138]
•RCT, unblinded
•OI (mild to severe)
•Duration: 1 year

Treatment group
•N= 42
•Age: mean

(SD) = 9.0 (2.3)
Untreated control

group
•N= 22
•Age: mean

(SD) = 8.6 (2.4)

•IV neridronate
•2 mg/kg every

3 months
•Intravenous

•See fracture outcomes in Figs. 4 and 5
•Significant differences compared to

untreated controls:
•↑ spine and hip BMD
•↑ height and DXA-derived LS projected area
•↓ Total number of fractures
•Nonsignificant differences compared to

untreated controls: number of patients with
nonvertebral fractures

•Flu-like symptoms; 10/42
in the neridronate group;
0/22 in the untreated
control group

•Sakkers et al. [91]
•RCT, double-blind
•OI (mild to severe)
•Duration: 2 years

Treatment group
•N= 16
•Age: mean

(SD) = 1.0 (3.1)
Placebo group
•N= 18
•Age: mean

(SD) = 10.7 (3.9)

•Oral olpadronate
•10 mg/m2 daily

•See BMD and fracture outcomes in Figs. 3,
4, and 5

•Significant differences compared to placebo:
•↓ Relative risk of long bone fractures
•↑ spine BMC
•Nonsignificant differences compared to

placebo: mobility, self-care, muscle
strength, anthropometry, vertebral height,
urinary bone resorption markers

•Not reported

•Rauch et al. [93]
•RCT, double-blind
•OI type I
•Duration: 2 years

Treatment group
•N= 13
•Age: mean

(SD) = 11.7 (3.6)
Placebo group
•N= 13
•Age: mean

(SD) = 11.9 (4.0)

•Oral risedronate
•15 mg/week if

weight <40 kg;
30 mg/week if
weight >40 kg

•See BMD and fracture outcomes in Figs. 3,
4, and 5

•Significant differences compared to placebo:
•↓ Serum NTx
•Nonsignificant differences: BMC/BMD at

the radial metaphysis and diaphysis, hip,
and total body; transiliac cortical width,
trabecular bone volume, bone turnover;
vertebral height; second metacarpal cortical
width, grip strength, bone pain

•Similar between treatment
and placebo groups

•Seikaly et al. [196]
•RCTwith double-blind

crossover design
•OI (mild to severe)
•Duration: 1 year treatment

then crossover to placebo
OR 1 year placebo then
crossover to treatment

Treatment group
•N= 20
Age: mean

(SD) = 9.8 (1.06)
Placebo group
•Crossover design,

therefore same
patients as in the
treatment group

•Oral alendronate
•5 mg/day if

weight <30 kg;
10 mg/day if
weight >30 kg

•See BMD and fracture outcomes in Figs. 3
and 5

•Significant differences compared to placebo:
•↑ improved QOL scores, except for mobility
•↑ height Z-score
•↓ Urinary NTx
•Nonsignificant differences compared to

placebo: serum calcium, osteocalcin, PTH,
1,25(OH)2 vitamin D3, urinary
hydroxyproline

•Alendronate group: 2/20
had mild gastrointestinal
discomfort; 0/20 in the
placebo group
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IV bisphosphate therapy [39, 130]. In a child with VF,
follow-up spine radiographs should be carried out in order
to evaluate a number of efficacy parameters as outlined in
Fig. 1.

In addition, the history of new non-VF should be recorded,
along with details about the site of fracture, degree of trauma
associated with the injury, need for surgical management, impact
to quality of life, and duration of healing. Improvements in ener-
gy level [130], mobility, andmuscle strength [144] are also mon-
itored. BMD parameters are tracked as a measure of efficacy
following initiation of bisphosphonate therapy; however, there
are no studies which have addressed which BMD increment or
cut-off is associated with a clinically acceptable decrease in frac-
ture rates posttreatment initiation. In the absence of such data, a
reasonable rule of thumb is that the areal BMD Z-score should
stabilize (if previously on the decline) or increase beyond the
precision of the measurement and, furthermore, the areal BMD
Z-score will approximate the patient’s height Z-score. Another
approach is to aim for a BMD Z-score >−2 SD [53].

Bisphosphonate dose adjustments, duration of treatment,
and effect of treatment discontinuation

The most frequently prescribed IV bisphosphonate regimen is
cyclical IV pamidronate (maximum dose 9 mg/kg/year for chil-
dren ≥3 years, 3 mg/kg divided equally over 3 days given every
4 months) [5, 84, 128, 130, 145]. Due to high bone turnover in
younger children, pamidronate is dosed more frequently
(2.25 mg/kg divided equally over 3 days, every 3 months for
children 2 to 3 years of age, and 1.5 mg/kg divided equally over
3 days, every 2 months for children <2 years of age). Zoledronic
acid is increasingly used in clinical care due to its ease of less
frequent dosing intervals and shorter infusion time compared to
pamidronate (maximum dose 0.1 mg/kg/year given as two equal
doses (0.05 mg/kg) every 6 months in children ≥2 years and
0.025 mg/kg every 3 months in children <2 years) [131, 146,
147]. Some investigators have favored a lower annual starting
dose (such as a single-day pamidronate infusion 1 mg/kg every
3 months, 4 mg/kg/year) [148, 149]. Apart from these regimens,

Table 4 (continued)

Publication, study design, and
diagnosis

Number of patients,
age (years)

Agent, dose, and
route

Main efficacy outcomes Side effects

•Bianchi et al. [136]
•RCT, double-blind
•Cystic fibrosis
•Duration: 1 year

Treatment group:
•N= 65
•Age: mean

(SD) = 13.5 (5.3)
Placebo group:
•N= 63
•Age: mean

(SD) = 13.2 (5.1)

•Oral alendronate
•5 mg/day if

weight ≤25 kg
or 10 mg/day if
weight >25 kg

•See fracture outcomes in Figs. 4 and 5
•Significant differences compared to placebo:
•↑ LS BMAD
•↑ proportion of patients who attained a

normal-for-age bone BMAD Z-score
•↓ Serum CTx and urinary NTx
•↓ Serum bone-specific alkaline phosphatase
•Nonsignificant differences compared to

placebo: serum osteocalcin, PTH

•Similar between treatment
and placebo groups

•Golden et al. [134]
•RCT, double-blind
•Anorexia nervosa
•Duration: 1 year

Treatment group:
•N= 15
•Age: mean

(SD) = 16.9 (1.6)
Placebo group:
•N= 17
•Age: mean

(SD) = 16.9 (2.2)

•Oral alendronate
•10 mg/day

•See BMD and fracture outcomes in Figs. 3
and 4

•Significant differences compared to placebo
•↑ femoral neck vBMD
•Nonsignificant differences compared to

placebo: femoral neck and LS areal BMD,
bone-specific alkaline phosphatase, urinary
deoxypyridinoline

•Placebo group: 1 patient
discontinued the
medication because of
dyspepsia

•Adverse events otherwise
similar between groups

•Rudge et al. [137]
•RCT, double-blind
•Chronic illness treated with

GC therapy
•Duration: 1 year

Treatment group:
•N= 11
•Age: median (min,

max) = 8.7 years
(6.3, 14.5)

Placebo group:
•N= 11
•Age: median years

(min, max) = 8.0
(4.3, 17.2)

•Oral alendronate
•1–2 mg/kg once-

weekly

•See fracture outcomes in Figs. 4 and 5
•BMD: comparisons between groups not

reported
•Alendronate group: ↑ LS vBMD compared

to baseline
•Placebo group: no change in LS vBMD

compared to baseline
•Nonsignificant differences compared to

placebo: alkaline phosphatase

•No major adverse events
in either treatment or
placebo group

Studies were included with the following criteria: (1) prospective comparison of drug versus placebo or untreated controls, (2) at least 10 patients per
group, and (3) outcomes were compared between, and not just within, treatment and control groups

BMC bone mineral content, BMD bone mineral density, BMAD bone mineral apparent density, vBMD volumetric bone mineral density, CTx serum C-
telopeptide of type I collagen, GC glucocorticoid, LS lumbar spine, NTx urinary N-telopeptide of type I collagen, OI osteogenesis imperfecta, PTH
parathyroid hormone
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other IV doses and intervals have also been reported (Table 4)
though none has gone head to head in controlled, comparative
trials, the exception being pamidronate versus zoledronic acid
which showed similar effects on BMD and fracture rates in OI
[131]. With such little controlled comparative data, it is impossi-
ble to state which IVagents and regimens achieve the best results
for mitigating fractures and pain and improving overall function.
Regardless, bisphosphonate therapy should only be administered
by clinicians with the appropriate expertise and infrastructure to
support peri-infusion care, and the maximum, published annual
doses should not be exceeded so as to avoid iatrogenic
osteopetrosis arising from toxic doses [150].

The approach to dose adjustments and the duration of bis-
phosphonate therapy are also questions frequently posed by pe-
diatricians. A number of key observations unique to children
have influenced practice in this regard. The first observation
has led to continuing bisphosphonate therapy until final height
attainment in those with permanent or persistent risk factors, as
follows. Among children with open epiphysis and ongoing en-
dochondral bone formation, following treatment discontinuation,
the newly formed bone adjacent to the growth plate will be
“treatment-naive” and thereby low density, creating a stress riser
between high (previously treated) and low (untreated) density

bone [143]. Not surprisingly, metaphyseal fractures have oc-
curred postbisphosphonate discontinuation in children with OI
(i.e., in children with persistent risk factors for low bone density)
at the interface between the treated and untreated bone [151]. In
fact, metaphyseal fractures have even occurred during intermit-
tent IV bisphosphonate therapy at the interface between the dense
metaphyseal lines created at the time of therapy and the (2-mm)
adjacent treatment-naive bone [152]. This latter report raises the
question whether IV bisphosphonates should be administered
with as short an infusion interval as possible, a line of thinking
that is challenged by the demands on the patient from frequent
infusions.

Further support for continuation of therapy to final height in
thosewith persistent or permanent risk factors arises from a study
by Rauch et al. [151]. These investigators showed using pQCT
that therewere significant declines in trabecular BMCZ-scores at
the distal radius following pamidronate discontinuation in chil-
dren with OI who were still growing. On the other hand, discon-
tinuation after epiphyseal fusion was associated with more stable
BMD Z-scores 2 years later. Balancing these observations with
the lingering concern about oversuppression with longer-term
therapy, the current recommended approach is to treat patients
initially with a higher dose regimen until the patient is clinically
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stable (Fig. 1). Usually, this equates to a minimum of 2 years, the
time point at which the maximum benefit from bisphosphonate
therapy has been observed in children with OI [85]. Once the
patient is clinically stable, a lower (half-dose or less) [53, 153]
maintenance protocol is given until the patient attains final adult
height, at which time treatment can be discontinued if the patient
is stable [53]. The goal of the maintenance phase of therapy in
children with permanent or persistent risk factors is to preserve
the gains realized during high-dose therapy while avoiding over-
treatment [53, 153]. To this end, the dose of IV bisphosphonate
therapy in the maintenance phase may require further downward
titration to avoid unnecessarily high BMDZ-scores—this can be
achieved by decreasing the dose or by increasing the interval
between infusions. Palomo et al. [53] recently reported that
long-term (at least 6 years) bisphosphonate therapy with down-
ward dose titration in pediatric OI led to higher BMD Z-scores
compared to historical controls and to vertebral body reshaping,
although it was notable that non-VF rates were still high and
most patients continued to developed scoliosis. An outstanding
question about the duration of therapy in those who stop around
the time of adult height attainment but have persistent risk factors
for fractures (e.g., OI or ongoing GC exposure) is whether they

will require reintroduction of bisphosphonate therapy in the adult
years and, if so, at what time point.

In children with resolution of risk factors during growth (i.e.,
cessation of GC therapy, resolution of inflammation, recupera-
tion of mobility), discontinuation of therapy can be considered
once the child has been fracture-free (VF and non-VF) for at least
6 to 12 months, previously fractured vertebral bodies have stabi-
lized or undergone reshaping, and BMDZ-scores are appropriate
for height. Reintroduction of therapy may be required during
growth if the prior risk factors for osteoporosis recur and patients
once again meet the criteria for treatment initiation.

Use of an antiresorptive agent in low bone turnover states

While the use of an antiresorptive agent is not ideal in low bone
turnover states (such as GC-induced osteoporosis or immobiliza-
tion disorders), it is important to recognize that withholding bis-
phosphonate therapy from children with low bone turnover will
prevent positive, growth-mediated skeletal effects arising from
the unique synergy between antiresorptives and bone modeling.
For example, at the level of the vertebral body growth plate,
bisphosphonates do not interfere with endochondral bone
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formation (the bone modeling process by which bones increase
in length); furthermore, endochondral bone formation is indepen-
dent of bone turnover on trabecular surfaces. This means that
fractured vertebral bodies will reshape by endochondral bone
formation despite low trabecular bone turnover provided a child
is growing (with bisphosphonates having a permissive effect on
reshaping by optimizing BMD). This principle has been nicely
demonstrated in pediatric DMD by bone histomorphometry and
serial spine radiographs [39]. Similarly, periosteal apposition is
the growth-dependent process by which bones increase in width;
antiresorptive therapy leads to bone catabolism on endocortical
surfaces but periosteal apposition proceeds normally. This brings
about a net increase in cortical width during bisphosphonate
treatment, a phenomenon first demonstrated by Rauch et al. in
pediatric OI [85] and later by our group in boys with DMD [39].
At the same time, the door is decidedly open to novel anabolic
therapies which would be ideal in children with low bone turn-
over states, a need for prolonged osteoporosis therapy and poor
linear growth. The classic clinical examples of this scenario are
children with systemic juvenile idiopathic arthritis and DMD.
While parathyroid hormone (PTH) holds a Food and Drug
Administration black box warning that prevents its use in chil-
dren, the role of PTH in conditions such as this postepiphyseal
fusion merits further study.

Bisphosphonate therapy side effects and contraindications

Short-term

Themost frequent side effects of bisphosphonate therapy, report-
ed with both oral and IV treatment [130, 133, 138], are collec-
tively referred to as “the acute phase reaction” and include fever,
malaise, back and bone pain, nausea, and vomiting. These symp-
toms usually begin 24 to 72 h following the initial dose, remit
over a few days, typically do not occur with subsequent infusions
or oral doses, and are effectively managed with anti
inflammatory and antiemetic medications. Asymptomatic hypo-
calcemia is frequent even with repeat infusions (though most
marked with the first), reaching a nadir usually 1–3 days
postinfusion [84]. The frequency of first-dose hypocalcemia ap-
pears to bemitigated by reducing the initial dose [140], a practice
that is now inwidespread use. Interestingly, a lower dosewith the
first infusion does not appear to mitigate the frequency of acute
phase side effects [140]. Symptoms have been reported in up to
30% of childrenwith first-infusion hypocalcemia [39, 140]. This
has led to the widespread practice of prescribing calcium supple-
mentation at published doses [107] for 5 to 10 days following the
first bisphosphonate infusion, as well as ensuring vitamin D ad-
equacy pre- and posttreatment. Children at risk for either hypo-
calcemia or its consequences (i.e., children with hypoparathy-
roidism or seizure disorders) may require even more aggressive
hypocalcemia prevention such as an active form of vitamin D.
Untreated hypocalcemia, hypophosphatemia, vitamin D

deficiency, and rickets/osteomalacia are contraindications to bis-
phosphonate therapy. In these cases, the underlying vitamin D
and/or mineral ion deficiency must be adequately treated before
bisphosphonate therapy is administered (i.e., 25-hydroxyvitamin
D level ≥50 nmol/L (20 ng/mL) and calcium intake sufficient for
age).

The more serious acute side effects associated with bisphos-
phonate therapy in adults (such as uveitis, thrombocytopenia, and
mucosal ulcerations with oral agents) are rare in children.
Furthermore, a recent review of bisphosphonates in adults con-
cluded that there is no link between bisphosphonates and atrial
fibrillation, while the association between oral agents and
esophageal cancer remains inconclusive [154]. In any patient
with poor renal function (estimated glomerular filtration rate
<35 mL/min), bisphosphonates are contraindicated. Recently,
the United States Food and Drug Administration updated the
label for zoledronic acid, stating that it is also contraindicated
in patients with acute renal impairment and that patients
should be screened for renal insufficiency prior to initiating
treatment. To this end, it should be noted that serum creatinine
may not be a reliable marker of renal function in those with
myopathies such as DMD, raising the need for other measures
such as cystatin C to ensure adequate renal function prior to
each zoledronic acid infusion. In our center, we also verify
normal renal function prior to all pamidronate infusions.

Long-term

Concerns about the effects of bisphosphonates on linear growth
have ultimately been quelled by studies which confirm expected
growth rates in children with bisphosphonate-treated OI [145]
and osteoporosis [155]; there are even reports of improved
growthwith long-term bisphosphonate therapy [53], likely attrib-
utable to a positive effect on vertebral height. On the other hand,
chronic bone turnover suppression has two rare but serious se-
quelae in adults: osteonecrosis of the jaw (ONJ) and atypical
subtrochanteric or metaphyseal “fatigue” fractures (AFF). Both
are proposed to arise from accumulated microdamage due to
suppressed osteoclast activity. ONJ is defined as exposed bone
in the maxillofacial area that does not heal within 8 weeks fol-
lowing identification by a health-care provider, in the absence of
radiation therapy [156]. In children, there are no reports of ONJ
despite three studies which examined over 350 bisphosphonate-
treated children with OI following dental procedures [157–159].
Despite the lack of reported ONJ in children to date, one position
statement has nevertheless recommended to safeguard the
bisphosphonate-treated child’s oral health by referral to a dentist
prior to bisphosphonate initiation, completion of necessary inva-
sive dental procedures prior to treatment initiation, regular dental
evaluations by a dentist during treatment, and good daily oral
hygiene [160].

AFF are also rare in adults, and while there is no direct causal
link between bisphosphonates and AFF, the number of case
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series and cohort analyses suggesting an association is increas-
ing, as summarized in a recent report [154]. These fractures are
located in the subtrochanteric region or femoral shaft, arise from
minimal or no trauma, and are characterized by transverse or
short oblique fracture lines without comminution and a medial
spike when the fracture is complete [161]. They are often bilat-
eral (in up to two thirds of cases) and may be associated with
prodromal thigh pain. In the pediatric setting, Hegazy et al. [162]
reported unusual femur stress fractures in children with OI and
intramedullary rods on long-term bisphosphonate therapy (6 to
11 years); two patients had a “drug holiday” of 18 to 24 months
prior to the femoral fractures. Of 72 children on IV pamidronate
therapy, 18 had femur fractures, and of these, 6/72 met the adult
criteria for AFF (8 %). All children had intramedullary rodding,
none of the fractures were displaced, and all were treated suc-
cessfully with protected weight-bearing and a hiatus from bis-
phosphonate therapy.While the duration of bisphosphonate ther-
apy in those with AFFwas reported in this study [162], there was
no record of the frequency of such fractures in bisphosphonate-
naive children nor the approach to pamidronate dosing (starting
dose, maximum dose, dose titration, and total cumulative
pamidronate dose). As such, it is difficult to know whether these
results are generalizable to other centers; nevertheless, the obser-
vation is a call for concern and underscores the need for clinicians
to report similar observations. Whether downward dose titration
with long-term therapy such as currently practiced can obviate
AFF remains unknown. Similarly, the benefits and risks of drug
holidays in children with permanent or persistent bone heath
threats needing long-term therapy remain unexplored.
Although rare, AFF have led adult care providers to consider
drug holidays in those with a low risk of first-ever fractures and
in those with a moderate risk who are clinically well after 3 to
5 years of therapy [154]. High-risk adult patients, those with a
history of bone fragility or a T score ≤−2 SD, are not considered
candidates for drug holidays [154].

Delayed osteotomy but not fracture healing has been shown
in children with bisphosphonate-treated OI and intramedullary
rods; higher mobility scores were the only positive predictor of
delayed healing that was identified [163]. This observation has
led to withholding bisphosphonate therapy in the week leading
up to surgery and withholding therapy following intramedullary
rodding until adequate fracture healing has been documented on
X-ray, usually about 4 months. Surgical management has also
switched to the use of an osteotome instead of a power saw.With
these changes to medical and surgical management, a recent
study has reported a significant reduction in the frequency of
delayed osteotomy healing [164].

Since the skeleton acts as an endogenous reservoir of
bisphosphonates that theoretically can be mobilized in subse-
quent years, concern has been raised about the safety of
preconceptual use. Despite this theoretical concern, there have
been no human reports to date of a significant adverse effect of
bisphosphonates when administered either preconception or

during pregnancy. This appears to stem from the fact that the
amount of bisphosphonate mobilized from the skeleton in sub-
sequent years is clinically insignificant. For example, data from
Papapoulos and Cremers [165] shows that 4 to 10 years after
daily oral pamidronate administration to children with osteopo-
rosis, a maximum of 0.13 mg/kg/year is excreted in the urine
(less than 0.02 % of the annual dose). The fact that the amount
released from the skeleton is clinically insignificant is supported
by numerous human reports. Reviews of women or girls who
have received bisphosphonates preconception or during pregnan-
cy reported an absence of skeletal abnormalities or congenital
malformations in the infants apart from marginal decreases in
gestational age, weight, and transient, asymptomatic hypocalce-
mia [166–169].While these data are reassuring, clinicians should
ensure that menstruating females have negative pregnancy tests
prior to each infusion and/or they are using amedically approved
form of contraception if sexually active.

Treatment considerations in specific conditions

Adetailed review of all the osteoporosis treatment considerations
related to specific, underlying diseases is beyond the scope of this
review. While the treatment principles outlined in this overview
are broadly applicable, three scenarios which deserve special
mention are OI, AN, and systemic illnesses.

Osteogenesis imperfecta

In OI and potentially other genetic forms of bone fragility, where
the degree of bone fragility can be so profound so as to cause in
utero fractures or fractures in infancy and early childhood, med-
ical therapy alone may be insufficient to restore normal mobility.
In such cases, intramedullary rodding is necessary to straighten
lower (and sometimes upper) limb deformities, prevent fractures,
and foster mobility, in combination with bisphosphonate treat-
ment plus physio- and occupational therapy. In severe cases,
bisphosphonate therapy is often required before surgical rodding
can be carried out, so that there is sufficient bone to permit
effective hardware insertion. As well, teeth and craniofacial ab-
normalities (including dentinogenesis imperfecta, basilar invagi-
nation, and jaw abnormalities) require the input of specialized
dentists and surgeons such that overall, a multidisciplinary team
is required to care for the child with OI, particularly in the mod-
erate and severe forms.

Anorexia nervosa

In this condition of severe low weight, the historical occurrence
of non-VF fractures has been reported at 31 % in girls compared
to 19 % in healthy controls [170], while the prevalence of VF is
low 2.5 % [171]. It has long been established that the best strat-
egy to improve bone density is to gain weight and restore normal
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menstrual function [172]. Oral estrogen-progesterone combina-
tions are not effective in adults or adolescents with AN, and
transdermal testosterone replacement is ineffective in adult wom-
en. Physiological estrogen replacement as transdermal estradiol
with cyclic progesterone does increase bone mineral accrual in
teens with anorexia, approaching that of normal weight controls.
The American College of Sports Medicine has recommended
that oral contraceptives be considered in amenorrheic athletics
over 16 years of age, but only if BMD is declining despite suf-
ficient weight gain [173]. A study of risedronate increased spine
and hip BMD in adult women with AN; however, a controlled
study of oral alendronate in teens showed no effect on LS and hip
BMD compared to placebo [134]. To date, there have been no
controlled trials assessing the effect of IV bisphosphonate thera-
py on the incidence of vertebral and non-VF, on vertebral body
reshaping following prevalent VF, or on BMD in adolescent AN.
Given the synergistic effects of bisphosphonates and linear
growth, such a trial is warranted in young patients with AN
who are still growing.

Systemic illnesses

The most pressing need for intervention trials is in the secondary
osteoporosis, particularly systemic illnesses including DMD and
rheumatic disorders, cerebral palsy, leukemia, and other cancers.
Table 3 highlights that the prevalences and incidences of fractures
in children with myriad chronic illnesses are clinically signifi-
cant. Furthermore, numerous risk factors have been elucidated
which allow researchers to identify which children are most ap-
propriate for primary and secondary prevention trials. Since risk
factors are often transient in the secondary osteoporosis (e.g., GC
therapy, the leukemic process, inflammation), controlled trials are
particularly warranted. On the other hand, children with second-
ary osteoporosis are the most challenging to study given the
small numbers of patients at any one center, the acuity of some
of these illnesses (such as cancer and systemic inflammation),
and the burden of multiorgan underlying disease and
comorbidities.

To date, there have only been two prospective trials compar-
ing bisphosphonate therapy to placebo or untreated controls
(with at least 10 patient per group) in this context (Table 4).
Using daily oral alendronate, Bianchi et al. [136] targeted youth
with cystic fibrosis and found significant increases in LS BMAD
and declines in BTM compared to placebo; however, the small
sample size limited the ability to assess fracture outcomes.
Similarly, Rudge et al. [137] studied weekly oral alendronate in
children with a variety of GC-treated illnesses; once again, small
sample sizes precluded assessment of fracture outcomes. An in-
crease in vBMD compared to baseline was noted in the
alendronate group but not in the placebo group. Recent reviews
[1, 2, 174–176] have unanimously agreed that the effect of bis-
phosphonate therapy on LSBMDand bone pain in children with
conditions such as cerebral palsy, GC-treated rheumatic

disorders, and DMD is consistent and favorable enough to advo-
cate for well-designed randomized controlled trials targeting
those at greatest risk for fractures. Whether the challenges of
studying small numbers of sick or chronically disabled children
can be overcome remains to be determined.

Novel therapies

A number of important signaling pathways that modulate bone
mass have led to novel drug developments in recent years.
RANKL is an essential mediator of osteoclast formation, func-
tion, and survival [177], and both preclinical and clinical data
suggest that inhibition of RANKL is a viable strategy for the
treatment of osteoporosis [178]. Denosumab is a human, mono-
clonal antibody administered subcutaneously that targets
RANKL to prevent the activation of RANK, thus inhibiting bone
resorption and increasing bone strength at both trabecular and
cortical sites without directly interacting with bone surfaces
[179]. A large study on close to 8000 women with postmeno-
pausal osteoporosis (the FREEDOM trial) showed that
denosumab 60 mg every 6 months reduced vertebral,
nonvertebral, and hip fracture risk without an increased risk of
side effects compared to placebo [180]. Given its convenient
route of administration, favorable safety profile and proven effi-
cacy in adults, denosumab nowmerits exploration in children. To
date, its use on compassionate grounds has been reported in a
few children with osteoporosis due to OI (type VI, a subtype
which is not as responsive to IV bisphosphonate therapy as other
OI forms) [181] and in children with giant cell tumors [182],
aneurysmal bone cysts [183], and fibrous dysplasia [184].
Importantly, there is no evidence to date of an adverse effect of
denosumab on human growth plate activity [185].

Sclerostin, the product of the SOST gene, binds to LRP5/6
receptors and is a powerful inhibitor of the canonical Wnt sig-
naling pathway that results in decreased bone formation. In a
mouse model of moderate-severe OI, antisclerostin antibody re-
sulted in improved bone mass and reduced long bone fragility
[73]; emerging studies in humans show similar promise [186,
187]. Not surprisingly, sclerostin levels are elevated in patients
with bone loss due to immobilization disorders, a clinical setting
that may benefit from sclerostin suppression. Another novel
agent, odanacatib, is a potent and selective inhibitor of cathepsin
K (CatK) which suppresses CatK-mediated bone resorption, but
it does not suppress bone formation to the same extent as bis-
phosphonate therapy [188]. This oral agent is interesting in the
chronic illness osteoporosis and GC-induced bone fragility set-
tings where bone turnover is typically low [39, 86]. Finally,
excessive transforming growth factor-β (TGF-β) signaling has
been implicated in the pathogenesis of both CRTAP recessive
and type I collagen dominant OI; anti-TGF-antibody rescues
the phenotype in both forms of the disease, garnering interest
in other high bone turnover osteoporotic states.
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Future directions

There have been significant advances in the pediatric oste-
oporosis field over the past decade following identification
of numerous heritable bone fragility genes, including those
associated with phenotypes that lack the classic features of
OI. In children with chronic illness, we now better under-
stand the frequency of fractures and time points at which
they are most likely to occur, as well as clinical predictors
of fractures and potential for spontaneous recovery. This
knowledge has facilitated the development of logical oste-
oporosis monitoring strategies in children with chronic ill-
nesses and improved our understanding about the best can-
didates for osteoporosis therapy. Advances in our under-
standing of the pathobiology of osteoporosis have led to
recently discovered novel drug therapies which hold prom-
ise for children with both high and low bone turnover
states; their efficacies and safety now merit testing in
well-designed trials. As pediatric researchers go forward,
there is a need for greater consensus on the methods and
clinical outcomes for reporting treatment trials so that data
across studies can be better aggregated in order to draw
overall conclusions. Importantly, children are not small
adults and this is particularly true in the study of skeletal
disorders, where bone growth and modeling distinguish the
pediatric skeleton from that of the more staid adult situa-
tion. A classic example is that vertebral bodies can undergo
medication assisted and unassisted reshaping following
fractures; at the same time, declines in BMD can be pro-
found when treatment is stopped while the child is still
growing. As well, pediatricians, funding agencies, and pol-
icy makers need to consider the challenges to clinical care
that are created by the lack of controlled clinical trials that
address these issues [189]. Overall, optimal bone strength
across the lifespan rests on outcomes which take place
during the time when the skeleton is under construction—
the growing years. This reminds us that it is incumbent
upon the pediatric bone health communities to champion
the diagnosis, treatment, and study of osteoporosis in
childhood.
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